
SPIN-ANYON DUALITY AND
Z2 TOPOLOGICAL ORDER

Dissertation

zur Erlangung des akademischen Grades
Doctor of Philosophy (Ph. D.)

vorgelegt

der Fakultät Physik
Bereich Mathemathik und Naturwissenschaften

der Technischen Universität Dresden

von

PENG RAO, M. Sc.
geboren am 03.07.1993 in Guangdong, China

Max-Planck-Institut für Physik komplexer Systeme
Dresden, 2022

Wissenschaftlicher Betreuer:
Prof. Roderich Moessner und Prof. Inti Sodemann



Eingereicht am 06.09.2022

Gutachter:
1. Prof. Dr. Roderich Moessner
2. Prof. Dr. Inti Sodemann
3. Prof. Dr. Matthias Vojta



Abstract
In this thesis we consider the properties of a class of Z2 topological phases on a two-

dimensional square lattice. The ground states of Z2 topological order are generally degener-
ate on a periodic lattice, characterized by certain global Z2 quantum numbers. This property
is important for application in quantum computing as the global quantum numbers can be
used as protected qubits. It is therefore instrumental to construct and study Z2 topological
order from a general framework.

Our results in this thesis provide such a framework. It is based on the simplest and most
illustrative Z2 topological order: the Toric Code, which contains static and non-interacting
anyonic quasiparticles e, m and ε. Building on this interpretation, in the first part of the
thesis two exact mappings are presented from the spin-1/2 Hilbert space to the Hilbert space
of (e,m) and (e, ε). The mappings are derived on infinite, open, cylindrical and periodic
lattices respectively. Mutual anyonic statistics as well as the effect of the global Z2 quantum
numbers are taken into account. Due to the mutual anyonic statistics of the elementary
excitations, the mappings turn out to be highly non-local. In addition, it is shown that
the (e, ε)-duality can be carried over directly to the honeycomb lattice, where e, ε are the
π-vortices (visons) and Majorana fermions in the Kitaev honeycomb model.

The mappings allow one to rewrite any spin Hamiltonians as Hamiltonians of anyons.
In the second part of the thesis, we construct a series of spin models which are mapped to
Hamiltonians of free m and ε, and static e-particles. In particular, a series of Z2 topological
phases ‘enriched by lattice translation symmetry’ are constructed which contain supercon-
ducting ε-fermions. Their properties can be analyzed generally using the (e, ε)-duality and
then the theory of topological superconductivity. In particular, their ground state degener-
acy on a periodic lattice may depend on lattice size. For these phases a Z×(Z2)

3 classification
scheme is proposed, which generalizes classification by the integer Chern number C. Some
of the conclusions are then verified directly by exact solutions on the spin lattice.

The emergent anyon statistics of e-particles in these phases is also analyzed by computing
numerically the Berry phase of their motion on top of the superconducting vacua. For phases
with C = 0 yet still topologically non-trivial, we discover examples of ‘weak symmetry
breaking’: the e-lattice splits into two inequivalent sublattices which are exchanged by lattice
translations. The e-particles on the two sublattices acquire mutual anyonic statistics. In
topological phases with non-zero C, the mutual braiding of e is confirmed explicitly. In
addition, the Berry phase due to background flux of each square unit cell is 0 or π depending
on the underlying topology of the phases. This quantity is related to properties of the vison
band in Kitaev materials.

Lastly, the ZN(N > 2) extension of Z2 topological order is discussed. Constructing the
duality to ‘parafermions’ in this case is much more complex. The difficulties of deriving such
a mapping are pointed out and we only present exact solutions to certain Hamiltonians on
the spin lattice.
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Notation

Unless specified otherwise, the notation in this thesis is:

Matrix elements :

Pauli matrices σx, σy and σz defined on each edge on the Z2 spin lattice are written as
X, Y and Z. In all figures, edges multiplied by X are shown in red whereas those multiplied
by Z are shown in blue.

ταi , σαi are the σx and σz matrices in the doublet of local occupation number of α-anyon
|nαi ⟩ at the i-th site. Here α = e,m, ε, nαi = 0, 1.

The ground state is written as |0⟩.

Operators :

The creation and annihilation operators for m-bosons on plaquette p are a†p, ap. For
e-bosons on vertex v: b†v, bv.

The creation and annihilation operators for ε-fermions on plaquette p: c†p, cp. They are
related to Majorana operators γp, γ′p as follows:

γp = cp + c†p, γ
′
p = −i

(
cp − c†p

)
.

In the functional integration formalism, we use c̄ instead of c† for the fermionic field variable.
Parafermion operators on plaquette p are ηp, η′p.
Commutators and anti-commutators between two operators are:

[f, g] = fg − gf, {f, g} = fg + gf.

Units :

We use natural units in which ℏ = c = 1.
The Boltzmann constant kB = 1, so temperature is given in energy unit.
The lattice constants are always taken unity.
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1 Introduction
One of the cornerstones of theoretical condensed matter physics is the concept of order

parameter, proposed by L.D. Landau [1]. It characterizes a wide range of different phases
by their symmetry groups, and describes quantitatively the thermodynamics and kinetics of
second order phase transitions.

According to the theory of second order phase transitions, a phase can be characterized
by a symmetry group G and a certain local function η(r) called the ‘order parameter’. Con-
sider a three-dimensional magnet. The order parameter η is a vector function taken to be
the averaged local spontaneous magnetization M . In the paramagnetic phase at high tem-
peratures, M = 0 and the symmetry group G = SO(3) corresponds to rotational invariance
of the system. As the temperature is lowered, a second order phase transition occurs at a
given critical temperature Tc at which M starts to develop continuously from zero. The
magnet then enters a ferromagnetic state in which M is non-zero and the symmetry group
is lowered to H = SO(2), since the system is invariant only under rotations with the axis
along M . More generally, the state of a system with symmetry group G is described by the
thermodynamic potential Ω[η], which is a functional of η and invariant under transforma-
tion of η under certain representation of G. For simplicity we neglect fluctuations. Then
the ‘symmetric phase’ with full symmetry G corresponds to η̄ = 0 being the minimum of
Ω[η]. The emergence of a non-zero η̄ at thermal equilibrium spontaneously breaks G into a
subgroup H: η̄ is invariant under H which characterizes the ‘asymmetric’ phase.

Using symmetry to classify and study phases is extremely powerful, as it describes widely
different phases under a unified framework even if the phase transition is absent or not second
order. Apart from the previous example of magnets, this ranges from classifying crystals
using space groups, to a quantitative description of superconductors and superfluids where
the order parameters are the condensate wave-functions of Cooper pairs and Helium atoms
respectively [2]. Furthermore, breaking of the full symmetry group G of the system by the
non-zero averaged order parameter in the ‘asymmetric phase’ determines, automatically,
the low-energy dynamics of the system (the Goldstone theorem and Higgs mechanism); c.f.
Ref. [3]. The concept of symmetry is also central in a field-theoretical framework in the
study of critical phenomena and high-energy physics. For an overview in field theory but
mainly concerned with critical phenomena, see Ref. [4].

However with the discovery of the fractional quantum Hall effect (FQHE) more than
thirty years ago, it was realized that not all phases can be described by the Landau paradigm,
due to the absence of a local order parameter in FQHE. This gave rise to the concept of
topological order, which was introduced in the context of FQHE [5] and spin liquids in the
theory of high-temperature superconductivity [6, 7]. Since then it has come to describe a
large number of both theoretical and physical phases which cannot be captured by the usual
Landau theory of phase transitions, namely they are characterized by neither local order
parameters nor symmetry; see Ref. [8] and references therein. For gapped topological order,
such phases usually have long-range entanglement at zero temperature [9, 10], ground state
degeneracy on closed manifolds (i.e. a torus) [7, 11–13], fractionalization and anyons in the
excitation spectrum [7]. Phases belonging to different topological orders cannot be adiabat-
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ically transformed into each other without gap closing. 1 Here the phases are ‘topological’
in the sense of long-range entanglement. The term apparently originated from low-energy
description of chiral spin liquids by theories of Chern-Simons types, i.e. topological quan-
tum field theories [15]; see (1.13) below. This is to be distinguished from a different class of
systems which are also called ‘topological’ in the literature, because their eigenstates or field
configurations admit invariants that can be classified by homotopy groups from algebraic
topology. Instantons in quantum field theory and topological band theory are some of the
prominent examples in this group. These phases do not constitute topological order.

Among the topologically ordered phases, Z2 topological order is of particular impor-
tance [3, 16]. In addition to the preceding properties, its ground state degeneracy on torus
is characterized by Z2 quantum numbers of non-local operators. That these Z2 invariants
are global necessarily means that the ground state degeneracy is stable against local pertur-
bations, which makes these systems ideal as protected qubits for quantum computing [13].
Therefore, from both theoretical and practical points of view, it is important to develop
and study models of Z2 topological order that illustrate all the essential properties, but are
nonetheless simple enough to be implemented in an experimental setting.

One of the simplest and most illustrative examples of Z2 topological order is given by
the Toric Code [13]. Since it forms the conceptual foundation for the class of models of Z2

topological order in this thesis, let us describe its properties in some detail. Consider a square
lattice with spin-1/2 degrees of freedom on the edges and periodic boundary conditions
(B.C.s). We shall write X, Y and Z for Pauli matrices σx, σy and σz defined on each edge.
Then the Toric Code Hamiltonian is given by [13]:

HTC = −
∑

v

Av −
∑

p

Bp, (1.1)

where the summation is taken over all vertices v and plaquettes p of the lattice. For a given
vertex v, Av consists of X operators on the four edges that join at the vertex. Similarly, Bp

has Z operators on four edges of the plaquette p. They are written explicitly as:

Av =
∏

i∈v
Xi, Bp =

∏

i∈p
Zi. (1.2)

In Fig. 1, the operators in Eq. (1.2) are shown visually on the lattice.
The Hamiltonian (1.1) can be solved exactly [13], and has the important property that

its eigenstates are ‘topological’ in the following sense: due to the underlying geometry of
the torus, each eigenstate carries two global ‘topological quantum numbers’ with eigenvalues
±1. Eigenstates differing only in those two topological quantum numbers are degenerate.
Therefore, each energy level is at least four-fold degenerate. In particular, the ground

1There are additionally gapped phases with symmetries and short-range entanglement but no bulk topo-
logical order, i.e. topological insulators. They are called ‘symmetry protected topological order’ (SPT) [14].
In this case, if deformation of the Hamiltonian preserves the symmetry then gap closing is necessary for
phase transition. Otherwise such a transition might occur without gap closing.
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Figure 1: Left: Av and Bp operators on a square lattice. An edge is multiplied by X (Z) if it is shown in
red (blue). This color convention is used for all figures for spin operators in this thesis. Right: the
honeycomb lattice where the x-, y- and z-links for the honeycomb model (1.3) are shown explicitly.

states are gapped and four-fold degenerate. This fact makes them stable with respect to
local perturbations which cannot induce a global change of the system. Additionally, the
spectrum of (1.1) contains two types of static and non-interacting quasiparticles e and m
with mutual abelian anyon statistics. They also form a bound-state of ε-fermions. These
properties are reviewed in Secs. 1.1 and 1.2 below.

Two considerations arise from the discussions so far. On the one hand, it is clear that
the Toric Code can be generalized to a series of Z2 models on the spin lattice in which
e- and m-particles, or e- and ε-particles, can acquire dynamics and interact. Given that
these models are on the periodic lattice and can be interpreted in terms of anyons, at least
some of them give further examples of Z2 topological order. The question naturally arises
of developing a systematic method to study these phases directly in the anyonic degrees of
freedom, and of clarifying their relationships to Z2 topological order. On the other hand, the
Hamiltonian (1.1) contains only four-spin operators and seems unlikely to be realized in a
conventional platform. However, it turns out that the Toric Code can be derived as a specific
limit in the parameter space (Jx, Jy, Jz) of the following ‘Kitaev honeycomb model’ [17]:

H = −Jx
∑

x-links

XiXj − Jy
∑

y-links

YiYj − Jz
∑

z-links

ZiZj, (1.3)

defined on a honeycomb lattice and the summation is over the x-, y- and z-links of the
honeycomb edges, as is shown in Fig. 1. The model (1.3) contains free Majorana fermions
and static bosonic π-vortices (‘visons ’) which are also mutual anyons. The honeycomb
model is considerably more physical in comparison to the Toric Code, since the Hamiltonian
(1.3) consists of two-spin operators only. This fact motivates extensive theoretical and
experimental research into its realization in the so-called candidate ‘Kitaev materials’ in
which additional spin interactions (i.e. Heisenberg terms) are inevitably present in the
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Hamiltonian, α-RuCl3 being a notable example [18–22]. From a theoretical perspective,
the dynamical properties of the Majorana fermions and visons and possible experimental
signature of the spin liquid are also problems of intense interests [18, 23–27]. For a review,
see Ref. [28].

Many methods have been developed to solve similar problems to those stated above in
different contexts, by mapping local spin operators directly to the underlying quasiparticle
fields [10, 17, 29–44]. In the case of anyons, fictitious degrees of freedom are usually in-
troduced to deal with the non-local nature of anyon statistics. The final results are then
projected back into the physical sector of the Hilbert space. Apart from the additional
complexity that such a local extension of the Hilbert space produces, it also obscures the
connection between anyonic excitations and periodicity of the spin lattice, i.e. the global Z2

quantum numbers. In this thesis, we derive exact dualities between spin operators on the
square lattice and field operators of e-, m-particles or e- and ε-particles. Since no additional
degrees of freedom are introduced and the mappings are between spin and anyon Hilbert
spaces, it allows one to construct and study a series of Z2 topological phases directly and
systematically in terms of anyons. It also shows unambiguously the interrelation between
global Z2 invariants and certain properties of the systems. At the same time, it turns out
that (e, ε)-duality on the square lattice can be carried over directly to the honeycomb, where
e and ε naturally become the visons and Majorana fermions in the honeycomb model (1.3).
Therefore, both Z2 models as generalizations of the Toric Code and extensions of the Ki-
taev honeycomb model for physical systems 2 can be studied under a unified theoretical
framework.

This thesis focuses on constructing the aforementioned spin-anyon dualities, and their
application to a series of spin models. These models are mapped to quadratic anyonic Hamil-
tonians interacting via Chern-Simons type vector potentials in a specific gauge. However,
after the mapping, the Hamiltonians are usually highly non-local. This makes exact solu-
tions difficult to obtain even numerically, since the motion of one group of anyons strongly
affects all anyons of the other group in the system. To simplify the problem, we shall al-
ways take e-bosons to be static. Consequently solutions to these models can be approached
from both the perspective of Z2 topological order on the spin lattice and directly in terms
of quasiparticles. For example, the most important lattice spin models that we consider
have superconducting ε-fermions and static e-bosons. The underlying Z2 topological order
‘enriched by translation symmetry’ [45–47] (symmetry-enriched topological order has both
topological order and symmetries; compare with SPT in the first footnote) can then be
analyzed and classified by using the theory of topological superconductivity [48–61]. Many
other results, i.e. confinement properties of e-particles, and the low-energy emergent anyon
statistics in topological superconducting phases, are also obtained using the duality which
are otherwise impossible on the spin lattice. Given the importance of the spin-anyon duali-
ties for preceding considerations, in the rest of the introduction we shall discuss the essential
ideas behind it.

2This assumes that the low-energy states of such models are not completely altered by additional spin-
interactions so that their description in terms of visons and Majorana fermions still makes sense.
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1.1 The Toric Code - Exact Solutions
Since the eigenstates of Toric Code (1.1) are used as basis for the quasiparticle Hilbert

space, let us first outline the solution of Toric Code and prove its ground state degeneracy.
Operators Av and Bp in Eq. (1.2) can take eigenvalues ±1 since A2

v = B2
p = 1, and are

the so-called ‘Z2 operators’. Furthermore, they commute with each other and, as a result,
also commute with the Hamiltonian (1.1). Thus each eigenstate is characterized by the set
of eigenvalues Av = ±1, Bp = ±1 on the lattice. In particular, the ground states have
Av = Bp = 1. Since on a periodic lattice there are 2LxLy number of edges, where Lx and Ly
are the side lengths of the lattice (the lattice constant is taken unity), the 2LxLy number in
total of Av and Bp operators would suggest that the Hilbert space is completely described
by the eigenvalues of Av and Bp, and the ground state is unique. However, not all of Av, Bp

are independent, due to the constraints from periodic boundary conditions:
∏

v∈lattice

Av = 1,
∏

p∈lattice

Bp = 1; (1.4)

the product is taken over all vertices and plaquettes in the lattice. The two constraints in
Eq. (1.4) mean that only 2LxLy − 2 degrees of freedom are specified by the eigenvalues of
Av and Bp. The remaining two degrees of freedom can be accounted for by the eigenvalues
of the following ‘Wilson loop’ operators:

WTC
x =

∏

i∈γx
Xi, W

TC
y =

∏

i∈γy
Xi; [WTC

x ,WTC
y ] = 0. (1.5)

The paths γx,y are on the upper row and right column respectively, and traverse the lattice
along the x- and y-directions; see Fig. 2. It will be proven at the end of this section that
WTC
x,y are indeed independent degrees of freedom. For now we note that they commute with

Ap and Bp, and do not enter into the Hamiltonian (1.1). Accordingly the Hilbert space
is divided into 22 = 4 degenerate ‘super-selection’ sectors specified by the eigenvalues of
{WTC

x ,WTC
y } (WTC

x,y = ±1). In particular, the ground states are four-fold degenerate.
Transitions between different super-selection sectors are given by the ‘t’Hooft’ operators

TTC
x,y which anticommute with WTC

y,x and hence change their eigenvalues, but commute with
Av and Bp:

TTC
x =

∏

i∈γ′x

Zi, T
TC
y =

∏

i∈γ′y

Zi; {TTC
x ,WTC

y } = {TTC
y ,WTC

x } = 0, [TTC
x , TTC

y ] = 0. (1.6)

There operators are also shown in Fig. 2. We note that the choice of diagonalizing WTC
x,y to

account for the four global degrees of freedom is purely conventional. For example, one can
also characterize the system with eigenvalues of TTC

x,y . In that case, WTC
x,y become the t’Hooft

operators.
Finally, it should be emphasized that for the ground state, the specific forms of the

contours in Eqs. (1.5) and (1.6) are immaterial. This is because a product of X or Z
along any contours can be deformed by multiplying Av = 1 or Bp = 1 (remember that
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x

γ′x

TTC
y

γ′y

WTC
x

γx

WTC
y

γy

Figure 2: The global Wilson and t’Hooft operators given by Eqs. (1.5) and (1.6).

here we are concerned only with the ground state multiplets). More generally, any closed
loops can be written as products of Av or Bp; see Eqs. (1.9) and (1.10) below. They are
therefore ‘contractible’ to a point. But in WTC

x,y and TTC
x,y , the contours traverse the lattice

and cannot be deformed in this way into a point. These loops are ‘incontractible’ and are
thus robust. This also proves the assertion that WTC

x,y and TTC
x,y cannot be expressed in terms

of Av and Bp. For excited states this deformation is problematic, because some Av or Bp

might have eigenvalue −1, and WTC
x,y and TTC

x,y change sign after their contours sweep past
the corresponding site. However, from the point of view of specifying the basis of the Hilbert
space, it suffices to choose a specific path for each loop. The corresponding eigenvalues are
then designated as the ones that characterize the state. We have chosen the particular paths
in Eqs. (1.5) and (1.6) for later convenience.

1.2 The Toric Code - Elementary Excitations
The solution outlined in Sec. 1.1 admits the following physical interpretation. For a

given eigenstate, on each vertex v we regard Av = −1 as having an elementary excitation
or quasiparticle 3 (the e-particle) occupying that vertex, whereas Av = 1 means that the
vertex is empty. Analogously, Bp = −1 means that the plaquette p is occupied by an
elementary excitation of a different kind (the m-particle). Thus each eigenstate is specified
essentially by the local occupation numbers of e- and m-particles, as well as the eigenvalues
of two commuting global operators which are taken to be WTC

x,y . Here e- and m-particles are
hardcore bosons because their occupation number at a given site cannot exceed unity. Av
and Bp then measure the parity of e- and m-particles on given sites. Since the ground states

3Sometimes in the literature, ‘elementary excitations’ refers exclusively to quasiparticles with bosonic
statistics, while ‘quasiparticles’ is reserved for fermionic quasiparticles. In this thesis we use the two terms
interchangeably which should not cause any confusion.
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m m
p1 p2

e e
v1 v2

Figure 3: Left: examples of pair creation operators in Eqs. (1.7) and (1.8). Right: examples of loop motion
of e- and m-bosons. The plaquettes in the product in (1.9) are contained by the blue line. The dotted gray
line encloses all vertices on the right hand side of (1.10).

have Av = Bp = 1, they can be naturally seen as the ‘vacuum states’ having no elementary
excitations.

Following the same reasoning, we can also introduce pair-creation operators of e and
m. For e-particles, such an operator that creates e-bosons on vertices v1 and v2 should
anti-commute with Av1 and Av2 , but commute with other Av and Bp. For two neighbouring
vertices, we then have:

U e
v1,v2

= Zv1v2 , (1.7)

where Zv1v2 is the Z operator along the edge that connects v1 and v2, as shown in Fig. 3. A
pair of e-bosons can be created on arbitrary v1 and v2 by a product of Eq. (1.7), taken along
any path that connects the two vertices. Any e-boson pair-creation operator thus defined
satisfies the commutation requirements above. Similarly we can define nearest neighbour
pair-creation operators for m-bosons:

Um
p1,p2

= Xp1p2 , (1.8)

where Xp1p2 is the X operator shared by the two plaquettes p1, p2; see also Fig. 3. Pair-
creation of m-bosons can also be written as a product of Eq. (1.8) over a path that connects
p1 and p2. Note that only pair-creation is possible on a torus, due to the constraints (1.4)
which allow only even numbers of quasiparticles. Operators that create a single quasiparticle
on an open lattice will be discussed in Sec. 2.1.

The physical meaning of the global degeneracy given by Eq. (1.5) now becomes clear.
WTC
x,y simply correspond to creating a pair of m-bosons then moving one across the Torus

along x- or y-direction to annihilate the other. The phases acquired are due to a ‘background’
flux which pierces through the torus. Accordingly TTC

x,y create a pair of e-bosons then an-
nihilate them after moving one across the torus along x- or y-direction. These quantized
phases characterize the underlying geometry of the lattice which results in the degeneracy.

It follows from Eqs. (1.7) and (1.8) that e- and m-bosons have mutual anyonic statistics.
To see this, we create a pair of e-bosons on top of a given state then move one e-boson
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around a closed loop which returns it to its original position. Multiplying Eq. (1.7) over a
closed loop gives: ∏

v

Zv1v2 =
∏

p

Bp; (1.9)

the product in v is taken over the closed string that transports the e-boson, and the product
in p is taken over all plaquettes encircled by the loop; see Fig. 3. Thus in moving around
one m-boson, the e-boson acquires a π-phase. Similarly by creating a pair of m-bosons and
moving one around a closed loop, we have:

∏

p

Xp1p2 =
∏

v

Av; (1.10)

see also Fig. 3. As a consequence of Eqs. (1.9) and (1.10), e- and m-bosons have mutual
statistical angle π/2, 4 so they are mutual semions or π-vortices. This also explains the
previously mentioned fact that a contour that pair-creates e-bosons cannot be smoothly
deformed through a plaquette p with Bp = −1. This is because the m-boson there acts as a
point magnetic flux vortex for e-bosons so the contour will be pinned around it. The same
holds for deforming a m-boson loop through vertices with e-bosons.

Finally, there is an additional type of elementary excitations. We can form a ‘composite’
ε-particle by binding an e-boson with another m-boson. In this thesis, we shall choose the
binding convention as the following: an ε-particle defined on a plaquette p consists of an
m-boson on plaquette p and an e-boson on the South-West vertex of p; see Fig. 4 below.
ε-particles are fermions with respect to themselves: exchanging a pair of ε-particles gives
−1, since each e (m) in one ε-particle acquries a factor of i from m (e) in the other ε-particle.
Its mutual statistical angles with respect to e- and m-particles are π/2: they are still mutual
semions or π-vortices.

We shall further investigate ε-fermions and their lattice operators in Sec. 1.4. Here we
merely emphasize that the ‘compositeness’ of ε-fermions is in a sense artificial. For instance,
one can alternatively regard e-bosons and ε-fermions as ‘elementary particles’, thenm-bosons
become bound states of e and ε.

1.3 Z2 Lattice Theories with e- and m-bosons
The physical arguments presented in Sec. 1.2 are not immediately related to the Hamil-

tonian (1.1) per se. More generally it suggests a rewriting of the spin-1/2 degrees of freedom
along edges of the plaquettes in terms of two of the three quasiparticles e, m and ε on
vertices and centers of plaquettes. Under such a duality between spin and quasiparticles,
the Toric Code Hamiltonian (1.1) can be seen as a model with static and non-interacting
quasiparticles e and m. By including pair-creation and parity operators, the elementary
excitations can acquire dynamics and interact. In this thesis we construct a series of Z2

4The statistical angle θ between two anyons is half the phase acquired by one anyon after moving around
the other, or the phase acquired by the wave-function after a pair permutation: Ψ(x1, x2) = eiθΨ(x2, x1).
For example, θ = π for fermions and θ = 0 for bosons.
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lattice theories that allow anyon dynamics and include the Toric Code (1.1) as the static
limit, and study their Z2 topological order explicitly in the quasiparticle degrees of freedom.
Of course, the utility of the method is restricted by that the spin models must physically
make sense as models of anyons, which is generally not true for an arbitrary Hamiltonian.

What are the general features of such a mapping and the quasiparticle Hilbert space
that it maps to? First the mapping must incorporate the effect of mutual anyonic statistics
of the quasiparticles. Additionally, the quasiparticle Hilbert space should take into account
the global Z2 indices (for example WTC

x,y and TTC
x,y ) due to periodicity of the spin lattice.

Such dualities between lattice spins and two of the elementary excitations (e,m) or (e, ε)
that satisfy these requirements are presented in Sec. 2, but their mappings are non-trivial.
Therefore, let us first discuss the general physical considerations behind the mappings, and
the restrictions imposed by the foregoing requirements which turn out to be quite strong.

In this section we shall discuss the simpler case of duality between spin and e- and m-
bosons, and defer the more complex discussion of e- and ε-particles to Sec. 1.4. First, we
consider the mapping on an infinite lattice. However, even in this case the mapping between
spin and quasiparticle operators is not straightforward. At first sight, it seems that one can
simply use the hardcore boson construction. 5 For example, the parity operators Av and Bp

will become:

Bp → exp(iπa†pap) = 1− 2a†pap, Av → exp(iπb†vbv) = 1− 2b†vbv, (1.11)

where ap and bv are annihilation operators of m- and e-particles on plaquette p and vertex
v. As for the nearest neighbour pair-creation operators (1.7) and (1.8), the hardcore boson
construction suggests:

Xp1p2 → (a†p1 + ap1)(a
†
p2
+ ap2), Zv1v2 → (b†v1 + bv1)(b

†
v2
+ bv2), (1.12)

since Xp1p2 changes the occupation numbers of m-bosons on plaquettes p1 and p2 and sim-
ilarly for Zv1v2 . Any spin operators can then be written as products of these ‘fundamental
operators’. However, it can be immediately seen that Eq. (1.12) cannot be correct, because
Xp1p2 for two neighbouring plaquettes is defined on the same edge as Zv1v2 connecting the
two vertices shared by the plaquettes: Xp1p2 and Zv1v2 anticommute as a result, whereas
field operators of different quasiparticles must commute. More fundamentally, Eq. (1.12)
has not taken into account the mutual anyonic statistics of e- and m-bosons which follow
from Eqs. (1.9) and (1.10).

Conventionally, the mutual statistics of abelian anyons in 2+1 dimensions are accounted
for in a local theory by coupling quasiparticle momenta to U(1) gauge fields aiµ with a ‘Chern-
Simons’ action [62–65]. The corresponding Lagrangian density is:

L =
1

4π

∑

i,j

eµνλKija
i
µ∂νa

j
λ −

∑

i

jiµa
iµ. (1.13)

5For hardcore bosons defined on lattice sites, their creation and annihilation operators commute on
different sites. On the same site they satisfy: b2i = b†2i = 0, {b†i , bi} = 1. In the local basis of doublets of
boson occupation number |ni⟩, ni = 0, 1 on each site: bi = (σx

i + iσy
i )/2.
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Here i, j are indices for types of anyon, eµνλ is the Levi-Civita tensor, jiµ is the current for the
i-th anyon and Kij is an invertible, symmetric matrix that includes all information about
the self- and mutual-statistics of anyons. It can be shown that for the i-th quasiparticle,
aiµ then pins a point magnetic vortex to each anyon in accordance with their mutual- and
self-anyonic statistics.

However, the description of anyon statistics in terms of local gauge fields aiµ contains a
large degeneracy, since the Lagrangian (1.13) is invariant under a local U(1) gauge trans-
formation. In mapping from the spin lattice to such a theory, this necessitates a large
degeneracy also on the lattice that is proportional to the system size, unless the Hilbert
space is locally extended in the process. There are other ways to consider anyonic statistics,
the parton construction on the Honeycomb lattice being one example [17]; see also the be-
ginning of this section. Nevertheless in that case too, locality of the theory is only preserved
after introducing fictitious Majorana fermions on each vertex of the Honeycomb, which also
enlarges the Hilbert space. Hence it seems that in general, the long-range anyon statistics
can only be described by a local theory with additional degenerate degrees of freedom which
mediate this effect.

Such a large degeneracy generally does not exist in the spin lattice. Moreover, we want
to study the effect of Z2 topological indices (1.5) and (1.6) on the quasiparticle Hilbert
space on a finite, periodic lattice. For this reason, we do not wish to introduce redundant
degrees of freedom, since they might make the connection obscure. Therefore, as is clear
from discussions above, the mapping for hardcore boson pair-creations should correspond to
a specific ‘gauge’ of π-vortices pinned to each e-boson for the m-bosons and vice versa, and
the description should be non-local. The form of such a mapping on an infinite lattice can
be directly inferred by considering operator commutation relations. Pair-creation operators
Zv1v2 for e and Xp1p2 for m commute with all Bp and Av respectively, and change local anyon
occupation numbers on adjacent sites by unity. This together with Eq. (1.11) suggests that
their mapping to quasiparticle operators on an infinite lattice must be of the form:

Xp1p2 → (a†p1 + ap1)(a
†
p2
+ ap2)

(∏

v

eiπb
†
vbv

)
, (1.14a)

Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

(∏

p

eiπa
†
pap

)
. (1.14b)

The non-local product of parity operators is naturally related to a specific ‘gauge conven-
tion’ for π-vortices of mutual-anyon statistics. For example, for each e-boson pair-creation
operator, the m-parity terms give a additional −1 if one of the plaquettes included in the
product is occupied. This means that a static m-boson extends a ‘branch-cut’ from its
position whose form is determined by the plaquettes that enter into the parity product in
Eq. (1.14). Upon crossing the branch-cut, the e-boson translation changes sign. Thus, after
completing a closed loop around an m-boson, the e-boson must cross the branch-cut for an
odd number of times and gain an additional π phase. The same also holds for m-bosons.

Any spin operator can be written as product of parity and pair-creation operators of e
and m. Thus the problem of constructing the mapping from spin to quasiparticle Hilbert
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spaces on an infinite lattice is reduced to finding the conventions of the non-local parity
products in Eq. (1.14). This will be solved in Sec. 2.1. There we shall also define ap and bv
fields explicitly in terms of non-local spin operators.

We shall also generalize our results to a periodic spin lattice. Here the situation is more
complex. As is clear from the discussions in Secs. 1.1 and 1.2, the quasiparticle Hilbert
space must incorporate the constraints (1.4) and the topological Z2 degrees of freedom cor-
responding to WTC

x,y and TTC
x,y . Given that WTC

x,y and TTC
x,y correspond to motions of m and

e traversing the entire lattice, their eigenvalues must be related to the boundary conditions
of m and e. In Sec. 2.1, we show that the inclusion of these degrees of freedom results in a
modification of Eq. (1.14): the operators that traverse the lattice boundaries are multiplied
by additional external Z2 operators which correspond to WTC

x,y and TTC
x,y . Here diagonalizing

WTC
x,y = ±1 means that the m-bosons have periodic or anti-periodic boundary conditions

along x-, y-directions. As a result, the total Hilbert space consists of four quasiparticle
Hilbert spaces, each with a different combination of periodic/anti-periodic boundary con-
ditions for m-bosons along x- and y-directions, corresponding to the four super-selection
sectors. The e-boson pair-creations across lattice boundaries then cause transitions between
these super-selection sectors. Similarly one can diagonalize TTC

x,y , then e-bosons have defi-
nite boundary conditions whereas cross-boundary motion of m changes the super-selection
sectors. Moreover, each of these quasiparticle Hilbert spaces must have even total parities
for e- and m-parities due to the constraints (1.4). Therefore, only even total parity states
in the quasiparticle Hilbert space are physical, and odd parity states must be removed.

1.4 The ε-fermions
The discussions in Sec. 1.3 can be repeated for the case of mapping to e-bosons and

ε-fermions degrees of freedom. This is also the more interesting and important case for this
thesis, due to the large number of known topological phenomena in fermionic systems. In
this thesis, we will use the mapping to construct a series of Z2 lattice models with free and
superconducting ε-fermions. The connection between Z2 topological order and topology in
fermionic systems will then become clear. Before discussing the mapping, let us recall some
definitions for ε-fermion operators on an infinite spin lattice.

Since the ‘elementary’ particles are ε-fermions and e-bosons, the e-boson parity operator
Av in Eq. (1.2) is no longer adequate, as it also measures the ε-fermion parity on the
North-East plaquette; see Fig. 4 and the end of Sec. 1.2. Due to the binding convention of
ε-fermions, the e-parity operator must have the form:

AvBNE(v),

where NE(v) is the North-East plaquette to the vertex v. However, Bp can be used as parity
operators for ε-fermions. To distinguish from the (e,m) case, we write the parity operators
in new notation:

Γev = AvBNE(v), Γ
ε
p = Bp. (1.15)

Note that on a torus, one obtains similar constraints to Eq. (1.4) on global e- and ε-parities:
∏

v

Γev = 1,
∏

p

Γεp = 1. (1.16)
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Figure 4: Left: the binding convention for an ε-fermion. Each e-bosons is binded with an m-boson to its
North-East. Right: illustrations of pair-creation (1.17) and parity operators (1.15) for ε-fermions. Their
mapping to Majorana couplings (1.18) are shown explicitly.

The pair-creation operator U e
v1v2

for e-bosons retains its form in Eq. (1.7). Naturally one can
define the nearest neighbour ε-fermion pair-creation operators as simultaneous pair-creation
of e- and m-bosons. Using Eqs. (1.7) and (1.8), and the binding convention for ε-fermions
we obtain:

U ε
p1p2

= Xp1p2Zv1v2 , (1.17)

where v1 and v2 are vertices to the South-West of p1 and p2 respectively. U ε
p1p2

operators for
vertical and horizontal pair-creation are shown in Fig. 4. Contrary to Eq. (1.8), the U ε

p1p2

operator is not symmetric with respect to p1, p2. Therefore, we have the ‘directionality’
convention that for horizontal translations, p1 is to the left of p2 and for vertical translations,
p1 is above p2. Note that as a result of fermion statistics of ε-particles, not all U ε

p1,p2
operators

in Eq. (1.17) commute. For example, a horizontal U ε
p1p2

anti-commutes with vertical U ε
p3p2

and U ε
p1p4

, where p3 is above p2 and p4 is below p1.
The mapping of Eqs. (1.15) and (1.17) to bilinears of Majorana operators on both infinite

and open, finite lattices has been obtained in Ref. [41] in the absence of e-bosons: Γev = 1
on all vertices are imposed. The mapping reads:

U ε
p1p2

→ iγp1γ
′
p2
, Γεp = −iγpγ′p, (1.18)

The Majorana operators are defined in terms of complex fermion annihilation operators as
cp = (γp+iγ

′
p)/2, which are just the annihilation operators of ε-fermions. The mapping (1.18)

satisfies the commutation relations of U ε
p1p2

and Γεp on the spin lattice. From the same
considerations as in Sec. 1.3, we see that the presence of e-bosons will modify Eq. (1.18) by
introducing products of e-parity operators Γev in the mapping for U ε

p1p2
, as a result of the

mutual anyonic statistics between e-bosons and ε-fermions. Analogously to Eq. (1.14), we
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then have on an infinite lattice:

U ε
p1p2

→ iγp1γ
′
p2

(∏

v

eiπb
†
vbv

)
, (1.19a)

U e
v1v2

→ (b†v1 + bv1)(b
†
v2
+ bv2)

(∏

p

−iγpγ′p
)
. (1.19b)

It is clear that in the case of e- and ε-particles, the quasiparticle Hilbert space on a torus
will also be characterized by global parity constraints (1.16) and topological Z2 operators
analogous to WTC

x,y and TTC
x,y (WTC

x,y is inadequate because they correspond to loop motions
of m-bosons and not ε-fermions). Consequently, as will be discussed in Sec. 2.2, the torus
geometry modifies the mapping (1.19) which results in four quasiparticle Hilbert spaces
with different ε-fermion boundary conditions and total quasiparticle parities even. The e-
boson pair-creations across lattice boundaries cause transitions between these super-selection
sectors.

In Sec. 2.2, we shall consider open and periodic spin lattices and define the new topo-
logical Z2 Wilson loop operators that correspond to ε-fermions. We then present explicit
definitions of bv and γp, γ

′
p in terms of non-local spin operators; the fermions are given by

a two-dimensional analogue of the Jordan-Wigner transformation. Inverting this definition
and expressing local spin operators in terms of non-local quasiparticle fields, we obtain the
desired mapping from spin to e and ε degrees of freedom, as well as the conventions for
branch-cuts in Eq. (1.19) for both lattice geometries. This will also give, very naturally, the
additional external Z2 indices that modify the mapping (1.19) for cross-boundary motion
on a torus, which characterize the geometry of the underlying spin lattice.

1.5 Outline of the Thesis
The rest of this thesis is organized as follows.
In Sec. 2 we present in detail the construction of (e,m)- and (e, ε)-particle Hilbert spaces

on open, infinite and periodic lattices respectively. The equivalence of e and ε to visons and
Majorana fermions in the honeycomb model is then demonstrated by reconstructing the
square lattice as a distorted honeycomb lattice. The results in that section were reported
in Refs. [46, 66]. In Ref. [46], basing on previous results on infinite and open lattices
in Ref. [41], the duality mapping for ε-fermions without e-bosons was first obtained on a
periodic lattice. In Ref. [66] the mapping was then extended to include e-bosons, based on
the present approach in this thesis. In Sec. 3, a trivially solvable spin Hamiltonian on a torus
is considered that can be mapped to the ferromagnetic Ising model using the (e,m)-duality.
We compare the solutions on the spin lattice and in the basis of m occupation numbers to
illustrate certain general, important features of the mapping.

In Sec. 4, we study the energy spectrum and confinement properties of e-bosons as static,
free π-vortices in ideal gases of m-bosons and ε-fermions respectively. This section is based
on results in Ref. [67]. The numerical results are verified to be consistent with analytical
calculations performed at the low-filling limit at which the fermion dispersion is parabolic.
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Secs. 5 and 6 concern with a class of lattice models that can be mapped to static e-bosons
and topological superconducting ε-fermions. They constitute what is called ‘Z2 topological
order enriched by translation symmetry’ [45–47].

In Sec. 5, the phase diagrams and ground state properties of the model considered are
classified and investigated in detail in the absence of e-bosons. This is done primarily by the
duality mapping and applying the theory of topological superconductivity, supplemented
in certain phases by exact solutions on the spin lattice. In particular, it is shown that the
ground state degeneracy in certain Z2 topological phases depends on lattice size. Previously,
this phenomena in Z2 topological order with translation symmetry has been discovered in
Refs. [17, 48, 49, 52, 68–71]. This section is based on results in Ref. [46].

In Sec. 6, the anyonic properties of e-bosons on top of the superconducting vacuum
are studied. Here the e-vortices are ‘renormalized’ by the superconducting vacuum and
become emergent anyons. The results fall into two categories: in phases with zero Chern
number that correspond to stacks of one-dimensional Kitaev wires of ε-fermions, the e-bosons
on two sublattices become mutual π-vortices. The sublattices are exchanged by a lattice
translation. Hence we have found an explicit example of ‘weak symmetry breaking’ [17, 72]
which was first reported in Ref. [46]. In the second category, the Berry phase of motion of e-
bosons is computed in phases having non-zero Chern number. The results relate naturally to
properties of visons in the honeycomb model. In particular, we consider e-motion around an
empty square unit cell and mutual braiding of e-bosons. The results are shown to depend
on the topology of the underlying superconducting phases. The braiding statistics of e-
bosons agree with the prediction in Ref. [17], whereas the background flux of each unit cell
is quantized to be 0 or π. These results were obtained in Ref. [66].

Finally in Sec. 7, we present some unpublished results on ZN generalization of Z2 lattice
models considered in the previous two sections. They are obtained in collaboration with
Inti Sodemann. Here the mapping from the lattice to quasiparticles is considerably more
complex, and the models can only be solved in some limits on the lattice. Interestingly,
despite the absence of a quasiparticle picture, certain properties of the exact solutions re-
semble their Z2 counterparts. It remains unclear if such a quasi-particle picture exists for
models of ZN topological order.

In Refs. [46, 66, 67] listed above, P. Rao, O. Pozo and C. Chen participated in analytical
calculations and discussions. Numerical calculations are carried out by O. Pozo and C. Chen.
I. Sodemann participated in analytical calculations and discussions, and provided guidance.
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2 Duality between spins and quasiparticles on Z2 lattices
As discussed in Sec. 1, spin-1/2 operators on edges of plaquettes in a square lattice can

be mapped to field operators of two of the elementary excitations (e,m) or (e, ε), regarding
the third as bound states. In this section, we shall construct this mapping explicitly for
these two cases on finite, open lattices and on a torus. This will be dealt with in Secs. 2.1
and 2.2.

However, before proceeding we shall discuss the modifications in constructing open lat-
tices, and repeat our counting of degrees of freedom in Sec. 1.1. It is also possible to construct
a cylindrical lattice with periodic boundary condition along one direction only. This case
will be discussed in Appendix A.

Firstly we consider the same square lattice as in Sec. 1.1 but with open boundary con-
ditions, and spins on boundary edges are independent. The extra edges will introduce
additional Lx + Ly degrees of freedom. To avoid unnecessary complications and to retain
2LxLy degrees of freedom as in the torus, we remove the edges along the upper and right
boundaries of the lattice, as shown in Fig. 5. The number of vertices and plaquettes is then
still LxLy and lattice operators on sites at the boundary will be modified. For example, Av
contains only three edges on vertices along the vertical left boundary, and only two edges at
the bottom-left vertex. Similarly, Bp is a three-spin operator along the vertical right bound-
ary and a two-spin operator at the upper-right plaquette. Secondly, the parity constraints
(1.4) and (1.16) cease to apply. Therefore, parity operators are all independent; this fact
will be proven rigorously below. We then have in total, 2LxLy independent Av, Bp or Γev
and Γεp operators. The sizes of spin and quasiparticle Hilbert spaces then coincide, which is
crucial for a complete description of the original lattice in the quasiparticles picture.

The absence of global parity even constraints means that single-particle creation pro-
cesses are allowed. We shall now construct explicit examples of operators that create a
single e- or m-boson, the corresponding operators for ε-fermions then being a combination
of both. As shown in Fig. 5, to create a single e-boson at a given vertex v, we can extend
a string of Z operators from the right boundary which terminates at v. Analogously, an
m-boson can be created at plaquette p by a string of X operators joining the left bound-
ary and p. The operator thus defined anti-commutes with Av or Bp on the given site, and
commutes with all other Av and Bp. A single ε-fermion can be created similarly.

Finally, we prove the claim that all parity operators are independent in an open or
cylindrical lattice for the (e,m) case. The (e, ε) case is entirely analogous.

Global constraints for Z2 parity operators Av and Bp can be written in the following
form:

F1(Av, Bp) = 0, F2(Av, Bp) = 0, (2.1)

where F1 and F2 are functions of Av and Bp on potentially any vertices and plaquettes.
If there is an operator that anti-commutes with an arbitrary Av1 or Bp1 but commutes
with all other Av and Bp, then it would necessarily contradict (2.1) and global constraints
cannot exist. However, such operators are simply single-particle creation operators for e-
and m-particles just introduced. This completes the proof.

23



e

m

Figure 5: Open lattice configuration. The upper and right edges are removed. We also show the
single-particle creation operators for e-bosons and m-bosons; c.f. (2.5). (2.6). Each particle is created by a
horizontal non-local string from the lattice boundary.

2.1 Mapping between spins and e-, m-bosons
In the section, the mapping between spin and e-, m-boson fields ap and bv will be estab-

lished. First we consider the open lattice.

2.1.1. Open Lattice
We shall describe the quasiparticle Hilbert space in more detail. As is mentioned at the

beginning of this section, the spin Hilbert space has 2LxLy degrees of freedom in total. It
can be alternatively described by the occupation numbers of hardcore e- and m-bosons on
each vertex and plaquette:

|...nev..., ...nmp ...⟩; nev, nmp = 0, 1.

Locally on each site, there are the equivalent of σx and σz matrices in the doublets of e- and
m-particle occupation number:

σev|nev⟩ = (−1)n
e
v |nev⟩, τ ev |0v⟩ = |1v⟩, τ ev |1v⟩ = |0v⟩; (2.2a)

σmp |nmp ⟩ = (−1)n
m
p |nmp ⟩, τmp |0p⟩ = |1p⟩, τmp |1p⟩ = |0p⟩. (2.2b)

Matrix τ creates or annihilates a boson on the given site whereas σ gives the local boson
parity (we omit the e, m superscript when we refer to both e- and m-bosons). They satisfy
{τ, σ} = 0 on each site, and complete the local SU(2) algebra of hardcore bosons. τ, σ are
related to quasiparticle fields bv and ap as:

τ ev → b†v + bv, σ
e
v → exp(iπb†vbv); τ

m
p → a†p + ap, σ

p
m → exp(iπa†pap). (2.3)
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bv and ap commute on different sites, and on the same site:

{b†v, bv} = 1, {a†p, ap} = 1, a2p = b2v = 0.

Eqs. (2.2) and (2.3) then determine bv and ap:

ap = (τmp + σmp τ
m
p )/2, bv = (τ ev + σevτ

e
v )/2;

see also the footnote in Sec. 1.3.
Thus to find the mapping from spin to quasiparticle Hilbert spaces on an open lattice, it

suffices to find the spin operators that map to τ, σ. The obvious identities hold for parity
operators:

Av → σev → exp(iπb†vbv); Bp → σmp → exp(iπa†pap). (2.4)

As for τ ev (τmp ) operators, they must satisfy the following commutation relations. First they
must anti-commute, by definition, with Av (Bp) but commute with other parity operators.
They must also commute with the operators that map to τmp (τ ev ), as they belong to a
different sector of the Hilbert space.

It is clear that τ must be single-particle creation operators with a specific convention for
their contours that satisfy all requirements above. The choice of contour is not unique and
here we give one such mapping. For a given τ ev , the corresponding spin operator is a product
of Z matrices whose contour Ce(v) extends from the right boundary on the same row and
terminates at v: ∏

v1,v2∈
Ce(v)

Zv1v2 → τ ev . (2.5)

For τmp , the contour Cm(p) for X matrices begins from the left boundary on the same row
and joins p: ∏

p1,p2∈
Cm(p)

Xp1p2 → τmp . (2.6)

For a visual representation of the rules just described, see Fig. 5.
The required commutation relations for spin operators are indeed satisfied. The com-

mutation relations with parity operators automatically hold because τ ev and τmp are single-
particle creation operators. From the conventions it is also clear that the spin operators for
τ ev and τmp do not share common edges, therefore they commute.

Inverting the mapping just obtained, any spin operators can be expressed in terms of τ
and σ, and in ap and bv after substituting (2.3). The most important ones for our purpose
are the e- and m-boson nearest-neighbour pair-creation operators in Eqs. (1.7) and (1.8).
For nearest-neighbours along the horizontal direction, we obtain simply:

Zv1v2 → τ ev1τ
e
v2

→ (b†v1 + bv1)(b
†
v2
+ bv2), (2.7a)

Xp1p2 → τmp1τ
m
p2

→ (a†p1 + ap1)(a
†
p2
+ ap2). (2.7b)

Along the vertical direction, τ ev1τ
e
v2

and τmp1τ
m
p2

are highly non-local on the spin lattice. Here
it is easier to write τ ev1τ

e
v2

(τmp1τ
m
p2

) explicitly on the spin lattice using Eq. (2.5) [Eq. (2.6)],
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express the non-local strings of Z (X) in terms of Bp (Av) and Zv1v2 (Xp1p2) then substitute
Eq. (2.3). As a result we have:

τ ev1τ
e
v2

= Zv1v2

( ∏

p∈
R(v1,v2)

Bp

)
→ Zv1v2 = τ ev1τ

e
v2

( ∏

p∈
R(v1,v2)

σmp

)
,

τmp1τ
m
p2

= Xp1p2

( ∏

v∈
L(p1,p2)

Av

)
→ Xp1p2 = τmp1τ

m
p2

( ∏

v∈
L(p1,p2)

σev

)
,

where R(v1, v2) means plaquettes to the right of the edge that joins v1 and v2, and L(p1, p2)
are vertices to the left of the line that connects the centers of p1 and p2. Substituting (2.3)
gives:

Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
R(v1,v2)

eiπa
†
pap

)
, (2.8a)

Xp1p2 → (a†p1 + ap1)(a
†
p2
+ ap2)

( ∏

v∈
L(p1,p2)

ϵiπb
†
vbv

)
. (2.8b)

Eqs. (2.7) and (2.8) give the branch-cut conventions of e- and m-bosons: for each π-
vortex attached to an e-boson at vertex v, the branch-cut extends from v towards the right
boundary on the same row and terminates there. Each π-vortex attached to an m-boson at
plaquette p goes left and ends at the boundary. Together, Eqs. (2.4), (2.7) and (2.8) give
the mapping from the open lattice to the quasiparticle Hilbert space.

The results on an finite open lattice can be directly generalized to an infinite lattice,
which can be seen as the limiting case of Lx, Ly → ∞. Hence in (2.5) for τ ev , the contour for
the product of Z matrices now extends from v to the left towards infinity. Similarly, for τmp
in (2.6), the contour for X matrices begins from p rightward also to infinity. Accordingly,
the branch-cut for each e- and m-boson extends from the given site towards right and left
to infinity.

2.1.2. Periodic Lattice
We shall repeat the above arguments for a torus, which requires certain modifications.
As is discussed in Sec. 1.3, in addition to occupation numbers of hardcore e- and m-

bosons on each vertex and plaquette, the quasiparticle Hilbert space is also described by
two Z2 indices z1, z2 = ±1 corresponding to the eigenvalues of WTC

x,y = ±1:

|...nev..., ...nmp ...; z1, z2⟩.

Remember that due to the global parity even constraints (1.4), only states with even numbers
of e- or m-bosons are physical. Locally on each site, the hardcore boson construction given
by Eqs. (2.2) and (2.3) still holds. Thus to find the mapping from spin to quasiparticle
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Hilbert spaces, it suffices to find the spin operators that map to τ, σ and z1, z2, and impose
the global even parity constraints (1.4):

∏

v∈lattice

σev = 1,
∏

p∈lattice

σmp = 1; (2.9)

From the definition of z1, z2, we immediately obtain:

WTC
x,y → ẑ1,2, ẑi|nev, nmp ; zi⟩ = zi|nev, nmp ; zi⟩; (2.10a)

TTC
x,y → x̂2,1, x̂i|nev, nmp ; zi⟩ = |nev, nmp ;−zi⟩. (2.10b)

The operators x̂i, ẑi satisfy {ẑi, x̂i} = 0, and are the equivalent of σx and σz matrices in the
global doublet sector given by z1,2 = ±1. Locally, the mapping for parity operators (2.4)
should still hold. As for τ operators, we note that only pairs of elementary excitations can
be created on a torus. So spin operators can only map to bilinears of τ . For this reason,
we need to choose a ‘reference’ vertex v0 and plaquette p0 and find the spin operators that
map to τ ev0τ

e
v and τmp0τ

m
p , where v and p are arbitrary. Here v0 and p0 are taken to be the

bottom-left vertex and plaquette, as is shown in Fig. 6. The commutation relations that
must be satisfied by the spin operators are the following: τ ev0τ

e
v (τmp0τ

m
p ) must anti-commute,

by definition, with Av0 (Bp0) and Av (Bp) but commute with other parity operators. They
must also commute with the operators that map to τmp0τ

m
p (τ ev0τ

e
v ), WTC

x,y and TTC
x,y , as they

belong to different sectors of the Hilbert space.
One such mapping that satisfies the necessary commutation relations is the following.

For a given τ ev0τ
e
v , the corresponding spin operator is a product of Z matrices along a specific

contour that joins the vertices v0 and v:
∏

v1,v2∈
Ce(v0,v)

Zv1v2 → τ ev0τ
e
v . (2.11)

Ce(v0, v) connects vertices v and v0 with the following convention. if v is on the same row
as v0, the contour is a horizontal line that joins them. Otherwise from v0 it first goes up to
the row on which v is located, then turns right and terminates at v. For a given τmp0τ

m
p , we

have similarly: ∏

p1,p2∈
Cm(p0,p)

Xp1p2 → τmp0τ
m
p . (2.12)

The convention for contour Cm(p0, p) is: if p is on the same row as p0, the contour is a
horizontal line that joins the two plaquettes. For p on different rows, the contour first heads
right towards the bottom-right plaquette, then goes up to the row of p and goes left and
arrives at p. The conventions are shown visually in Fig. 6.

Let us check that the required commutation relations for spin operators are indeed sat-
isfied. The commutation relations with parity operators automatically hold because τ ev0τ

e
v

and τmp0τ
m
p are products of pair-creation operators for e- and m-bosons; see Eqs. (1.7) and

(1.8). From the conventions it is also clear that the spin operators for τ ev0τ
e
v and τmp0τ

m
p do
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p

Figure 6: Left: pair-creation operators τev0τ
e
v and τmp0

τmp . The conventions of the strings are shown
explicitly. Right: branch-cuts of single e- and m-particles as π-vortices. The branch-cuts from e-bosons
terminate at the bottom-left vertex, and those from m-bosons at the top-left plaquette. The pair-creation
operators that intersect the zigzag lines gain an additional −1. Additionally, cross-boundary motion for e-
and m-particles is multiplied by the corresponding eigenvalue of x̂1,2 or ẑ1,2.

not share common edges, therefore they commute. Lastly, the contours for τ ev0τ
e
v and τmp0τ

m
p

never intersect the paths for WTC
x,y and TTC

x,y [see Eqs. (1.5) and (1.6)] which are along the
upper and right rows, so they also commute.

We now express e- and m-boson nearest-neighbour pair-creation operators in Eqs. (1.7)
and (1.8) in terms of τ, σ and z1, z2. As in the open lattice case, we write τ ev1τ

e
v2

(τmp1τ
m
p2

)
explicitly on the spin lattice, express the non-local strings of Z (X) in terms of Bp (Av),
Zv1v2 (Xp1p2) and TTC

x,y (WTC
x,y ) then substitute Eqs. (2.3), (2.4) and (2.10)-(2.12). As a result

Eq. (2.7) still holds for along the horizontal direction and away from the boundary. However,
along the vertical direction the convention for non-local parity terms is different:

Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
L(v1,v2)

eiπa
†
pap

)
, (2.13a)

Xp1p2 → (a†p1 + ap1)(a
†
p2
+ ap2)

( ∏

v∈
R(p1,p2)

ϵiπb
†
vbv

)
. (2.13b)

L(v1, v2) now includes plaquettes to the left of the edge that joins v1 and v2, and R(p1, p2)
are vertices to the right of the line that connects the centers of p1 and p2. On a torus
there are also Zv1v2 and Xp1p2 that traverse the lattice boundaries. Here we find that τ ev1τ

e
v2

and τmp1τ
m
p2

(remember the non-local strings of Z and X for τ e and τm do not cross lattice
boundaries, so v1, v2 and p1, p2 are not ‘nearest neighbour’) are expressed not only in terms
of Zv1v2 , Xp1p2 and parity operators, but also WTC

x,y , TTC
x,y ; it is useful here to note that the
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contours of WTC
x,y , TTC

x,y can be deformed to the given row or column by products of Av and
Bp. The result is then inverted for Zv1v2 and Xp1p2 . This gives for horizontal pair-creation:

Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
row above v1,v2

eiπa
†
pap

)
x̂2, (2.14a)

Xp1p2 → (a†p1 + ap1)(a
†
p2
+ ap2)

( ∏

v∈
row above p1,p2

eiπb
†
vbv

)
ẑ1. (2.14b)

And for vertical pair-creation:

Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
L(v1,v2)

eiπa
†
pap

)
x̂1, (2.15a)

Xp1p2 → (a†p1 + ap1)(a
†
p2
+ ap2)

( ∏

v∈
R(p1,p2)

ϵiπb
†
vbv

)
ẑ2. (2.15b)

In deriving the first equation in (2.15), we have used the global parity constraint (2.9)
for σmp . The appearance of global topological operators ẑ1,2 and x̂1,2 reflects the physical
interpretation given in Sec. 1.2: a given super-selection sector with z1,2 = ±1 corresponds to
periodic and anti-periodic boundary conditions for m-bosons, while e-bosons cross-boundary
motion causes a transition between different super-selection sectors. Alternatively, one can
choose a diagonal basis for x̂1,2, then each super-selection sector corresponds to definite
boundary conditions of e-bosons. Since we consider only static e-bosons and dynamical
m-bosons in this thesis, the basis in which ẑi are diagonal is more convenient.

Eqs. (2.13)- (2.15) give qualitatively different branch-cuts of e- and m-bosons on a torus
from on an open lattice: for each π-vortex attached to an e-boson at vertex v, the branch-
cut extends from v towards the left boundary, then goes down and terminates at v0. The
branch-cut for each π-vortex attached to an m-boson at plaquette p goes right towards the
right boundary then goes down and terminates at the bottom-right plaquette. This is shown
in Fig. 6.

Eqs. (2.4), (2.7), (2.10) and (2.13)-(2.15), together with the constraints (2.9) that elimi-
nate states with odd numbers of e- or m-bosons, give the mapping to the (e,m) quasiparticle
Hilbert space.

Finally, it must be emphasized that the branch-cut convention obtained in this section is
a result of the specific choices of strings for products of Z and X matrices in Eqs. (2.5), (2.6),
(2.11) and (2.12). Other choices can result in different ‘gauges’. However, as mentioned in
Sec. 1.3, there is no gauge invariance in our system and one cannot obtain a different branch-
cut convention by a transformation of ap and bv. Indeed, such a transformation must have
the form:

bv → bv

(∏

p

eiπa
†
pap

)
, ap → ap

(∏

v

eiπb
†
vbv

)
,
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since they leave the parity operators invariant but change the parity products in pair-
creation operators. But then some of the av and bp operators anti-commute. However
certain changes in the branch-cut conventions are permissible on a torus. For example by
multiplying Eq. (2.14) with the global parity constraints (2.9), e-boson branch-cuts now
go up instead of down along the left boundary and m-boson branch-cuts go up along the
right boundary and terminate at the upper-right plaquette. Above also holds for the case
of ε-fermions γ, γ′ and bv in Sec. 2.2.

2.2 Mapping between spins and e-boson and ε-fermions
Let us consider the mapping from the spin lattice to e, ε degrees of freedom.

2.2.1. Open Lattice
Again we start with the open lattice and consider the structure of the quasiparticle

Hilbert space. As is discussioned in Sec. 1.4, the spin Hilbert space can be rewritten in
terms of local occupation numbers of e- and ε-fermions. The quasiparticle Hilbert space for
e-bosons can then be established in the same way as in Sec. 2.1 using the hardcore boson
construction, but with parity operator Γev instead of Av:

Γev = AvBNE(v) → σev, σ
e
v → exp(iπb†vbv), τ

e
v → b†v + bv. (2.16)

The relation between τ ev and spin operators is given by Eq. (2.5).
Similarly we can define τ εp , σεp operators in the basis of local ε-fermion occupation num-

bers. However, passing to the fermionic degrees of freedom is more complex than the hard-
core boson case, due to the anti-commutation relation of fermions. It will be shown that
Majorana operators γp, γ′p describing ε-fermions can be defined in a two-dimensional ana-
logue of Jordan-Wigner transformation using τ εp and σεp. All fermion operators on different
sites then anti-commute. Therefore as a first step, we establish the mapping from lattice
operators to τ εp , σεp.

The mapping for σεp is:
Γεp → σεp,

with Γεp given in (1.15). As for τ εp , we write τmp τ eSW(p) defined in Sec. 2.1 that simultaneously
creates an m-boson at plaquette p and an e-boson at the vertex to its South-West:

( ∏

v1,v2∈
Ce[SW(p)]

Zv1v2

)
×
( ∏

p1,p2∈
Cm(p)

Xp1p2

)
→ τ εp . (2.17)

Since Γεp = Bp, all necessary commutation relations are satisfied identically to the case of
m-bosons; see the discussion below Eq. (2.4).

We now seek a two-dimensional Jordan-Wigner transformation for Majorana operators
γp, γ

′
p in the form:

γp = i

(∏

p′ ̸=p
σεp′

)
σεpτ

ε
p , γ

′
p =

(∏

p′ ̸=p
σεp′

)
τ εp , (2.18)
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p1

p2

p

Figure 7: Left: visual illustration of mapping for vertical pair-creation operators in Eq. (2.21). The
plaquettes in the non-local product of σε

p is shaded in gray. Right: Convention for Jordan-Wigner
transformation for γp and γ′

p at plaquette p in (2.18) for open lattices. The plaquettes shaded in gray are
those in the non-local product of σε

p′ in (2.18).

which are related to the complex ε-fermion annihilation operators by:

cp = (γp + iγ′p)/2.

This immediately gives for fermion parity:

Γεp → σεp → −iγpγ′p = 1− 2c†pcp, (2.19)

as expected (we have used the identity γ2p = γ′2p = 1). To find the convention for the string
of σεp products in (2.18), note that such a transformation should give the following mapping
for the ε-fermion pair-creation operators (see Sec. 1.4):

U ε
p1p2

→ iγp1γ
′
p2

(∏

v

eiπb
†
vbv

)
. (2.20)

Since all horizontal U ε
p1p2

and Zv1v2 commute, we shall suppose that U ε
p1p2

→ iγp1γ
′
p2

and the
e-boson branch-cuts extend also horizontally as in Sec. 2.1. It then follows from (2.17) that:

U ε
p1p2

(horizontal) → τ εp1τ
ε
p2

→ iγp1γ
′
p2
.

Substituting Eq. (2.18) gives that the product of σεp for γp, γ′p on the same row of plaquettes
p1, p2 start from the left and ends at the plaquette before p [remember that p1 is to the left
of p2 and γp1 contains an extra σεp1 ; see the comments below Eq. (1.17)].

We now consider vertical U ε
p1p2

with the unknown convention for e-boson branch-cuts.
Expressing U ε

p1p2
in terms of spin operators for σev, τ εp and σεp:

U ε
p1p2

(vertical) → −
( ∏

v∈
L(p1,p2)

σev

)( ∏

p∈
L(p1),R(p2)

σεp

)
τ εp1τ

ε
p2
. (2.21)
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L(p1, p2) includes all vertices to the left of the line joining p1 and p2, L(p1) are all plaquettes
to the left of plaquette p1 on the same row including p1, and R(p2) are all plaquettes on the
same row to the right of p2 including p2. This is shown visually in Fig. 7. Note the additional
minus sign. Comparing the τ εp , σεp terms with (2.18) and (2.20), we obtain the following
convention for σεp′ products in (2.18): for a given p, all plaquettes below the row of p are
multiplied by σεp′ ; on the row of p, the σεp′ string contains all plaquettes to the left of p. This
is shown explicitly in Fig. 7. As a result, γp and γ′p on different plaquettes anti-commute.
We have thus obtained for fermion pair-creation operators on an open lattice:

Horizontal : U ε
p1p2

→ iγp1γ
′
p2

(2.22a)

Vertical : U ε
p1p2

→ iγp1γ
′
p2

( ∏

v∈
L(p1,p2)

eiπb
†
vbv

)
. (2.22b)

As for e-bosons, since Bp = Γεp → −iγpγ′p, the arguments in Sec. 2.1 immediately lead
to:

Horizontal : Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2), (2.23a)

Vertical : Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
R(v1,v2)

−iγpγ′p
)
, (2.23b)

where R(v1, v2) are all plaquettes to the right of the edge joining vertices v1, v2.
In summary, Eqs. (2.16), (2.19), (2.22) and (2.23) solve the problem of mapping from

an open spin lattice to the Hilbert space of quasiparticles e and ε. The gauge for e and
ε quasiparticles are the following: for each π-vortex attached to an e-boson at vertex v,
the branch-cut extends from v towards the right boundary on the same row and terminates
there. Each π-vortex attached to an ε-fermion at plaquette p goes left towards the left
boundary. The coincidence of branch-cut conventions with the (e,m) case is not accidental,
because ε-fermions are composite particles of e- and m-bosons and their mutual statistics
with another e-boson are determined by the m-boson.

2.2.2. Periodic Lattice
Let us now turn to the torus.
Similarly to the mapping to e-, m-bosons, the global parity constraints (1.16) for e-

bosons and ε-fermions necessitate four global topological operators Tx,y and Wx,y. These
operators characterize the global topological sector of the quasiparticle Hilbert space and
must be independent from local quasiparticle occupation. Therefore, they must commute
with local parity operators Γev and Γεp. We can take Tx,y to be still given by (1.6). As for the
Wilson loop operators Wx,y, it must also commute with U ε

p1p2
since the global topological

sector cannot be changed by fermion motion (this does not hold for the motion of e-bosons
due to their non-local mutual statistics with ε-fermions). We have:

Wx,y =
∏

Γεp2U
ε
p1p2

= −
∏

i∈γx,y
XZ, [Wx,Wy] = 0, {Wx,y, Ty,x} = 0; (2.24)
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Figure 8: Left: global Wilson operators (2.24) for ε-fermions. Right: convention for Jordan-Wigner
transformation for γp and γ′

p at plaquette p in (2.18) for periodic lattices. The plaquettes shaded in gray
are those in the non-local product of σε

p′ in (2.18).

see Fig. 8. Note the additional −1. Eq. (2.24) can be seen as transporting an ε-fermion
Majorana mode across the torus, as the parity operator transports a Majorana mode ‘within
the plaquette’: γ′p → γp. The contours γx,y are chosen here for later convenience, as they
can be distorted by multiplication by Γev; c.f. the (e,m) case at the end of Sec. 1.1.

We shall now discuss the mapping to the quasiparticle Hilbert space. It is clear from the
previous discussions that the quasiparticle Hilbert space will contain the respective even-
parity e-boson and ε-fermion sectors, as well as two Z2 indices z1,2 = ±1 corresponding to
the eigenvalues of Wx,y:

Wx,y → ẑ1,2, ẑi|...; zi⟩ = zi|...; zi⟩, (2.25a)
Tx,y → x̂2,1, x̂i|...; zi⟩ = |...;−zi⟩, (2.25b)

and {xi, zi} = 0; c.f. with the (e,m) case (2.10).
Parity operators Γev and Γεp are mapped to σev and σεp respectively. As for τ operators,

due to the parity even constraints (1.16), only τ εp0τ
ε
p and τ ev0τ

e
v operators can be defined. The

reference plaquette p0 and vertex v0 are the same as in Fig. 6. The τ ev0τ
e
v operators retain

the same form as in Sec. 2.1. For τ εp0τ
ε
p , they create simultaneously a pair of m- and e-bosons

at plaquettes p, p0 and vertices v0, v respectively as described in Sec. 2.1, where v is to the
South-West of p due to the binding convention of ε-fermions. From here, the mapping to bv
and γp, γ′p can be found in the same way as in the open lattice. Hence we shall simply state
the results.

The Jordan-Wigner transformation that defines γp, γ′p in Eq. (2.18) now has the following
convention: for the given plaquette p, all rows above are multiplied by σεp′ . On the given
row, the product of all σεp′ includes all plaquettes to the left of p. See Fig. 8.
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As a result, the mapping (2.19) for parity operators still holds. The global parity con-
straint (1.16) is then imposed so that only parity even states are allowed. We then have, for
bulk ε-fermion pair-creation operators:

Horizontal : U ε
p1p2

→ iγp1γ
′
p2

(2.26a)

Vertical : U ε
p1p2

→ iγp1γ
′
p2

( ∏

v∈
R(p1,p2)

eiπb
†
vbv

)
. (2.26b)

R(p1, p2) denotes all vertices to the right of the line joining p1, p2. For motion across the
boundary, note the additional non-local operators Wx,y, and that in the Jordan-Wigner
transformation (2.18), p1, p2 are on two sides of the lattice in iγp1γ

′
p2

. Here as in the (e,m)
case, one can first write out the products of X and Z operators for Wx,y in (2.24) but with
the paths along the row or column in question, then deform the paths to γx,y by multiplying
Γev. We obtain:

Horizontal : U ε
p1p2

→ iγp1γ
′
p2

( ∏

v∈
row above
p1,p2

eiπb
†
vbv

)
ẑ1 (2.27a)

Vertical : U ε
p1p2

→ iγp1γ
′
p2

( ∏

v∈
R(p1,p2)

eiπb
†
vbv

)
ẑ2. (2.27b)

The presence of ẑ1,2 suggests that Wx,y = ±1 corresponds to periodic and anti-periodic
boundary conditions for ε-fermions along the x- and y-directions. The quasiparticle Hilbert
space then splits into four super-selection sectors given by {Wx,Wy}, with four combinations
of the ε-fermion boundary conditions.

The mapping for e-boson spin operators has the same branch-cut convention as in
the (e,m) case on a periodic lattice in Sec. 2.1, with fermion parity −iγpγ′p in place of
exp(iπa†pap). Inside the bulk we have:

Horizontal : Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2), (2.28a)

Vertical : Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
L(v1,v2)

−iγpγ′p
)
. (2.28b)

Across lattice boundaries:

Horizontal : Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
row above v1,v2

−iγpγ′p
)
x̂2, (2.29a)

Vertical : Zv1v2 → (b†v1 + bv1)(b
†
v2
+ bv2)

( ∏

p∈
L(v1,v2)

−iγpγ′p
)
x̂1. (2.29b)
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As in the case of e,m quasiparticles, the motion of e-bosons across lattice boundaries cause
transitions between the four super-selection sectors of the Hilbert space.

Eqs. (2.16), (2.19) and (2.25)-(2.29) solve the problem of mapping from a periodic spin
lattice to the Hilbert space of quasiparticles e and ε.

2.2.3. Equivalence to the Honeycomb lattice
The construction in this subsection transfers the ‘elementary’ degrees of freedom from

1/2-spins on edges of square unit cells, to ε-fermions on plaquettes and e-bosons on vertices
which are mutual ‘π-vortices’ (here our discussion is confined to the infinite lattice). Equiv-
alently, one can do away with the complex fermions cp, and regard γp and γ′p on the same
plaquette on equal footing as Majorana modes on different sites. As is shown in Fig. 9, by
suitably connecting the Majorana modes, the lattice can be seen as a distorted honeycomb
lattice with a Majorana fermion on each site. Here we call attention to the fact that C4

symmetry of the square lattice is broken due to the binding convention for ε-fermions. The
choice for constructing the new honeycomb lattice is not unique; see Sec. 5.3 for another
example.

The analogy to the honeycomb lattice carries even further. In fact on the new distorted
honeycomb, the ε-fermions and e-bosons become naturally the Majorana modes and the
bosonic π-vortices (the ‘visons’) of the Kitaev honeycomb model (1.3).

Let us show this equivalence. As is known, the honeycomb model (1.3) can be mapped
to a model of Majorana bilinears [17]:

H =
i

4

∑

jk

Jαjkûjkcjck, (2.30)

where, slightly abusing the notation, we use ci to denote Majorana modes on each site. Jαjk
are the couplings Jx, Jy, Jz depending on the links ⟨jk⟩ inside the honeycomb; see Fig. 1. The
additional ûjk are products of ficticious Majorana modes in the vortex sector and satisfy:

∏

j,k∈honeycomb

ûjk = wp, (2.31)

where the product is taken over the edges of the the p-th honeycomb and wp = ±1 corre-
sponds to the absence or presence of a π-vortex at the center of the honeycomb.

By choosing the lattice conventions in Fig. 9, the nearest-neighbour Majorana couplings
in (2.30) on the distorted honeycomb correspond to two-spin operators on the square lattice
which is also reconstructed as a distorted honeycomb. They are [e-parity products are
defined below Eq. (2.22)]:

U ε
p1p2

= X2Z1 → iγp1γ
′
p2
, U ε

p3p2
= X3Z2 → iγp3γ

′
p2

( ∏

v∈
L(p3,p2)

eiπb
†
vbv

)
, (2.32a)

U ε
p3p2

Γεp2U
ε
p2p4

= Y3Y4 → −iγp3γ′p4
( ∏

v∈
L(p3,p2)

eiπb
†
vbv

)
. (2.32b)
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Figure 9: Left: reorganization of Majorana modes on the square lattice into the honeycomb lattice. The
Majorana modes in Eq. (2.32) are shown explicitly. Right: spin lattice as distorted honeycomb lattice.
White and black disks represent A,B sublattices. The spins and vertices in Eqs. (2.32) and (2.35) are
shown explicitly.

Thus the following Hamiltonian on a square lattice reproduces the Majorana coupling in
(2.30):

H = −Jx
∑

x−links

ZiXj + Jy
∑

y−links

YiYj − Jz
∑

z−links

XiZj, (2.33)

where the x-, y-, z-links are the same as in Fig. 1 but defined on the distorted honeycomb in
Fig. 9. Note the additional −1 in front of Jy. By making the following unitary transformation
on spin operators at the A sublattice (indicated by the white disks in Fig. 9):

Xj → Zj, Yj → −Yj, Zj → Xj, (2.34)

the model (2.33) reduces to the original honeycomb model (1.3).
Finally, we verify that the e-bosons are indeed equivalent to the π-vortices. To check

this, let us transport a Majorana mode along a honeycomb around vertex v using Eq. (2.32)
without making the unitary transformation (2.34), as shown in Fig. 9:

(Y1Y6)(X5Z6)(X4Z5)(Y4Y3)(X3Z2)(X2Z1) = Γev. (2.35)

This agrees with Eq. (2.31). Thus the e-boson at v is indeed the vortex at the center of the
honeycomb. This proves the consistency of our construction.

Therefore, even though our mapping in this subsection is found for a square lattice, it
can also be used to investigate Z2 topological order on the honeycomb lattice, as well as
phenomena related to the honeycomb model. Here the mutual statistics between ‘vortices’
(e-bosons) and Majorana modes are taken into account exactly by the non-local e-parity
terms in the couplings (2.32), without having to introduce an additional fictitious Majorana
modes on each site.

36



3 Example: Bosonic Z2 Lattice Theory as two-dimensional
Ising Model and Confinement of e-bosons

The mappings between spin and quasiparticles operators in Sec. 2 on a periodic lattice
closely relate the torus geometry and properties of the quasiparticles. This in turn gives rise
to non-trivial topological phases in a series of bosonic and fermionic models, which will be
constructed and analyzed in Secs. 4-6. Therefore, before proceeding, it is useful to consider
a simple model which nonetheless illustrates all the essential points of this interrelation. For
simplicity, the elementary excitations are taken to be e and m and we use the mapping to
the (e,m) Hilbert space.

The Hamiltonian that we consider in this section has Z2 symmetry due to global parity
conservation (2.9): ∏

v∈lattice

σev = 1,
∏

p∈lattice

σmp = 1,

and is chosen to be:
H = ∆e

∑

all v

(
1− Av

2

)
− t
∑

all l

Xl, (3.1)

where the summation is over all vertices in the first term and all edges of the squares in
the second. Parameters t,∆e > 0 are constant. The e-bosons are static and has a gap 2∆e

due to the first term in (3.1), while the second term is simply pair-creation operators of
m-bosons in Eq. (1.8).

To solve (3.1), it is sufficient to map the Hamiltonian to τ, σ operators in the basis of
local boson occupation number. The spin lattice is mapped to four Hilbert space sectors
given by z1, z2 = ±1; see Sec. 2.1. In each of these sectors, we obtain an effective m-boson
Hamiltonian corresponding to a given configuration of static e-bosons. For ground state
properties (no e-bosons), we first consider the sector z1 = z2 = 1 with periodic B.C.s for
m-bosons. Substituting Eqs. (2.7), (2.13)-(2.15) into (3.1) gives:

H = −t
∑

⟨p,p′⟩
τmp τ

m
p′ . (3.2)

Recall that bv + b†v = τ ev . We have mapped the problem to a 2D Ising model with ferro-
magnetic coupling. The ground state spontaneously breaks Z2 symmetry and is doubly-
degenerate with average spontaneous moments ⟨τmp ⟩ = ±1. However, each of these ground
states does not conserve total m-parity:

∏
p σ

m
p causes a transition between them. The

global parity constraint (2.9) then makes the physical ground state unique as a symmetric
combination of the two states. In mapping to other sectors with anti-periodic boundary
conditions for m-bosons, it is clear that the corresponding ground state energy increases by
a term proportional to the lattice size, due to the anti-ferromagnetic coupling in the Hamil-
tonian along the boundaries. Therefore, the physical ground state for (3.1) is unique. This
can be also seen directly by noting that the ground state is simply given by Av = Xl = 1 on
the spin lattice.
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We now study the properties of e-bosons at low energies. Let us create two e-bosons
connected by a horizontal path γ whose length L is small compared with lattice dimensions.
The Hamiltonian in the sector z1 = z2 = 1 is:

H = −t
∑

⟨p,p′⟩̸∈γ
τmp τ

m
p′ + t

∑

⟨p,p′⟩∈γ
τmp τ

m
p′ + 2∆e. (3.3)

The second term sums over all pairs of plaquettes intersected by γ, and the additional minus
sign is a result of the branch-cut of e-bosons given in Eq. (2.13). The pair of e-bosons then
have a large energy cost ∆E = 2tL linear in their distance: the e-bosons are confined. This
result is of course ‘gauge-invariant’: it does not depend on the convention of the branch-cut,
i.e. the e-bosons can be on different rows. For given two e-bosons on any two points of the
lattice and an arbitrary branch-cut connecting them, we can connect them in the shortest
path with length L on the lattice. The lowest energy state clearly corresponds to having a
domain wall inside the region bounded by the branch-cut and the path, with energy cost
∆E = 2tL as before.
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4 Z2 vortices in an ideal gas of anyons with U(1) global
symmetry

In Sec. 3, it is shown that in a specific model with Z2 symmetry, e-bosons are strongly
confined with a interaction potential linear in their distance. In this section, we shall study
the properties of static e-bosons placed in ideal gases of m-bosons and ε-fermions on an open
lattice at zero and finite temperatures. In each case, the particle number, not just parity, is
conserved and the system has global U(1) symmetry. Due to the hardcore-boson constraint,
the m-bosons form a finite density Bose-Einstein condensate even at zero temperature.
The pair-interaction energy of e-bosons depends logarithmically on their mutual distance at
asymptotically large separations. The e-bosons are thus marginally deconfined. In an ideal
fermi-gas of ε-fermions, the e-bosons are deconfined : they are completely screened by the
fermions and their interaction energies tend to a finite limit at large separations.

4.1 Static e-vortices in an ideal m-boson gas
Global U(1) symmetry for the m-bosons implies the conservation of m particle number.

What are the operators that have such a symmetry? The local parity operator Bp →
1−2a†pap conserves particle number by definition. The pair-creation operator Xp1p2 conserves
global m-boson parity but not its number. The operator that conserves m-boson number
and transports an m-boson from p1 to p2 is:

Xp1p2

(
1− Bp1

2

)(
1 + Bp2

2

)
. (4.1)

Here (1±Bp)/2 projects the corresponding plaquette to m-boson occupation number nmp =
1, 0 respectively. Therefore, Eq. (4.1) is non-zero only if p1 is occupied and p2 is empty in
the initial state. The pair-creation operator Xp1p2 then transports the m-boson from p1 to
p2.

Then the local Hamiltonian for free m-bosons which conserves particle number is:

H = −t
∑

p1,p2

Xp1p2

(
1− Bp1

2

)(
1 + Bp2

2

)
+∆e

∑

all v

(
1− Av

2

)
+∆m

∑

all p

(
1− Bp

2

)
. (4.2)

Since we are interested in the confinement properties of e-bosons, we consider an open lattice
for simplicity. According to Sec. 2.1, after ‘bosonization’ we obtain a non-local Hamiltonian
in terms of quasiparticle fields. However, in this section we are only concerned with the
energy levels of the system in the presence of static e-bosons. It is therefore permissible
to choose a different ‘gauge’, by regarding each e-boson as a point magnetic vortex which
in turn generates a vector potential A coupled minimally to m-bosons. The local vector
potential then replaces the non-local e-parity terms in the hopping amplitude. With this in
mind, we substitute Eqs. (2.13)-(2.15) into (4.2) and obtain the following Hamiltonian for
m-bosons:

H = −t
∑

⟨p,p′⟩

(
eiApp′a†pap′ + e−iApp′a†p′ap

)
+∆m

∑

all p

a†pap +∆e

∑

all v

b†vbv. (4.3)
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App′ is the vector potential along the edge given by p, p′ and satisfies:

∏

⟨p,p′⟩∈∂M
eiApp′ = exp

(
iπ
∑

v∈M
nev

)
, (4.4)

where M is a given bounded region and the product is taken over plaquettes along its
boundary ∂M .

We shall calculate the interaction energies of static e-bosons with small densities for (4.3).
At sufficiently low-temperatures, the m-bosons at zero momentum form a Bose-Einstein
condensate. The m-boson field-operators thus acquire a non-zero vacuum expectation value
on each plaquette:

⟨ap⟩ =
1

2

(
⟨τmp ⟩+ ⟨σmp τmp ⟩

)
=

√
ρeiϕ,

Due to the macroscopic occupation number of the condensate bosons, the ‘condensate wave-
function’ Ψm ∼ ⟨ap⟩ is quasi-classical and the condensate density ρ and phase ϕ are well-
defined functions of coordinates. At low energies, the gapless Goldstone modes correspond
to the breaking of U(1) symmetry by the condensate phase ϕ. We can then assume ρ to be
constant (ρ of course depends on the temperature) and write down the Ginzburg-Landau
free energy for the model (4.3): 6

F [ϕ] =

∫
ρ

2
|(∇− iA)Ψm|2 d2x =

∫
ρ

2
(∇ϕ−A)2 d2x.

We choose the Coulomb gauge ∇.A = 0. This gives for the free energy, after integration by
parts:

F [ϕ] =

∫
ρ

2

[
(∇ϕ)2 +A2

]
d2x. (4.5)

The second term in Eq. (4.5) includes the interaction energies of e-bosons and determines
their confinement properties.

We now calculate the free energy (4.5) for static e-bosons with small densities. The
continuum limit of Eq. (4.4) for the vector potential A is:

∮
A.dr =

∑

i

Φi → ∇×A =
∑

i

Φiδ(r − ri)nz, (4.6)

where the sum is over all e-bosons with vortices Φi = π enclosed by the loop and ri is
their respective position. nz is the directional vector along the z-axis. Eq. (4.6) formally
corresponds to the limit of small Ginzburg-Landau parameter κ = δ/ξ ≪ 1 in a conventional
superconductor under external magnetic field, where δ is the penetration length of the
magnetic field and ξ is the correlation length of the condensate. Note that in an actual

6In fact, the condensate density ρ vanishes near a single vortex with size ξ and only tends to a constant at
distance r ≫ ξ. In taking ρ constant, we have assumed that the vortex size is negligible; see below Eq. (4.8).
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superconductor, the vortices are metastable in the limit κ ≪ 1 due to the surface tension
between the normal and superconducting phases [73].

In what follows it is more convenient to rewrite A as:

Ax = −∂ψ
∂y
, Ay =

∂ψ

∂x
.

The gauge condition ∇.A = 0 is then satisfied identically and Eq. (4.6) becomes:

∆ψ =
∑

i

Φiδ(r − ri).

The real solution for ψ is, up to a constant:

ψ =
∑

i

Φi

2π
log

|r − ri|
ξ

. (4.7)

Substituting Eq. (4.7) into the second term of Eq. (4.5) and integrating by parts gives:

− ρ

2

∫
ψ∆ψ d2x =

∑

all i

(
Ec(Φi)−

ρ

2π

∑

i ̸=j
ΦiΦj log

|ri − rj|
ξ

)
, (4.8)

where Ec corresponds to the self-interaction energy of a vortex and formally diverges log-
arithmically. We impose an upper cut-off at the system size R and a lower cut-off at the
size of a single vortex ξ. Then Ec ∼ log(R/ξ). Eq. (4.8) is derived by assuming that the
vortex size ξ is negligible. Including effects due to finite ξ leads to subsequent terms in
powers of the ratio ξ/d, where d is the average distance between e-bosons. The requirement
ξ ≪ d ∼ n−1/2 determines the condition on the average density n of e-bosons.

Eq. (4.8) shows that the mutual potential for e-bosons is logarithmic at large distances:
they are marginally deconfined in a Bose-Einstein condensate of m-bosons. This is in sharp
contrast to both their strong linear confinement in the confined phase of Z2 lattice gauge
theory considered in Sec. 3, and full deconfinement in the Toric Code. Moreover, in this
case the Coulomb phase remains separated by a BKT transition [74–76] from the Toric Code
phase even at finite temperature. This contrast with the confined phase of Z2 lattice gauge
theory, which is smoothly connected to the Toric Code at finite temperature [3]. In this
sense, one could say that the m-boson superfluid is more robust at finite temperature.

Finally, we discuss the situation on a torus and consider its geometric effects on the
ground state of (4.2). After mapping to m-bosons (there are no e-bosons) we obtain the
same Hamiltonian (4.5), but the vector potential A must incorporate the B.C.s of m-bosons.
For example, for (z1, z2) = (1,−1):

∫ Lx

0

Axdx = 0,

∫ Ly

0

Aydy = π.
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We choose a constant solution Ax = 0, Ay = π/Ly which satisfies the Coulomb gauge. The
second term in (4.5) then gives an additional energy costs π2ρLx/(2Ly). In summary, we
have for different (z1, z2):

∆F
∣∣
(z1,z2)=(1,1)

= 0, (4.9)

∆F
∣∣
(z1,z2)=(−1,1)

=
π2ρ

2

Ly
Lx

, (4.10)

∆F
∣∣
(z1,z2)=(1,−1)

=
π2ρ

2

Lx
Ly

, (4.11)

∆F
∣∣
(z1,z2)=(−1,−1)

=
π2ρ

2

L2
x + L2

y

LxLy
. (4.12)

We conclude that on a torus, the ground state of (4.2) is unique, characterized by:

(WTC
x ,WTC

y ) → (z1, z2) = (1, 1),

corresponding to the ground state of the m-boson Hilbert space with periodic B.C.s. The
energy differences to ground states of other sectors depend on the aspect ratio of the lattice.

4.2 Static e-vortices in an ideal ε-fermion gas
We now turn to the confinement properties of e-bosons in an ideal gas of ε-fermions with

global U(1) symmetry. Similarly to Eq. (4.1), the conservation of ε-fermion number gives
the following fermion transport operator from p1 to p2:

U ε
p1p2

(
1− Γεp1

2

)(
1 + Γεp2

2

)
. (4.13)

and we obtain the free fermi-gas Hamiltonian on an open lattice:

H = −t
∑

p1,p2

U ε
p1p2

(
1− Γεp1

2

)(
1 + Γεp2

2

)
+∆e

∑

all v

(
1− Γev

2

)
+∆ε

∑

all p

(
1− Γεp

2

)
. (4.14)

The arguments leading to the m quasiparticle Hamiltonian (4.3) now give for (4.14):

H = −t
∑

⟨p,p′⟩

(
eiApp′c†pcp′ + e−iApp′c†p′cp

)
+∆ε

∑

all p

c†pcp +∆e

∑

all v

b†vb, (4.15)

where App′ satisfies Eq. (4.4). For a given fermionic system, the presence of App′ changes
the energy levels which incorporate the energy from e-bosons. The confinement properties
of e-bosons are then determined by the difference between total energies of N → ∞ number
of ε-fermions with and without a single vortex:

∆E = lim
N→∞

[E(N,Φ = π)− E(N,Φ = 0)] . (4.16)
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If the e-boson is confined, ∆E should tend to infinity with lattice size. For a deconfined
e-boson, ∆E tends to a constant as the e-boson is completely screened by fermions.

It will be shown below that the vortex is completely screened by the fermions with a finite
correlation length for arbitrary ε-fermion filling fraction. Given that on a square lattice, the
ε-fermion dispersion is approximately parabolic in the limit of small filling fractions, we
expect that our results in this section at small filling will be reproduced for a free fermion
Hamiltonian with parabolic dispersion, as long as the system dimension is much larger than
the correlation length. This will be verified in Appendix B, which confirms the correctness
of the approach in this section.

Returning to the square lattice, we numerically compute Eq. (4.16) for the model (4.15)
on an open lattice. The periodic lattice case is not considered here. In order to study the
properties of e-bosons in the thermodynamic limit, we introduce a chemical potential µ and
a finite temperature T . This leads to the Fermi-Dirac occupation nF (E, µ, T ) for single
particle states of energy E, and the following expressions for the total energy and particle
number:

nF (E, µ, T ) =
1

exp [(E − µ)/T ] + 1
, (4.17a)

N(Φ, µ, T ) =
∞∑

i=1

nF (Ei, µ, T ) , (4.17b)

E(Φ, µ, T ) =
∞∑

i=1

nF (Ei, µ, T )Ei(Φ) , (4.17c)

where i is a label for all the single particle states and the Boltzmann constant kB is taken
unity. The difference in total energies is then due to the shift of single-particle energy levels
Ei in the field produced by an e-boson as a point vortex.

We take lattices with an odd number of plaquettes so that the vortex can be placed
in a unique central plaquette. To characterize the differences between ground states with
and without the vortex in the thermodynamic limit, we must first take the limit T → 0
then N → ∞ in Eq. (4.16). Fig. 10 illustrates the energy cost to insert the vortex in the
thermodynamic limit at T → 0, which we find to remain finite regardless of the lattice filling
of the ε-fermions. This energy cost can be equivalently determined by computing the energy
difference between the states with and without the vortex with fixed ε particle number,
as shown in Fig. 10a), or by computing the difference in the thermodynamic potential,
∆F = ∆E − µ∆N , at fixed chemical potential, as shown in Fig. 10b). We have verified
numerically that both ways of computing provide the same energy value for the insertion
of the vortex in the thermodynamic limit, as shown in Fig. 10c). Interestingly, this value
approaches zero as T → 0. Thus the e-boson remains fully deconfined in an ideal gas of ε-
fermions with global U(1) symmetry. Finally, to find correspondence with the free parabolic
dispersions in Appendix B, Fig. 10d) shows the energy difference at fixed N and low filling
fraction in units of fermi energy ϵF :

lim
N→∞

{E(N,Φ = π)− E(N,Φ = 0)}T=0 =
ϵF
8

; ϵF = µ+ 4t, (4.18)
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Figure 10: a) Energy difference between the π-vortex and empty configurations at fixed particle density nε.
b) Difference in the thermodynamic potential ∆F between the π-vortex and empty configurations at fixed
chemical potential µ. c) Difference ∆(F − E) between the energy values of a) and b). d) At fixed particle
number N , the energy difference in units of fermi energy. Here ϵF = µ− E0, with E0 = −4t is the energy
of the bottom of the band. Results are obtained with the lattice model (4.15) and 120× 120 plaquettes.

where −4t is the energy of the bottom of the band.
We now turn to the change in ε-fermion number due to the vortex. The deconfinement

of e-bosons implies that they are completely screened by ε-fermions. The density of the
screening fermion cloud depends on the filling fraction. We check this explicitly. Fig. 11a)
shows the total particle number difference between the state with and without the vortex
as a function of ε filling-fractions. Generally, a single e-vortex can increase or decrease
fermion density near itself, as can be seen in Fig. 11a). The precise value of this fraction
depends on the filling fraction. Note that ∆N = 0 at the three special fillings, marked by
dots in Fig. 11a). At small fillings, it approaches the value ∆N = −1/8. This is consistent
with (4.18), as can be understood by considering adiabatically inserting the vortex into the
system. The change in total energy is:

∆E = ∆E|N +
∂E

∂N
∆N.

The first term is the change due to a shift of the single-particle levels at constant N , and the
second term corresponds to the change due to the change in particle number N at constant
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Figure 11: a) Particle number difference between the π and zero flux configurations at fixed chemical
potential µ. The dots (crosses) indicate the fillings that are stable (unstable) to dilute insertions of
e-bosons. b) From left to right, local density difference between having a π-vortex and no vortices near the
fillings nε = 0, 1/4 and 1/2, respectively. Results are obtained with the lattice model (4.15) on 120× 120
plaquettes and temperature T/t = 0.05.

µ, as single-particle levels are shifted. By definition ∆E = 0 since no work is done on the
system and ∆E|N is just Eq. (4.18). This gives:

∆E

∣∣∣∣
N

= −ϵF∆N.

It follows that by comparing with (4.18) ∆N = −1/8 at low filling, as is indeed the case.
From Fig. 11a), one can see that the difference in the thermodynamic density of states

with and without the vortex:

∆νF =
∂N(µ, T )

∂µ

∣∣∣∣∣
Φ=π

− ∂N(µ, T )

∂µ

∣∣∣∣∣
Φ=0

(4.19)

is sharply peaked at fillings 0, 1/2, 1. This reflects the states in the energy resolved spectrum
from which the screening cloud of ε particles is primarily made out of. Thus (4.18) can also be
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understood by noting that when inserting the vortex, a fraction of particles is removed deep
below the Fermi level due to the change of density of states. The fraction is redistributed
to states near half filling when the vortex is inserted at fixed particle number.

Lastly, we also investigate the spatial structure of the fermion cloud excited by the
vortex. As shown in Fig. 11b), the additional ε-fermions are localized near the vortex at
various fillings, although its precise shape changes with the behavior near 1/2 filling being
sharply anisotropic resembling the underlying C4 symmetry of the lattice. The apparently
long-range nature of the fermion cloud at 1/2 filling might be related to the van-Hove
singularities present in the density of states in the tight-binding approximation on the square
lattice.
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5 Z2 Topological Order of Superconducting ε-fermions
Enriched by Lattice Translation Symmetry

So far we have considered static e-bosons on a background of ideal gas of m or ε quasipar-
ticles. The results depend on the global symmetry of the system and illustrate the effects of
global invariants (Wilson loop operators) due to lattice periodicity. However the mappings
in Sec. 2 can also be used to construct m- or ε-Hamiltonians that are in themselves ‘topologi-
cal’ regardless of periodicity of the spin lattice. In this section and Sec. 6 we only consider Z2

spin Hamiltonians that map to ‘topological superconductors’: the ε-fermions form a conden-
sate of Cooper pairs and the superconducting ground state admits classification by certain
global invariants; see Appendix C. The e-bosons are stationary. The models constitute
what is called Z2 topological order ‘enriched by lattice translation symmetry’ [45, 47] due
to the presence of the lattice.

We will discuss the general interrelation between Z2 topological order and topological
superconductivity. This makes possible explaining ground state properties of the Z2 spin
models that we consider, which contain no e-bosons. This constitutes the primary focus of
this section and we defer to Sec. 6 the study of emergent properties of e-bosons on top of
the superconducting vacuum. Lastly, we shall show that the Kitaev Honeycomb model [17]
is equivalent to the model considered in this section.

5.1 Relation between Z2 Topological Order and Topological Super-
conductivity

Let us consider spin Hamiltonians that can be mapped to Majorana bilinears and free,
static e-bosons. For classification purposes we assume that there are no e-bosons. Generally,
such a quasiparticle Hamiltonian has inversion symmetry, and can be written in quasimo-
mentum and particle-hole space as:

H =
1

2

∑

k

Ψ†(k)

(
ε(k) ∆(k)
∆∗(k) −ε(k)

)
Ψ(k); Ψ(k) =

(
ck
c†−k

)
. (5.1)

where ε(k) is the fermion dispersion and ∆(k) = ⟨ckc−k⟩ is the gap function.
The classification of topological superconductors is reviewed in detail in Appendix C.

Here we only summarize the results. On an infinite lattice, each Hamiltonian of the form
(5.1) can be classified by the integer Chern number C and four global Z2 invariants {ζ1, ..., ζ4}
corresponding to the ground state fermion number at the four high-symmetry quasimomenta
k0i in the Brillouin zone:

k0i = {(0, 0), (0, π), (π, 0), (π, π)}, ζi = 1−Θ[ε(k0i)], (5.2)

where Θ(x) is the step function. The ground state contains a fermion at quasimomenta k0i

if ζi = 1 and ζi = 0 otherwise. The four Z2 invariants are related to the Chern number by
the following identity [51]:

(−1)C =
4∏

i

(−1)ζi . (5.3)
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Therefore each superconducting phase can be characterized by the integer Chern number C
and three of the four Z2 invariants in a Z× (Z2)

3 scheme.
So far the classification scheme refers to superconducting Hamiltonians on an infinite

lattice. On a finite torus the classification scheme remains valid and, as we shall see, is
closely related to properties of the Z2 topological order of the original spin Hamiltonian.

In going over to a finite, periodic lattice, quasimomentum becomes discrete depending
on the boundary conditions and lattice size:

kx,y =
2πn

Lx,y
(periodic B.C.s), kx,y =

(2n+ 1)π

Lx,y
(anti-periodic B.C.s); n ∈ Z. (5.4)

The relation of the classification scheme to Z2 topological order on a finite torus is then
the following. From the torus a given spin Hamiltonian is mapped to four quasiparticle
Hamiltonians corresponding to the four super-selection sectors {z1, z2} with the correspond-
ing ε-fermion boundary conditions; remember that z1,2 = ±1 corresponds to periodic or
anti-periodic boundary conditions for ε-fermions along x-, y-directions. The ground states
from all sectors are degenerate (however the degeneracy might be removed by dynamics
of e-bosons). In each sector, the ground state parity is determined by fermion occupation
numbers on the four k0i points, namely by the four Z invariants {ζi} which are the same
across all sectors. For a given ζi = 1, the ground state only contains the fermion at k0i if k0i

is allowed by quasimomentum quantization (5.4). Thus in a given super-selection sector the
fermion parity for an eigenstate in phases with non-zero {ζi} can depend on the lattice size.
However, due to the global parity constraint (1.16), only even fermion-parity states across
super-selection sectors remain as the actual, physical states of the original spin Hamilto-
nian. It is then clear that the fermion parity of each state changes with the lattice size if
the fermion Hamiltonian is in a phase with non-zero {ζi}.

As an immediate result of the discussions above, the ground state degeneracy of the
spin Hamiltonian can depend on lattice size for a phase with non-zero {ζi}. To make this
statement more precise, one considers a given set of {ζi} and the four sectors given by {z1, z2}.
In each sector and for each ζi = 1, one then determines from (5.4) if the corresponding k0i

is allowed under different lattice sizes. This will determine the ground state parity in each
sector and, accordingly, the number of physical parity-even ground states. It turns out that
for given {ζi}, the ground state degeneracy depends only on if Lx,y is even or odd. The result
is then summarized in table 1 [49]; see Sec. 5.2.3 below for a detailed example. We mention
here in passing a series of works [17, 48, 49, 52, 68–71], in which lattice-size-dependent
ground state degeneracy in Z2 topological order with translation symmetry has also been
discovered.

Finally, the Z × (Z2)
3 classification scheme is based on single-particle superconducting

models with lattice translation symmetry. The question naturally arises of its stability
against interactions and disorder. In fact, it is known that certain symmetry protected
topological superconducting phases, such as 1D superconductors with T 2 = +1 time-reversal
(1D BDI class), are not stable against interactions. There interaction effects break the single-
particle Z classification down to Z8 [77–80]. Other examples include Refs. [55–58, 81–83].
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(e-e) (o-e) (e-o) (o-o) (e-e) (o-e) (e-o) (o-o)
(0000) 4 4 4 4 (0110) 4 2 2 2
(1000) 3 3 3 3 (0101) 4 2 4 2
(0100) 3 3 3 3 (0011) 4 4 2 2
(0010) 3 3 3 3 (1110) 3 3 3 1
(0001) 3 3 3 3 (1101) 3 3 3 1
(1100) 4 4 2 2 (1011) 3 3 3 1
(1010) 4 2 4 2 (0111) 3 3 3 1
(1001) 4 2 2 2 (1111) 4 4 4 -

Table 1: Ground state degeneracy for all combinations of {ζi} and system size. (e-o) corresponds to Lx

even and Ly odd for example. In the entry (1111), − means the degeneracy is macroscopic, i.e.
proportional to system size; see the discussions in 5.2.2 below. The table is taken from Ref. [49].

However, we provide some simple arguments that the bulk topological properties should be
stable against disorder and interaction effects.

First, the Chern number C is expected to be stable against interactions. Second, we
can provide an alternative definition of the Z2 parity indices {ζi} in terms of many-body
properties without reference to the single particle BdG spectrum. This can be done by
noting that when the system is placed on a torus with Lx and Ly both odd, {ζi} can be
defined as the parity of the many-body fermion ground state, Nf mod 2, under periodic and
anti-periodic fermion boundary conditions as follows:

{ζ1, ζ2, ζ3, ζ4} = {Nf (1, 1), Nf (1,−1), Nf (−1, 1), Nf (−1,−1)} mod 2, Lx,y odd. (5.5)

Here Nf (z1, z2) is the ground state fermion number in the super-selection sector {z1, z2}.
Since fermion parity of the many-body ground state will not change by adding interac-
tions, unless a bulk-gap closing phase transition is induced, the Z2 parity indices will remain
quantized to be ζi = 0, 1 and the Z× (Z2)

3 classification of translationally invariant super-
conductors is expected to remain stable upon adding fermion interactions. One can argue
for the stability of Z× (Z2)

3 topological phases against disorder along similar lines, because
disorder is not expected to change the fermion parity of a many-body gapped state unless
a bulk phase transition occurs. Previously the robustness of ‘weak’ topological systems 7

against disorder has been emphasized in the case of time-reversal-invariant weak topological
insulators [84, 85] and topological superconductors with other symmetries [86].

7‘Weak’ topological systems, i.e. the KW phases in Sec. 5.2.3 and Appendix D which are stacks of
one-dimensional Kitaev wires, are stackings of lower-dimensional topological systems. Sometimes in the
literature, an alternative definition is used: the eigenstates of ‘weak topological systems’ defined on the
Brillouin zone cannot be classified by homotopy groups, whereas those of ‘strong’ topological systems can
be; see Appendix C for a detailed formulation of the conditions for topological classification.
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5.2 Model
We now illustrate the points made so far in this section with a concrete model in tori.

The Hamiltonian is taken to be:

H = −hx
∑

p∈horizontal

U ε
p1p2

− hy
∑

p∈vertical

U ε
p1p2

− hz
∑

p

Γεp −∆e

∑

v

Γev, (5.6)

where hx, hy and hz are real parameters and ∆e > 0 is a constant energy gap for the e-
bosons. The first summation in (5.6) includes all horizontal nearest-neighbour U ε

p1p2
and the

second is for all vertical U ε
p1p2

. For convenience we shall take ∆e to be much larger than the
energy scale of fermions and restrict to the low energy sector without e-bosons. Substituting
the mapping (2.26) and (2.27) into Eq. (5.6) gives:

H = −hx
∑

p∈horizontal

iγp1γ
′
p2
− hy

∑

p∈vertical

iγp1γ
′
p2
+ hz

∑

p

iγpγ
′
p. (5.7)

Here i, j are row and column indices of a given plaquette. The Majorana modes can be
expressed in terms of fermion creation and annihilation operators as:

c =
1

2
(γ + iγ′), c† =

1

2
(γ − iγ′).

As a result, Eq. (5.7) acquires the following form with pairing terms:

H = −
∑

i,j

(
hxc

†
i,jci,j+1 + hyc

†
i,jci+1,j − hzc

†
i,jci,j + hxci,jci,j+1 + hyci,jci+1,j

)
+ h.c.. (5.8)

The system described by Eq. (5.8) is a spinless p+ ip superconductor. It will be shown later
in this section that certain phases of Eq. (5.7) are gapless, which makes the Chern number
C ill-defined. Therefore, in these gapless phases we add to (5.7) and by extension (5.8), a
perturbation which creates a gap:

V =
iδ

2

∑

p

[
U ε
y,p

(
Γεp + ΓεN(p)

)]
→ V = −iδ

∑

i,j

ci,jci+1,j + h.c., δ > 0. (5.9)

N(p) is the plaquette to the north of p. The perturbation V does not otherwise affect bulk
properties and the phase diagram of the system.

Passing to quasimomentum, the Hamiltonian H +V can be rewritten in BdG form (5.1)
with:

ε(k) = −2 (hx cos kx + hy cos ky − hz) , ∆(k) = 2δ sin ky − 2i (hx sin kx − hy sin ky) , (5.10)

and the quasiparticle spectrum:

E(k) = ±
[
ε(k)2 + |∆(k)|2

]1/2 (5.11)
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Figure 12: Phase diagram for the Hamiltonian (5.8). Left: hz > 0. The three disks corresponds to the
points at which edge modes are calculated on an cylindrical lattice; see Sec. 5.2.5. Right: hz < 0.

5.2.1. Phase Diagram
We now discuss the phases of the Hamiltonian (5.6) by applying the classification scheme

outlined in Sec. 5.1 to its dual quasiparticle Hamiltonian (5.7). To find the critical lines,
note that the system has gap closings at phase transitions. The phase boundaries are then
obtained by solving for E(k) = 0 which only corresponds to gap closing at the high-symmetry
quasimomenta points. The gap closings there are also necessary for change of ζi indices. As
a result, with ε(k) given in (5.10), the phase diagram in the parameter space of (hx, hy, hz)
is given in Fig. 12. The phase boundaries are given by: |hx| = |hy| = |hz|. The Hamiltonian
(5.8) contains fourteen out of all sixteen possible phases. In the {C; ζ1, ζ2, ζ3, ζ4} classification
scheme, they correspond to:

C = 0 : AI0 {0000}, AI1 {1111}, KWx,0 {1100},
KWx,1 {0011}, KWy,0 {1010}, KWy,1 {0101};

C = 1 : B1 {0010}, B2 {1000}, B′
3 {1101}, B′

4 {0111};
C = −1 : B3 {0100}, B4 {0001}, B′

1 {1011}, B′
2 {1110}.

(5.12)

The topological numbers in (5.12) are calculated using Eqs. (C.7) and (C.12). Note that
under charge conjugation, hx → −hx, hy → −hy, hy → −hy and ζi → 1 − ζi since the
occupied quasimomenta point becomes empty and vice versa.

The phases in (5.12) can be summarized as follows. The B,B′ phases have C = ±1 and
are gapless without the perturbation. The AI phases contain static fermions with a definite
average density on each site, and are the so-called ‘atomic insulators’. They are equivalent
to to the Toric Code. KWx,y phases are ‘weak topological phases’ (see the first footnote
of this section) and correspond to stacks of one-dimensional Majorana wires along x- and
y-directions.
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Finally, the two phases that are not included in the phase diagram correspond to the
stacking of one-dimensional Majorana wires along the two diagonal directions. They also
have C = 0 and:

KWx+y,0 : {1001}; KWx+y,1 : {0110}.
Their properties are studied in detail in Appendix D.

In the following let us analyse each phase in (5.12) in more detail.

5.2.2. Atomic Insulator phases (AI)
First we discuss the AI0,1 (‘atomic insulator’) phases in (5.12). Their properties are most

easily studied at hx = hy = 0, hz = ±1. The spin Hamiltonian is:

H = −hz
∑

p

Γεp −∆e

∑

v

Γev. (5.13)

Γεp and Γev commute. For hz = 1, the ground states have Γev = Γεp = 1 and (5.13) is equivalent
to the Toric Code with the global parity constraint (1.15):

∏

v

Γev = 1,
∏

p

Γεp = 1,

where Γev,Γ
ε
p take the place of Av, Bp in Eq. (1.4). Therefore we attribute to AI0 the same

ground state degeneracy and mutual anyon statistics as the Toric Code (remember that
ε-particles are fermions with respect to themselves); see Sec. 1.1. For hz = −1, the lowest
energy states have Γev = 1, Γεp = −1. This corresponds to each plaquette being occupied
by ε-fermions. However, on a periodic lattice with Lx, Ly odd, this contradicts the global
fermion parity constraints: ∏

p

Γεp = (−1)LxLy = −1.

The physical ground state should have Γεp = 1 on a single plaquette, and the degeneracy is
macroscopic, i.e. proportional to lattice size. The ground state degeneracy agrees naturally
with Table 1.

5.2.3. Weak Topological Superconductor phases (KW)
The other four phases in (5.12) with C = 0 are KWx,0, KWx,1, KWy,0 and KWy,1.

They correspond to stacking of one-dimensional superconducting Kitaev wires along the
x-, y-directions. They are ‘weak topological superconductors’ (see the first footnote of
this section). As will be demonstrated explicitly, these phases have non-trivial topological
properties even though the Chern number C = 0. In what follows we discuss only the KWx

phases since KWy phases are entirely analogous. In Fig. 13, Majorana coupling between
KWx phases are shown explicitly in the limit of hy = hz = 0.

On an infinite lattice, the system contains a superconducting gap. As as been shown
in Table 1, the ground state degeneracy for KWx,0 on a torus is 2 or 4 depending on the
number of Kitaev Wires, i.e. on the lattice size Ly odd or even. This can be proven by the
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γ′γ

Figure 13: KWx phases in the limit of hy = hz = 0 as horizontal stacks of one-dimensional Majorana
wires. The coupling between Majorana wires is shown in solid bonds. The spin operator Uε

p1p2
→ iγp1

γ′
p2

is
also shown for one such coupling.

general arguments in Sec. 5.1 and we shall repeat the discussion for this specific case as an
example. Consider KWx,0 for example. From (5.12) its ζi indices are {1100}, so the high-
symmetry quasimomenta points (0, 0), (0, π) are of concern. Now consider quasimomentum
quantization (5.4) for these points across the four super-selection sectors {z1, z2} with the
associated ε-B.C.s (z1,2 = ±1 corresponds to periodic or anti-periodic boundary conditions
along x-, y-directions) and varying system sizes. We investigate the resulting ground state
fermion parity (it is convenient to consider the limit hy = hz = 0). Denoting by a tick if
the corresponding quasimomenta point is allowed and a cross otherwise, the results depend
only on Ly and can be expressed as:

Ly even:
{z1, z2} (0, 0) (0, π) GS Parity
{1, 1} ✓ ✓ 1
{1,−1} × × 1
{−1, 1} × × 1
{−1,−1} × × 1

Ly odd:
{z1, z2} (0, 0) (0, π) GS Parity
{1, 1} ✓ × −1
{1,−1} × ✓ −1
{−1, 1} × × 1
{−1,−1} × × 1

As can be seen, ground state parity for all super-selection sectors is even for Ly even. The
physical ground states are therefore four-fold degenerate. For Ly odd, the super-selection
sectors {1, 1} and {1,−1} have odd ground state parity. These ground states are removed
from the physical Hilbert space and the ground state degeneracy for the original spin Hamil-
tonian is two.

Similarly, for KWx,1 phases the corresponding quasimomenta are (π, 0), (π, π). quasimo-
mentum quantization depends on both Ly and Lx. The results are summarized below:

Ly even, Lx odd:
{z1, z2} (π, 0) (π, π) GS Parity
{1, 1} ✓ ✓ 1
{1,−1} × × 1
{−1, 1} × × 1
{−1,−1} × × 1

Ly even, Lx even:
{z1, z2} (π, 0) (π, π) GS Parity
{1, 1} × × 1
{1,−1} × × 1
{−1, 1} × × 1
{−1,−1} × × 1
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Ly odd, Lx odd:
{z1, z2} (π, 0) (π, π) GS Parity
{1, 1} × × 1
{1,−1} × × 1
{−1, 1} ✓ × −1
{−1,−1} × ✓ −1

Ly odd, Lx even:
{z1, z2} (π, 0) (π, π) GS Parity
{1, 1} ✓ × −1
{1,−1} × ✓ −1
{−1, 1} × × 1
{−1,−1} × × 1

In this case, the ground state degeneracy is also four for Ly even and two for Ly odd.
For both Lx, Ly odd, physical ground states with even parity have only periodic horizontal
boundary conditions for ε-fermions. For Ly odd but Lx even, they allow only anti-periodic
horizontal boundary conditions. But the ground state degeneracy is always two.

The conclusion just obtained might appear contradictory: in the limit of |hx| → ∞,
the KWx phases are equivalent to horizontal stacks of seemingly decoupled one-dimensional
Majorana wires under the duality mapping, yet the ground state degeneracy depends on
the number of stacks. This is because the ground state satisfies the local constraint Γev = 1,
which couples spin operators on each row. After the duality mapping, this is reflected in the
following identity for the topological operator Wx → ẑ1, whose contour can be distorted to
be along any rows by multiplying the constraint Γev = 1:

Wx = −
∏

row n

U ε
p1p2

∏

row n

Γεp. (5.14)

The row-independence of Wx then imposes certain constraints between different Majorana
wires. It is therefore instrumental to give another derivation of the ground state degeneracy
which directly makes use of this fact.

Consider the points hy = hz = 0, hx = ±1 in the phase diagram for KWx phases. The
spin Hamiltonian on a periodic lattice is:

H = −hx
∑

p1,p2∈
horizontal

U ε
p1p2

−∆e

∑

v

Γev. (5.15)

The spin operators U ε
p1p2

are shown in Fig. 13. We apply the duality mapping in Sec. 2.2
for a periodic lattice, and write (5.15) in terms of τ and σ matrices (the superscript ε is
neglected in what follows). This gives:

H = −hx
∑

n,m

τn,mτn,m+1 − hx
∑

n

θnτn,Lxτn,1, θn = −
( ∏

p∈row n

σp

)
ẑ1. (5.16)

Here n,m are row and column indices respectively, and we have separated out the horizontal
pair-creation terms that cross the lattice boundary. The θn term arises from lattice periodic-
ity, and the last identity in (5.16) is obtained by substituting the relation θn =

∏
row n U

ε
p1p2

into Eq. (5.14).
Consider first the KWx,0 phase with hx > 0. It is clear from (5.16) that the ground state

has θn = 1 and τ = ±1 (ferromagnetic) on each row. However, the total parity of each
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chain:
Πn =

∏

p∈row n

σp,

commutes with τn,mτn,m+1 and their eigenvalues must also be specified. Πn reverses the
eigenvalues of all τ on the n-th row, and Πn = ±1 corresponds to symmetric and anti-
symmetric combinations of the two ferromagnetic ground states τn,m = ±1. We shall see
that there are certain constraints on eigenvalues of Πn precisely due to the last identity in
(5.16). For inverting this identity gives:

− ẑ1 = Πnθn = Πmθm, (5.17)

which relates θn and parity Πn on different rows. Setting θn = 1 then gives:

Πn = Πm.

This in combination of the global ε-parity constraint (1.16):
∏

n

Πn = 1,

gives that Πn = ±1 for Ly even, and Πn = 1 for Ly odd. This in turn gives:

Ly even : z1 = ±1;

Ly odd : z1 = −1.

For the KWx,1 phase, each chain is anti-ferromagnetic and the ground state on each
row is also two-fold degenerate with spins of the two magnetic sublattices reversed. θn now
depends on Lx: for Lx even, the spins on two sides of the boundary are opposite hence
θn = 1. For Lx odd the boundary spins are parallel and θn = −1 to minimize the energy. Πn

exchanges the two magnetic sublattices and its eigenvalue selects the unique ground state
for each chain. This difference to the KWx,0 phase only affects the determination of z1 in
Eq. (5.17). We then still have Πn = ±1 for Ly even, and Πn = 1 for Ly odd. This in turn
gives for z1:

Ly even : z1 = ±1;

Ly odd : z1 = −1, Lx even; z1 = 1, Lx odd.

Thus we have re-derived the ground state degeneracy for KWx phases (remember z2 is a
separate degenerate degree of freedom).

The two derivations that are presented so far make use of the duality. To verify the
correctness of the duality, we shall provide yet another derivation of the lattice-dependence of
ground state degeneracy, by solving directly the spin Hamiltonian. The solution is similar to
that given for the Toric Code in Sec. 1.1, by counting the number of independent operators.
Consider again the Hamiltonian (5.15) at hy = hz = 0, hx = ±1 in the phase diagram.
Its constituent operators in (5.15) are LxLy number of horizontal ε-fermion pair-creation
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operators U ε
p1p2

and Γev. They commute with each other and with Wilson loop operators Wx,y

given by Eq. (2.24). Therefore, the ground states can be characterized by the eigenvalues
of these operators [accordingly the quasiparticle spectrum (5.11) at hy = hz = 0, hx = ±1
is flat]. As is in the case of the Toric Code, for the total Hilbert space of dimension 22LxLy ,
these operators are not all independent. The first constraint is given by (1.16) for total
e-boson parity: ∏

v

Γev = 1. (5.18)

We have also found a second global constraint related to U ε
p1p2

. Interestingly, the form of
this constraint depends on whether Ly is even or odd. For Ly even:

( ∏

odd rows

Γev

)( ∏

p∈horizontal

U ε
p1p2

)
= 1, (5.19)

where the first product is taken over the lower vertices of squares on odd rows. Note that
although U ε

p1p2
= −1 for the KWx,1 ground state (hx = −1), it is still consistent with

(5.19) since Ly is even. Eqs. (5.18) and (5.19) give two constraints relating operators in the
Hamiltonian (5.15), and the ground states are four-fold degenerate specified by eigenvalues
of Wx,y.

For Ly odd we find:
( row Ly−2∏

odd rows

Γev

)( ∏

p∈horizontal

U ε
p1p2

)
= −Wx, (5.20)

where the first product is taken over all vertices on odd rows up to and including the (Ly−2)-
th row, and the second product includes all horizontal pair-creation operators. In contrast
to the Ly even case, the constraint relates Wx to Γev and U ε

p1p2
operators in the Hamiltonian.

Therefore, Wx eigenvalue cannot be assigned arbitrarily, and the ground state degeneracy
is two characterized by Wy only; the transitions within the ground state sector is given
by Tx. For example, for hx = 1 (phase KWx,0) U ε

p1p2
= Γev = 1 in the ground state and

Eq. (5.20) gives Wx = −1: periodic boundary condition along the x-direction is forbidden.
For hx = −1 (phase KWx,1), U ε

p1p2
= −1,Γev = 1 in the ground state, and Eq. (5.20) leads

to:
Wx = (−1)LxLy+1.

Thus, for Ly odd, the x-direction boundary condition is anti-periodic for Lx even and periodic
for Lx odd. The discussions given here agree, naturally, with the previous two approaches
in this subsection: the forbidden Wx eigenvalues for given Lx, Ly are precisely those of the
corresponding super-selection sectors with unphysical odd ground state fermion parity.

The degrees of freedom counting for KWx phases can be summarized as:
operators degrees of freedom

Γev LxLy − 1
U ε
p1p2

(horizontal) LxLy − z

Wx z
Wy 1

z =

{
1, Ly even
0, Ly odd
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The ground state degeneracy is then 21+z, where 1 + z is the number of independent Wx,y

operators.
Note that both Eqs. (5.19) and (5.20) are not invariant under lattice translation along the

y-direction by unity, and Γev on even and odd rows become in a sense distinct. Anticipating
Sec. 6, this is a manifestation of ‘weak breaking’ of translation symmetry in KW phases. As
will be shown in Sec. 6.1, here e-bosons on even and odd rows under the superconducting
vacuum acquire emergent mutual anyonic statistics.

5.2.4. Phases with non-zero Chern number
The remaining eight phases B,B′ in (5.12) have Chern number C = ±1.
On an infinite lattice, the Hamiltonian (5.8) in these phases is gapless with two cones

in the Brillouin zone. Solving for E(k) = 0 in Eq. (5.11) with δ = 0 gives positions of the
cones:

kx = arccos

[
1

2hxhz

(
h2y − h2x − h2z

)]
, ky = arccos

[
1

2hyhz

(
h2x − h2y − h2z

)]
, mod 2π.

In fact a solution exists only if the following inequalities are satisfied:

(hx + hz)
2 ≥ h2y ≥ (hx − hz)

2; (hy + hz)
2 ≥ h2x ≥ (hy − hz)

2. (5.21)

which corresponds to exactly the region in the phase diagram for the B,B′ phases. The
spectrum near each zero-energy point has the form:

ε = ±
[
h2xk

2
x + h2yk

2
y − (h2x + h2y − h2z)kxky

]1/2
.

The positive definite requirement for the polynomial gives again the inequalities (5.21).
The cones create singularities for the quasiparticle dispersion, and make the Chern num-

ber C ill-defined. Adding the perturbation V in (5.9) creates a gap of the order δ at these
points. In a way the exact value of C is conventional and thus unphysical, because C depends
on the choice of V and changes sign as δ → −δ. But the {ζi} indices which characterize
bulk topology are well-defined.

On a torus, the dependence of GSD of the B,B′ phases on lattice size is given by Table 1.
However, in this case the system cannot be solved directly on the spin lattice as in Sec. 5.2.3.
This follows from a general theorem that Hamiltonians with non-zero C necessarily contain
non-commuting operators [87].

In Sec. 6, we shall also study the emergent anyon statistics of e-bosons in phases with
non-zero Chern number.

5.2.5. Bulk-Edge Correspondence
So far we have discussed the phase diagram of the Hamiltonian (5.6) on infinite or finite,

periodic lattices. We shall now discuss briefly the open lattice case in which topologically
non-trivial phases contain edge modes.
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Figure 14: Edge mode dispersions for the Hamiltonian (5.8) on an cylindrical lattice. The vertical
direction is taken infinite and Lx = 100. The parameters are hy = hz/2 = 1/2, δ = 0.2 and hz > 0. From
left to right, hx = 1, 1.5, 2 respectively. hx = hz (left) and hx = 2hz (right) belong to phases B1 and
KWx,0. hx = 1.5hz (center) is at the critical line between phases B1 and KWx,0. Their locations on the
phase diagram are marked with triangle, square and circle respectively in Fig. 12.

The existence of zero modes along open boundaries for gapped topologically non-trivial
phases is proven for free, non-interacting fermionic systems (the so-called bulk-edge corre-
spondence). In topological superconductors with lattice translation symmetry, the zero edge
modes are naturally the ground state fermions at high-symmetry quasimomenta classified
by the Z× (Z2)

3 scheme; see Sec. 5.1 and Appendix C.
Let us show the existence of edge modes for KWx phases. We again take the limit

hy = hz = 0 or |hx| → ∞, and the Hamiltonian (5.7) becomes a series of decoupled one-
dimensional Kitaev wires:

H = −hx
∑

p∈horizontal

iγp1γ
′
p2
. (5.22)

On an open lattice, γ′ on the first column and γ on the last do not enter into the Hamiltonian
(5.22). Thus they have zero energy and constitute the edge modes. At non-zero hx and hz,
the edge modes acquire dispersion. However, they remain gapless at the corresponding
high-symmetry quasimomentum points.

To demonstrate these zero edge modes at arbitrary points of the phase diagram, we
numerically diagonalize the Hamiltonian (5.8) with the perturbation V (5.9) on an cylindrical
lattice which is infinite along the y-direction and finite along the x-direction. The energy
levels are functions of ky and their number is 2Lx (due to the presence of both particles and
holes).

In Fig. 14, we show the energy levels in phase B1, at the critical point between B1 and
KWx,0, and in phase KWx,0 respectively. As can be seen, in each phase the edge mode
energy becomes zero at the corresponding high-symmetry quasimomenta k0i of the phase
(the edge mode is gapped at other quasimomenta but is protected at k0i). At the critical
point, the bulk gap closes at the corresponding k0i whose ζi changes and, after crossing into
the new phase, either the original edge mode disappears or a new edge mode remains there.
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Figure 15: Majorana modes γ, γ′ on square lattices as on a ‘distorted’ honeycomb. The Majorana coupling
terms in (5.7) are represented visually by connecting the corresponding two modes with coefficients hx, hy

or hz. Each honeycomb contains one vertex. Moving a Majorana mode around, for example, the
honeycomb that contains v gives the parity of e-bosons on v.

5.3 Equivalence to the Kitaev Honeycomb Model
The phase diagram Fig. 12 for the Hamiltonian (5.6) and its topological properties re-

semble that of the Kitaev Honeycomb model. This is not accidental and is related to that
Z2 spin models on a square lattice can be seen as defined on a distorted honeycomb lattice;
see Sec. 2.2.3. In this subsection, we use a lattice reconstruction different from Sec. 2.2.3,
and explicitly demonstrate the equivalence between the Hamiltonian (5.6) and the Kitaev
Honeycomb model (1.3) [17]:

H = −Jx
∑

x-links

XiXj − Jy
∑

y-links

YiYj − Jz
∑

z-links

ZiZj. (5.23)

The situation is different from (2.33) in Sec. 2.2.3, as Γεp is a four-spin operator.
Let us consider instead of (5.6) the corresponding fermion Hamiltonian (5.7). We regard

each γ and γ′ as Majorana modes defined on different sites, and connect those that are
coupled via operators U ε

p1p2
and Γεp; see Fig. 15. We obtain as a result a new honeycomb,

and the Hamiltonian (5.7) couples nearest-neighbour Majorana modes. This resembles the
fermion representation of Eq. (5.23) given by (2.30):

H =
i

4

∑

jk

Jαjkûjkcjck,

where, as in Sec. 2.2.3, we use c to denote Majorana modes on each site. Here Jαjk are the
couplings hx, hy, hz depending on the links ⟨jk⟩ inside the honeycomb; see Fig. 15. The
additional ûjk operators contain fictitious Majorana modes for the vortex (e-bosons) sector
and satisfy: ∏

j,k∈honeycomb

ûjk = wp, (5.24)
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where wp = ±1 corresponds to the absence or presence of a π-vortex at the center of the
p-th honeycomb. It can be shown that by multiplying U ε

p1p2
and Γεp operators (the parity

operator Γεp → −iγpγ′p transports the Majorana mode ‘within the plaquette’) along the
smallest ‘honeycomb’ in Fig. 15, the result is Γev inside the honeycomb. Thus we have
derived the relation (5.24) from our model (5.6) without introducing fictitious Majorana
degrees of freedom, and showed that (5.7) is identical to the fermionic representation of the
honeycomb model (2.30).
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6 Berry phase and Emergent Anyon Statistics from Mo-
tion of e-bosons

In Sec. 5, we have studied the superconducting ε-fermion Hamiltonian (5.6) without e-
bosons, which are taken static and have a gap 2∆e. In the limit ∆e ≪ ∆0 where ∆0 is the
gap for fermion quasiparticles, the low-energy levels correspond to a given configuration of
static e-bosons placed on top of the superconducting vacuum. In this section, we investigate
the ensuing associated emergent anyon statistics between e-bosons. In this case, the e-
particles might possess different anyonic statistics due to their ‘renormalization’ by the
superconducting vacuum: each ‘bare’ e-boson (a point π-vortex) excites a fermion cloud
around itself, which in turn induces the non-trivial mutual statistics. The results depend
on the bulk topological properties of the underlying superconducting phases as described in
Sec. 5.1 and Appendix C. Namely the mutual anyon statistics are determined by the {C; ζi}
indices. 8

Our results in this section fall into two categories, the first being the KW phases in
Sec. 5.2.3 with Chern number C = 0. The low-energy e-bosons split into two groups of
quasiparticles, bosonic within each group, with non-trivial mutual statistics. The lattices
for two groups are exchanged by a lattice translation (‘weak symmetry breaking ’ [17, 46, 68,
72]). In the second category, the phases have non-zero C. The mutual braiding rules of
e-bosons in this case depend on C and are predicted in Ref. [17]. Using the spin-particle
duality construction, we calculate this braiding explicitly. In addition, we also calculate
the background flux for e-bosons from the superconducting vacuum, which is quantized to
be 0 or π depending on bulk topology. This is related to properties of the vison band in
α-RuCl3 [23, 27].

Let us first outline the method used in this section.
What are the quantities that characterize anyon statistics? As is discussed in Sec. 1,

anyons can be regarded as mutual point magnetic vortices, and the non-local parity terms
in the quasiparticle motion operators U e, U ε are essentially the vector potentials for fluxes
pinned to e- and ε-particles in a specific gauge; see also Sec. 2. By transporting one anyon
around another in a closed loop, the Berry phase acquired by the wave-function is simply
the magnetic flux of the other anyon, which then gives the mutual anyon statistics.

More concretely on the spin lattice, define an initial state |i⟩ and a contour γ which has,
at its one end, a static e-boson. The result for transporting the e-boson along the trajectory
γ using U e

v1v2
= Zv1v2 is given by the matrix elements:

⟨f |
∏

v∈γ
Zvjvk |i⟩, (6.1)

where the final state has the e-boson at the other end of γ. For our present purpose, γ is taken
to be a closed loop that encircles another e-boson. For the Toric Code, Eq. (6.1) is just (1.9)

8Here it is important that the superconducting vacuum is stable against addition of e-bosons. In our
case, the stability is guaranteed since e-particles are static and non-interacting.
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which is a trivial case. Generally, the motion of e-bosons excites fermion quasiparticles, since
adiabatic transport is impossible on a lattice due to the minimal step size being the lattice
constant. As a result, the matrix elements (6.1) contain transitions between many eigenstates
under given e-configurations. However as is discussed, for emergent anyon statistics only
transitions between ground states are relevant. Hence, in place of Eq. (6.1) we can write:

∏

v∈γ
⟨0jm|Zvjvk |0kn⟩, (6.2)

where m,n are indices for the ground state multiplets. |0jm⟩ is a ground state whose e-
configuration differs from that of |0kn⟩ only by having one of the e-bosons at vj instead
of vk. If the ground state is unique, there is only one type of emergent ‘abelian’ anyons
and Eq. (6.2) gives a scalar whose phase is naturally the Berry phase ϕ. For degenerate
ground states, each state corresponds to a given type of emergent anyons. To see this,
consider, for example, two (‘bare’) π-vortices σ in a spinless p-wave superconductor. The
superconducting gap ∆ vanishes near each vortex which can contain a zero-energy Majorana
mode as an Andreev bound state. The ground states are consequently two-fold degenerate:
one state contains no fermions and the other contains one complex fermion Ψ which is
distributed as two Majorana modes inside the vortices. Here the vortices with and without
the zero modes are taken to be two types of anyons. Processes involving two σ-vortices allow
emission or absorption of a complex fermion, and exchanging two vortices can change the
anyon types: the statistics is therefore ‘non-abelian’. Here it means that transition elements
in (6.2) are non-zero between the two degenerate ground states. In general, non-abelian
anyon statistics are reflected in the ‘fusion rules’ of the form a × b =

∑
i ci. This has the

meaning that processes involving particles a and b can emit particles ci. For example, the
fusion rule for the present case is σ× σ = 1+Ψ, where 1 is the vacuum. Braiding phases of
a, b can be written as Ra,b

ci
, namely in the channel which involves an anyon of type ci.

Generally Eq. (6.2) is a product of matrices and the results give both the self- and
mutual-statistics of all emergent anyons. In this section, we will consider the periodic spin
lattice because, as it turns out, computing the matrix (6.2) for all phases considered in this
section reduces to calculating the scalar Berry phase. In an open lattice there are in general
zero-energy edge modes, which greatly expand the size of the ground state multiplets; see
Sec. 5.2.5.

6.1 Weak Symmetry Breaking in KW phases
Let us again start from KWx phases. To study the emergent statistics of e-bosons, it is

convenient to start from the Hamiltonian (5.15) on the spin lattice:

H = −hx
∑

p∈horizontal

U ε
p1p2

−∆e

∑

v

Γev, (6.3)

whose solution is particularly simple; see Sec. 5.2.3. Since we are only concerned with
e-bosons within the superconducting ground state, all horizontal ε-fermion pair-creation
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Figure 16: Left: transport of an e-boson from v1 through v2 and v3 to v4; see Eq. (6.4). The path of the
boson shown in black intersects Majorana bonds shown by dotted lines. The Majorana coupling term in
(6.4) is also shown explicitly. Right: transport of e-bosons along a closed loop, shown as dashed lines, in
one sublattice given by Eq. (6.5). The contour encircles v5 and the loop motion measures its e-parity.

operators U ε
p1p2

= ±1 for KWx,0 and KWx,1. Vertical pair-creation operators U e
v1v2

for e-
bosons (1.7) anti-commute with U ε

p1p2
for v1 and v2 along the edge between plaquettes p1

and p2. Such a process excites the superconducting vacuum. It turns out that, in the KWx

phases, local e-transport within the superconducting vacuum is only possible between even
or odd rows, and e-bosons on even and odd rows are mutual emergent π-vortices.

We now set out to prove the above statement. It is simpler, for this purpose, to find,
instead of the projected matrix elements in (6.2), the ‘renormalized’ transport operators Ũ e

for the emergent anyons which commute with U ε
p1p2

. As is already noted, U e
v1v2

= Zv1v2 is
no longer suitable for transporting e-bosons between adjacent rows (it can still be used for
transport within one row as horizontal Zv1v2 commute with U ε

p1p2
). This process is generally

impossible by local operators without exciting the superconducting vacuum, as can be seen
in Fig. 16 by regarding U ε

p1p2
= ±1 as a bond between the Majorana modes γp1 , γ′p2 . A

vertical e-translation necessarily breaks this bond with energy cost 2hx. However, it is
possible to transport e-bosons across two rows with the trajectory shown in Fig. 16. In
this case, the two broken bonds are restored by vertically creating an additional pair of
ε-fermions. The ‘renormalized’ e-boson pair-creation operator across two rows is therefore
a composite operator:

Ũ e
v1v4

=

(∏

v

Zvivj

)
U ε
p1p2

, (6.4)

which is demonstrated in Fig. 16. Ũ e thus defined commutes with all horizontal U ε
p1p2

. In a
sense, one may regroup γp1 , γ′p2 across two plaquettes as belonging to an ‘effective’ complex
fermion Ψ′. U ε

p1p2
→ iγp1γ

′
p2

= ±1 then correspond to a definite parity of Ψ′. U e
v1v2

across a
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single row changes the fermion parity, hence it is only possible to maintain U ε
p1p2

= ±1 for
crossing two rows, which would leave the parity invariant.

Consequently the KWx vacua distinguish e-bosons on adjacent rows. It is now simple
to calculate their mutual statistics. It is clear that, by using the ‘renormalized’ e-transport
operators (6.4) for emergent anyons in (6.1) instead of Zvivj (remember that e-motion within
one row is still given by Ũ e

vivj
= Zvivj), there is no need for explicit projection to the ground

state multiplets. With this in mind, we transport an e-boson on say an odd row along the
smallest allowed contour that contain a single vertex v5 on an even row; see Fig. 16. This
gives: ∏

vi,vj∈γ
Ũ e
vivj

|0⟩ = Γev5 |0⟩, (6.5)

where we have used the ground state identity: U ε
horizontal|0⟩ = ∓|0⟩, hx ≶ 0. Eq. (6.5) shows

that low-energy e-bosons on adjacent rows are mutual π-vortices.
Before proceeding, let us comment on some consequences of the results obtained so far

in this subsection.
First, Eqs. (6.5) and (6.4) are examples of a general phenomena of ‘weak symmetry

breaking ’ [17, 46, 68, 72]: translation symmetry is broken since the structure of the Hilbert
space, having two sublattices of inequivalent e-bosons, is no longer invariant under lattice
translations, which exchange the two sublattices. This is unrelated to the usual spontaneous
symmetry breaking in a second order phase transition, due to the absence of a local order
parameter. Generally, we find ‘weak breaking of translation symmetry’ to be present in
other models that are stacks of one-dimensional Kitaev wires [this is completely natural
from the considerations below Eq. (6.4)]. For KWy phases, by arguments almost identically
to the ones given here, the e-bosons on adjacent columns are emergent mutual π-vortices.
For diagonal stackings of Kitaev wires, which are the two phases not contained in the model
(5.6) considered in Sec. 5:

KWx+y,0 : {1001}; KWx+y,1 : {0110},

the two inequivalent e-sublattices are found in Appendix D.
Secondly, so far we have only shown that e-bosons cannot be transported locally between

the two sublattices. Such a process is, however, in principle possible with a non-local operator
on the torus. Consider, for example, again the KWx phases. Let us transport an e-boson
on the first row upwards. Repeating this operation vertically across the entire lattice, we
see that for Ly even the quasiparticle is brought back to its original position after traversing
the lattice boundary. For Ly odd however, the e-boson now arrives at the second row and
we have transported the quasiparticle between adjacent rows.

Closely related to this observation is the following alternative derivation of KWx ground
state degeneracy and emergent e-anyon statistics. The derivation shows that e-bosons on
even and odd rows become emergent e′- and m′-bosons of an ‘effective Toric Code’ under the
superconducting vacuum (we use the prime to denote that these are ‘effective’ anyons). Such
a re-designation of e-bosons can only be consistent if Ly is even or infinite and low-energy
transitions between them are not possible.
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Figure 17: Left: the reduction of two degrees of freedom on links 1, 2 to one at plaquette p under the
constraint (6.6). Right: the new lattice under which Γe

v becomes effective A′
v and B′

p operators in the Toric
Code.

For this purpose, we consider the Hamiltonian (6.3) for KWx phases, and project it into
the following subspace:

U ε
p1p2

= ∓1, hx ≶ 0, (6.6)
which is satisfied by the ground states. To prove our statement, it suffices to show that, for
Ly even, Γev operators projected to the subspace of Eq. (6.6) becomes A′

v and B′
p (1.2) of the

Toric Code on even and odd rows. They correspond to the two groups of effective e′- and
m′-anyons described above. This is the main idea behind the proof which we shall lay out
below.

In the subspace given by Eq. (6.6), we can choose a new basis such that the horizontal
and vertical links in horizontal U ε

p1p2
are simultaneously diagonal with respect to Z and X.

For hx = ±1, Z and X have opposite (the same) eigenvalues, and can be treated as one
degree of freedom defined on the plaquette p. Thus, in the notation of Fig. 17, we have the
mapping:

Z2 → σzp, X1 → ∓σzp, hx ≶ 0. (6.7)
σzp is the third Pauli matrix acting on the plaquette p with the eigenvalue of Z2. A simulta-
neous operation of X2 and Z1 on horizontal and vertical links of p anticommutes with Z2 or
X1 yet still satisfies Eq. (6.6), so we have another mapping within the subspace:

X2Z1 → σxp . (6.8)

Γev then becomes a four-plaquette operator Γ̃ep with p being the plaquette to the north-east
of v. For hx = ±1 (both KWx,0 and KWx,1 phases), Γ̃ep has the same form. For example, in
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Fig. 17:
Γ̃e3 → σz1σ

y
2σ

y
3σ

z
4. (6.9)

It is more convenient to define a new lattice in which Γ̃ep operators such as in Eq. (6.9) have
the explicit form of A′

v and B′
p operators in TC. We join, for all Γ̃ep on odd rows, the centers

of plaquettes and treating them as the mid-points of links of the new lattice. For example,
in Fig. 17 this is done for Γ̃e3 by joining plaquettes 2, 3 and 1, 4. Then Γ̃ep becomes the A′

v

and B′
p operators in the Toric Code on odd and even rows (Γ̃e3 and Γ̃e4 in Fig. 17). As is

already pointed out, for this mapping to be self-consistent, the lattice must be infinite or
Ly is even, otherwise the construction breaks down along the two rows across the horizontal
boundary.

Thus in the subspace of KWx ground states given by Eq. (6.6), the Hamiltonian (6.3) is
equivalent to the Toric Code at low energies for an infinite lattice or Ly is even. This means
that, for a finite lattice with Ly even, the usual Toric Code constraints apply:

∏

p∈odd rows

Γ̃ep = 1,
∏

p∈even rows

Γ̃ep = 1, (6.10)

and the corresponding ground state is four-fold degenerate. Since for odd Ly, only the total
e-parity constraint

∏
v Γ

e
v = 1 in Eq. (1.16) applies as discussed above, the ground state is

two-fold degenerate for Ly odd. This agrees with the results in Sec. 5.2.3. Note that by
substituting Eq. (6.6) into (5.19) and using (5.18), we obtain (6.10) as it should. In this new
construction, a translation along the y-direction by unity in the original lattice exchanges
e′- and m′-bosons in the new lattice. This is another manifestation of the ‘weak symmetry
breaking’ discussed in this subsection.

Finally, let us mention the numerical results relating to ‘weak symmetry breaking’ away
from the exactly solvable limit (6.3). For the KWx phases with two e-bosons, the fermion
parity of the quasiparticle ground state in each super-selection sector depends on Ly and
relative positions of e-bosons; for details about the ground state wave-function in the quasi-
particle picture, see the next subsection and Appendix E. For Ly even, if both e-bosons are
on the same e′- or m′-sublattice, the four ground states in each sector have parity even and
the physical ground state degeneracy is four (this also confirms the conclusions in Sec. 5.2.3).
When one e-boson is transported to a different sublattices, all ground states have negative
parity and become unphysical. This illustrates the impossibility of transporting e-bosons
between e′- and m′-sublattices while remaining in the phyiscal ground state. For Ly odd,
only two of the ground states have parity even for the two e-bosons on the same sublattice
(remember under Ly odd and without e-bosons, the ground state degeneracy is two-fold).
After transporting one of the e-boson to another sublattice, the four ground states have
their parities exchanged while the physical ground state is still two-fold degenerate. This is
because, as is discussed above, under Ly odd, transporting an e-boson between sublattices
within the ground state is possible, by moving it across the lattice boundary. However, as
is shown in Eq. (2.29), cross-boundary motion of e-bosons also causes a transition between
super-selection sectors.
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6.2 Berry phase and Emergent Anyon Statistics in phases with
non-zero Chern number

To study the emergent e-boson statistics in Z2 topological phases with C ̸= 0, it is
not convenient to solve the spin lattice Hamiltonian as in Sec. 6.1, since the constituent
operators do not generally commute [87]. The problem is considerably simplified however,
for certain such spin models which map to quadratic Hamiltonians of ε-fermions and static
e-bosons; in fact, we have only considered such models in this thesis. A complete solution
can then be obtained using the quasiparticle picture because the elementary excitations
are free, which gives exactly the wave-functions and associated matrix elements. Here it is
important that e-bosons are static, otherwise they interact with fermions due to anyonic
effects in quasiparticle motion.

To calculate the matrix elements (6.2) in the quasiparticle picture, we first note that the
local e-transport operators Zv1v2 inside the bulk cannot cause transitions between different
super-selection sectors. Therefore, emergent anyon statistics in these sectors can be studied
independently. Secondly, the physical ground states must have even fermion parity. With
this understanding, we only consider in Eq. (6.2) matrix elements between parity-even su-
perconducting ground states in the same super-selection sector. Under these constraints, the
ground state is unique in each sector for our models in this section, and the matrix (6.2) is di-
agonal. These states are obtained by exact diagonalization of the quasiparticle Hamiltonian
under the corresponding fermion boundary conditions. This can be done only numerically
since, although the wave-functions have the standard BCS form, the system is no longer
translationally invariant due to the presence of e-bosons as vortices. The construction of the
BCS ansazt in this case is elucidated in Appendix E.

Accordingly we go over to the quasiparticle picture by substituting Eq. (2.28) for Zv1v2
inside the bulk on a torus into (6.2), which then becomes a product of matrix elements of
the form:

⟨Ωi|Ωj⟩, ⟨Ωi|
∏

p

(
−iγpγ′p

)
|Ωj⟩,

where |Ωj⟩ are the parity-even BCS ground states with respect to given e-configurations
and boundary conditions [they are the fermionic parts of |0jm⟩ in (6.2) written in terms
of quasiparticle fields]. Analytical expressions for these matrix elements are derived in
Appendix F. 9 However their exact values can only be evaluated numerically.

In the rest of this subsection, we will consider phases with Chern number C = ±1,−2. In
calculating (6.2), we shall apply the formalism just outlined to two cases, the first being γ is
along an empty square unit cell. Here the Berry phase is due to the effective ‘magnetic flux’
of the background superconducting vacuum. The background flux turns out to be non-zero

9In physical systems, i.e. candidate ‘Kitaev materials’ such as α-RuCl3, e-vortex (‘vison’) transport is
generally not provided by Zv1v2 itself, but arises from additional terms in the Hamiltonian. These operators
can be expressed as products of e-, ε-motion operators. In the Berry phase, they correspond to additional
matrix elements of the form: ⟨Ωi|

(
−iγp1

γ′
p2

)
|Ωj⟩. For completeness we also show their analytical expressions

in Appendix F. These matrix elements give rise to a dispersive vison band, which is considered using the
parton construction in Ref. [23] and the present duality in Ref. [27].
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in certain phases and quantized. Therefore, in the second case, to study the mutual emergent
anyon statistics of e-boson, instead of taking the trajectory γ to encircle another e-boson,
we use a different approach that automatically subtracts this background contribution.

6.2.1. C = ±1 phases
Although in Sec. 5 the Hamiltonian (5.6) contains B,B′ phases with C = ±1, we shall

start from a different model (2.33) that is equivalent to the Kitaev honeycomb model [17]:

HK = −Jx
∑

x−links

ZiXj + Jy
∑

y−links

YiYj − Jz
∑

z−links

XiZj; (6.11)

see Sec. 2.2.3 and Fig. 9 for the relevant derivations. This is more convenient for checking the
predictions made for that model and because of its relevance in materials such as α-RuCl3;
the latter point is discussed at the end of this section.

Let us recall some properties of the effective Kitaev honeycomb model (6.11). As follows
from Eq. (2.32), its constituent operators correspond to Majorana bilinears with non-local
e-boson parity terms. The e-bosons remain of course static and non-interacting. Omitting
the e-parity and boundary-crossing terms, (6.11) is written as:

HK = −Jx
∑

p

iγpγ
′
p−ŷ − Jy

∑

p

iγpγ
′
p+x̂−ŷ − Jz

∑

p

iγpγ
′
p+x̂. (6.12)

x̂, ŷ are unit lattice vectors. Passing to momentum representation, the Hamiltonian (6.12)
has the BdG form (5.1) with:

ε(k) = −2 [Jx cos ky + Jy cos(kx − ky) + Jz cos kx] ;

∆(k) = −2i [−Jx sin ky + Jy sin(kx − ky) + Jz sin kx] .
(6.13)

Substituting ε(k) from (6.13) into (C.12), the {ζ1, ζ2, ζ3, ζ4} classification scheme gives:

(Jx, Jy, Jz) (0, 0) (0, π) (π, 0) (π, π)
(1, 1, 1) 1 0 0 0
(−1, 1, 1) 1 1 0 1
(1,−1, 1) 1 1 1 0
(1, 1,−1) 1 0 1 1
(1, 0, 0) 1 0 1 0
(0, 1, 0) 1 0 0 1
(0, 0, 1) 1 1 0 0

Other values of (Jx, Jy, Jz) that differ by an overall minus sign can be obtained by ζ → 1−ζ.
The phase diagram is also given by Fig. 12 with hi → Ji, and the B,B′ phases are

gapless. Again it is necessary to induce a gap in these phases. It is customary to use the
so-called ‘Haldane mass’ term: in the presence of an external magnetic field, it can be shown
that the low energy effective Hamiltonian will include three-spin couplings [17]:

V = −κ
∑

j,k,l

XjYkZl, (6.14)
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Figure 18: Ground state parity (top) and energy (bottom) of the effective Kitaev honeycomb model (6.12)
as a function of e-vortices distance d on a periodic lattice. The two e-vortices are horizontally apart.
Lattice size Lx = Ly = 50. The symmetry of the features in the bottom figure is due to lattice periodicity.
The energy value stabilizes quickly as e-vortices move apart, suggesting that they are deconfined. Ground
state parity is calculated using matrix elements of the Hamiltonian written in Majorana bilinears [17].

where the three spins belong to a common hexagon. The perturbation (6.14) can be also
mapped to Majorana bilinears of the form γγ, γ′γ′; c.f. (5.9). We shall not write them
down explicitly, but merely note that the B,B′ phases acquire a gap as a result. The Chern
number C is then well-defined for these phases depending on the sign of κ. For the rest of
this subsection, unless stated otherwise, we consider the phase with (Jx, Jy, Jz) = (1,±1, 1)
and κ = 0.1, which gives C = ±1. Moreover, Lx = Ly = L is always even.

As a preliminary step, we check the confinement properties of e-bosons. For this purpose
we calculate the physical ground state energy for two e-bosons using exact diagonalization;
see Appendix E for details. We choose {z1, z2} = {−1,−1} and Jy = 1, since then the
ground state fermion at k0 = (0, 0) is always forbidden by quasimomenta quantization (5.4)
under anti-periodic boundary conditions. Here there are two e-bosons at distance d apart
and the ground state is approximately two-fold degenerate. This is due to the Majorana zero
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43

Figure 19: Left: Berry phase from motion of an e-boson around the square unit cell (shown schematically
in the inset). The parameter sets in the legend are (t, Jy, z1, z2). In this case t = 0.5 corresponds to phases
with Chern number C = −2. Right: Berry phase from mutual braiding of e-bosons using the Levin-Wen
protocol in Fig. 20.

modes inside e-vortices as is the case in p-wave superconductors discussed at the beginning
of this section. In fact, the energy of Majorana bound states in vortices has been known to
depend on the Chern number in a spinless superconductor, and is zero for C odd [17, 88];
see also Ref. [89] and references therein for quantum vortices in Helium-3. Therefore, one
of the two states without the Majorana bound states has ε-parity even while the other has
parity odd. In fact the two energy levels cross and oscillate with d, alternatingly becoming
the ground state; see Fig. 18. Thus, at each d one must choose the BCS wave-function with
even parity; see Appendix E.1. The physical (parity-even) ground state energy E0 is then
computed numerically with two e-bosons at distance d apart. In Fig. 18, E0 is plotted as
a function of d for Jx = Jy = Jz = 1. There it is shown that E0 converges quickly to a
constant limit, and the e-bosons are deconfined.

Having established this fact, we now study the emergent anyon properties of e-bosons
by computing the Berry phase (6.2) with BCS ground state wave-functions as discussed at
the beginning of this subsection. We first choose the path γ to be along the smallest empty
square unit cell, shown schematically in Fig. 19. The Berry phase is:

ϕ = −i arg


⟨Ω1|

∏

p∈L(4,1)

(
−iγpγ′p

)
|Ω4⟩ ⟨Ω4|Ω3⟩ ⟨Ω3|

∏

p∈L(3,2)

(
−iγpγ′p

)
|Ω2⟩⟨Ω2|Ω1⟩


 , (6.15)

which gives the ‘magnetic flux’ for emergent anyons from the superconducting background.
We found that for Jy = 1, ϕ converges to 0 as system size L increases; for Jy = −1,
ϕ converges to π. This value is independent from fermion boundary conditions given by
{z1, z2}. The results are presented in Fig. 19.

One can now compute the Berry phase corresponding to mutual braiding of two emergent
anyons. However since there are background flux from the superconducting vacuum, instead
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Figure 20: The Levin-Wen protocol [90] for braiding of two e-bosons. Two processes involving two
identical abelian anyons moving along three paths 1, 2, 3. Left: the first process (M1M2M3) in which the
anyon on the left travels to point A and the anyon on the right travels to point B. Right: the second
process (M3M2M1) in which the anyon on the left travels to B followed by the anyon on the right
travelling to A. The final states of the two processes differ by the exchange statistics of the anyons. Figure
taken from Ref. [90].

of taking γ in (6.2) to encircle another e-boson, it is more convenient to use a different
approach [17, 37, 90]. Here the two e-bosons are adjacent and are moved in sequence in two
ways as is shown in Fig. 20. After the movement, the e-boson positions are exchanged with
the paths in the opposite orientation. The difference in Berry phases from the two processes
then gives the braiding statistics, subtracting the background flux contribution. We will
consider only {z1, z2} = ±{1, 1} at even system size L, because at {z1, z2} = {1, 1} the
ground state for Jy = ±1 without the zero mode has parity odd. The physical ground state
thus contains the Majorana bound state. Analogously at {z1, z2} = {−1,−1}, the physical
ground state does not contain the Majorana mode. Thus by suitably choosing the fermion
boundary conditions, we can separate out the desired emergent anyons in question. The
results for mutual anyon Berry phase are presented in Fig. 19 for Jy = ±1. To summarise:

Jy = 1, C = 1 : ϕ =

{
3π/8, {z1, z2} = {1, 1} (periodic B.C.s)
−π/8, {z1, z2} = {−1,−1} (anti-periodic B.C.s)

Jy = −1, C = −1 : ϕ =

{
−3π/8, {z1, z2} = {1, 1} (periodic B.C.s)
π/8, {z1, z2} = {−1,−1} (anti-periodic B.C.s)

(6.16)

The results in (6.16) accord with the braiding rules in Ref. [17]. As is stated above,
for {z1, z2} = {1, 1}, the braiding of two e-vortices occurs in the presence of the Majorana
bound state, whereas for {z1, z2} = {−1,−1}, the braiding is between two e-vortices only.
Therefore, adapting the notation in Ref. [17] to our case, the anyon braiding phases are:

Re,e
ε = exp[i(3π/8)C], Re,e

1 = exp[−i(π/8)C].

For C = ±1, this is exactly Eq. (6.16).
For reference, we list the ‘fusion rules ’ between non-abelian anyons for the C = ±1

case [17]:
ε× ε = 1, ε× e = e, e× e = 1 + ε,
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6.2.2. C = −2 phase
For generality, we shall also study the emergent anyon properties in another Hamiltonian

which has C = −2.
Such a Hamiltonian can be constructed by adding four-spin coupling terms to Eqs. (6.11)

and (6.14). Regarding the square lattice as a honeycomb shown in Fig. 21, they are operators
of the form:

X1Z2X3Z4, Y2X3Y4X5, Z3Y4Z5Y6, X4Z5X6Z1, Y5X6Y1X2, Z6Y1Z2Y3. (6.17)

In Fig. 21 we also show them explicitly on a square lattice:

Z6,2Z2,3Z7,3Z6,7 ↔ −iγ6γ′6, (6.18a)
Y6,7Z11,7Y10,11Z14,10 ↔ (−1)n

e
7+n

e
8+n

e
11+n

e
12(−iγ6γ′14), (6.18b)

X7,3Y6,7X10,6Y5,6 ↔ (−1)n
e
6(−iγ5γ′7), (6.18c)

X6,7X10,6X5,6X6,2 ↔ (−1)n
e
6(−iγ6γ′6), (6.18d)

Y10,6X5,6Y6,2X2,3 ↔ (−1)n
e
3+n

e
4+n

e
6+n

e
7+n

e
8(−iγ2γ′10), (6.18e)

Z5,6Y6,2Z2,3Y7,3 ↔ −iγ5γ′7; (6.18f)

In terms of the Majorana representation defined in Ref. [17], these terms corresponds to
third-nearest-neighbor Majorana couplings. The full Hamiltonian is:

H =HK + V + H̃t,

H̃t =
t

2

∑

p

(
−iγpγ′p − iγpγ

′
p+2x̂ − iγpγ

′
p−2ŷ

)
.

(6.19)

V is given by Eq. (6.14) and t is a constant. We have neglected the e-parity terms in H̃t.
The gapless dispersion at κ = 0 is of the form (p+ ip)2 and therefore, as can be also shown
directly using (C.7), under the parameterization: Jx = Jy = Jz = 1, κ = 0.1 and t = 0.5,
the Z× (Z2)

3 classification scheme gives C = −2 and {1111}.
We now present numerical results of Berry phase (6.2) for the Hamiltonian (6.19) in

super-selection sectors {z1, z2} = ±{1, 1}. In each or the two sectors, the boundary con-
ditions for ε-fermions along x- and y-directions are both periodic or anti-periodic, and the
corresponding unique ground state has parity even. This is due to that vortices with C even
do not contain Majorana zero modes. As in Sec. 6.2.1, we consider the Berry phase ϕ due
to background flux and emergent anyon braiding.

The background flux by moving one e-vortex along the smallest empty plaquette gives
ϕ = π; the dependence of ϕ on system size and its convergence to π are shown for {z1, z2} =
±{1, 1} in Fig. 19.

For anyon braiding, even though the ground state in each super-selection sector is unique,
the result somehow depends on the positions of the two anyons inside the lattice. This
problem can be circumvented by adding opposite constant potentials to the four plaquettes
around each e-vortex. The results are shown numerically in Fig. 19. We found that the
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Figure 21: Left: the numbering of spin degrees of freedom on the honeycomb lattice. Center and right:
some of the four-spin coupling terms shown explicitly on the square lattice. Each number represents both a
vertex and the plaquette to its North-East. The green lines mean Y operators on the corresponding edge.

Berry phase then converges to ϕ = π/4, which accords with the following anyon braiding
rule in Ref. [17]:

Ra,ā
1 = exp[i(π/8)C].

Here a and ā are two types of anyons that fuse into a fermion.
The fusion rules between quasiparticles for the C = −2 case are [17]:

a× ε = ā, ā× e = a, ε× ε = 1, a× a = ā× ā = ε, a× ā = 1.

6.3 Discussion of Results and Experimental Relevance
We have found, using explicit numerical computations, the mutual statistics of low-energy

e-bosons on a superconducting background with non-trivial topology. For C = ±1,−2, the
results agree with the predictions made in Ref. [17]. Here even though the braiding is non-
abelian (it depends on the presence or absence of an ε-fermion), the cases with and without
fermions are effectively separated in our system. This is because braiding can occur only in
a given super-selection sector with the corresponding fermion boundary conditions. In all
cases under consideration, the physical ground state which has fermion parity even, is unique
and calculating the matrix elements (6.2) reduces to calculating a scalar. They correspond
to braiding with or without fermions depending on quasimomentum quantization of the
ground state fermions at high-symmetry quasimomenta.

Similarly, the calculation of (6.2) for e-motion around the smallest empty plaquette
also reduces to calculating the scalar Berry phase. We found that the Berry phase ϕ is
quantized to be 0 or π, depending on the underlying topology of the superconducting phase
of ε-fermions. We emphasize that although the value of ϕ depends on {ζi}, it might be
unrelated to the actual ground state fermions that {ζi} correspond to. This is because
the value of ϕ is independent from the choice of fermion boundary conditions in all cases
we considered, while the ground state fermions might be absent due to quasimomentum
quantization. In this sense, the background magnetic flux in each plaquette seems to be
an invariant characteristic of the underlying bulk topology of the superconducting vacuum,
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which is classified by the {ζi} indices. The problem remains of determining analytically their
relation to ϕ for a given superconducting phase.

However, our numerical results support the following conjecture: ϕ = 0 for topological
phases with less than two of the four ζi indices being unity, and ϕ = π for phases with
more than two of the four ζi indices being unity. Remember that phases with two ζi indices
non-zero exhibit weak symmetry breaking, which forbids e-bosons from travelling to certain
adjacent sites at low energy. This conjecture is further supported by the Atomic Insulator
phases in (5.13). In this case, the Berry phase is simply given by the parity of each plaquette,
and is 0 for hz > 0 with {0000}, and π for hz < 0 with {1111}.
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7 ZN Topological Order
In this section, we shall discuss topological order in certain models which are generaliza-

tions of Z2 theories to ZN with N ≥ 3. As we shall see, the situation becomes considerably
more complex than the Z2 case. To avoid confusion, the notations in this section are inde-
pendent from those in the rest of the thesis.

As will be shown in Sec. 7.1, the number of types of elementary excitations in a ZN
lattice theory is N2 − 1. They generally have ‘para-statistics’ with respect to themselves
(‘parafermions ’). It turns out that, contrary to the Z2 case, constructing explicit particle
operators for parafermions is not generally possible in a ZN theory for N > 2. This point
will be discussed in Secs. 7.2 and 7.3. But as will be shown, certain ZN Hamiltonians that
are generalizations of the models considered in Sec. 5 can be solved exactly on the spin
lattice, and exhibit similar properties to the corresponding Z2 topological order. The results
are presented in Sec. 7.4.

7.1 Definitions and Elementary Excitations
In a Z2 theory on a square lattice, the local spin-1/2 degrees of freedom are on each edge

with sz = ±1/2 being two internal states of a given edge. In a ZN theory, each edge has N
internal states: |n⟩, n = 0, 1, ...N − 1. We now have, instead of Pauli matrices σx, σz which
satisfy σ2

x = σ2
z = 1, their ZN analogues X,Z:

Z|n⟩ = ωn|n⟩, X|n⟩ = |n+ 1⟩ mod N, ω = exp

(
2πi

N

)
,

ZX = ωXZ, XN = ZN = 1;
N−1∑

n=0

ωn = 0.

(7.1)

From (7.1) we define generalized electric and magnetic charge operators on vertices and
plaquettes:

Qv = X1X2X
†
3X

†
4, Ωp = Z5Z6Z

†
7Z

†
8. (7.2)

These operators are shown graphically in Fig. 22. The new operators mutually commute
with eigenvalues ωk, k = 0, 1, ..N − 1; compare with operators in the Toric Code in (1.2).
We then define the ‘ZN Toric Code’ Hamiltonian:

H = −
∑

v

Qv −
∑

p

Ωp + h.c.. (7.3)

The summation is taken over all vertices and plaquettes on the lattice. Repeating the same
arguments as given in Sec. 1.2, we can regard Qv and Ωp as local ZN charge operators of
certain elementary excitations. Qv = Ωp = 1 still designates the vacuum. For Qv = ω
at a given vertex, the vertex is occupied by a quasiparticle e with ZN electric charge ω.
Similarly, quasiparticle m with ZN magnetic charge ω occupies a plaquette p if Ωp = ω.
Other internal states on each vertex and plaquettes corresponding to other eigenvalues of
Qv and Ωp, can be seen as composite particles of multiple e- or m-particles. In fact, generally
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Figure 22: Left: electric and magnetic charge operators in Eq. (7.2). Right: pair-creation operators (7.5) of
(e, ē) and (m, m̄) are also shown. Note the directionality of v1, v2 and p1, p2. Edges multiplied by X or X†

(Z or Z†) are shown in red (blue).

in ZN lattice theories, there are N2− 1 types of particles, constructed from the ‘elementary’
e- and m-particles. We write for each particle type:

(α, β) : eα ×mβ, α, β = 0, 1, ..N − 1. (7.4)

The α = β = 0 case is the vacuum. For a particle η given by (α, β), its anti-particle is given
by η̄ and has charges (N − α,N − β). In particular, the anti-particles of e and m are not
themselves, which have different ZN charges. They are denoted by ē and m̄.

We can define analogous nearest-neighbour pair-creation operators for e and m:

U e,ē
v1v2

= Zv1v2 , U
m,m̄
p1p2

= Xp1p2 , (7.5)

which creates an e-, ē-particle pair on vertices v1, v2, and anm-, m̄-particle pair on plaquettes
p1, p2 respectively. Here the convention is as follows: for horizontal pair-creation, v1 is to
the right of v2 while p1 is to the left of p2; for vertical pair-creation, both v1 and p1 are
above v2 and p2. The pair-creation operators for any composite particles given by (α, β)
are defined similarly as products of operators in (7.5). As in the Z2 case, the local pair-
creation operators conserve electric and magnetic charges. On a periodic spin lattice, this
corresponds to the following global constraint for ZN charges:

∏

p∈lattice

Ωp = 1,
∏

v∈lattice

Qv = 1. (7.6)

It follows from (7.6) that the ‘ZN Toric Code’ (7.3) has ground state degeneracy N2. On an
open lattice, charges can be created with non-local operators; see the analogous Z2 case in
Sec. 2.

From Eq. (7.5) and analogous arguments to those in Sec. 1.2, e- and m-particles are
bosonic with respect to themselves, but have mutual statistical angle π/N . Bound states of
both e- and m-particles have ‘para-statistics’ with respect to themselves: after encircling one
such composite particle by another, the wave-function acquires a phase of (α+β)π/N . These

76



are therefore parafermions. As will be discussed in Sec. 7.3, parafermions are considerably
more complex than the ε-fermions in Z2 theories.

As in the Z2 case, the choice of ‘elementary particles’ is not unique. The problem
therefore arises of whether all types of particles can be formed by a given set of ‘elementary
particles’. In fact, the composite-particle configurations in (7.4) can be seen as a ZN × ZN
group, and the e- andm-charges (1, 0) and (0, 1) are the corresponding generators. If ZN×ZN
has subgroups, then it is possible to choose for a given theory a reduced set of ‘elementary
particles’. For instance, by choosing them to be (2, 0) and (0, 2) in a Z4 theory, we obtain
the Z2 × Z2 subgroup. A theory containing only these two particles and their bound-states
is equivalent to the Z2 theories considered in the rest of this thesis. We shall neglect such
cases and always assume an ‘irreducible’ set of ‘elementary particles’. This can be done, for
example, by taking N to be prime. Note that for such an ‘irreducible’ set, other types of
‘elementary particles’ than e and m are possible. Geometrically, the problem is equivalent
to finding two independent lattice vectors in a unit cell with side-length N and sites at
integer coordinates given by (α, β). Due to the aforementioned complexity associated with
parafermions, we shall choose the ‘elementary particles’ to be e and m.

7.2 Duality Mapping
Let us construct the Hilbert space of e- and m-particles for the ZN case.
We start from the open lattice. The construction of the open boundaries is explained at

the beginning of Sec. 2. Similarly to the Z2 case in Sec. 2.1, we pass from the ZN basis to
the basis of local occupation numbers of e- and m-particles on each vertex and plaquette:

|...nev..., nmp ...⟩; nev, nmp = 0, 1, ...N − 1.

Under the new basis, we define the τ and σ operators:

τ |n⟩ = |n+ 1⟩, σ|n⟩ = ωn|n⟩, τ |N − 1⟩ = |0⟩. (7.7)

As in Sec. 2, we neglect the e, m superscript when referring to both particles. τ and σ
satisfy the algebra:

στ = ωτσ, σN = τN = 1.

It is clear that Qv and Ωp operators map to σev and σmp . Then the non-local products of
Z† and X† operators with the same paths in (2.5) and (2.12) map to τ e and τm. Note the
directionality of the the strings which distinguishes X,Z from X†, Z†, as the τ ev strings go
from right to left towards v and τmp from left to right towards p; see the discussions below
(7.5).

We can now construct the quasiparticle operators. For concreteness we discuss the case
for e-particle annihilation operator bv and neglect the superscript e. Annihilation operators
for m-particles ap are constructed in an entirely similar way. On a given vertex, bv satisfies
the usual bosonic algebra:

b|n⟩ = √
n|n− 1⟩, b†|n⟩ =

√
n+ 1|n+ 1⟩, n ̸= 0; b|0⟩ = b†|N − 1⟩ = 0. (7.8)
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To find b in terms of τ and σ, it is useful to define the local projection operators Pn to a
given occupation number n:

Pn|m⟩ = δnm|m⟩. (7.9)

Pn can be expressed in terms of σ:

Pn =
1

N

N−1∑

k=0

ω−nkσk. (7.10)

To see this, consider:

Pn|m⟩ = 1

N

N−1∑

k=0

ω(m−n)k|m⟩.

For both m = n and (m−n) prime with respect to N , the result agrees with (7.9), as follows
from the identity

∑N−1
n=0 ω

n = 0. If N is divisible by (m− n): N = (m− n)l, then it is clear
that the sum over k decomposes into m−n number of identical sums over powers of ω(m−n).
Each of these sums vanishes due to the identity:

∑l−1
n=0 ω

′n = 0, ω′ = ω(m−n), ω′l = 1.
The projectors satisfy the following relations:

τPn = Pn+1τ, τ
†Pn = Pn−1τ

†, PnPm = δnmPn,
N−1∑

n=0

Pn = 1. (7.11)

It follows from Eqs. (7.8) and (7.9) that, in terms of projectors Pn and τ , b is written as:

b = τ †
(
N−1∑

n=1

√
nPn

)
, b† =

(
N−1∑

n=1

√
nPn

)
τ. (7.12)

The boson commutation relation on the same site is:

[b, b†] =

[
τ †
(
N−1∑

n=1

√
nPn

)
,

(
N−1∑

m=1

√
mPm

)
τ

]

=τ †
(

N−1∑

n,m=1

√
n
√
mPnPm

)
τ −

(
N−1∑

n,m=1

√
n
√
mPmPn

)

=τ †
(
N−1∑

n=1

nPn

)
τ −

N−1∑

n=1

nPn

=
N−2∑

n=0

Pn − (N − 1)PN−1.

Eq. (7.12) generalizes the Z2 hardcore boson construction (2.3) to the ZN case. It is not
clear if Eq. (7.12) can be inverted and if τ can be expressed in terms of b, b† for N ≥ 3.
Formally, using the last two identities in (7.11) and substituting (7.12), we have:

(
N−1∑

n=1

1√
n
Pn

)
b† =

(
N−1∑

n=1

Pn

)
τ = (1− P0) τ.
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But (1− P0) is not invertible. Alternatively, P0τ = P0bτ
2 and one can write:

τ =

(
N−1∑

n=1

1√
n
Pn

)
b† + P0bτ

2, (7.13)

where we have substituted Eqs. (7.11) and (7.12). For N = 2:

P1 = b†b, P0 = 1− b†b, b2 = b†2 = 0, τ 2 = 1,

and we return to (2.3). However for N > 2, Eq. (7.13) is non-linear in τ . Therefore, it seems
that τ can at most be mapped to a sum in powers of b and b†.

The mapping from pair-creation operators (7.5) to τ, σ can then be constructed along
similar lines to Sec. 2.1, and we shall simply state the results. We then have, for horizontal
pair-creations:

U e,ē
v1v2

→ τ ev1τ
e†
v2
, Um,m̄

p1p2
→ τmp1τ

m†
p2
. (7.14)

Along the vertical direction:

U e,ē
v1v2

→ τ ev1τ
e†
v2

( ∏

p∈
R(v1,v2)

σm†
p

)
, Um,m̄

p1p2
→ τmp1τ

m†
p2

( ∏

v∈
L(p1,p2)

σev

)
. (7.15)

R(v1, v2) means plaquettes to the right of the edge that joins v1 and v2, and L(p1, p2) are
vertices to the left of the line that connects the centers of p1 and p2. As the next step, one
should substitute τ in terms of quasiparticle operators ap, bv. But as is shown above, it is
not clear how this is done for τ . One can only obtain mappings of the form b†v1bv2 , a

†
p1
ap2 ,

by multiplying U e,ē
v1v2

and Um,m̄
p1p2

with appropriate powers of projectors, which follows from
(7.12).

On a periodic spin lattice, due to the global constraints (7.6), the proper counting of
independent degrees of freedom again necessitates Wilson and t’ Hooft operators. They
correspond to creating a particle-antiparticle pair which is then annihilated after the particle
traversing the entire lattice. They are given by the same expression as in Eqs. (1.5) and
(1.6) with eigenvalues 1, ω, ω2, ..., ωN−1. The commutation relation is now given by:

TxWy = ωWyTx, TyWx = ωWxTy.

The mapping between ZN operators and τ, σ can be constructed in the same way as in the
Z2 case in Sec. 2.1 on the torus. Note that strings of operators that defines τmp , τ ev now have
directionality, as follows from the convention of pair-cretion operators (7.5). For τmp strings
extending right and down, the operators become now X† whereas for strings extending left
and up they remain X. For τ ev strings, the operators are Z† for extending left and down,
and Z for up and right. We shall not repeat the derivation here but merely mention that the
branch-cut conventions, and the relation between Wx,y and m-particle boundary conditions
are entirely similar.
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Figure 23: Left: Wilson loop operators (7.20), and horizontal and vertical pair-creation operators in (7.21)
for parafermions η. Right: the duality mapping for vertical pair-creation operators (7.22). Shaded
plaquettes on the upper row are multiplied by σ†

p whereas those on the lower row are multiplied by σp.

7.3 Parafermion Operators
As has been shown so far in this section, it is possible to construct e- and m-particle

operators and their Hilbert spaces in a general ZN theory similarly to the Z2 case.
The situation is considerably more complex for bound-states of e and m. For concrete-

ness, let us consider the bound states η of a single e- and m-particle. As is mentioned in
Sec. 7.1, η are parafermions and have statistical angle 2π/N with respect to itself. Its field
operators on different sites then must satisfy commutation relations of the form:

ηiηj = ωηjηi, i > j. (7.16)

In writing i > j we have taken a certain ordering of sites. However, it immediately follows
that the commutation relations for a pair of parafermion fields ηi, ηj depend on their relative
positions i, j. For reading Eq. (7.16) backwards then gives:

ηiηj = ω∗ηjηi, i < j.

As a result, parafermions couple to each other non-uniformly in space by definition. The spa-
tial non-uniformity is generally a result of interactions and it is not clear if ‘free parafermions’
can be defined physically, despite the similarity between certain free fermion models and their
ZN generalizations. 10

In what follows we shall describe some attempts towards constructing parafermion fields
η based on the Z2 analogue. We again define ηp at a plaquette p as a composite particle of

10We mention in this connection a work by P. Fendley [91], in which ‘free parafermions’ are defined. But
the Hamiltonians turn out to be non-Hermitian.
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an m-charge at p and an e-charge to the South-West vertex. The electric charge operator is
then written in terms of Qv and Ωp defined in (7.2):

Q̃v = Qv × Ω†
NE(v), (7.17)

while Ωp is reserved for the parafermion charge operator Ω̃p. The operators that create η-η̄
pairs on adjacent plaquettes are given by:

Uη,η̄
p1p2

= X†Z, (horizontal); Uη,η̄
p1p2

= XZ, (vertical), (7.18)

which are illustrated in Fig. 23. On a periodic lattice, Q̃v and Ω̃p satisfy the global con-
straints: ∏

p∈lattice

Ω̃p = 1,
∏

v∈lattice

Q̃v = 1. (7.19)

We suppose that the resulting Wilson loop operators for parafermions also commute with
Q̃v in (7.17), and its contour can be deformed by multiplication of Q̃v. This determines
W̃x,y:

W̃x =
∏

XZ, W̃y =
∏

XZ†; (7.20)

see Fig. 23. W̃x,y operators in (7.20) differs from their Z2 analogue in two crucial aspects:
they cannot be written as a product of Uη,η̄ and Ωp, and do not mutually commute:

W̃xW̃y = ω2W̃yW̃x.

The corresponding t’ Hooft operators T̃x,y are taken to be the same as the ones given in
Sec. 7.2.

Due to the non-commutativity of W̃x and W̃y, passing over to the basis of parafermion
occupation number becomes ambiguous. Although one can follow the Z2 analogue and define
locally τ η, ση in the basis of parafermion occupation (see Sec. 2.2), it is not clear what set
of topological operators should be chosen for a complete description of the quasiparticle
Hilbert space on a periodic lattice. A way to do this is to construct τ ηi τ

η†
j operators for

cross-boundary pair-creation. It is expected that the result would decompose into a product
of the corresponding Uη,η̄, e- and η-charge operators σe and ση, and the topological parity
operators. This gives W̃x(T̃

†
x)

2 for horizontal motion, while traversing the vertical boundary
gives W̃y(T̃y)

2. They do not mutually commute for N ̸= 2, which is necessary for specifying
the Hilbert space. This is due to the aforementioned fact that W̃x,y cannot be written as
products of η-motion and charge operators.

To circumvent this difficulty, we shall consider open boundary conditions only. From
the ZN lattice we again pass to the Hilbert space of local parafermion occupation numbers
with operators τ η, ση. Let us discuss the possibility of constructing parafermion fields using
a generalized Jordan-Wigner transformation. To simplify the discussions, we neglect e-
particles.
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As a first step, we find the mapping from Uη,η̄
p1p2

to τ η; Ω̃p is assumed to map to σηp .
This can be done by defining τ η as τ eτm with the prescribed binding convention and use
the results in Sec. 7.2. Repeating the derivations given in Sec. 2.2 and note that X,Z and
X†, Z† are now distinct, we obtain (neglecting the superscript η):

Uη,η̄
p1p2

(horizontal) → τ †p2τp1 ;

(
Uη,η̄
p1p2

)†
(vertical) → ω

( ∏

p∈R(p2)

σp

)( ∏

p∈L(p1)
σ†
p

)
τ †p1τp2 ,

(7.21)

where L(p) and R(p) are all plaquettes to the left and right of and including the given
plaquette p on ths same row. The plaquettes included in the products of σ and σ† are
shown in Fig. 23. It seems that, due to the presence of both σp and σ†

p terms in (7.21),
Eq. (7.21) cannot be mapped to bilinears of parafermions using a ZN analogue of Jordan-
Wigner transformation. This is because such a transformation for parafermion fields η, η′
necessarily has the form:

ηp = ω

(∏

p′

σp′

)
σpτ

†
p , η

′
p =

(∏

p′

σp′

)
τ †p , (7.22)

so that the horizontal pair-creation can be mapped to η†η′. But then vertical pair-creation
cannot have the parity terms as in Eq. (7.21). However, one can introduce an additional
pair of parafermion fields χ, χ′ with σ† instead of σ for plaquettes on the same row as p in
(7.22). Then horizontal pair-creation is mapped to η†η′ or χ†χ′, while vertical pair-creation
is χ′†η. But the introduction of additional fields is not justified.

To conclude, we mention in passing Ref. [92] in which a definition of parafermion fields
is given. In our construction here, their results can be derived using (7.22) in one spatial
dimension and projection operators Pn given by (7.10). In this case, a bilinear parafermion
operator Ψ†

iΨj that transports a parafermion with charge ω from site j to i is assumed to
have the following form:

Ψ†
iΨj = τiτ

†
j (1− P0,j) (1− PN−1,i) =

[
τ †i (1− P0,i)

]†
τ †j (1− P0,j) , (7.23)

where we have used the identities in (7.11). The projectors annihilate a given initial state
if there is no parafermion charge on site j or the charge is ωN−1 on site i, and conserve the
total charge. The τiτ †j term then changes the parafermion occupation numbers accordingly.
It is then possible to define Ψ in terms of η and η′ using (7.22) and obtain (7.23); this is
given by Eq. (130) in Ref. [92]. For example, for N = 3 we have:

Ψ†
iΨi+1 = τiτ

†
i+1 (1− P0,i+1) (1− P2,i) =

[
τ †i (1− P0,i)

]†
τ †i+1 (1− P0,i+1) . (7.24)

It can be verified that the following definition:

Ψi =
1

3

(
2η′i − ωη′†i η

†
i − ηi

)
=
τ †i
3

(
2− σ†

i − σi

)
, (7.25)
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which is Eqs. (130) in Ref. [92] for N = 3, reproduces Eq. (7.24).
In this construction, parafermions with charge ωk are given by the composite operator

(Ψ)k. In particular, the local parafermion occupation number operator [92]:

N =
N−1∑

k=1

Ψ†kΨk = diag{0, 1, ..., N − 1}.

Furthermore, N satisfies the commutation relations:

[N,Ψ] = −Ψ, [N,Ψ†] = Ψ†,

which suggests that Ψ indeed annihilates a parafermion.

7.4 Exact Solutions on Periodic Spin Lattices
Despite the apparent difficulty in constructing parafermion operators, it is possible to

obtain exact solutions of certain ‘parafermionic’ Hamiltonians on the lattice, the simplest
example being the ‘ZN Toric Code’ (7.3). In this subsection we solve the ZN generalization
of the Z2 KWx model (5.15):

H = −hx
∑

p∈horizontal

Uη,η̄
p1p2

−∆e

∑

v

Q̃v + h.c. (7.26)

Despite the ambiguity in interpreting (7.26) in terms of elementary excitations, an exact
solution exists on the ZN lattice which has many similar properties to the Z2 case, i.e. the
dependence of ground state degeneracy on lattice size.

The solution is analogous to the one given in Sec. 5.2.3, by finding the constraints between
constituent operators in (7.26) and the global topological operator W̃x. Before proceeding,
we need to designate the other topological operator so that the full Hilbert space is correctly
taken into account. As is noted, W̃y does not commute with W̃x, and cannot be used. As
will be shown below, it seems appropriate for this purpose to use T̃x, which commutes with
all other operators.

The global constraint is, for Ly even:

( ∏

v∈odd rows

Q̃v

)( ∏

p∈odd rows

Uη,η̄
p1p2

)[ ∏

p∈even rows

(
Uη,η̄
p1p2

)†
]
= 1; (7.27)

compare with (5.19). The other global constraint on Q̃v is provided by Eq. (7.19), and we
have ground state degeneracy 32 = 9.

Comparing with (5.20), the Ly odd case now gives:

( Ly−2∏

v∈odd rows

Q̃v

)( ∏

p∈odd rows

Uη,η̄
p1p2

)[ ∏

p∈even rows

(
Uη,η̄
p1p2

)†
]
= W̃ †

x

(
T̃x

)2
. (7.28)
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On the first line, the first product is taken over all vertices on odd rows up until and including
the (Ly − 2)-th row. The next two products are taken over all plaquettes on odd and even
rows. We see that W̃x and T̃x are not independent, and there is only one topological operator
corresponding to the three-fold ground state degeneracy which is taken to be T̃x.

The degrees of freedom counting can now be summarized as:

operators degrees of freedom
Q̃v LxLy − 1

Uη,η̄
p1p2

(horizontal) LxLy − z

W̃x z

T̃x 1

z =

{
1, Ly even
0, Ly odd

The ground state degeneracy is then N1+z, where 1+ z is the number of independent global
topological operators.

It is also interesting to study phase transitions in the ZN case and consider the following
model:

H = −hx
∑

p∈horizontal

Uη,η̄
p1p2

− hz
∑

p

Ωp −∆e

∑

v

Q̃v + h.c., (7.29)

which reduces to (7.26) at |hx| ≫ hz > 0, and to the ‘ZN Toric Code’ (7.3) at |hx| ≪ hz.
On a torus, as in the Z2 case, the dependence of ground state degeneracy on lattice size is
qualitatively different in the two limits, and a phase transition must occur at intermediate
|hx|. In the Z2 case, model (7.29) corresponds to the horizontal axis on the phase diagram
Fig. 12 and the critical points are at hx = ±hz. For the ZN case the following argument
suggests that at least the critical point hx = hz remains.

We map (7.29) to a model of τ and σ operators of parafermions on an infinite lattice
using (7.21); the constraint Q̃v = 1 is imposed. This gives:

H = −hx
∑

p∈horizontal

τ †p1τp2 − hz
∑

p

σp + h.c.. (7.30)

This gives decoupled chains of the ZN analogue of the transverse Ising model. At |hx| ≫
hz > 0 and |hx| ≪ hz, the ground states have τp = 1, ω, ..., ωN−1 along each chain and
σp = 1 respectively [on an infinite lattice the ground state of (7.26) has simply Uη,η̄

p1p2
= 1

which seems to suggest that the ground state is unique instead of N -fold degenerate. This
ambiguity is due to taking the infinite limit of an open lattice which has edge zero-modes;
see the open lattice analysis below]. The critical point of (7.30) is known to be hx = hz
from exact solutions [93]. To show this, let m,n be row and column indices starting from
the upper-left corner of the lattice and apply an ‘order-disorder’ transformation similar to
that of the transverse Ising model:

σm,n → τ †m,nτm,n+1, τm,n →
∏

k≤n
σm,k, (7.31)
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where m,n are row and column indices respectively. As a result, the Hamiltonian (7.30) is
mapped to itself but with hx, hz exchanged. This indicates that hx = hz is indeed a critical
point.

On a torus or open lattice, the analysis is more complex. Since the cross-boundary
operator is not mapped to τ †m,Lx

τm,1 on a torus, the Hamiltonian is not mapped to itself
under the transformation (7.31) as on the infinite lattice. If the lattice is finite and open,
similar situation occurs because the transformation (7.31) for σp on the last column is ill-
defined. However, in that case τ †m,nτm,n+1 and σp can be mapped to parafermion bilinears
η†η′; c.f. Eq. (7.22) and the discussion that follows. The model (7.29) then maps to decoupled
chains of parafermions:

H = −hx
∑

n,m

η†n,mη
′
n,m+1 − hz

∑

n,m

η†n,mη
′
n,m + h.c.. (7.32)

From this representation it is clear that there are ZN edge zero-modes at least at hz = 0.
They are given here by η′n,1 and ηn,Lx on each row which do not enter into the Hamilto-
nian (7.32); see the Z2 case in (5.22). ZN edge zero-modes in a class of one-dimensional
parafermionic chains have been studied in Refs. [94, 95], which includes (7.32) as a partic-
ular example. Interestingly, the region in which edge-modes exist inside the phase diagram
does not coincide with the phase boundary hx = hz, contrary to bulk-edge correspondence.
In relation to this, we mention another construction in Ref. [96] which shows in an exactly
solvable model that parafermionic zero-modes are present at the boundary of ground states
with different topological properties. There the zero-modes are found via the Bethe ansatz,
and are collective excitations inside solitons of a one-dimensional fermionic model.

To summarize, we have found ZN models with topological order and associated ground
state degeneracy, even though here it seems that the system cannot be mapped to a Hamil-
tonian of free elementary excitations as in the Z2 case in Sec. 5. It remains unclear if the
results in this subsection can be attributed to certain properties of the quasiparticles, or if
such a quasiparticle picture exists at all for ‘translation-symmetry-enriched ZN topological
order’.
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8 Conclusions
In this thesis we have considered exact dualities from spin-1/2 operators on infinite,

open and periodic square lattices, to field operators of (e,m) and (e, ε) quasiparticles from
the Toric Code. In particular, the duality to e, ε offers a systemic framework for studying
Z2 topologically ordered phases enriched by lattice translation symmetry, and is also rele-
vant for investigating physical properties of candidate Kitaev materials, i.e. α-RuCl3, on a
honeycomb lattice [27].

The dualities are inspired by viewing the Toric Code as a model of static, non-interacting
e- and m-particles, and by Ref. [41] which proposed the mapping of spin operators to Ma-
jorana bilinears of ε-fermion without e-bosons on an infinite lattice. Thus the dualities are
a generalization of these results to allow for quasiparticle dynamics, mutual anyonic statis-
tics and the effect of lattice periodicity. This fact in turn motivates an extension of the
Toric Code to m and ε ideal gases, and a series of Z2 topologically ordered phases ‘en-
riched by lattice translation symmetry’, in which ε-fermions acquire dynamics and become
superconducting. By rewriting the corresponding Hamiltonians directly in terms of quasi-
particle fields, the properties of the underlying Z2 topological order can be studied using
well-established methods from topological superconductivity and classified in a Z × (Z2)

3

scheme. Thus the duality shows unequivocally the interrelation between Z2 topological order
and band topology, and the effect of lattice periodicity.

In particular, we find that on a periodic lattice, the ground state degeneracy in these
phases may depend on lattice size. This is confirmed explicitly by exact solutions of the spin
Hamiltonian in certain limits. However, the quasiparticle picture is applicable to cases where
exact solutions on the spin lattice are not possible. This includes phases with non-zero Chern
number whose constituent operators in their Hamiltonians are generally non-commuting [87].
Even in the exactly solvable case, the interpretation of results in terms of quasiparticles is
much more transparent and physical than on the spin lattice.

The (e, ε)-duality can also be used to study the emergent anyon statistics of e-bosons
renormalized by the superconducting vacua. This gives a concrete and general means of nu-
merically computing anyon braiding rules in phases with arbitrary Chern numbers. In this
thesis we have considered the simplest phases with C = ±1, 2 and confirmed the predictions
made in Ref. [17]. The computations are considerably simplified using the duality method.
By considering a periodic lattice and choosing given super-selection sectors, which also de-
termine the boundary conditions of ε-fermions, Berry phases of specific braiding processes
between non-abelian anyons can be separately calculated. Furthermore, the Berry phase of
e-bosons from the superconducting background can be computed using this method. The
background magnetic flux from the square unit cell is shown numerically to be quantized as 0
or π, depending on Z×(Z2)

3 indices of the underlying Z2 topologically ordered phases. Clar-
ifying and proving analytically this relation between Z2 topological order and the quantized
background flux is therefore a natural extension of current work.

Although the questions addressed in this thesis are mostly theoretical, the (e, ε)-duality
can be applied to more physical problems, given its validity also on the honeycomb lat-
tice. Here the quasiparticle degrees of freedom are naturally the Majorana fermions and the
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bosonic visons in the Kitaev honeycomb model [17]. This makes the duality also relevant
to studying the properties of candidate Kitaev materials such as α-RuCl3. For example,
Ref. [23] considered the vison dispersion on a generalized honeycomb model due to pertur-
bations that transport visons, in relation to experimentally observed peaks in thermal Hall
conductivity. The vison band is also calculated using the present duality [27]. Here the
duality provides a general and transparent method for analysing these materials, and can
be used to study, for instance, the stability of the spin-liquid ground state with respect to
vison motion.
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Appendix A Cylindrical lattices and independence of
local parity operators

In this Appendix a cylindrical lattice is considered, which has open boundary condition
along one direction but is periodic along the other. This gives rise to an interesting admixture
of features from the torus and open lattice geometries: even though periodicity along y-axis
remains, there are no global parity constraints and single-particle creation operators can
be defined, similarly to the open lattice case in Sec. 2. We will then discuss changes to
mappings to quasiparticle basis (e,m) and (e, ε).

Without loss of generality we choose the system to be periodic along the y-direction.
To have 2LxLy total number of independent edges, the edges on the right boundary are
removed as shown in Fig. A.24; compare with the open lattice in Sec. 2.

The mapping to e and m quasiparticles are now considered. Operators on the boundary
plaquettes with links removed are modified in the same way as the open lattice case. This
means Av and Bp are three-spin operators on the left and right boundaries respectively. It
is possible to create, analogous to the open lattice case, e and m quasiparticles as single
isolated particles by extending their strings right- and left-ward to the open edges of the
cylinder respectively. As is proven in Sec. 2, this fact is related to the mutual independence
of Av and Bp. Therefore, the corresponding TC Hamiltonian (1.1) has a unique ground state
in the cylinder and a gap to all excitations. This does not contradict the existence of global
topological operators WTC

y , TTC
y along the periodic y-direction, which are not independent

from Av and Bp:

WTC
y =

∏

l∈γy
Xl =

∏

v∈lattice

Av,

TTC
y =

∏

l∈γ′y

Zl =
∏

p∈lattice

Bp.
(A.1)

Here γy and γ′y are contours that cross the periodic y-direction associated with transporting
m and e quasiparticles. The convention for the above relations is depicted in Fig. A.24.
Eq. (A.1) reflects the branch-cut convention for e- and m-bosons, as WTC

y , TTC
y corresponds

to m- and e-motion across the lattice along the paths that necessarily intersects all branch-
cuts.

Thus local occupation numbers of e andm now form a complete basis for the quasiparticle
Hilbert space. σ operators are not affected by lattice geometry and has the same form as
in Eq. (2.4). τ ev and τmp are defined similarly to the open lattice: on a given row, the
corresponding strings of Z and X matrices extend from the right and left lattice boundary,
and arrives at the site. Note that however, single τ ev and τmp operators anti-commute with
WTC
y and TTC

y , due to the relation (A.1). This point does not affect pair-creation operators.
It can be shown that all pair-creation operators retain their form in Eqs. (2.7) and (2.8)
with the same branch-cuts as on the open lattice: each e-boson extends a branch-cut to
the right and terminates at the boundary of the same row; branch-cuts for m-bosons go left
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γ′y

γy

Figure A.24: Cylindrical lattice in which the vertical direction is periodic and the horizontal direction is
open. Accordingly the right edge of the lattice is removed. The global topological operators for (e,m) and
(e, ε) Hilbert spaces are the same given by (A.2).

and terminate at the left boundary. This is true also for cross-boundary motion, as can be
shown in the following way. Since the mapping for single τ operators remain the same as
in the open lattice case, ττ terms on the spin lattice also remain the same (there is nothing
special with respect to cross-lattice motion under the current τ definition). Therefore, after
mapping to hard-core bosons the form of the mapping for pair-creation operators coincide
with the open lattice case.

We now turn to the mapping from cylindrical lattices to (e, ε) degrees of freedom.
In this case the global topological operators Wy, Ty are still given by (A.1). As in the

case of e,m quasiparticles, the absence of global parity constraints means that Wy and Ty
can be expressed in terms of local parity operators:

Wy = −
( ∏

v∈lattice

Γev

)( ∏

p∈lattice

Γεp

)
, Ty =

( ∏

p∈lattice

Γεp

)
. (A.2)

The schematic of these operators is depicted in Fig. A.24. The product of Γev in Wy and Γεp
in Ty reflect the gauge convention for e-boson and ε-fermion branch-cuts: they extend to
the right and left respectively and reach the lattice boundary. The second product of Γεp in
Wy implies, interestingly, that the the boundary condition of ε-fermion along the y-direction
depends on its global parity. In particular in the case of no static e-bosons (Γev = 1 for all v),
the constraint means that for a total odd (even) number of ε-fermions in the cylinder one
must necessarily choose periodic (anti-periodic) boundary conditions along its y-direction.
In other words, the quasiparticle Hilbert spaces with i.e. periodic y-boundary conditions
and an even number of fermions must be discarded as unphysical.
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We define single τ ε and τ e with the same non-local string conventions as on the open
lattice in Sec. 2.2. In this case also, single τ ε operators anti-commute with both Ty and Wy

due to the relation (A.2). The Jordan-Wigner transformation for fermions is also taken to
be the same as on the open lattice. Then the bulk mapping from spin to quasiparticles has
identical form as on an open lattice given by Eqs. (2.19), (2.22) and (2.23). The situation
is different for ε-fermion motion across the vertical lattice boundary, because the Jordan-
Wigner transformation (2.18) now gives additional ε-parity terms as γ, γ′ are defined on
bottom and top rows respectively, similarly to the periodic lattice case. To show this, we
write the mapping for vertical U ε

p1p2
in terms of σ and τ , which is the same as on the open

lattice in Eq. (2.21):

U ε
p1p2

→ −
( ∏

v∈
L(p1,p2)

σev

)( ∏

p∈
L(p1),R(p2)

σεp

)
τ εp1τ

ε
p2
.

The definitions of L(p1, p2), L(p1) and R(p2) are given below Eq. (2.21). We then substitute
the Jordan-Wigner transformation (2.18) for γp1 , γ′p2 with p1, p2 at the bottom and top rows
respectively. This gives the final mapping:

U ε
p1p2

→ iγp1γ
′
p2

( ∏

v∈
L(p1,p2)

eiπb
†
vbv

) [
−
( ∏

p∈
lattice

−iγpγ′p
)]
, (A.3)

which differs from the bulk mapping by the additional total ε-parity factor; see also the
derivation of the same expression (2.27) for the torus. The result confirms the conclusion
below Eq. (A.2) that the ε-fermion B.C. is determined by the total ε-fermion parity. The
branch-cut conventions are the same as the open lattice case.
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Appendix B Free electrons in the field of a point vortex
In this Appendix, we calculate the total energy difference (4.16) between a free fermi-gas

with and without a point vortex on a large disk. The fermion Hamiltonian is taken parabolic
in momentum and isotropic.

First let us determine the energy levels of a particle in the field of a point vortex.
The vortex is placed at the origin. Since we are only concerned with the energy levels,

the problem is equivalent to solving for the Hamiltonian with a vector potential A satisfying
the following properties. Outside the origin, the magnetic field B = ∇×A is zero. But the
vortex carries magnetic flux Φ, we then have:

∮
A.dr = Φ, (B.1)

where the integral is taken over any contour that encircles the origin. The vector potential
A can be chosen as:

A =
Φ

2π
∇ϕ,

where ϕ is the polar angle of the plane. The left hand side of Eq. (B.1) then gives (∆ϕ/2π)Φ,
where ∆ϕ is the change of polar angle after completing the loop. Upon encircling the origin,
∆ϕ = 2π and we obtain Eq. (B.1). Moreover, ∇×A always vanishes outside the origin, as
A is the gradient of a scalar function.

The Schrödinger’s equation has the form:

1

2m

(
p̂− eA

)2

Ψ = EΨ. (B.2)

We shall solve the problem for a π-vortex: the wave-function receives phase (e/ℏ)
∮
A.dr =

(e/ℏ)Φ = π. In the following we use the units e = ℏ = c = 1 and consequently Φ = π.
Eq. (B.2) is invariant under rotations. Accordingly we seek Ψ in polar coordinates in the

form:
Ψ = exp(ilϕ)χl(r), (B.3)

where l is the integer angular momentum. Substituting (B.3) into (B.2) gives for χl(r):

χ
′′

l +
1

r
χ′ +

[
k2 − 1

r2

(
l − 1

2

)2]
χl = 0, (B.4)

with the notation k2 = 2mE and the prime denotes differentiation with respect to r.
Eq. (B.4) needs to be supplemented by certain boundary conditions for χl. It is clear
that for a sufficiently large system, the precise shape of the boundary is not relevant. Thus
for convenience we shall assume the vortex is placed at the origin of a cylindrical infinite
potential well of radius R. The boundary conditions are then χl(R) = 0 and χl(0) is regular.

The solution to Eq. (B.4) for the n-th energy level satisfying the boundary condition is:

χnl(r) = CnlJ|l−1/2| (knlr) . (B.5)
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Jn(x) are Bessel functions of order n amd Cnl is a normalization constant. The boundary
condition at r = R gives for knl:

knlR = xnl,

where xnl is the n-th zero of the Bessel function of order |l − 1/2|. Thus the energy is:

Enl =
k2nl
2m

=
x2nl

2mR2
.

Since l includes both positive and negative integers, each energy level Enl is doubly degen-
erate. As R → ∞ the energy levels become continuous.

For completeness, we shall also give the solution to (B.2) in the absence of vortices. The
wave-functions correspond to a free particle placed inside a large cylinder of radius R, with
the same boundary conditions. We then have:

χnl(r) = CnlJ|l| (knlr) , knlR = xnl. (B.6)

xnl is the n-th zero of the Bessel function of order |l|. The energy levels En = x2nl/(2mR
2)

are doubly degenerate for l ̸= 0. All energy levels with l = 0 have no degeneracy.
We now compute the same quantities as in Sec. 4.2, and check explicitly that the results at

low filling fractions on the square lattice are reproduced. To make correspondence between
the two cases, the physical quantities in this Appendix are related to the tight-binding
approximation at low filling-fraction as: εF = 2πnε/mε, nε is the number density and
mε = 1/(2t) is the effective mass at low filling from the tight-binding approximation.

To characterize the differences between ground states with and without vortex in the
thermodynamic limit, we must first take the limit T → 0 then N → ∞. The energy
difference between the Fermi gas with and without vortex (Φ = 0, π) at constant N and
T = 0 is shown in Fig. B.25a). We find that the difference approaches a constant value with
system size:

lim
N→∞

{E(N,Φ = π)− E(N,Φ = 0)}T=0 =
ϵF
8
, (B.7)

This agrees with the square lattice case at low filling fraction (4.18). Despite strong finite-
size fluctuations, the limiting value in Fig. B.25a) is clear and the results are also consistent
with the complete deconfinement of the e-boson. The fluctuations arise from the fact that in
the above procedure the temperature remains smaller or comparable to the level spacing up
to very large system sizes. One can mitigate such fluctuations by taking a slightly different
thermodynamic limit in which the zero temperature limit (T → 0) and large system size
limit (N → ∞) are taken while keeping the temperature larger than the level spacing
∆ϵ ∼ ϵF/

√
N , namely by keeping ϵF ≫ T ≫ ∆ϵ. Fig. B.25b) illustrates this idea by

showing that at finite but small temperatures the system approaches the same limit as that
in Eq. (B.7) while avoiding the strong finite size fluctuations of the T = 0 case. This figure
has been obtained by adjusting the chemical potentials of the states with and without vortex
(Φ = 0, π) to ensure that we always compare systems with the same total N .
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Figure B.25: Energy and particle number differences with and without the π-vortex in the continuum disk
model from Eq. (B.2). a) and b) are energy difference fixing the ε particle number at zero and finite
temperature respectively. The energy unit is taken to be the Fermi energy of the zero flux configuration.
c) and d) are energy and particle number differences fixing the Fermi energy ϵF at finite temperature
respectively. Here ϵF ≡ 2πnε/mε, nε is the number density and mε = 1/(2t).

In addition, Figs. B.25c) and d) show that in this case we have the following limits:

lim
T→0

lim
R→∞

{E(µ,Φ = π, T )− E(µ,Φ = 0, T )} = 0 , (B.8)

lim
T→0

lim
R→∞

{N(µ,Φ = π, T )−N(µ,Φ = 0, T )} = −1

8
. (B.9)

In particular, the change in the number of particles due to the vortex approaches the same
value obtained for the square lattice at small filling fraction as the temperature decreases to
zero.

To study the spatial distribution of the screening cloud of ε-fermions surrounding the
e-vortex, we compute the change of ε-density as a function of radius r:

ρε(r,Φ) =
∞∑

i=1

nF [Ei(Φ), µ, T ]|Ψi(r,Φ)|2 , (B.10)

∆ρε(r) = ρε(r, π)− ρε(r, 0) . (B.11)

93



0 5 10 15

−0.05

0.00

rkF

∆
ρ
(r

)/
N
ε

a)

T/µ

0.10 0.05 0.02

0 1 2 3

−5

0

5

log(rkF )

lo
g
(|∆

ρ
(r

)|)b)

∆ρ(r)|T→0 ∝ cos(2kF r)r
−2

0.00 0.06 0.12 0.18
0

20

T/µ

ξk
F

c)

∆ρ(r)|r�ξ ∼ C1e
−r/ξ(T ) + C2

Figure B.26: a) Local ε density difference with and without the π-vortex at fixed chemical potential µ. b)
Near the π-vortex core, the density perturbation displays a Friedel-like oscillatory decay with a power that
approaches α = −2 in the zero temperature limit. The plot shows the envelope fitting for T/µ = 0.02, for
which α = −2.32. c) At finite temperatures, there exists a correlation length ξ(T ) above which the decay
becomes exponential. The correlation length diverges in the zero temperature limit. Results are for the
continuum model from Eq. (B.2) with disk geometry and fixing the ratio of level spacing (∆ϵ = µ/N1/2) to
be ∆ϵ/T = 1/3.

The results are shown in Fig. B.26. As can be seen from Fig. B.26a), ε-fermion density is
modified near the vortex. We have found numerically that the fermion density far from the
vortex can be fitted by the following functions:

∆ρε(r) ≈ A cos (2kF r) r
−α(T ), r ≪ ξ(T ) ≪ R; (B.12)

∆ρε(r) ≈ B cos (2kF r) e
−r/ξ(T ), ξ(T ) ≪ r ≪ R. (B.13)

Here kF is the Fermi momentum and ξ(T ) is a finite temperature correlation length that
separates the two regimes. Near the π-vortex core, the density decays with a power-law as
shown in Fig. B.26b), while at scales larger or comparable to the correlation length ξ(T ) the
decay becomes exponential. The correlation length ξ(T ) diverges as T → 0, as is shown in
Fig. B.26c). Therefore, the e-particle (π-vortex) induces an oscillatory corrections to the ε-
fermion density which decays with power α ≈ 2 as T → 0. The period of the oscillation 2kF
resembles 2D Friedel oscillations [97], and indicates the presence of a sharp Fermi surface.
Despite that the e-particle induces such a long-range perturbation on the surrounding ε-
fermions, its energy cost remains finite. This can be attributed to the gapless excitations of
particle-hole pairs infinitesimally close to the Fermi surface.
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Appendix C Topological Superconductivity
In this section we review the topological classification of spinless superconductors with

inversion symmetry. The Hamiltonian with dispersion ε(k) and gap function ∆(k) has the
form (5.1) in quasimomentum and particle-hole space:

H(k) =

(
ε(k) ∆(k)
∆∗(k) −ε(k)

)
,

which can be written alternatively as:

H(k) = σ.c(k); c(k) = [Re∆(k),− Im∆(k), ε(k)]. (C.1)

Here σ is a vector with the i-th Pauli matrix as its i-th component. It will be shown in this
section that the Hamiltonian (C.1) can be classified by an integer quantum number (the
Chern number C) in combination with three Z2 invariants which are related to the ground
state fermion number at certain quasimomenta.

Appendix C.1 Classification by Chern Number
To obtain the Chern number classification, we form a three-dimensional unit vector

n(k) = c/|c| from (C.1) defined on the Brillouin zone. This gives a mapping from the
square Brillouin zone T 2 = S1 × S1 to the two-sphere S2 defined by n2 = 1:

n : T 2 → S2, (C.2)

as is shown in Fig. C.27. Generally, mappings between two manifolds:

f : N →M, (C.3)

can be classified by equivalent classes [N,M ] up to a continuous deformation of the mapping
(homotopy classes). In the case of Eq. (C.2), the homotopy classes give simultaneously a
classification of the eigenstate. Finding the homotopy classes of mappings between two
generic manifolds is in general difficult. Nonetheless we shall prove an important result that
for N = T 2 and any manifold M with trivial fundamental group π1(M) = 0, the homotopy
classes of the mapping (C.3) can be classified by the homotopy group π2(M). 11 For (C.2),
π1(S

2) = 0 (S1 is mapped to a closed loop on S2 which can always be deformed into a point:
a constant map) which means that the eigenstates can be classified by:

n : [T 2, S2] ∼ π2(S
2) ∼= Z; π1(S2) = 0. (C.4)

Here Z is the integer Chern number.

11The n-th homotopy group πn(M) has, as its elements, homotopy classes of mappings [Sn,M ]. In
particular, πn(M) = 0 is trivial if all mappings can be continuously deformed to a constant map, i.e.
‘contracted to a point’.
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Figure C.27: Top: schematic of mapping from the two-dimensional Brillouin zone to the unit vector n in
(C.2). Bottom: the equivalence of the Brillouin zone boundary to two circles joining at the equivalent
corner of the square k0, and to a single circle with its two points on the equator regarded as equivalent.
Here the white disk denotes k0.

We now prove this result. The square Brillouin zone T 2 with lattice constant a can
be obtained from a square of side-length 2π/a by identifying edges on opposite sides as
equivalent:

(kx, ky) ∼ (kx + 2π/a, ky) ∼ (kx, ky + 2π/a).

Denoting by k0 the point at the four (equivalent) corners of the square, the Brillouin zone
boundary can be seen as two circles corresponding to the vertical and horizontal sides joining
at the point k0:

∂T 2 ∼= S1 ∨ S1 ∼= S1/Z2,

where S1/Z2 is a circle with its equator (two points connected along the diameter) regarded
as a point; see Fig. C.27. The two-sphere S2 is then given by:

S2 ∼= T 2/S1 ∨ S1,

by ‘contracting’ the boundary of T 2 to a point. However, S1
i ∨ S1

j defines precisely multipli-
cation of group elements of π1(M):

ai ∈ π1(M) ∼ fi : S
1
i →M ;

aj × ak ∼ g : S1
j ∨ S1

k →M, g(xi) = fi, xi ∈ S1
i .

96



Therefore for π1(M) = 0, any mapping from S1 and by extension S1 ∨ S1 to M can be
continuously deformed into a constant map. Applying this procedure to the restriction to
the torus boundary S1 ∨ S1 of a given map:

f : T 2/S1 ∨ S1 →M,

the quotient by S1 ∨ S1 becomes trivial and we obtain:

f : [T 2,M ] ∼ [S2,M ], π1(M) = 0. (C.5)

This proves our statement. 12

Eq. (C.4) has the meaning that by covering completely the manifold T 2, the region
extended by the unit vector n covers the entire sphere S2 an integer number of times, which
is just the Chern number C. Therefore, we can define C analytically as the solid angle
integral on S2 normalized by 4π (the ‘Gauss map’):

C =
1

4π

∫
n.dS, dSi = eijkdnjdnk, (C.6)

where dSi is the differential surface area element on S2. In quasimomentum space:

C =
1

8π
eij
∫

T 2

n.

(
∂n

∂ki
× ∂n

∂kj

)
dkxdky. (C.7)

In proving the Chern number classification (C.4), we made use of the fact that the Hamil-
tonian (C.1) has only two bands. For completeness we shall present another formulation
which holds generally for n bands with n ≥ 2.

The Hamiltonian for a given quasimomentum k is an n × n matrix. Each eigenstate
is, up to a constant phase factor, given by a complex n-tuple z = [z1(k), ..., zn(k)] with
the normalization condition

∑
i |zi(k)|2 = 1 → z ∈ S2n−1. This is the definition of the

complex projective space CP n−1 (we assume there are no additional internal symmetries in
the Hamiltonian) which has the following structure:

CP n−1 ∼= S2n−1/U(1),

12An analogous theorem to (C.5) holds, which states that the homotopy classes of mappings from the
N -dimensional Brillouin zone, i.e. an N -dimensional torus TN = S1

1 × ... × S1
N , to an arbitrary (N − 1)-

connected manifold M [πk(M) = 0, k < N ] can be classified by πN (M). In this case TN can be seen as an
N -dimensional hypercube IN with its faces {IiN−1} on opposite sides regarded as equivalent. Each boundary
IiN−1 then contains inequivalent boundaries {IijN−2} and so on. The reduction of TN to SN can be carried
out inductively in the same way as for (C.5) by consecutively deforming its k-boundary (Ik with equivalent
faces) into a point. In proving (C.5) this is essentially done for k = 2. Now assuming the (k− 1)-boundaries
(k ≥ 2) has already been reduced to a point, the mapping f restricted to the k-boundaries f |Ik can be
continuously deformed into a mapping from a bouquet of k-spheres equal to the number of inequivalent Ik,
joining at the single equivalent corner of the cubes ∨iS

k
i . Again this defines the multiplication of πk(M)

elements. Since πk(M) = 0, f |Ik can be continuously deformed to a constant map. Repeating this procedure
until k = N −1, we have reduced the TN -boundary to a point and TN to SN by one-point compactification,
which proves the theorem. This theorem might be related to the study of ‘weak’ and ‘strong’ topological
systems; see the footnote in Sec. 5.
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where the U(1) group corresponds to the global phase. In particular for n = 2, S3/U(1) ∼=
S3/S1 ∼= S2. It is known in algebraic topology that for a quotient manifold M = G/H,
πi(G) = 0 and πi−1(G) = 0 gives πi(G/H) ∼= πi−1(H); see i.e. Ref. [98]. Since πi(S2n−1) = 0
for 0 < i < 2n− 1, we have for n ≥ 2:

π1(CP
n−1) ∼= π1[S

2n−1/U(1)] ∼= π0[U(1)] = 0, π2(CP
n−1) ∼= π1[U(1)] ∼= Z.

Since π1(CP n−1) = 0, by (C.5) the n-tuples and therefore the eigenstates can be classified by
π2(CP

n−1). The same Chern number C is now given by the fundamental group π1[U(1)] ∼= Z.
This has the physical interpretation as the integer multiple of 2π acquired by the phase of
each eigenstate as its argument completes a closed-loop motion along the Brillouin zone
boundary, i.e. the Berry phase. Thus introducing the Berry connection and curvature:

Aj = − i

2
[z̄∂jz − (∂j z̄)z] , Fij = ∂iAj − ∂jAi, (C.8)

the Chern number is defined in this case as:

C =
1

2π

∮

∂T 2

A.dk =
1

4π

∫

T 2

eijFij dkxdky.

Substituting Eq. (C.8) gives C in terms of z, z̄:

C = − i

4π
eij
∫

T 2

2∑

a=1

∂z̄a
∂ki

∂za
∂kj

dkxdky. (C.9)

Let us check that Eq. (C.9) reduces to (C.7) for n = 2. Define n = z̄σz for the conduction
band. It can be shown that:

(z̄σz) .σz = z,

where we have used σαβ.σγδ = 2δαδδβγ − δαβδγδ and z̄z = 1. Hence n is indeed the unit
vector obtained from the Hamiltonian (C.1). To find z, writing:

n = (sin θ cosϕ, sin θ sinϕ, cos θ),

it can be seen that the parameterization:

z1 =
1√
2
ei(ψ−ϕ)/2 cos

(
θ

2

)
, z2 =

1√
2
ei(ψ+ϕ)/2 sin

(
θ

2

)
, (C.10)

in terms of Euler-angles ϕ, θ, ψ gives the desired form for n. Substituting (C.10) into (C.9)
gives:

1

4π

∫

T 2

sin θ
∂(θ, ϕ)

∂(kx, ky)
dkxdky,

which is just Eq. (C.6) written in spherical coordinates on S2. For the valence band we take
n = −z̄σz which gives an additional minus sign in C.
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Appendix C.2 Classification by Ground State Fermion Number
It turns out that C does not completely specify the topological properties of a spinless

superconductor. One can define four additional global Z2 invariants {ζi} for the system [48,
49, 51–53]. Three of the {ζi} values together with C completely determine the other Z2

invariant, and hence the bulk topology. We shall now review this classification scheme.
On a square lattice, the Brillouin zone contains four high-symmetry quasimomenta

points:
k0i = {(0, 0), (0, π), (π, 0), (π, π)}, (C.11)

where −k0i ∼ k0i. For a spinless superconductor, the gap function ∆(k) vanishes identically
at these points since by definition:

∆(k) ∝ ⟨ckc−k⟩, ∆(−k0i) = −∆(k0i) = ∆(k0i) = 0.

Therefore, the quasiparticle dispersion:

E(k) =
[
ε(k)2 + |∆(k)|2

]1/2
,

at k0i is simply E(k0i) = ε(k0i). The ground state fermion number at the given quasimo-
menta is given by the Fermi distribution n(k) in the limit T → 0. If there are no gapless
modes in the system, the only non-zero contribution comes from k0i and we have:

n[ε(k0i)] = 1, ε(k0i) < 0; n[ε(k0i)] = 0, ε(k0i) > 0.

Therefore, defining ζi = 1, 0 as the ground state fermion number at k0i:

ζi = 1−Θ[ε(k0i)], (C.12)

a spinless superconductor can be classified by the 4-tuple {ζ1, ζ2, ζ3, ζ4} which also determines
the ground state fermion parity.

The Chern number C and {ζi} are not independent [51, 53]:

(−1)C =
4∏

i=1

(−1)ζi . (C.13)

To prove Eq. (C.13), one can consider:

(−1)C = eiπC = exp

(
i

2

∮

∂T 2

A.dk

)
,

and compute the integral in the exponent [51, 53]. Eq. (C.13) can also be proven by the
following argument: consider our system in a trivial phase (C = ζi = 0) in the parameter
space for which (C.13) is trivially satisfied. One can in principle obtain any topological
phases by changing the parameters and successively crossing critical points in the phase
diagram. The trajectory can always be chosen such that the gap closes at only one of the
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k0i at each crossing. On two sides in the vicinity of the critical point, ε(k) changes sign
in the neighbourhood of the given k0i and the corresponding ζi changes by unity. However
since the quasiparticle gap is small and ∆(k) should remain qualitatively the same through
the phase transition, the dominant contribution to C in Eq. (C.7) near the neighbourhood
of k0i gives ±1/2 on two sides of the critical point and, as a result, C also changes by ±1.
Starting from the trivial phase we see that Eq. (C.13) indeed holds.

Accordingly, the bulk topology of a spinless superconductor is determined by C and three
of the four Z2 invariants {ζi}. The remaining ζi = 0, 1 is obtained from Eq. (C.13). We have
thus obtained the Z× (Z2)

3 classification scheme.
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Appendix D KW phases corresponding to diagonal stack-
ing of Kitaev Wires

As mentioned in Sec. 5.2.3, KWx+y phases are stackings of 1D Majorana wires along the
diagonal direction. To illustrate their properties, we choose the corresponding Hamiltonian:

H = −∆e

∑

v

Γev −∆ε

∑

p

ΓεNE(p)U
ε
NE(p),E(p)U

ε
p,E(p), (D.1)

where E(p) and NE(p) are plaquettes to the east and north-east of plaquette p. Again
assume an infinite lattice and that there are no e-bosons. The two phases KWx+y,1 and
KWx+y,0 correspond to ∆ε ≶ 0. In the ground states:

Γev = 1; ±ΓεNE(p)U
ε
NE(p),E(p)U

ε
p,E(p)|0⟩ = |0⟩, ∆ε ≶ 0. (D.2)

Substituting Eqs. (2.19) and (2.22), the second term in (D.1) is mapped into the following
fermionic Hamiltonian:

H = −i∆ε

∑

i,k

γiγ
′
k. (D.3)

The pairing of Majorana modes is depicted by curved dotted lines in Fig. D.28. The BdG
spectrum for Eq. (D.3) has the same form as (5.11) with:

ε(k) = −2∆ε cos(kx + ky), ∆(k) = −2i∆ε sin(kx + ky). (D.4)

The parity indices are:

KWx+y,0 : {1001}, ∆ε > 0; KWx+y,1 : {0110}, ∆ε < 0.

The Chern number C is, of course, zero in both phases.
We now show that there is also ‘weak breaking’ of lattice translation symmetry in these

phases: the e-bosons split into two sectors of effective anyons e′ and m′ in the ground
state, and lattice translations along both directions permute them. Here each sublattice is
given by vertices along the diagonals of the square unit cell. For example, in Fig. D.28,
e-bosons on vertices v1−4 become e′, while on v5 it becomes m′. This is similar to Wen’s
plaquette model [68]. To show this, we proceed analogously to Section 6.1, by finding the
‘renormalized’ e-transport operators Ũ e

vivj
in the superconducting ground states. Such an

operator must commute with the corresponding Majorana bilinear terms in Eq. (D.2). They
can be found only for translations between diagonals of a square. For example, in Fig. D.28,
translations between v1, v2 and v2, v3 are

Ũ e
v2v1

= Z1Z2, Ũ
e
v3v2

= i(Z2Z3)× (X3Z4). (D.5)

The factor i imposes Ũ e
v2v3

= (Ũ e
v3v2

)† = Ũ e
v3v2

. Eq. (D.5) can be understood intuitively
similarly to the horizontal stacking case; see discussions below (6.4) in Sec. 6.1. We draw
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v1

v2

v3

v4
v5

1

2

3

4

γ γ′

Figure D.28: Graphic representation of the fermionic Hamiltonian (D.3) in KWx+y phases. Couplings
between γ′, γ are shown as dotted lines. The two sublattices contain vertices v1−4 and v5 respectively. The
dashed line shows the transport of an e-boson along a closed loop in one sublattice, which measures the
parity of v5 on the other sublattice enclosed by the loop; see Eq. (D.6).

Majorana pairings with curved lines in the form in Fig. D.28. When an e-boson is trans-
ported from v1 through v5 to v2, it cuts through the same Majorana bond twice, and therefore
does not change the ‘fermion parity’ associated with such a pair of Majorana modes. How-
ever, going from v2 through v5 to v3, it cuts through two different bonds, annihilating two
Majorana fermions, which are then created by the pair creation operator X3Z4. The loop
translation operator on the ground state |0⟩ along the dashed line in Fig. D.28 now gives:

Ũ e
v4v1

Ũ e
v3v4

Ũ e
v2v3

Ũ e
v1v2

|0⟩ = Γev5 |0⟩, (D.6)

where we used the ground state identity (D.2) for KWx,0 and KWx,1 respectively; c.f. the
derivation leading to (6.5). This illustrates the mutual anyonic statistics of e-bosons in the
two sublattices. Here the two sublattices are exchanged by both vertical and horizontal
lattice translations.
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Appendix E BCS ground state wave-function without
translational symmetry

As is discussed in Sec. 6, the computation of Berry phase of e-bosons for C ̸= 0 phases
reduces to calculating matrix elements between parity-even superconducting ground states
of ε-fermions. Due to the presence of static e-vortices, the corresponding superconducting
Hamiltonians lose translation invariance. In this Appendix, we briefly review the solution
of mean-field BdG Hamiltonians without translational symmetry. Namely, we construct
the parity-even ground state wave-function in terms of annihilation operators ci of spinless
fermions defined on each (dual) lattice site i.

The BdG Hamiltonian is defined on a finite lattice with N sites as:

H =
1

2
Ψ†hBdGΨ, hBdG =

(
Ξ ∆
∆† −ΞT

)
. (E.1)

Here Ψ =
(
c1, · · · , cN , c†1, · · · , c†N

)T
. The single-particle hopping matrix Ξ satisfies

the hermicity condition: Ξ† = Ξ, while the pairing matrix is anti-symmetric ∆T = −∆.
Due to particle-hole symmetry, Eq. (E.1) can be diagonalized into the following form:

H =
1

2
Ψ̃†h0Ψ̃ =

N∑

n=1

En

(
α†
nαn −

1

2

)
;

h0 = diag{E1, E2, . . . ,−E1,−E2, . . . }, Ψ̃ = (α1, . . . , α
†
1, . . . )

T .

(E.2)

Here {E1, E2, . . . ,−E1,−E2, . . . } are the eigenvalues of hBdG, and αn is the annihilation
operator of a Bogoliubov quasiparticle with energy En ≥ 0. αn is related to ci by a standard
Bogoliubov transformation:

αn =
∑

i

[
u∗inci + v∗inc

†
i

]
. (E.3)

To find the coefficients uin, vin and energies En, we use the equation of motion for α†
n:

[H,α†
n] = Enα

†
n, and substitute Eqs. (E.1) and (E.3). This gives the following eigenvalue

problem for the eigenvector Cn = (u1n, · · · , uNn, v1n, · · · , vNn)T :

hBdGCn = EnCn. (E.4)

The energies En and uin, vin can then be found from Eq. (E.4) by exact diagonalization.
Due to particle-hole symmetry of hBdG, it can be shown that, for each eigenvector Cn, there
exists another eigenvector C ′

n = (v∗1n, · · · , v∗Nn, u∗1n, · · · , u∗Nn)T such that:

hBdGC
′
n = −EnC ′

n. (E.5)
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From Eqs. (E.4) and (E.5), one can obtain the following relations due to orthogonality of
eigenvectors:

∑

i

[
u∗inuim + v∗invim

]
= δnm, (E.6a)

∑

n

[
uinu

∗
jn + v∗invjn

]
= δij, (E.6b)

∑

i

[
uinvim + vinuim

]
= 0, (E.6c)

∑

n

[
uinv

∗
jn + v∗inujn

]
= 0. (E.6d)

The first of these identities can also be obtained from the relation: {α†
n, αm} = δnm.

We can now construct a ground state wave-function of HBdG taking uin, vin as input. As
is well-known, the superconducting ground state of Eq. (E.1) is a condensate of Cooper-pairs
of fermions. In systems with translational invariance, the pairing occurs between fermions
with opposite momenta ±k and the ground state wave-function can be written as:

|Ω⟩ =
∏

k

[
u∗(k)− v∗(k)c†kc

†
−k

]
|0⟩

= N exp

[
1

2

∑

k

f(k)c†kc
†
−k

]
|0⟩,

(E.7)

where N =
∏

k u
∗(k) is a normalization constant, f(k) = −f(−k) = −v∗(k)/u∗(k), and |0⟩

is the fermion vacuum state. For a system without translation invariance, we can write the
ground state as:

|Ω⟩ = N exp

(
1

2

∑

i,j

fijc
†
ic

†
j

)
|0⟩, fij = −fji. (E.8)

The summation in the exponent is taken over lattice sites. Note that the ground state
ansatz Eq. (E.8) has even fermion parity. This may not be true in certain topologically
non-trivial phases whose ground states have odd parity. This can be verified by using the
expression for total fermion parity of a BCS ground state in terms of BdG Hamiltonian
(E.1) derived in [17]; note the different definition of Majorana modes there. Thus, as is
discussed in Sec. 5, these parity-odd states are unphysical and will not be used throughout
the calculation. However as will be shown in Appendix E.1, in those cases, the first excited
state, which is physical, can still be described by a pairing ansatz of the form in Eq. (E.8).

To express fij in terms of uin and vin, we use the identity for the ground state:

αn|Ω⟩ = 0, (E.9)

and substitute Eqs. (E.3) and (E.8). In subsequent calculations, we bring the ci term in
Eq. (E.3) to the right of the exponential in Eq. (E.8). This can be done by expanding the
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exponential function and using the identity:
[
ci,

1

2

∑

j,k

fjkc
†
jc

†
k

]
=
∑

k

fikc
†
k. (E.10)

After some algebra, this gives for fij:
∑

i

fiju
∗
in = −v∗jn. (E.11)

It can be shown that fij is indeed anti-symmetric. For this purpose we multiply Eq. (E.11)
by vjn and sum over n, j. Substituting the orthogonality conditions Eq. (E.6) then gives:

∑

j

fiju
∗
jn = v∗in, (E.12)

which proves our statement. In what follows, we shall represent uin and vin as N × N
matrices and write fij in matrix notation as:

f = v∗(u∗)−1. (E.13)

Eq. (E.13) determines fij in terms of uin and vin obtained from exact diagonalization.
The normalization constant N can be determined by directly computing ⟨Ω|Ω⟩. As will

be discussed in Appendix F, there is:

N = [det(1 + f †f)]−1/4. (E.14)

Finally, we comment on a subtlety in exact diagonalization on a finite lattice. In
Eq. (E.8), the ‘vacuum’ state |0⟩ into which the Cooper-pairs condense contains no fermions.
However, this can be a bad reference state in some cases. Mathematically, this means the
matrix u is not invertible and f in Eq. (E.13) becomes ill-defined. For example, consider a
Hamiltonian whose gound state is an atomic insulator:

H = −∆
∑

i

c†ici, ∆ > 0. (E.15)

In its ground state, every site is occupied:

|0⟩h =
N∏

i

c†i |0⟩. (E.16)

If one tries to express |0⟩h using the BCS ansatz in momentum space in Eq. (E.7), it would
correspond to the limit u(k) = 0, and f(k) → ∞ as a result. For ground states sufficiently
close to |0⟩h, the matrix u might not be invertible numerically. This problem can be avoided
by choosing Eq. (E.16) as the new ‘vacuum’ state and consider a condensation of hole pairs
on top of it. Thus the BCS Ansatz in this case is:

|Ω⟩ = N exp

(
1

2

∑

i,j

gijcicj

)
|0⟩h. (E.17)

It can be shown that the (hole) Cooper-pair wave-function has gij = u∗(v∗)−1.
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Appendix E.1 The first excited state of a BdG Hamiltonian with
odd ground state parity

As discussed in the previous section, in certain topologically non-trivial phases, the
ground state of a BdG Hamiltonian has odd fermion parity. These states are unphysical
and do not belong to the dual space of a periodic spin system. Therefore, the lowest energy
physical eigenstate of HBdG will be the first excited state |Ψ1⟩ = α†

1|Ψ0⟩. In this section, we
show that |Ψ1⟩ can be also expressed by an ansatz of the form in Eq. (E.8).

By definition, |Ψ1⟩ satisfies:

α†
1α1|Ψ1⟩ = |Ψ1⟩; αn|Ψ1⟩ = 0, n ̸= 1. (E.18)

αn, α
†
n are given in Eq. (E.2). For our purpose, it is more convenient to consider another

Hamiltonian:

H ′ =
N∑

n=2

En

(
α†
nαn −

1

2

)
− E1

(
α†
1α1 −

1

2

)
, (E.19)

for which |Ψ1⟩ is the ground state. Obviously, there is:

H ′ =
1

2
Ψ̃†h′0Ψ̃ =

1

2
Ψ†h′BdGΨ. (E.20)

where h′0 = diag{−E1, E2, ..., EN , E1,−E2, ...,−EN}, which is related to the h0 through a
permutation P :

h′0 = Ph0P. (E.21)

Here Pii = 1 for i ̸= 1, N +1, P1,N+1 = PN+1,1 = 1 and zero otherwise. Using the fact that:

Ψ = UΨ̃, U =

(
u v∗

v u∗

)
, (E.22)

one can obtain:

h′BdG = UPh0PU
†

= Ũh0Ũ
†, (E.23)

with
Ũ = UP ≡

(
ũ ṽ∗

ṽ ũ∗

)
. (E.24)

Using the ansatz

|Ψ1⟩ = N exp

(
1

2

∑

i,j

f̃ijc
†
ic

†
j

)
|0⟩, (E.25)

it can be shown that f̃ = ṽ∗(ũ∗)−1.
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Appendix F Matrix Elements between BCS ground states
We compute overlaps and matrix elements of ground states (E.8) of BdG Hamiltonians

with different e-boson configurations. Since e-bosons act as π-vortices for fermions, each
configuration of e corresponds to a different set of matrix elements Ξ, ∆ in Eq. (E.1).
Therefore, we consider two such BCS ground states:

|Ω0⟩ = N0|Ω̃0⟩ = N0 exp

(
1

2

∑

i,j

f
(0)
i,j c

†
ic

†
j

)
|0⟩, (F.1a)

|Ω1⟩ = N1|Ω̃1⟩ = N1 exp

(
1

2

∑

i,j

f
(1)
i,j c

†
ic

†
j

)
|0⟩. (F.1b)

N0,1 are defined in Eq. (E.14), and f (1), f (2) are given by exact diagonalization of the
respective Hamiltonians; see Eq. (E.13). The overlap between the two states has been
calculated, for example in Ref. [99] as an integral over anti-commuting fermion fields:

⟨Ω̃0|Ω̃1⟩ = (−1)
N(N+1)

2 pf
[(

f (1) −I
I f (0)†

)]
. (F.2)

pf(A) is the Pfaffian of matrix A. In particular, by taking |Ω̃0⟩ = |Ω̃1⟩, we arrive at Eq. (E.14)
for the normalization constant N . For this thesis to be self-contained, we derive Eq. (F.2)
below using functional integration.

The ‘vacuum transition amplitude’ (F.2) can be seen as an averaging of exponential
operators over the trivial vacuum |0⟩, which can be written as a functional integral over
anti-commuting fields c̄, c with certain statistical weight ρ:

⟨0|O[c, c†]|0⟩ =
∫
O[c, c̄] ρ[c, c̄]

∏

i

dc̄idci.

In transitioning from Hamiltonian to Lagrangian formalism we have changed the notation
c† → c̄. To find ρ, note that operators in (F.2) have all c† to the right and c to the left.
Therefore the functional integral should correspond to the ‘anti-normal’ product of c, c†
operators. The averaging over |0⟩ satisfies the following requirements:

⟨0|cic†j|0⟩ = δij, ⟨0|0⟩ = 1,

and by definition Wick’s theorem. This gives for the statistical weight: 13

⟨0|O[c, c†]|0⟩ =
∫
O[c, c̄] exp

(
−

N∑

i=1

c̄ici

)
N∏

i=1

dc̄idci.

13The convention for integration over anti-commuting variables θ is as follows:
∫

θ dθ = 1,

∫
dθ = 0,

∫
θ1θ2 dθ1dθ2 = −

∫
θ1 dθ1

∫
θ2 dθ2 = −1,

∫
f(θ) dθ = f ′(0);

see i.e. Ref. [100]. Note that the differential dθ is also anti-commuting.
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Thus introducing the notation Ψ = (c̄1, ..., c̄N , c1, ..., cN)
T , Eq. (F.2) can be re-written as:

⟨Ω0|Ω1⟩ = N0N1

∫
exp

(
1

2
ΨM0Ψ

) N∏

i=1

dc̄idci, M0 =

(
f (1) −I
I f (0)†

)
. (F.3)

Note that M0 is anti-symmetric. Eq. (F.3) is the same expression as in Ref. [99]. Before
proceeding, we rearrange the integral measure by moving all dc̄i to the left, consistent with
the definition of Ψ. Starting from i = 2, each term dc̄i moves past

∏i−1
k=1 dck which gives

(−1)i−1. Adding the powers together gives
∑N

i=2(i− 1) = N(N − 1)/2 and we get:

N∏

i=1

dc̄idci = (−1)N(N−1)/2

(
N∏

i=1

dc̄i

)(
N∏

i=1

dci

)
= (−1)N(N−1)/2

2N∏

i

dΨi.

The integral (F.3) can now be computed as follows. By an orthogonal transformation U any
even-dimensional anti-symmetric matrix A can be diagonalized into block diagonal form
with the 2× 2 blocks:

(
0 λi

−λi 0

)
,

N∏

i=1

λi = pf(UTAU) = detU × pf(A).

Then in (F.3) we effect a change of variables θi = (U−1)ijΨj. The integration gives:

1

detU

∫
exp

( 2N∑

k=1

λkθ2k−1θ2k

) 2N∏

i=1

dθi =
1

detU

N∏

k

(−λk) = (−1)Npf(M0), (F.4)

and we return to Eq. (F.2). In deriving (F.4), we have used the following identity for change
of variables in fermion field integration:

∫ ∏

i

dΨi = (detU)−1

∫ ∏

i

dθi.

We shall also calculate matrix elements between two BCS ground states. First we con-
sider a product of fermion parity operators

∏
p Γ

ε
p = exp(−iπ∑p c

†
pcp) between two BCS

ground states. Its matrix elements can be expressed in a similar form to Eq. (F.2). For
simplicity, first consider the matrix element for a single plaquette p:

⟨Ω1|Γεp|Ω0⟩ = N1N0⟨0| exp
(
1

2

∑

i,j

f
(1)∗
i,j cjci

)
Γεp exp

(
1

2

∑

i,j

f
(0)
i,j c

†
ic

†
j

)
|0⟩. (F.5)

In Eq. (F.5) we insert on the RHS the identity (Γεp)
2 = 1:

N1N0⟨0| exp
(
1

2

∑

i,j

f
(1)∗
i,j cjci

)
Γεp exp

(
1

2

∑

i,j

f
(0)
i,j c

†
ic

†
j

)
ΓεpΓ

ε
p|0⟩. (F.6)
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To evaluate the matrix exponential, we use the following identity (remember that Γεp is
hermitian): 14

Γεpc
†
iΓ

ε
p = eiπc

†
pcpc†ie

−iπc†pcp = c†i exp(iπδip) = (−1)δipc†i . (F.7)

From Eq. (F.7) and that Γεp|0⟩ = |0⟩, Eq. (F.6) becomes:

N1N0⟨0| exp
(
1

2

∑

i,j

f
(1)∗
i,j cjci

)
exp

(
1

2

∑

i,j

f̃
(0)
i,j c

†
ic

†
j

)
|0⟩; f̃ij = (−1)δipfij(−1)δjp . (F.8)

Above can be immediately generalized to matrix elements of a product of fermion parity
operators:

⟨Ω1|
∏

p

Γεp|Ω0⟩ = N1N0⟨0| exp
(
1

2

∑

i,j

f
(1)∗
i,j cjci

)
exp

(
1

2

∑

i,j

f̃
(0)
i,j c

†
ic

†
j

)
|0⟩. (F.9)

Now f̃ij satisfies:
f̃ij = (−1)

∑
p δipfij(−1)

∑
p δjp , (F.10)

where the summation is taken over plaquettes of the fermion parity operators. In matrix
notation, Eq. (F.10) can be written as:

f̃ =

(∏

p

Ip

)
f

(∏

p

Ip

)
, (F.11)

where (Ip)ij = δij(−1)δip is a diagonal matrix with elements unity apart from the p-th
diagonal, which has element −1. Eqs. (F.9), (F.10) together with Eqs. (F.2) and (E.14)
determine the matrix elements of fermion parities.

For reference purposes we shall also present formulae for matrix elements of fermion
fields on different plaquettes of the form: ⟨cicj⟩, ⟨cic†j⟩ and ⟨c†ic†j⟩. Here it is important that
i ̸= j so that the operators can be always brought to ‘anti-normal’ ordering. To compute
these elements it is convenient to define a ‘generating functional’ of the form (F.3) but with
an arbitrary 2N × 2N anti-symmetric matrix M:

Z[M ] = (−1)
N(N+1)

2

∫
exp

(
1

2
ΨMΨ

) 2N∏

i

dΨi = (−1)
N(N+1)

2 pf(M). (F.12)

Then averages of the form ⟨c̄ic̄j⟩ can be obtained as:

⟨Ω0|c̄ic̄j|Ω1⟩ = 2N0N1
δZ[M ]

δMij

∣∣∣∣
M=M0

= 2N0N1(−1)
N(N+1)

2
δ

δMij

pf(M)

∣∣∣∣
M=M0

. (F.13)

14Eq. (F.7) can be obtained by noting that exp(−iπc†pcp) is formally a single-particle time evolution
operator with energy εp = 1 and time t = π, and c†p → c†p exp(iεpt) under such a transformation.
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Similarly there is:

⟨Ω0|cic̄j|Ω1⟩ = 2N0N1
δZ[M ]

δMN+i,j

∣∣∣∣
M=M0

;

⟨Ω0|cicj|Ω1⟩ = 2N0N1
δZ[M ]

δMN+i,N+j

∣∣∣∣
M=M0

.

(F.14)

We now calculate Eq. (F.13). Using the identity:

pf(M)2 = detM → log pf(M) =
1

2
log detM =

1

2
Tr logM,

there is:
δ log pf(M) =

1

pf(M)
δ pf(M) =

1

2
Tr
(
M−1δM

)
;
δMij

δMkl

= δikδjl. (F.15)

Substituting (F.15) in (F.13) gives:

⟨Ω0|c̄ic̄j|Ω1⟩ = (−1)N0N1(−1)
N(N+1)

2 pf(M0)(M
−1
0 )ij, (F.16)

since M−1
0 is also anti-symmetric. For other types of averages we obtain:

⟨Ω0|cic̄j|Ω1⟩ = −N0N1(−1)
N(N+1)

2 pf(M0)(M
−1
0 )N+i,j;

⟨Ω0|cicj|Ω1⟩ = −N0N1(−1)
N(N+1)

2 pf(M0)(M
−1
0 )N+i,N+j.

(F.17)
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