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Abstract. An increasing number of application fields represent dynamic
and open discourses characterized by high mutability, variety, and plu-
ralism in data. Data in dynamic and open discourses typically exhibits
an irregular schema. Such data cannot be directly represented in the tra-
ditional relational data model. Mapping strategies allow representation
but increase development and maintenance costs. Likewise, NoSQL sys-
tems offer the required schema flexibility but introduce new costs by not
being directly compatible with relational systems that still dominate en-
terprise information systems. With the Flexible Relational Data Model
(FRDM) we propose a third way. It allows the direct representation of
data with irregular schemas. It combines tuple-oriented data representa-
tion with relation-oriented data processing. So that, FRDM is still rela-
tional, in contrast to other flexible data models currently in vogue. It can
directly represent relational data and builds on the powerful, well-known,
and proven set of relational operations for data retrieval and manipula-
tion. In addition to FRDM, we present the flexible constraint framework
FRDM-C. It explicitly allows restricting the flexibility of FRDM when
and where needed. All this makes FRDM backward compatible to tra-
ditional relational applications and simplifies the interoperability with
existing pure relational databases.

Keywords: data model, flexibility, relational, irregular data.

1 Introduction

Today’s databases are deployed in diverse and changing ecosystems. An increas-
ing number of application fields is characterized by high mutability, variety, and
pluralism in the data. High mutability is caused by the persistent acceleration
of society [16] and technological development [19]. Variety appears in database
discourses because information systems extending their scope and strive to cover
every aspect of the real world. Pluralism is inevitable with the onging cross link-
ing of information systems and the consolidation of data from different stack-
holders in a single database. Particular drivers of these developments are end
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user empowerment [20], agile software development methods [6], data integra-
tion [14,26], and multi-tenancy [17]. The once stable and closed discourses of
databases are rather dynamic and open today.

In such dynamic and open discourses, data often has a irregularly structured
schema. Data with an irregular schema exhibits four characteristic traits: (1)
multifaceted entities that cannot be clearly assigned to a single entity type,
(2) entities with varying sets of attributes regardless of their entity type, (3)
attributes occuring completely independent of particular entity types, and (4)
attribute-independent technical typing of values. All four traits cannot be di-
rectly represented in the relational data model. As a natural reaction, many
developers perceive traditional relational data management technologies as cum-
bersome and dated [18]. Various mapping strategies [15,1,4] allow a presentation
but they imply additional costs of implementation and maintenance. Further, the
inherent logical schema of the data is not complete visible on the resulting rela-
tional data. This schema incompleteness particularly is a problem in the likely
case that multiple applications access a database through different channels.

In recent years, the NoSQL movement has introduced a number of new data
models, query languages, and system architectures that exhibit more flexibility
regarding the schema. Many NoSQL systems allow the direct representation of
data with irregular schema as well as the gradual evolution of the schema. Hence,
NoSQL systems appear to be a very appealing choice for applications with a dy-
namic and open discourse. However, the introduction of new data models, query
languages, and system architectures is not for free. Particularly in enterprise en-
vironments where 90% of the databases are relational [9] new data models are
often a bad fit. They imply additional costs for mapping and transforming data
between different data models and require new database management and appli-
cation development skills. These costs multiply if applications store the different
parts of their data in the respectively ideal data model across different database
management systems – a scenario often referred to as polyglot persistency in the
NoSQL context.

With the Flexible Relational Data Model (FRDM) we propose a third way.
It allows the direct representation of data with irregular schemas from dynamic
and open discourses. This includes multifaceted entities, variable attributes sets,
independent attributes, as well as independent technical types. At the same
time FRDM remains 100% backward compatible to the traditional relational
data model. Purely relational data with regular schemas can also be represented
and relationally processed in FRDM directly. FRDM achieves this centering the
data representation around the individual tuples while maintaining the relation
as the primary means of data processing.

Additionally, we present the flexible constraint framework FRDM-C that pro-
vides explicit restrictions to the flexibility of FRDM. Scope and range of the
restriction can be tailored to any requirements ranging from the constraint-free,
descriptive nature of pure FRDM to the strictly prescriptive nature of the tradi-
tional relational data model. FRDM-C helps to introduce rigidity exactly when
and at which parts of data needed. FRDM-C constraints can vary in their effect
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from simply informing to strictly prohibiting, so that they are not only a tool to
maintain data quality but also help achieving data quality.

The remainder of this paper is structured as follows. Section 2 presents the
FRDM data model, in particular how it represents data and how data is pro-
cessed in FRDM. The constraint framework FRDM-C is discussed in Section 3.
With both introduced, Section 4 shows how pure relational data can be repre-
sented directly in FRDM to demonstrate the backward compatibility of FRDM.
This is followed by considerations regarding the implementation of FRDM within
the architecture of relational database management systems in Section 5. In
Section 6, we compare FRDM with other data models regarding the provided
flexibility and backward compatibility. Finally, Section 7 concludes the paper.

2 FRDM

FRDM is a relational data model for structured data. It is free of the rela-
tional inflexibilities but remains directly compatible to the relational model. The
most prominent feature of FRDM is that it separates the functionality of data
representation, data processing, and constraints. Data representation and data
processing are realized in separate, dedicated concepts. We detail the data rep-
resentation of FRDM in Section 2.1 and discuss data processing in Section 2.2.
Schema constraints are realized as explicit constraints outside of the core data
model in the constraint framework FRDM-C, which is presented in Section 3.

2.1 Data Representation

The data representation of FRDM builds on four concepts. The central concept
is the tuple:

Tuple. A tuple is the central concept of the flexible relational data model and
represents an entity. It consists of values, each belonging to an attribute and
is encoded according to a technical type.

The concepts entity domain, attribute, and technical type describe data repre-
sented in tuples and provide logical data handles:

Entity Domain. Entity domains are logical data handles allowing to distin-
guish logical groups of tuples within a database. Tuples belong to at least
one entity domain and may belong to multiple entity domains, so that do-
mains can intersect each other.

Attribute. Attributes are logical data handles allowing to distinguish values
within a tuple. Each tuple can instantiate each attribute only once.

Technical Type. Technical types determine the physical representation of
values. Value operations such as comparisons and arithmetic are defined
on the level of technical types.
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t1 : Camera

name : str = Sony DSC-RX10
resolution : float = 20.0
aperture : float = 2.8
weight : int = 813

t2 : Camera, GPS, Phone

name : str = Samsung Galaxy S4
resolution : int = 13
screen : double = 4.3
weight : int = 133

t3 : Camera, GPS

name : str = Canon EOS 6D
resolution : int = 20

t4 : TV

name : str = LG 60LA7408
resolution : str = Full HD
screen : int = 60

t5 : GPS

name : str = Garmin Dakota 20
weight : int = 150

Fig. 1. Example entities representing electronic devices

Tuples:

D =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 = [Sony DSC-RX10, 20.0, 2.8, 813] ,
t2 = [Samsung Galaxy S4, 13, 4.3, 133] ,
t3 = [Canon EOS 6D, 20] ,
t4 = [LG 60LA7408, Full HD, 60] ,
t5 = [Garmin Dakota 20, 150]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Description elements:

A = {aperture,name, resolution, screen,weight}

T = {float, int , str}

E = {Camera,GPS ,Player ,Phone,TV }
Schema function:

fs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 → [name, resolution, aperture,weight] ,
t2 → [name, resolution, screen,weight] ,
t3 → [name, resolution] ,
t4 → [name, resolution, screen] ,
t5 → [name,weight ]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Membership function:

fm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t1 → {Camera} ,
t2 → {Camera,GPS,Phone} ,
t3 → {Camera,GPS} ,
t4 → {TV } ,
t5 → {GPS}

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Typing function:

ft =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(t1,name) → str , (t1, resolution) → float, (t1, aperture) → float, (t1,weight) → int ,
(t2,name) → str , (t2, resolution) → int , (t2, screen) → double, (t2,weight) → int ,
(t3,name) → str , (t3, resolution) → int ,
(t4,name) → str , (t4, resolution) → str , (t4, screen) → int ,
(t5,name) → str , (t5,weight) → int

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Fig. 2. Example entities in the flexible relational data model

Formally, a flexible relational database is a septuple (D,A,T,E, fs, ft, fm). The
payload dataD is a set of tuples. A tuple is an ordered set of values t = [v1, . . . , vm].
Let A be the set of all attributes available in the database. Then the tuple schema
function fs : D → P(A) \ ∅ denotes the schema of each tuple, i.e., the set of at-
tributes a tuple instantiates. fs(t) = [A1, . . . , Am] if t instantiates the attributes
A1, . . . , Am so that t ∈ A1 × · · · × Am. For convenience, we denote with t[A] = v
that tuple t instantiates attribute A with value v. T is the set of all available tech-
nical types T . The typing function ft : D × A → T shows the encoding of val-
ues, with ft(t, A) = T if the value t[A] is encoded according to the technical type
T . Finally, E is the set of all available entity domains E, while the membership
function fm : D → P(E) \ ∅ denotes which tuples belong to these domains.
fm(t) = {E1, . . . , Ek} if t belongs to the entity domains E1, . . . , Ek.

As an example, Figure 1 shows six entities in a UML object diagram like nota-
tion. The entities represent electronic devices as they could appear in a product
catalog. Note that this small example exploits all the flexibilities of FRDM.
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Relation GPS

name resolution screen weight

Samsung Galaxy S4 13 4.3 133
Canon EOS 6D 20 � �
Garmin Dakota 20 � � 150

o

o

Fig. 3. Relation by entity domain

Relation Camera ∩ GPS

name resolution screen weight

Samsung Galaxy S4 13 4.3 133
Canon EOS 6D 20 � �

m

o

Fig. 4. Relation from relational operator

All six entities are self-descriptive and have their individual set of attribute. The
order of the attributes within an entity differs, too. Entities t2 and t3 belong to
multiple entity domains. Attributes, such as name, appear independently from
entity domains. The technical typing of values, for instance of the attribute
resolution, varies independently from the attribute. In the flexible relational
data model these six entities can be represented directly as shown in Figure 2.

2.2 Data Processing

For data processing, FRDM builds on the well-known concept of a relation. It
allows processing tuples in a relational manner:

Relation. Relations serve as central processing containers for tuples. FRDM
queries operate on relations; query operations have relations as input and
produce relations as output. The tuples in a relation determine the schema
of the relation. Each attribute instantiated by at least a single tuple in the
relation is part of the relation’s schema.

Let t be a tuple in relation R, then R has the schema SR =
⋃

t∈R fs(t) so that
SR ⊆ A. A relation R with schema SR does not have to instantiate each tuple

in every attribute, rather it is R ⊆ ⋃
Si∈P(SR)\∅

(×A∈Si
A
)
. In other words,

tuples may only instantiate a subset of a relation’s schema, except the empty
set. While t[A] = v denotes that tuple t instantiates attribute A with value v,
t[A] = � indicates that tuple t does not instantiate attribute A.

Mass operations address tuples by means of entity domains. Hence, each entity
domain denotes a relation containing all tuples that belong to this domain.
Specifically, an entity domain E denotes a relation R so that E ∈ fm(t) holds for
all t ∈ R. In the following, we refer to a relation representing tuples of domain E
simply as E where unambiguously possible. Figure 3 shows the relation denoted
by the entity domain GPS in the electronic device example.

The well-known relational operators are applicable directly to FRDM
relations. However, the descriptive nature of a FRDM relation requires two
minor modifications to their semantics. First, the logic of selection predicates
and projection expressions has to take into account that attributes may not be
instantiated by a tuple. An appropriate evaluation function for such predicates
and expressions is described in [28]. In a nutshell, tuples that do not instantiate
an attribute used in a selection predicate are not applicable to the predicate and
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do not qualify. Tuples that do not instantiate an attribute used in a projection
expression do not instantiate the attribute newly defined by the expression.
Second, all operations have a strictly tuple-oriented semantics, i.e., the schema
of the relation resulting from an operation is solely determined by the qualifying
tuples. In consequence, the schema resulting from a selection can differ from
the schema of the input relation. More specifically, the resulting schema of a
selection is equal to or a subset of the input schema depending on which tuples
qualify, so that SσP (A) ⊆ SA. Likewise, the schemas of the operand relations
do not matter for set operations. Tuples are equal if they instantiate the same
attributes with equal values. For a union, the resulting schema is the union of
the schemas of the operands, so that SA∪B = SA ∪ SB. For set difference, the
resulting schema is equal to or a subset of the left operand’s schema, again,
depending on which tuples qualify, so that SA\B ⊆ SA. Derived operators, such
as join or intersection, are affected similarly. As an example, Figure 4 shows the
relation resulting from the intersection of the relation GPS (cf. Figure 3) and
the relation denoted by entity domain Camera .

3 FRDM-C

FRDM-C is a flexible constraint framework meant to accompany FRDM. The
flexibility of FRDM originates from its lack of implicit constraints. Nevertheless,
constraints are a powerful feature if their effect is desired by the user. For the
user, constraints are the primary means to obtain and maintain data quality.
Each constraint is a proposition about data in the database. Data either complies
to or violates this proposition, i.e., every constraint categorizes data into two
disjoint subsets. It is up to the user how to utilize this categorization. At least,
constraints inform about which data is compliant and which is violating. At
most, constraints prohibit data modifications that would result in violating data.
Constraints present themselves as additional schema objects, attached to the
schema elements of the data model. The user can add and remove constraints
any time.

Formally, constraints take the general form of a triple (q, c, o). q is the qualifier;
c is the condition compliant data has to fulfill; o is the effect (or the outcome)
the constraint will have. The qualifier determines to which tuples the constraint
applies. It is either an entity domain Eq ∈ E, a attribute Aq ∈ A, or a pair of both
(Eq, Aq). Correspondingly, a constraint applies to all tuples t with Eq ∈ fm(t),
with Aq ∈ fs(t), or with (Eq, Aq) ∈ fm(t)×fs(t), respectively. We denote the set
of tuples a constraint C applies to as DC . Conditions are either tuple conditions
or key conditions, depending on whether they affect individual tuples or groups
of tuples. The effect determines the result of the operations that lead to violating
data and what happens to the violating data itself. In the following, we will detail
conditions and effects.
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3.1 Conditions

The first group of conditions is tuple conditions. Tuple conditions restrict data
on the level of individual tuples, e.g., by mandating to which entity domains a
tuple can belong. Formally, a tuple condition is a function c : D → {�,⊥}. Then,
D

�
C = {t | t ∈ DC ∧ c(t)} are the complying tuples and D

⊥
C = {t | t ∈ DC ∧ ¬c(t)}

are the violating tuples. Tuple conditions are:

Entity Domain Condition. An entity domain condition requires tuples t ∈
DC to belong to an entity domain Ec so that Ec ∈ fm(t). We denote a
specified entity domain condition as entity-domain(Ec).

Attribute Condition. A attribute condition requires tuples t ∈ DC to instan-
tiate a attribute Ac so that Ac ∈ fs(t). We denote a specified attribute
condition as value-domain(Ac).

Technical Type Condition. A technical type condition limits values of tuples
t ∈ DC in attribute Ac to a specified technical type Tc so that Tc = ft(t, Ac).
We denote a technical type condition as tech-type(Ac, Tc).

Value Condition. A value condition requires values of tuples t ∈ DC in at-
tribute Ac to fulfill a specified predicate p so that p(t[Ac]) holds. We denote
a value condition as value(Ac, p).

The second group of conditions is key conditions. Key conditions restrict data
on the level of tuple groups. Formally, a key condition is a function c : P(D) →
{�,⊥}. Key conditions are:

Unique Key Condition. A unique key condition requires tuples to instantiate
a set of attributes AK ⊆ A uniquely so that ti[AK ] 
= tj [AK ] holds for all
ti, tj ∈ DC with ti 
= tj . As a result, all complying tuples are unambiguously
identifiable on AK . We denote a unique key condition as unique-key(AK).

Foreign Key Condition. A foreign key condition requires tuples to instan-
tiate attributes AF ⊆ A with values referencing at least one tuple on at-
tributes AR ⊆ A so that for every tF ∈ DC there is one tR ∈ DR so that
tF [AF ] = tR[AR]. Similarly to DC , the set of referenceable tuples DR ⊆ D is
identified by either an entity domain ER ∈ E, a attribute AR ∈ A, or a pair of
both (ER, AR). We denote a foreign key condition as foreign-key(AF ,AR, qR)
where qR is the qualifier of DR.

If a group of tuples does not fulfill a key condition, not all tuples of the group
are considered to be violating. We have to distinguish two cases. In the first
case, a constraint already exists in the database and a modification of tuples
results in a violation. Here, only the modified tuples become violating tuples. In
the second case, the constraint is added to the database and the tuples already
existing in the database violate this constraint. Here the smallest subset of tuples
that violates the condition becomes the set of violating tuples. For a unique key
constraint, these are all duplicates. For a foreign key constraint, these are all
tuples with a dead reference.

All conditions can be negated in a constraint. Negation swaps the set of vio-
lating tuples with the set of complying tuples. For instance, the negated entity
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domain condition ¬entity-domain(Ec) prohibits the entity domain Ec instead of
requiring it. For two constraints C = (q, c, o) and C′ = (q,¬c, o), it holds that
D

�
C′ = D

⊥
C and D

⊥
C′ = D

�
C . Which tuples violate a constraint is crucial for the

effect of the constraint.

3.2 Effects

We distinguish four types of effects constraints can have. They vary in the rigor
the constraint will exhibit.

Informing. Allows all operations. The complying tuples and the violating tu-
ples can be queried by using the constraint as a query predicate.

Warning. Allows all operations and issues a warning upon operations that lead
to violating tuples. The creation of the constraint results in a warning about
already existing violating tuples.

Hiding. Allows all operations and issues a warning upon operations that lead
to violating tuples and hides violating tuples from all other operations. The
creation of the constraint results in hiding already existing violating tuples
except for operations that explicitly request to see violating tuples by using
the constraint as predicate.

Prohibiting. Prohibits operations that lead to violating tuples and issues an
error. The creation of the constraint is prohibited in case of already existing
violating tuples.

4 Presentation of Purely Relational Data

The presented flexible relational data model is a superset of the traditional
relational model. Traditional relations can be represented directly in the flexible
model. A relational database is a septuple (D,A,T,R, fσ, fθ, fμ), where R is the
set of relations, A is the set of domains, T is the set of technical types, D is the
set of tuples, fσ is the schema function R → P(A), fθ is the typing function
A → T, and fμ is the membership function D → R. The corresponding flexible
relational database is (D,A,T,E, fs, ft, fm) with

E = {name-of (R) | R ∈ R} ,
fs = {t → fσ(fμ(t)) | t ∈ D} ,
ft = {(t, A) → fθ(A) | A ∈ fσ(fμ(t)) ∧ t ∈ D} , and
fm = {t → {name-of (fμ(t))} | t ∈ D} .

To emulate the model-inhernt constraints of the relational model the flexible
relational database has to be supplemented with explicit constraints. For each
relation R ∈ R we add the following prohibitive (P=̂prohibiting ) constraints:

– Entity domains have to mutually exclude each other, so that tuples can be
only part of one entity domain. This can be achieved with constraints of
the form (name-of (R),¬entity-domain(E),P ) where name-of (R) 
= E and
R ∈ R.
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– Entity domains prescribe the attributes of their correspond-
ing relation. This can be achieved with constraints of the form
(name-of (R), value-domain(A),P) for A ∈ fσ(R) and R ∈ R.

– Entity domains forbid all other attributes. This can be achieved with con-
straints of the form (name-of (R),¬value-domain(A′),P) for A′ /∈ fσ(R) and
R ∈ R.

– Attributes prescribe the technical type as defined by the correspond-
ing relation. This can be achieved with constraints of the form
(A, tech-type(A, fθ(A)),P ) for A ∈ fσ(R) and R ∈ R.

5 Implementation Consideration

The FRDM data model is positioned as a flexible descendant of the relational
model. Therefore it is suitable to be implemented within the existing and estab-
lished relational database system architecture. In this section, we briefly discuss
how this can be done. The characteristics of FRDM require four main changes
to existing relational database system code.

First, plan operators and query processing have to be adapted to handling
descriptive relations. More specifically, plan operators must reflect the adapted
semantics of their logical counterparts. Logically, operators have to remove at-
tributes from the schema of a relation if no tuple instantiates them. With a
tuple-at-a-time processing model, this orphaned attribute elimination is a block-
ing operation, since the system can determine the schema only after all tuples are
processed. Implicit duplicate elimination is similarly impractical and thus it was
not implemented in relational database systems. Likewise a practical solution
for the elimination of orphaned attributes is that plan operators determine the
schema of the resulting operation as narrow as they safely can before the actual
tuple processing and accept possible orphaned attributes in the result relation.
Similar to the DISTINCT clause, SQL can be extended with a, say, TRIM clause
that allows the user to explicitly request orphaned attribute elimination.

Second, the physical storage of tuples has to be adapted to the representation
of entity domains. For tuple storage, the existing base table functionality can be
reused but needs to be extended to handle uninstantiated attributes. Solutions
for such an extension are manifold in literature, e.g., interpreted record [7,11],
vertical partitioning [1], and pivot tables [3,13]. Another reasonable approach is
a bitmap as it is used for instance by PostgreSQL [24] to mark NULL values
in records. Tuples can appear in multiple entity domains. However, for storage
economy and update efficiency, tuples should only appear in a single physical
table. Replication should be left to explicit replication techniques. Consequently,
the database system has to assign each tuple to a single physical table and
maintain its logical entity domain membership somehow. In principle, there
are two ways how this can be done. One is to encode the domain membership
in the physical table assignment. Here, the system would create a physical
table for each combination of entity domains occurring in a tuple and store
tuples in the corresponding table. The mapping is simple and easy to implement.
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The downside is that it may lead to a large number of potentially small physical
tables (at worst 2E tables where E is the number of entity domains in a database)
and tuples need to be physically moved if their domain membership is changed.
The other way is storing the domain membership, e.g., with a bitmap, directly
in a tuple itself. This gives liberty regarding the assignment of tuples to physical
tables, up to using a single (universal) table for all tuples. With many tuples
having the same domain membership, it comes to the price of storage overhead
– negligible in most cases, though.

Third, the physical tuple layout has to be extended to also represent the
technical type of values directly in the tuple. This is necessary for independent
technical types. To reduce storage needs and decrease interpretation overhead,
the system can omit the technical type in the tuple where explicit constraints
prescribe a technical type. However, creating and dropping such explicit con-
straints becomes expensive as the physical representation of the affected tuples
has to be changed.

Fourth, independent attributes require a modification of the system catalog.
In most system catalogs, attributes have a reference to the base table they belong
to. This reference has to be removed to make attributes available to all tuples
regardless of their entity domain membership.

6 Related Work

Over decades, research and development have created numerous data models
and approaches to represent data. Obviously, we can concentrate only on the
most prominent ones used for representing structured data. Data models worth
considering can be grouped in four main categories: (1) relational models, (2)
software models, (3) document models, (4) tabular models, (5) graph data mod-
els, and (6) models from the data modeling theory. In the following, we will
briefly discuss these categories with regard to the flexibility to directly represent
data of dynamic and open discourses.

Relational models are extensions of the traditional relational model [28,7,2,5].
These extensions intend to free the relational model from one or more implicit
constraints. Hence, these extended relational models allow additional flexibility
compared to the pure relational model. Specifically, reasonable extensions exist
to support variable attribute sets. Besides, all these extensions preserve 100%
compatibility with the relational model. To the best of our knowledge, there are
no extensions that add support for multifaceted entities, independent attributes,
and independent technical types to the relational model.

Software models originate from programming languages and other software de-
velopment technologies. Generally, software models consist of elements to struc-
ture operations and elements to structure data. The elements to structure data
resemble a data model. Two popular software models are object orientation and
role modeling [27]. Both build on the notion of an object and encompass a ded-
icated association element to represent relationships. Accordingly, they provide
no direct compatibility with the relational model, a fact also well known as
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Table 1. Flexible Data Models vs. Requirements
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Relational Pure relational ✓

Extended NULL semantic [28] (✓)1 ✓

Interpreted column [2] (✓)2 ✓

Interpreted record [7] ✓ ✓

Polymorphic table [5] (✓)3 (✓)2 ✓

FRDM ✓ ✓ ✓ ✓ ✓

Programming Object orientation (✓)4 (–)6

Role modeling [27] (✓)5 (–)6

Document XML, well-formed [31] ✓ ✓ (✓)7

XML, valid [32] (✓)3 ✓

JSON [12] (✓)8 (✓)8 (✓)8 ✓

OEM [22] (✓)8 (✓)8 (✓)8 ✓

Tabular Bigtable [10] ✓ ✓ ✓

Graph Property graph [25] ✓ ✓ (–)6

Neo4J [21] ✓ ✓ ✓ ✓

Freebase [8] ✓ (✓)1

RDF [30] (✓)8 (✓)8 (✓)8 ✓

RDF w/ RDF Schema [29] ✓ ✓ ✓ ✓

Theory Intensional classification [23] ✓ ✓ ✓ (–)6

1 only generalization 2 only specialization 3 extensions 4 inheritance
5 roles 6 not specified 7 no technical types 8 no entity types

object-relational impedance mismatch. With inheritance and the notion of roles,
these two software models offer limited support for multifaceted entities. Partic-
ularly the role concept allows the dynamic leaving and joining of entity types.
Nevertheless, which combination of entity types an entity can join has to be
modeled upfront.

Document models [31,32,12,22] have been developed for representing docu-
ments, e.g., web pages. Typically, document models represent data as a hierarchy
of entities, where entities nest other entities. Nesting is the only or the primary
means of entity referencing. The identity of an entity solely or primarily depends
on the position of an entity within the hierarchy. In consequence, document mod-
els offer direct relational compatibility. Document models offer more flexibility
than most relational systems or software models. However, most of their flexibility
originates from completely omitting entity types. Where document models have
schema information, such as DTD or XML Schema, they are similarly strict.
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A tabular data model also organizes data in tables like the relational data
model but in a significantly different way. The data model of Google’s Bigtable
system [10] defined the category of tabular data models. Because of its success, it
has also remained the only model of its kind that draws considerable attention.
Bigtable organizes data in large, distributed, sparse tables. The columns of such
a table are grouped in column families. Rows can stretch across multiple column
families and are free to instantiate any column in a column family, so that the
Bigtable data model supports multifaceted entities as well as variable attribute
sets. The Bigtable model also supports independent technical types. However,
the row identity is restricted to a user-given row key and the processing is limited
to put and get operations on row level. Hence, the Bigtable model cannot be
considered completely relational compatible.

Graph data models [25,21,8,30,29] build on the mathematical definition of
a graph. They represent data as vertices and edges, where vertices represent
entities and edges represent relationships, i.e., references to other entities. In
practice, graph models differ in how data is represented in a graph. Beside ver-
tices and edges, graphs can have labels and attribute–value pairs attached to
the vertices and even to the edges. [25] distinguishes nine types of graphs. Most
prominent are the property graph and the RDF graph. All graph models empha-
size the representation of data rather than modeling of schema. Graph models
have a descriptive nature and allow in most cases the direct representation of
data from dynamic and open discourses. In all graph models, however, entities
have an object identity and edges are an explicit representation of references.
Consequently, graph models are not directly compatible to relational data.

Finally in the theory of data modeling, intensional classification was pro-
posed to allow for more schema flexibility [23]. Here, entity domains are defined
intensionally, i.e., by a set of attributes. All entities that instantiate the set of
attributes defining an entity domain belong to that domain. Accordingly, the in-
tensional classification builds on independent attributes and allows multi-faceted
entities as well as variable attribute sets. Technical types are not considered in
the approach. While intensional classification is appling, it is less flexible than
extensional classification used in FRDM, since entities are required to instantiate
an defined attribute set to belong to a domain. They cannot be explicitly added
to a domain regardless their intension. In that sense, intensional classification is
a useful complement to extensional classification.

As a summary, Table 1 shows which flexibilities sample data models in the
discussed categories do allow. We can see that none of these models fulfills all
flexibility requirements. Graph models, particularly as in Neo4j, are free of im-
plicit constraints regarding entity domains, attributes and technical types, while
the relational approaches are the only ones to offer value-based identity and
value-based references. FRDM integrates the level of flexibility graph models
provide with value-based identity and value-based references, as indicated in
Table 1, in a super-relational fashion.
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7 Conclusion

As an evolutionary approach to meet the need for more flexible database sys-
tems and to build on the still existing dominance of relational database systems
we proposed the flexible super-relational data model FRDM. FRDM is entity-
oriented instead of schema-oriented. It is designed around self-descriptive enti-
ties, where schema comes with the data and does not have to be defined up front.
Additionally, FRDM allows multi-faceted entities where entities can belong to
multiple entity domains. Attributes can exist independently from entity domains
in FRDM. Similarly, FRDM allows technically typing values independently from
their attributes. FRDM can express irregular data as well as regular relational
data. We demonstrated both by examples. For data retrieval, FRDM builds on
the powerful, well-known, and proven set of relational operations. Compared
to the relational data model, FRDM is free of implicit constraints. Neverthe-
less, where these constraints are needed and welcome, the presented constraint
framework FRDM-C allows formulating explicit restrictions to the flexibility of
FRDM. A lot of technological expertise, knowledge, and experience have accu-
mulated in and around relational database management systems over the last
three decades. We are convinced FRDM contributes to the use of that also in
the more flexibility-demanding areas of data management.
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