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Heterogeneity-Aware Operator Placement in Column-Store
DBMS

Tomas Karnagel · Dirk Habich · Benjamin Schlegel · Wolfgang Lehner

Abstract Due to the tremendous increase in the amount of
data efficiently managed by current database systems, opti-
mization is still one of the most challenging issues in database
research. Today’s query optimizer determine the most effi-
cient composition of physical operators to execute a given
SQL query, whereas the underlying hardware consists of a
multi-core CPU. However, hardware systems are more and
more shifting towards heterogeneity, combining a multi-core
CPU with various computing units, e.g., GPU or FPGA co-
res. In order to efficiently utilize the provided performance
capability of such heterogeneous hardware, the assignment
of physical operators to computing units gains importance.
In this paper, we propose a heterogeneity-aware physical
operator placement strategy (HOP) for in-memory colum-
nar database systems in a heterogeneous environment. Our
placement approach takes operators from the physical query
execution plan as an input and assigns them to computing
units using a cost model at runtime. To enable this runtime
decision, our cost model uses the characteristics of the com-
puting units, execution properties of the operators, as well
as runtime data to estimate execution costs for each unit.
We evaluated our approach on full TPC-H queries within
a prototype database engine. As we are going to show, the
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placement in a heterogeneous hardware system has a high
influence on query performance.

1 Introduction

For the last 30 years, disk-centric database systems based on
commodity hardware have reflected the state of the art. Wi-
thin the last few years, however, this architecture has drama-
tically changed due to several reasons, but especially due to
significant developments in the hardware sector. Because of
the general availability of large main-memory capacities, co-
lumnar in-memory database systems become more and more
popular since the entire data fits into main memory. In this
approach, the key characteristics of low access latency and
high bandwidth of main memory can be efficiently exploited
for complex analytic query processing.

Besides the availability of high main-memory capacities
and multi-core CPUs, hardware systems are more and more
shifting towards heterogeneity. That means a multi-core CPU
with large main memory is packed into one single hardware
box together with one or more additional computing units,
e.g., GPU or FPGA cores. Fundamentally, co-processor ar-
chitectures have already combined a common CPU with
an accelerator like GPU or FPGA, so that heterogeneity is
nothing new. However, these co-processor architectures are
rather loosely-coupled due to the fact that each computing
unit has its own isolated memory block and data has to be ex-
plicitly transferred between the computing units.Anew trend
in this hardware domain is the tightly-coupled combination
of a common multi-core CPU with different computing units
with a large unified memory hierarchy, where CPU and each
accelerator have direct access and no explicit data transfer is
necessary.
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Fig. 1 Showing the need for heterogeneous placement decisions for two database operators. a Sorting Operator for different data sizes. b Selection
Operator for different data sizes

In order to efficiently utilize the provided computing
power of heterogeneous hardware, the major challenge for
the data-base community is to design a heterogeneity-aware
database system. A significant number of research work has
already transformed single traditional database operators to
loosely-coupled computing units [5, 6]. However, to tackle
the heterogeneity aspect in the query processing context more
generally, a generic physical operator approach is necessary.
A first step in this direction has been done by Heimel et al.
[8]. The authors propose a hardware-oblivious physical ope-
rator approach for an in-memory columnar data-base system,
where they move from specific carefully optimized accele-
rator code to portable operator code, which is executable on
different computing units.As they have shown, this approach
exploited the full potential of modern parallel hardware ar-
chitectures like multi-core CPUs and highly parallel GPUs.

However, a hardware-oblivious database system is not
aware of the heterogeneous hardware environment. We be-
lieve that query processing has to be extended by assigning
physical operators to appropriate computing units with re-
gard to performance. To illustrate this aspect, we conside-
red two simple database operators: sorting and selection.
We executed both operators in columnar fashion on diffe-
rent computing units with all data in main memory: CPU,
tightly-coupled GPU, and loosely-coupled GPU with expli-
cit data transfer. In this experiment, we vary the size of the
corresponding column, influencing data size and parallelism
in execution. Figure 1(a) shows the runtime results for the
sorting operator. For smaller data sizes, the CPU performs
much better than both GPUs. With an increasing number
of parallelism and data, the loosely-coupled GPU is more
appropriate with regard to runtime. In this case, the addi-
tional data transfer between CPU and GPU is compensated
by the full utilization of the GPU’s high computing power.
Figure 1(b) depicts the runtime results for the selection ope-

rator. Again, the CPU is more suited for the smaller data si-
zes, while a GPU is more appropriate for larger ones. In this
case, however, the tightly-coupled GPU should be chosen
over the loosely-coupled GPU. This is caused by the small
overall runtime of this operator, where data transfers to the
loosely-coupled GPU can not be compensated and yield a
higher impact than the actual computation. In both test sce-
narios, the best computing unit does not change for larger
data sizes beyond 2 MB. However, this is highly dependent
on the operators and the hardware setup.

These two simple experiments indicate the benefits and
challenges for query processing on heterogeneous hardware.
Based on different characteristics like parallelism, data size,
computational complexity of operators, and computing units
properties, the execution times of physical operators on diffe-
rent computing units differ significantly. To tackle this aspect
more precisely for query processing in columnar database
systems, we propose our HOP approach for Heterogeneity-
aware physical Operator Placement. HOP takes a physical
query execution plan determined by a query optimizer and
assigns the physical operators to available computing units
using a cost model at runtime. In detail, our key contributions
are:

• We present the necessity and the potential of heteroge-
neous computing for query processing together with a
possible architecture of a database system supporting he-
terogeneous placement decisions.

• We propose a cost-model to estimate execution costs based
on hardware characteristics and runtime information, as
well as the operator’s execution behavior.

• Finally, we present challenges beyond heterogeneous pla-
cement like parallelism between computing units and the
support for multiple optimized operators per computing
unit, together with discussing ideas for future work.
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Please note, that the actual integration into a given database
system like Ocelot [8] is not the focus of this paper. First, we
have to evaluate possible placement and integration techni-
ques before actual integration can take place.

2 System Architecture

Asignificant number of research activities has already ported
some traditional database operators to accelerators like GPU
[6, 5] or FPGA [11]. However, it is required that research
activities investigate more complete system support. From
our point of view, a generalized placement decision for all
query operators to all available computing units is a key
challenge for database systems on heterogeneous hardware.
The simple experiment in the introduction has shown that the
placement has a high influence on execution performance and
that it depends on various influencing factors. Therefore, we
propose our HOP approach to assign arbitrary physical query
operators to different computing units. Before we are going
to describe our HOP approach in detail, we have to define
our target database system as well as our chosen placement
strategy.

Database System
To narrow research in this novel database field, we define our
database system first. It is possible to weaken some of our
assumptions for further optimization, but we focus on them
as a starting point.

1. Our main focus is on in-memory columnar database sy-
stems [12, 3]. Moreover, physical operators are executed
in a one-column-at-the-time approach.

2. The various computing units are used only for computa-
tion.We do not utilize computing units as an extended data
store, leaving main memory as the central point where all
data is stored. That means, for each operator, data have to
be accessed or copied from main memory and the results
have to be stored in main memory.

3. Each operator is executable on each computing unit of
the heterogeneous system.

We limit our work in Point 1, because row-based execution
would involve larger tuples and more working data, influ-
encing transfers and data access. Also pipe-lined approaches
would result in many small operator executions showing a
significant overhead when using accelerators. We defined
Point 2 for two reasons: with no data cached on the accele-
rators, queries can work on the most recent data from main
memory and the accelerator caches are free to store only the
operational data, being able to work on larger data sets. Point
3 is a basic requirement to allow heterogeneous placement.

Placement Optimization Strategy
Based on our defined database system, we are now able to
specify our placement approach in more detail. Starting by
an SQL query, the regular query optimizer attempts to deter-
mine the most efficient way to execute the query at compile
time. Today, this query execution plan (QEP) is executed to
compute the query result. Using our columnar database sy-
stem, we are able to introduce a new layer between query
optimizer and query executor, which is responsible for the
operator placement in a heterogeneous hardware environ-
ment. Our novel placement layer takes the determined QEP
as input and outputs the QEP with an assigned computing
unit for each physical operator. In this case, we assume that
the most efficient QEP is independent from heterogeneous
hardware and the placement can be considered separately. In
general, two aspects have a high influence on the complexity
of the placement layer:

Placement Time: The placement decision can be done
at compile time or runtime. While at compile time dif-
ferent characteristics like input data sizes of operators
have to be estimated, at runtime this information can
be precisely monitored. From an accurate point view,
the runtime placement should therefore be preferred.

Placement Object: The placement can be either done
individually for each physical operator or for complete
sub-graphs of the QEP. The latter could be beneficial to
support explicit parallelism between computing units
or data placements. However, this would introduce de-
pendencies between the placement decisions, which
leads to an exploding search space. For example, a
QEP with 10 operators that have to be placed on 3
computing units, results in 310 = 59, 049 possible pla-
cements, which have to be evaluated. Without taking
dependency restrictions into account, the search space
is limited to number of available computing units for
each operator execution.

In order to determine an accurate placement decision, our
HOP approach determines the placement for each physical
operator individually at runtime. From our point of view,
this runtime approach is the most suitable approach for our
columnar database system.

3 HOP Model

In order to conduct a runtime placement decision for each
arbitrary physical operator individually, our HOP model con-
sists of (i) an operator execution model to describe arbitrary
physical database operators, whereas we concentrated on
the time-consuming parts of the operator executions, and (ii)
a cost function to estimate the operator’s runtime on various
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computing units. Using our operator execution model and
cost function, we are able to select the computing unit with
the least estimated runtime for each physical operator. In the
following, we describe our operator model as well as our
developed cost function in detail.

Operator Execution Model
To describe the execution of arbitrary physical operators on
various computing units and to estimate the operator runti-
mes on different computing units three different aspects play
an important role.

Latency: Each physical operator execution on any
computing unit has a certain amount of latency over-
head. Generally, this latency overhead is independent
from the physical operator and depends only on the
computing unit.

Data Transfer: To execute an operator on a compu-
ting unit, the operator requires access to the appropriate
data. If the computing unit cannot access main memory
directly, input and output data have to be transferred to
and from the unit. This can have an especially large im-
pact on the overall runtime of the operator, whereas the
impact depends on the connection type and the input
and output data sizes.

Execution: Aside from latency and data transfer, the
operator needs to be executed on the computing unit. To
characterize the execution and to estimate the runtime,
we require historical data of previous executions or
general heuristics.

The most challenging issue is to characterize the execution
part of operators. To tackle that issue, we propose an online
learning approach (similar to Breß et al. [4]) combined with
additional rules and heuristics for decisions without previous
knowledge of executions on every execution unit. Using the
heuristics, we do not require a calibration step for the operator
execution.

Cost Estimation
Based on the previously introduced operator model, we adapt
the cost function proposed by He et al. [6] by adding the
latency time.

exec. estimate = latency + transfer input
+ computation + transfer output

Additionally to adding latency, our approach is defined by a
different way to estimate the computation as well as a more
detailed transfer estimate, where the bandwidth is not assu-
med to be constant.

Latency and Transfer
For the latency overhead, we assume a fairly constant amount
of time, which is independent of the operator but dependent

on the computing unit. The overhead can be measured be-
forehand. Data transfers to and from the computing unit can
be modeled by:

transfer estimate =
∑ amount of data

transfer bandwidth for data

The amounts stand for input or output data on runtime and
the bandwidth stands for the transfer bandwidth from host to
the computing unit or from the computing unit to host. The
transfer bandwidth is dependent on the amount of memory.
Large data structures can be transferred efficiently in big
blocks, while small structures experience low bandwidths.
Since the transfer bandwidth is not constant, we need to cal-
culate the transfer costs for each input and output memory
object used in the operator, hence the sum in the equation. We
can test the transfer bandwidth beforehand and approximate
unknown memory sizes.

Execution Estimation
When subtracting the transfer and latency overheads from
the runtime, the sole execution times on each computing unit
show mainly a scaling behavior like linear scaling (e.g., se-
lection, radix-sort) or exponential scaling (e.g., nested-loop
join) according to the input data sizes and execution paral-
lelism. Usually the possible parallelism in execution is de-
pendent on the available input data for processing. In our
approach, we use the amount of input data and the execu-
tion time, not including overheads, as historical data. When
estimation is needed, we assume linear scaling between data
points and return a runtime estimation from the weighted
average of the two neighboring data points. To cope with no
or small amounts of data points, we introduce three phases
of estimation:

Phase 0 - Fig. 2a: No historical data is given and no
estimation can be done.

Phase 1 - Fig. 2b: Only one data point is given. In
this case, we use point (0,0) as second reference and
assume linear behavior.

Phase 2 - Fig. 2c: More than one point is given. We do
not use point (0,0) anymore and assume linear scaling
between the points as well as before and after the known
points.

In Phase 1, point (0,0) is essential since it is not possible to do
any estimation from just one real data point. However, we do
not use this point, if we have more information, because it in-
fluences the estimation for small data sizes too much. There,
scaling might be largely influenced by not fully utilizing the
computing unit, resulting in a scaling behavior similar to
Fig. 2c. We choose a linear interpolation between the points
to keep the model maintenance simple and the estimation
reasonably fast. Exponential scaling will eventually be de-
scribed when having enough data points. Another positive
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Fig. 2 Different phases of execution estimation depending on the known data. (a) Phase 0: no historical data (b) Phase 1: one data point (c) Phase
2: many data points (d) Phase 2 with outliers

effect on including only neighboring points into the estima-
tion is the local impact of outliers (Fig. 2d). If we would use
an approximation function for all data points (e.g., spline
interpolation), outliers would have a global impact on the
estimation instead of a local one in our case. However, it is
advisable to do periodic cleaning of historical data to ensure
that outlying data points are removed.

Placement Heuristics
The presented learning approach works well if we have at
least one data point for each computing unit. However, this
might not be the case in the beginning. Therefore, we deve-
loped heuristics to make a decision if execution estimation
is not possible. For these heuristics we introduce two new
properties of computing units, which can be measured befo-
rehand. The first is the full utilization (FU) number, which
is the amount of threads that fully utilizes the computing
unit. For CPU systems, the processor is fully utilized when
all hardware threads are busy. For GPU systems, the proces-
sors hide memory latency by fast context switching. In this
case, the computing unit is fully utilized if enough threads
are available to hide the memory latency. This leads to a
high amount of threads for full utilization, even higher than
the actual core count. We propose an easy way to estimate
the amount of threads needed for full utilization in Sect. 4.
The second property is the computational power (CP), which
describes roughly the processing capabilities of the compu-
ting unit and can be measured beforehand. With these two
properties, the knowledge about latency overheads (L) and
transfer costs (T), as well as the given runtime configuration
(thread count (th) and involved data (d)) and already given
execution estimations (est), we can devise several rules:

1. We only consider computing units that are capable to exe-
cute the operator with the given runtime data (e.g., enough
dedicated memory).

2. If the operator has never run before on any compu-
ting unit, we choose the unit that can be fully utilized
(th ≥ FU ) with the lowest overheads (min(L + T (d))).
If this leaves multiple computing units, we choose the
most powerful one (max(CP )). If no computing unit can

be fully utilized by th, we choose the computing unit
closest to being fully utilized (min(FU )).

3. If we have a runtime estimation for one computing unit,
we change to a different one, if the operator can fully uti-
lize it (th ≥ FU ) and the estimated execution time for the
first computing unit including overheads is higher than the
new overheads ((est1 + L1 + T1(d)) > (L2 + T2(d))).

4. If we have estimations for all computing units, we choose
the computing unit with the smallest estimated overall
runtime (min(est + L + T (d))).

The first and the last rule are trivial, while the second and
third rule are heuristics for unknown execution estimations.
The second rule might always pick the CPU or an iGPU1

if available in the system. The decision between the two is
mainly dependent on the latency and the full utilization point
of the iGPU. The second heuristic makes sure that the com-
puting unit is not changed, unless the estimated execution,
in addition to any overheads, is higher than the overheads of
a more powerful computing unit. There, we assume the exe-
cution to be faster than on the initial computing unit based
on the computational power.

Related Work
There has been prior work in characterizing operator exe-
cution on different hardware platforms. For the CPU, cost
models focus mainly on memory access [10] and can not be
adapted to the GPU without adjustment. A GPU cost model
was presented by He et al. [6] including transfer considera-
tions, computation, and memory access estimation. The key
difference to our approach is the execution estimation. The
authors run their operators first as benchmarks to estimate
their computation time and provide a memory access cost
function for each operator primitive. Our HOP approach is
meant to support arbitrary operators without defining the me-
mory access patterns and it learns the execution time of ope-
rators during query processing. Additionally, we apply our
model without much customization to the CPU or other com-

1An integrated GPU (iGPU) is tightly-coupled with a CPU and utilizes
a portion of CPU-RAM rather than dedicated graphics memory.
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puting units as well. He et al. also presented work on using
a cost model for load balancing in tightly-coupled systems
[7], where the focus is solely on hash joins. They used a sta-
tic approach of instruction counts per tuple and instructions
per cycle to estimate the computation. A more dynamic ap-
proach is presented by Breß et al. [4], where execution times
are estimated using a learning approach with prior training
and spline interpolation between the data points. However,
the focus is on workloads that only change slowly and the
system adapts to the workload over time. Despite many pro-
mising approaches in the past, our HOP approach and this
paper defines itself by using a combination of static esti-
mation for overheads, an online learning approach for the
computation, and heuristics for unknown scenarios. Further-
more, it focuses on reasoning about integration techniques
of our HOP approach for common database systems.

Outside the database research, multiple heterogeneous
placement advisers are worth mentioning. In StarPU [2] for
example, the authors use heterogeneous earliest-finish time
scheduling to place tasks on computing units. Kicherer et al.
[9] propose an online learning approach with a learning pro-
cess at the beginning and a guided mode afterwards. When
the estimations differ too much from the real values, the
learning process starts again. The mentioned placement and
scheduling approaches are application independent and do
not consider database workloads or integration into a data-
base system.

4 Obtaining HOP Parameters

In this section, we present ways to determine the computing
unit properties to be used as parameters for our HOP model.

We measure the latency overhead empirically by execu-
ting an operator multiple times on the computing unit with
synchronization between the operator calls compared to the
same execution without synchronization. In the latter variant,
all operations are scheduled together avoiding synchroniza-
tion and latency overhead. The difference between the two
variants show us the amount of latency overhead we have
to expect on a single operation call for each computing unit.
For GPUs, we have seen the latency being constant for mul-
tiple runs. For the CPU, the results range from negative to
small positive numbers, indicating that the CPU has varying
latency depending on other applications and system load.
Therefore, we have defined the CPU latency as 0 ms.

The transfer bandwidth depends on the amount of data
being transferred. We can approximate the transfer time by
transferring different data sizes to the computing unit befo-
rehand.

The full utilization point is gathered empirically only for
GPUs. For the CPU, we use the number of supported hard-
ware threads as the full utilization variable. For GPUs, this is

not trivial, because much more threads are needed to hide me-
mory latency. We devised a heavy computation benchmark
with growing thread numbers. For small amounts of threads,
the execution is not varying significantly. With thread num-
bers fully utilizing the computing unit and above, the execu-
tion takes noticeably longer. For our cost model, we define
the point where the execution time scaling changes signi-
ficantly as full utilization point and the number of threads
needed to fully utilize the computing unit.

To determine the computational power, we simply run a
heavy computational test case with high parallelism on all
computing units. In detail, we do 100 modulo calculations
per thread for 8.4 million threads. We use the inverse runtime
as the computational power property.

5 Evaluation

For the evaluation of our HOP model, we use a heteroge-
neous hardware setup consisting of a multi-core CPU with a
loosely-coupled and a tightly-coupled GPU. First, we use our
test suite, as presented in Sect. 4, to characterize the given
computing units. The measured properties of our heteroge-
neous hardware are shown together with general information
in Table 1.

After the initial tests, we can apply our HOP model. In
the first stages of using the model, the decisions rely heavily
on the computing unit properties and the placement heuri-
stics. Decisions can vary with the order of learned execution
times, making it hard to evaluate. In a running database sy-
stem, the model should be fully initialized for the majority
of the time, meaning the model has learned at least two data
points for each operator on each computing unit. Therefore,
our evaluation is focusing on the initialized model. We apply
our HOP model to operators of three TPC-H queries with
different scale factors, to determine an optimal placement
for each operator. We choose the TPC-H queries 3, 5, and
6 as a sample, since they use mostly standard operators and
no extensive optimization is needed (as, for example, for
sub-queries). We built a prototype execution engine using
OpenCL where we can evaluate all three queries with diffe-
rent placement configurations.

Operator Implementation
We implemented multiple operators for our evaluation. The
actual implementation is not the focus of our work, since
the HOP model is able to make placement decisions for
any kind of implementation. However, we present the de-
sign choices on the implementation for completeness. All
operators are implemented in OpenCL and all implementa-
tions are optimized for high parallelism. However, the ope-
rators are not optimized towards a single hardware platform.
The selection operator (σ ) is operating on an input column,
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Fig. 3 Placement decisions for
TPC-H query 3 with changing
scale factor. (a) Scale factor 0.1
(b) Scale factor 1 (c) Scale factor
10

Table 1 Heterogeneous test system: AMD APU (CPU and iGPU) and
Nvidia GPU as dedicated GPU (dGPU)

General information: AMD A10-5800 K NVIDIA
CPU HD 7660D K20

Computing Unitsa 4 6 13
Cores 4 384 2496
Frequency (MHz) 3800 800 706
Max R-BW (GB/s) 5.3 22.7 89.0
Max W-BW (GB/s) 7.4 18.0 143.8
Perf. (GFLOPS) 121.6 614.4 3524
Test suite results:
Transfer BW (GB/s) – – Max 3.1
FU (threads) 4 2048 9216
CP (1/s) 0.82 3.26 34.48
Latency (ms) 0 0.07 0.015

aHere, Computing Unit is used as OpenCL term, which usually means
a clusters of cores

invalidating the entries not satisfying the conditions. The sor-
ting operator (τ ) is a parallel radix sort similar to the AMD
SDK samples [1]. As join operator (��), we use a nested-
loop join for small data sizes and an indexed-nested-loop join
for larger data sizes. The index is created by sorting the smal-
ler relation and using binary search for the index search. This
is sufficient since all joins of our TPC-H test queries are based
on primary-key/foreign-key referencing. The cardinality of
the larger relation is also the upper bound of the join result.
We choose the indexed-nested-loop join because any mer-
ging or building of complex hash tables is avoided, which
is usually hard to parallelize efficiently. Aggregation and
grouping (γ ) is done through parallel reduction combined
with hashing for group values.

Please note that we use one operator implementation for
all computing units. There is no optimization for specific ar-
chitectures except the support for high parallelism. This is
done intentionally to avoid over optimization for one compu-

ting unit while decreasing performance on others. We expect
the OpenCL drivers to apply automatic optimization for their
platforms during the compile step. Heimel et al. [8] compared
their non-optimized OpenCL operators with native written
code, showing a similar performance on multi-core CPUs.

Evaluation on TPC-H Query 3
Our first test query is the TPC-H query 3. For our setup, the
execution plan includes three selections, three sortings, two
indexed-nested-loop joins, and one aggregation. The query
plan is shown in Fig. 3. We evaluated the query with three dif-
ferent scaling factors, namely SF 0.1 (100 MB), SF 1 (1 GB),
and SF 10 (10 GB). Figure 3a illustrates the placement for the
SF 0.1. With only small amounts of data, the operator execu-
tion is very short, which results in most computation being
placed on the CPU, where the full utilization point and the
overheads are low. The joins are compute-intensive through
index probing, leading to the placement on the iGPU. Only
the sorting of the largest intermediate result can be placed
on the dGPU, since the smaller sortings are too fast for the
dGPU overheads. This changes with increasing sizes for SF
1 (Fig. 3b) and SF 10 (Fig. 3c). For the latter, all operators
are placed on either iGPU or dGPU because the larger data
size leads to highly parallel computation and longer-running
operations, compensating GPU overheads. The total query
runtime for all three scale factors can be seen in Table 2a.
We compare the execution of the whole query on a single
computing unit to our HOP approach. Changing the execu-
tion of the whole query from CPU to the dGPU, a speedup
of 1.4x to 2.2x is achieved. Applying HOP decisions, we
achieve speedups between 2.6x to 4x compared to the CPU.

Evaluation on TPC-H Query 5
The second evaluation query is TPC-H query 5. The query
includes two selections, two nested-loop joins, four sortings,
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Table 2 Query run-times (sec) for single computing units and for he-
terogeneous execution using our HOP approach

SF 0.1 SF 1 SF 10

(a) TPC-H Query 3
CPU 0.065 0.587 6.116
iGPU 0.063 0.463 3.842
dGPU 0.047 0.311 2.828
HOP 0.025 0.154 1.524
(b) TPC-H Query 5
CPU 0.46 4.57 49.08
iGPU 0.31 2.61 21.14
dGPU 0.22 1.32 11.93
HOP 0.13 0.83 7.72
(c) TPC-H Query 6
CPU 0.003 0.025 0.252
iGPU 0.006 0.031 0.403
dGPU 0.014 0.126 1.247
HOP 0.003 0.019 0.158

three indexed-nested-loop joins, and one aggregation. The
nested-loop joins are used for the smallest joins where only
5 or 25 entries are in the smaller input relation of the join.
Indexing these smaller relations and applying binary search
is not as efficient as plain scanning. As shown in Table 2b,
we achieve speedups between 2.1x and 3.5x for using the
best computing unit for the whole query instead of the CPU.
Our HOP approach achieves 3.5x to 6.5x by placing each
operator on the best computing unit instead of using only the
CPU. The speedup is higher than the previous query because
we have more operators with different sizes and execution
behavior so that heterogeneous placement can improve the
total runtime immensely.

Evaluation on TPC-H Query 6
The third query, used for our evaluation, is TPC-H query 6.
This query only includes three selections and one aggrega-
tion plus an intersection of the three independent selection
results. This query is slightly different to the other two, since
no high computation operators like sorting or joining are nee-
ded. As presented in Table 2c, no speedup can be gained by
placing the whole query on a different computing unit than
the CPU. However, on the fine-grained level of operator pla-
cement, speedups of up to 1.6x are achieved by placing the
selections and the intersection on the iGPU for larger scale
factors. Note that our HOP approach does not need to place
the operators heterogeneously. For SF 0.1, all operators are
placed on the CPU. While there is no speedup in that place-
ment, the HOP decisions still reflect the best configuration
for the given workload.

Evaluation Summary
In our evaluation, we presented our HOPapproach for a set of
TPC-H queries. We found that, using all computing units in
a heterogeneous environment, can outperform a multi-core
CPU in cases with large queries or large data sets. In addition,

heterogeneity-aware operator placement is more promising
in performance than pure whole query placement in hetero-
geneous environments. Our decisions of individually placing
query operators on runtime yields speedups of up to 6.5x in
our test scenario.

6 Lessons Learned

In the last sections, we have shown the quality of our pro-
posed HOP approach. With our approach, we achieved high
speedups solely through placement decisions instead of exe-
cuting all operators on the CPU. During our work, we made
several observations concerning further optimization of our
approach and heterogeneous execution in general.

Parallelism Between Computing Units
The speedups shown in Sect. 5 are achieved solely through
operator placement.There is no parallelism between the com-
puting units even if it would be possible for independent
operators. We chose this deliberately to present the quality
and impact of the placement decisions, which is the focus of
this paper. However, we did some side experiments on inter-
computing-unit parallelism inspired by the TPC-H query 6.
There, multiple selections are independent of each other and
can be executed in parallel on different computing units. We
change the setup to 20 selections placed in different portions
on either CPU and iGPU or CPU and dGPU. The result is
illustrated in Fig. 4. We made two interesting observations
during our experiments:

1. The CPU/iGPU combination shows much worse perfor-
mance than the expected speedup through parallel execu-
tion.

2. The CPU/dGPU combination is close to the expected per-
formance but shows no significant speedup for the whole
execution.

We found that the first observation is caused by the deep in-
tegration of the iGPU. The iGPU shares resources with the
CPU, especially the same channels to the main memory and
the same power envelope. When both computing units are
used in peak-load situations, the memory bus and the power
supply become bottlenecks. The latter is managed through
automatic adjustment of the frequencies of CPU and iGPU.
It does not seem possible that both run on their highest fre-
quency at the same time. Stealing each others’ resources re-
sults in a slowdown of either the CPU execution or the GPU
execution or both, leading to this large gap between theore-
tic performance and real measurements (e.g., Fig. 4a at task
placement 8/12).

The second observation concerns the dGPU. Generally,
the dGPU does not suffer the same resource-sharing pro-
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Fig. 4 Evaluation of parallelism between computing units by dividing 20 selection operations on two computing units. a CPU and iGPU b CPU
and dGPU

blems as the iGPU since it has its own memory and power
envelope. However, in our example, the combined time of
transfer and execution is much higher than that of the CPU,
leading to an only small possible speedup through parallel
execution. In our experiment, this small potential speedup
was reduced through scheduling overhead to nearly no spee-
dup at all. However, if sufficient independent tasks are availa-
ble or if the HOP model suggests that independent operators
are scheduled on the dGPU and an other computing unit, than
parallel execution could be beneficial.

No One-Size-Fits-All Approach
For our evaluation, we chose the most promising parallel im-
plementation for each operator. Besides simplicity, this has
the effect of similar scaling on each of the computing units,
making the model more resistant to wrong estimations. For
example, when operator data have much more duplicates or a
higher selectivity than previous executions, the estimations
will be off and the real execution might be multiple times
slower than estimated. However, with the same implementa-
tion for all computing units, we can assume that the execution
will be multiple times slower for each computing unit. This
leads to an optimal or near optimal placement, even with
temporarily wrong estimations.

On the other side, one single implementation might not
be optimal for all execution scenarios or for each computing
unit. The first is already known for database systems where
multiple physical operators can be chosen for each logical
operator, according to data sizes or selectivity. The latter
was also considered in the past, e.g., by using the preferred
memory access pattern for each computing unit [8].

To evaluate the need of multiple operator implementa-
tion support for each computing unit, we used the sorting
operator in different physical implementations. We used a
multi-threaded bitonic sort (mt), a multi-threaded radix sort

Fig. 5 Evaluation of different sorting algorithms on different compu-
ting units

(mt), and a single-threaded radix sort (st). All physical im-
plementations are implemented in OpenCL. The difference
between the radix sorts are the degree of parallelism and the
overhead of managing intermediate results for the parallel
execution.

The results are shown in Fig. 5. On the GPUs, the parallel
implementations perform best whereas, on the dGPU, the
bitonic sort is almost always better than the radix sort. On
the iGPU, the bitonic sort is better for small data sizes and
the radix sort shows better performance for large data sizes.
However, on the CPU, the single-threaded radix sort always
shows the best performance.

The results depend heavily on the amount of processing
cores and the memory access bandwidth. When designing a
database system for an arbitrary hardware environment, all
implementations need to be considered for all problem sizes.
Additionally, the amount of implementations could increase
even further when supporting multiple programming langua-
ges like C++, OpenCL, and CUDA. Handling the diversity
of implementations with our HOP approach is generally pos-
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sible when the execution estimation has enough information
but, when relying on heuristic methods, some extensions are
needed to handle so many options.

7 Discussion of Future Work

In this section we briefly discuss ideas for future work and
their applicability.

The decision model could optimize towards hiding me-
mory transfers by overlapping them with the computation of
other operators. However, this is only possible if the opera-
tors do not depend on each other’s results, which is limited
within a single query. For multiple simultaneous queries, hi-
ding transfers should be more practical but hard to predict for
the decision model. We propose that the model should always
consider the transfer costs and the execution engine should
try to avoid them while applying the models’ decision.

Many different scenarios of parallelism between compu-
ting units are thinkable, for example (i) running two inde-
pendent operators at the same time, (ii) dividing the data and
running fractions of the same operator on each computing
unit, or (iii) running the same operator on each computing
unit and proceeding with the result of the fastest. For all cases
of parallelism, our observations presented in Sect. 6 need be
considered: not every computing unit is beneficial when used
in parallel. Additionally, case (ii) introduces new overheads
for synchronizing the execution as well as for dividing and
combining data, while case (iii) would introduce data copies
to all computing units. Since memory transfer is an important
factor, we believe that case (i) is most promising for current
systems.

To allow global optimization, it is possible to make the
placement decisions on compile time, e.g., during query op-
timization. There, it would be possible to avoid unnecessary
copy operations and change the entire plan structure for a
better heterogeneous execution (e.g., different results for join
enumeration). It is open, how to tackle the large search space
or even if there is a better plan structure. Current database
systems optimize for small intermediate results (especially
in join enumeration) and exactly these results build the main
part of data transfers between computing units. So the small
data sizes are highly beneficial for heterogeneous query exe-
cution.

Finally, a system could support multiple implementations
of an operator optimized for different hardware architectures.
Then, the decision model has to find the best operator imple-
mentation for each computing unit under the given input pa-
rameters. In any case, a fall-back hardware-oblivious version
needs to be provided. Furthermore, due to the multiple opera-
tor implementations, the whole system implementation and
maintenance would become much harder, however, allowing

higher performance on computing units that are targeted by
the optimized implementations.

All these approaches need to be implemented and integra-
ted into a database system to evaluate their real impact on
performance.

8 Conclusion

In this paper, we proposed our Heterogeneity-aware Ope-
rator Placement (HOP) model to find an optimal placement
of query operators in heterogeneous environments. Our cost
model estimates the runtime per operator and computing unit,
by using our operator execution model, consisting of latency,
data transfer, and execution estimation combined with place-
ment heuristics. Besides reasoning about placement time and
placement object, we presented the model in detail together
with ways to determine the model parameters. We evalua-
ted our approach on full TPC-H queries within a prototype
database engine achieving speedups of up to 6.5x compared
to the CPU, solely by adjusting the placement according to
our model. Finally, we used our observations to point out
limitations and challenges concerning our HOP model and
heterogeneous execution in general.
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