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Towards Integrated Data Analytics: Time Series Forecasting

in DBMS

Ulrike Fischer - Lars Dannecker - Laurynas Siksnys -
Frank Rosenthal - Matthias Boehm - Wolfgang Lehner

Abstract Integrating sophisticated statistical methods into
database management systems is gaining more and more at-
tention in research and industry in order to be able to cope
with increasing data volume and increasing complexity of
the analytical algorithms. One important statistical method
is time series forecasting, which is crucial for decision mak-
ing processes in many domains. The deep integration of time
series forecasting offers additional advanced functionalities
within a DBMS. More importantly, however, it allows for
optimizations that improve the efficiency, consistency, and
transparency of the overall forecasting process. To enable
efficient integrated forecasting, we propose to enhance the
traditional 3-layer ANSI/SPARC architecture of a DBMS
with forecasting functionalities. This article gives a general
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overview of our proposed enhancements and presents how
forecast queries can be processed using an example from the
energy data management domain. We conclude with open
research topics and challenges that arise in this area.

Keywords Time series forecasting - DBMS -
Architecture - Challenges

1 Introduction

Modern data analysis in database management systems in-
volves increasingly sophisticated statistical methods that go
well beyond the rollup and drilldown over simple aggregates
of traditional BI. Additionally, a rising need for ad-hoc data
mining can be observed, which requires fast and automatic
processing of complex statistical queries [4, 33]. There ex-
ists a wide variety of external statistic tools that provide rich
statistical functionality but often suffer from limited scala-
bility and efficiency [8]. As most data subject to analysis
is stored in database management systems, which provide
powerful mechanism for accessing, partitioning, filtering,
and indexing data, a rising trend addresses the integration of
statistical methods inside a DBMS. This is especially valid
for upcoming in-memory databases [12] that allow fast data
analysis per se.

Many interesting integration aspects concerning specific
statistical methods (e.g., classification [23], regression [9])
as well as more general approaches [8, 18] have been dis-
cussed in the past. In this article, we explicitly focus on
integration aspects and challenges of time series forecast-
ing, which is an important statistical method and crucial for
manual and automatic decision making processes in many
domains [17].

For example, the following three use cases require very
accurate and efficient time series forecasting:
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Fig. 1 General Forecasting
Process
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Forecasting Sales  Forecasting forms the basis for plan-
ning in many commercial decision-making-processes (e.g.,
inventory or production planning). Typically, time series
data is stored in database management systems and com-
plex analytical (often reoccurring) decision queries includ-
ing forecast queries are run on this data. Typical forecast
queries involve many different time series according to dif-
ferent dimensions (e.g., product, brand, store) and are of-
ten submitted by decision managers that do not know much
about statistical forecast models. This results in the fact that
forecasting should be as transparent to the user as possible.

Forecasting Energy Data  Renewable Energy Sources
(e.g., windmills) pose the challenge that production is de-
pendent on external factors and thus cannot be planned like
traditional energy sources. In this context, accurate forecast-
ing is crucial for balancing energy supply and demand to
reduce the overall energy mismatch and penalties paid for
any kind of imbalances [3]. In addition, the need for fast
response times to react to new market situations and a con-
tinuous stream of new production and consumption mea-
surements requires very efficient forecasting functionalities.

Traffic In the automotive domain, predictive location-
based services deliver relevant content information to drivers
according to routes they undertake (e.g., information about
gas stations and traffic conditions) [22]. Such services con-
tinuously collect millions of user locations, store them in
a moving object database, and run expensive prediction al-
gorithms to determine movement trajectories of all users.
Prediction algorithms also involve time series forecasting
[34] (e.g., speed prediction) to allow timely delivery of high
quality content to users. It is possible only if accurate and
up-to-date forecasts are available at any time.

All three use cases are based on the traditional model-
based time series forecasting process (Fig. 1) that consists of
three main phases—model creation (identification and esti-
mation), model usage (forecasting), and model maintenance
(evaluation and adaption). First, the model creation phase

Model Maintenance

5. Model Adaptation 4. Model Evaluation ]

New Real
Values
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involves selecting and building a stochastic model that cap-
tures the dependency of future on past data. This is an expen-
sive process as parameter estimation of many sophisticated
models involves numerical optimization methods that iter-
ate several times over the base data. However, once a model
is created and parameters are estimated, it can cheaply be
used over and over again to forecast future values of the time
series (model usage). The model maintenance phase evalu-
ates new actual data of the time series and triggers possible
adaption of the forecast model. This is computationally ex-
pensive as well, as most parameters cannot be maintained
incrementally and thus, again a parameter estimation is re-
quired.

A tight coupling of the described forecasting process
within a DBMS (1) ensures consistency between data and
models, (2) increases efficiency by reducing data transfer
and exploiting database related optimization techniques, and
(3) enables declarative forecast queries for any user. In the
context of integrating statistical methods into databases, we
can observe two main research directions. Partial integra-
tion approaches do not change the database itself by reusing
existing statistical tools like R and improving their coopera-
tion with the DBMS [8, 18]. For example, Grofe et. al. [18]
developed a shared memory-based data exchange to reduce
the communication overhead between R and the database.
While such approaches are more general and easier to real-
ize, they do not allow for optimizations on the forecasting
process itself. In contrast, we argue for a full integration ap-
proach that extends all layers of a traditional DBMS leading
to a higher initial effort but offering much higher optimiza-
tion potential.

In the remainder of this paper, we first summarize the re-
quirements of the presented use cases and shortly discuss re-
lated work for each of these requirements (Sect. 2). We then
present a general forecasting architecture that addresses the
defined requirements and explain forecast query processing
in the use case of forecasting energy data (Sect. 3). Finally,
we give a brief overview over research topics and challenges
in Sect. 4 and conclude in Sect. 5.
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2 Requirements and Related Work

Following the presented use cases, we can derive general
requirements of forecasting within a database:

Advanced Forecasting Functionality  First of all, the
database system should provide advanced statistical fore-
casting functionalities that provide high accuracy for various
use cases and time series data. For example in the energy
domain multi-equation forecast models are often necessary
to achieve reasonable accuracy [27]. Also, new forecasting
methods required by applications should be easily addable.
Major commercial DBMSs support only a limited amount
of such forecasting functionality. For example, Oracle of-
fers linear as well as non-linear regression methods or expo-
nential smoothing as part of its OLAP DML [25]. The Data
Mining Extension (DMX) in Microsoft SQL Server sup-
ports a hybrid forecast method consisting of ARIMA and
autoregressive trees [1].

Declarative Forecast Queries  Forecast queries should fol-
low the traditional SQL interface and offer a simple lan-
guage extension usable for any user. For example, Duan et.
al. [10] proposed a simple FORECAST keyword to specify
declarative forecast queries.

Integration into Relational Query Processing  Forecast
queries should be seamlessly integrated into standard re-
lational query processing allowing arbitrary forecast queries
as well queries on forecasted query results (e.g., joins of
forecasted and historical data). Within commercial DBMSs
predictive functionality is usually implemented as cus-
tomized functions using proprietary languages [1, 25] and
thus, cannot be utilized with other relational operators. In
contrast, Paris et. al. [26] developed a formal definition of
a forecast operator and explored the integration of forecast
operators with standard relational operators.

Transparent and Automatic Query Processing  The pro-
cessing of forecast queries should be done transparently and
automatically by the database system. This includes auto-
matic creation or reuse of forecast models for given fore-
cast queries as well as automatic maintenance of materi-
alized forecast models. For example, within the Fa system
[10] an incremental approach was proposed to automati-
cally build ad-hoc models for multi-dimensional time series,
where more attributes are added to the model in successive
iterations.

Efficient Query Processing ~ Complex forecast models or
large amount of time series data might lead to long execution
time of forecast queries. Thus, optimization techniques are
required that efficiently process such forecast queries. Ge
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and Zdonik [16] proposed an I/O-conscious skip list data
structure for very large time series. In addition, techniques to
efficiently reuse models exploiting multi-dimensional data
have already been developed [2, 13, 14].

Efficient Update Processing Finally, a continuous stream
of new time series values requires efficient maintenance of
computed models. General [5] and model-specific [28] tech-
niques to determine when a model requires maintenance
have been proposed. In addition, existing approaches speed
up the computation process itself by parallelization [6] or by
using previous model parameters [7].

To summarize, existing research papers already identified
individual aspects of the requirements in the area of time se-
ries forecasting. However, no general architecture including
all these requirements and exploiting existing optimization
approaches has been described so far. In the next section, we
present a general architecture that addresses this issue.

3 Forecasting in Database Management Systems

The basic idea underlying our forecasting DBMS approach
is to develop a DBMS architecture that specifically supports
and is optimized for the execution of forecast queries, i.e.,
queries that involve forecasted values. For this purpose, we
decided to base our approach on the standard ANSI/SPARC
architecture [24] and enhance it with specific forecasting
components. In particular, we propose specific changes and
additions on all three levels of the ANSI/SPARC architec-
ture to allow a transparent and efficient end-to-end execution
of forecast queries. Figure 2 illustrates the ANSI/SPARC ar-
chitecture as well as our proposed additions. Our changes
on the external schema level mainly comprise the definition
of a special Time Series View that ensures a representation
of data in combination with time. On the conceptual schema
level, we define a Composite Forecast Model that is a con-
ceptual representation of a concrete (atomic) forecast model.
Composite models can define a forecast model composition,
meaning that the forecast model is decomposed into mul-
tiple individual models. With this approach, we achieve a
higher accuracy by intelligently model compositions and re-
duce maintenance costs by reusing models in multiple com-
positions. The internal schema is divided into the Logical
Access Path [30] and the Physical Access Path. The Log-
ical Access Path contains the Atomic Forecast Model that
is a concrete realization of a forecast model defining the
model type and characteristics. Further on this level, we pro-
pose a possible materialization of forecast models and fore-
casting results to quickly provide results for frequently re-
peating forecast queries. On the Physical Access Path, Fis-
cher et al. [14] suggested to use special Forecast Model In-
dex Structures that further increase the efficiency of fore-
cast queries. Additionally, specific time series data index
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Fig. 2 Extension of 3-layer
schema architecture
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structures [16] can be exploited to speed up time series ac-
cess. In the following, we describe our enhancements for the
ANSI/SPARC architecture in more detail and show the ap-
plication of our concept in a real world example.

3.1 System Architecture Details

External Schema The external schema in the ANSI/SPARC
architecture consists of user-defined data views, which can
be seen as virtual tables storing the results of specific
queries. A view can comprise attributes of multiple tables
as well as pre-defined aggregations or calculation results.
Forecasts are typically calculated on time series data, mean-
ing a sequence of discrete values measured successively
over time. To allow forecast queries in a database system,
we define a special type of a regular view that ensures the
representation of data as time series. Thus, the Time Series
View is composed of an obligatory time attribute contain-
ing discrete points in time in its natural order and one or
multiple attributes exhibiting measurements at these spec-
ified moments. Optionally, these attributes can be tagged
with forecasting-specific meta data, which, for example, in-
dicates whether an attribute represents a dependent variable
to be forecasted or an independent variables such as external
influence having an impact on the main variable. Typically,
there is one main variable and many external influences. An
example query defining a Time Series View is denoted as:

CREATE TIMESERIESVIEW tvl AS

SELECT date as TIME, energy as VALUE,
temperature as INFLUENCE

FROM measurements

ORDER BY TIME;

A time series view can represent both historical and fore-
casted values of a time series. Typically, after its creation

4
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only historic values are contained, but as soon as a query re-
quests future values, these values are forecasted and added
to the view accordingly. For predicted values, the view also
contains further information such as the standard deviation
or confidence intervals, which clearly distinguish future val-
ues from historic values. Once real values are available, they
replace the forecasted values. The time series view is typi-
cally defined by a user or an application, and, once defined,
it is automatically managed by the DBMS (e.g., by automat-
ically calculating forecasts or adding new values). The view
can be queried in an ad-hoc fashion at any time and can be
referenced by any other regular view or time series view. In
some cases, as explained later, a time series view is gener-
ated automatically by the DBMS as the result of a forecast
model decomposition.

Conceptual Schema The conceptual organization of the
data in an ANSI/SPARC compliant DBMS is defined in the
conceptual schema level. This level includes a data schema
that describes available entities, their relationship and con-
tained attributes and can be seen as an abstraction from the
logical and physical data representation. Likewise, Compos-
ite Forecast Models are defined as a conceptual abstraction
from concrete (atomic) forecast models and thus, it can be
seen as some kind of transparency layer. In a simple case, a
conceptual model directly refers to a single atomic forecast
model from the internal schema, representing a simple direct
forecast, e.g., energy production of a single solar panel. In a
more complex case, composite forecast models can also de-
scribe a hierarchical forecast composition. When forecast-
ing the energy consumption of Germany, for example, the
forecasting can be decomposed into forecasts of the energy
consumption for all German states, or further down in the
hierarchy, the energy consumption of all German cities. For
this purpose, the composite forecast model can define a hi-
erarchical forecast composition referring further composite
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Fig. 4 Example model hierarchy

forecast models on multiple hierarchy levels. The final fore-
cast is later calculated by aggregating the single results of
the referenced atomic forecast models according to the de-
fined hierarchical composition. As illustrated in Fig. 3, each
composite forecast model in the hierarchy can either refer-
ence multiple child composite forecast models or, on the leaf
level, ultimately refer to atomic forecast models defined in
the internal schema layer of the ANSI/SPARC architecture.
Figure 4 shows an example of such a forecast model com-
position hierarchy. It is important to note that the automatic
determination of forecasting compositions is a complex task
with many prerequisites and constraints. For now we assume
that compositions are pre-defined by the database adminis-
trator that is aware of the database schema and the available
data. We discuss the automatic composition creation sepa-
rately in Sect. 3.2.

Besides the definition of forecasting compositions, typ-
ically, one composite forecast model references only one
atomic forecast model (see Fig. 3). However, for the sake
of forecasting accuracy it is also possible to employ ensem-
ble forecasting, where multiple atomic models of different
types and with different parameter combinations are exe-
cuted in parallel (e.g., [29, 31]). Afterwards, the results are
combined in a weighted linear combination, where the most
accurate model gains the highest weight. In this case, a sin-
gle composite model might refer to multiple atomic models.

5

Forecasting Input Forecasting Models Forecasting Output

With respect to the external layer, each composite fore-
cast model is linked with a single time series view from the
external schema. It further defines a single output (“CM Out-
put”), which is a special table complying to the same rules
as the time series view.

Internal Schema The logical and the physical data access
paths are defined in the internal schema of an ANSI/SPARC
architecture. Logical access paths refer to aspects like parti-
tioning and materialization, while the physical access paths
define low level access structures like indexes. Likewise,
Atomic Forecast Models are defined that represent a non-
decomposable forecast model. A single atomic forecast
model is represented by (1) an input, (2) the forecast model
type, (3) forecast model parameters and (4) the current fore-
cast state (see Fig. 3). Here, the input is the data as defined
in the associated time series view, referenced through the
connected composite forecast model. The forecast model
type (e.g., exponential smoothing) is chosen from a fore-
cast model catalog that represents all forecast model types
available in the DBMS and is pre-defined with respect to
the application domain and the common data characteris-
tics. The chosen forecast model type determines the fore-
cast model characteristics (e.g., number of lags) and defines
the parameters of the forecast model. When creating an in-
stance of an atomic forecast model the parameters are esti-
mated using local or global general purpose optimization al-
gorithms. This estimation involves a large number of simula-
tions and thus, typically is very time consuming. These algo-
rithms are required to be part of a forecast-enabled DBMS.
Finally, the output of the atomic forecast model—predicted
future values—are stored in a special data structure called
the atomic forecast model output (“AM Output”). This table
is composed of at least a time column and exactly one value
column that contains the forecasted values. Optionally, ad-
ditional attributes might be included in the atomic forecast
model output (e.g., prediction intervals).
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Fig. 5 Processing Forecast Queries

Similarly to materialized views, composite and atomic 3.2 Processing Forecast Queries
forecast models can be computed on the fly or material-
ized for faster query response times. Materialized forecast ~ Based on the introduced conceptual architecture, we now
models store the forecast model parameters and the forecast ~ discuss the processing of a forecast query. We first give a

model state. This especially avoids the very time consum-  high level overview of the basic steps in forecast query pro-
ing estimation of the forecast model parameters and thus,  cessing (Sect. 3.2.1) and then traverse the process in more
allows a very fast provisioning of forecasting results. As a  detail using an example from the use case of energy fore-
result, the execution time of forecast queries is greatly re-  casting (Sect. 3.2.2).

duced. A further reduction is possible when directly ma-

terializing the forecasting results, i.e., the forecast model ~ 3.2.1 Overview

output. Similar to materialized views, materialized forecast

models require maintenance after each appended time series ~ We distinguish two main cases to process a given forecast
value. This includes either the simple update of the forecast ~ qUETY (Fig. 5). First, if a suitable composite forecast model

(when the model is still accurate) or a more expensive pa- exists, the forecasts are computed or loaded (either model
parameters or materialized forecast values) for each atomic

forecast model within the given composite model and com-
pose the final forecasts according to the stored composition
rule ((1) in Fig. 5). Second, if no composite forecast model
is available, two choices arise. We can either return an error
to the user or we can compute a composite forecast model
on the fly ((2) in Fig. 5). In the latter case, we first enumerate
different composition alternatives using a composition rule
catalog or composition advisor (3). Such a catalog might
store meta data describing the hierarchical dependencies in
the data that can be used as composition rules. If no such
rule catalog is available, we do not create a forecasting com-
position, but create a single composite forecast model that
attaches exactly one atomic forecast model to the given time
series view. For all found composition alternatives, we then
create all missing atomic forecast models that do not already
series values in a timely subsequent order as it is required  xist in the database (4). Such an atomic forecast model is
for forecast models. Second, more advanced indexing struc-  created by empirically evaluating different forecast methods
tures like skip-lists [16] can be utilized or similarity indexes,  that are stored in the forecast method catalog and choosing
which would further increase the processing efficiency and  the best one or by employing forecast model ensembles. Fi-

rameter re-estimation (when the model violates the accuracy
constraints). The maintenance of the materialized forecast
models can be conducted asynchronously to the execution
of forecast queries, which allows for fast forecast query exe-
cution at all times. For the physical access paths of the inter-
nal schema, model index structures can be used that allow
an efficient storage and search for materialized composite
forecast models and connected atomic forecast models [14].
Such index structures ensure efficient updates (or invalida-
tions) of atomic forecast models on time series updates as
well as efficient access to instantiated atomic forecast mod-
els and their outputs during the execution of forecast queries.
Additionally, classical data index structures are enhanced to
allow an efficient processing of time series data. First, time
index structures are necessary to ensure access of the time

decrease the forecast query response times. nally, after all atomic forecast models have been created, we

To sum up, we have discussed necessary conceptual ex-  choose the composition approach with the lowest error and

tensions to the traditional ANSI/SPARC architecture in or-  calculate the query result (5). The previously described fore-

der to enable forecasting within a DBMS. For further read-  casting process, including the model composition creation,

ings and details on the implementation of such an architec-  is conducted transparently to the user. The user simply re-

ture we refer to [15]. quests a forecast for the user-defined time series view and
6

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden



Final edited form was published in "Datenbank-Spektrum" 13 (1), S. 45-53. ISSN: 1610-1995
http://dx.doi.org/10.1007/s13222-012-0108-4

Table 1 Energy consumption relation (“measurements’)

Date Group Amount
2012-01-01 09:00 1 (households) 200
2012-01-01 09:00 2 (small industries) 500
2012-01-01 09:00 3 (large industries) 1500
2012-01-01 09:15 1 250
2012-01-01 09:15 2 525
2012-01-01 09:15 3 1600

the system automatically decides upon the necessary steps
to provide the results. Finally, to avoid expensive parame-
ter estimation for future queries, the system might choose
to materialize the final composite and corresponding atomic
forecast models, including the model parameters and model
state (6). In the following, we further detail this process of
automatic composite forecast model creation.

3.2.2 Energy Forecasting Example

In the energy domain, the availability of accurate forecasts
of future electricity consumption and production is a prereq-
uisite for the balancing of energy demand and supply and
thus ensuring the stability and efficiency of the energy grids.
Forecasts are produced on different hierarchy levels that ex-
ist in the physical energy grid, e.g., street, district, city, or
country level. In the following example, we assume a utility
company collecting metering data from households, small,
and large industrial consumers and using this metering data
to forecast a total demand to be bought on the wholesale
electricity market for the next day. We now show how our
enhanced DBMS architecture can be utilized to forecast the
total demand for this scenario.

Suppose, energy consumption data of different consumer
groups (households, small/large industries) is stored like
shown in Table 1. Initially, a time series view over this data,
aggregating energy consumption measurements, is created:

CREATE TIMESERIESVIEW tsConsTotal AS
SELECT Date as TIME, SUM(Amount) as VALUE
FROM measurements
WHERE Group BETWEEN 1 AND 3
GROUP BY TIME ORDER BY TIME

Now, suppose a user submits the following query over
this time series view:

SELECT time, value
FROM tsConsTotal

WHERE time in (yesterday(), tomorrow())

The system seamlessly determines if the query involves
forecasting (accesses future values) or not. As the user query
in our example requests the total energy consumption for

7

the next day, the system automatically triggers a search for
a corresponding composite forecast model in the DBMS.
In our example, no corresponding model is found and the
system seamlessly creates a new composite forecast model.
The system has many different alternatives to create this
model and it might spend some time on choosing an alter-
native, which offers the best forecasting accuracy. Suppose
the composition rule catalog outputs a very simple compo-
sition rule that suggests to aggregate the forecasts of indi-
vidual consumer groups (1, 2, and 3) to retrieve the overall
energy consumption forecast. Further assume that two com-
posite forecast models, CM; and CM3, already exist in the
database (as they are used by other time series views pre-
viously defined by a user) to forecast the consumption of
small and large industries. To evaluate this composition rule,
the system needs to create an additional composite forecast
model for energy consumption of private households CM;.
This model CM; requires an input, defined by the following
automatically generated time series query:

SELECT Date as TIME, Amount as VALUE
WHERE Group = 1 (i.e., households)
FROM measurements

GROUP BY TIME ORDER BY TIME

When creating CMj, the system creates underlying atomic
forecast model AM; and empirically evaluates the forecast
methods listed in the forecast method catalogue. For AM1,
in our example, the forecast method Triple Seasonal Expo-
nential Smoothing [32] is chosen as the most accurate so-
lution for forecasting household consumption data for the
specific data set. Then, the models CM, CM,, and CM3 are
composed using the following rule o« - CMj + 8- CM, + y -
CMs3. «, B and y are the weights of the linear combination
describing the impact of the respective consumer groups.
Typically, the weights reflect the share of each consumer
group on the total consumption, which is computed from
the history of the corresponding time series.

The accuracy of this composition rule might be compared
to other composition rules (e.g., create only one compos-
ite model for the overall energy consumption time series
tsConsTotal), which also require the creation of miss-
ing atomic forecast models. Finally the composition rule
producing the most accurate forecasts is chosen (the aggre-
gation of individual groups in our example) and the output
to the query is obtained by aggregating the forecast values
from the outputs of CM;, CM;, and CM3 (see “CM Out-
put” in Fig. 2) at respective time stamps. Then, the output is
merged with historical values of tsConsTotal from yes-
terday and the result set is returned to the user.

Finally, the system might choose to materialize the com-
posite and corresponding atomic forecast models including,
for our example, CM; and the parameters of AM1, to speed
up the processing of future queries. Additionally, the fore-
casting result might be materialized.
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4 Research Topics and Challenges

Realizing a forecast-enabled DBMS, which takes advantage
of our proposed architecture, is challenging. Some aspects
where already addressed by individual research papers (see
Sect. 2). In this section, we focus on remaining challenges
that either nobody has considered yet or that arise due to our
novel architecture.

External Schema Queries of different types have to be
supported, processed, and optimized to take advantage of
the models stored within a DBMS. These include tradi-
tional ad-hoc as well as reoccurring and continuous fore-
cast queries. Existing SQL extensions [15] might be fur-
ther refined to allow seamless querying of time series data
that does not require the specification of a FORECAST key-
word, e.g., by restricting the time in the where clause of
a query (WHERE time IN (now(), tomorrow()))
Now the system additionally needs to detect if a certain time
series query involves forecasting or just demands the history
of the time series. In addition, query constraints might be
specified on the desired accuracy or runtime. This requires
anytime or online approaches that progressively provide bet-
ter forecast results over time.

Conceptual Schema Each forecast query on a time series
view requires either the use of an existing composite fore-
cast model or a new model needs to be built. Large databases
might contain millions of time series [2], requiring efficient
strategies to search and build composite forecast models.
The decomposition of composite forecast models into a hi-
erarchy of multiple composite forecast models can be either
done manually or automatically. Automatic approaches face
two main challenges. First, they need to determine what de-
compositions are possible and, second, they need to choose
the best decomposition. Suitable decompositions might be
given by the database administrator in terms of composition
rules, derived automatically from the data (e.g., by using
foreign-key relationships) or given by meta data like data
cubes or data hierarchy information. The determination of
the most accurate decomposition is quite a hard problem as
the number of possible decomposition might be very high
and as the accuracy of a decomposition cannot be deter-
mined without actually building all concerning models [11].
First approaches in this area [13, 19] are only suitable for a
small number of time series. Additionally, the system might
transparently maintain composite forecast models. Thus, the
system can automatically switch to a new composition if it
leads to a higher forecast accuracy.

Internal Schema—Logical Access Path ~ As forecast queries
should be processed transparently, atomic models have to
be chosen and created automatically. Due to the large vari-
ety of possible models and parameterizations, this process of
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model identification is challenging. Domain-specific model
types can reduce the search space by including only models
from the given domain. Automatization approaches are re-
quired that automatically select the “best” model for a time
series. First approaches automatize the model selection pro-
cess for ARIMA [20] or Exponential Smoothing [21] mod-
els. Through the usage of ensemble models, i.e., combi-
nation of several individual atomic models, the robustness
and accuracy of such approaches might be improved. Once
one or several models have been selected, model parameters
need to be estimated, which is very time consuming due to a
parameter search space that increases exponentially with the
number of parameters. Sophisticated approaches are neces-
sary that decrease the estimation runtime (e.g., by paral-
lelization) as well as increase the probability of finding a
global optima.

To avoid expensive model creation, atomic forecast mod-
els might be materialized so they can be used over and over
again. However, due to evolving time series in many do-
mains, materialized models require maintenance in form of
parameter reestimation. Research in this area focuses on two
main challenges, first, when to reestimate parameters and,
second, how to speed up the reestimation itself. Existing re-
search papers already address both challenges (as discussed
in Sect. 2) and might be extended and improved.

Due to expensive model maintenance, materialized atomic
forecast models have to be selected carefully. The question
arises how to intelligently reuse models in order to keep
maintenance costs as low as possible while enabling high
accuracy (e.g., one atomic forecast model might be used in
several composite forecast models). Such a configuration of
atomic forecast models might be chosen offline by the user
or online using automatic approaches, which, in addition
to model maintenance, requires continuous evaluation and
adaption.

Internal Schema—Physical Access Path. Finally, specific
index structures on time series data or forecast models
might be used to speed up model creation, usage and
maintenance—as discussed in Sect. 3.1. These initial ap-
proaches might be improved by more advanced index struc-
tures, either for a specific model type or for the general
case. In addition, partitioning the data with index struc-
tures might additionally enable parallelization approaches
that parallelize within or between parameter estimators and
models. One such parallelization approach was proposed
for a energy-domain-specific forecast model [6] and might
be extended to other model types.

Multiple research aspects remain on all three layers of
the ANSI/SPARC architecture and open up many interest-
ing research directions. In contrast to traditional query pro-
cessing, all forecasting relevant topics (e.g., selection, esti-
mation, maintenance) need to cope with a two dimensional
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optimization objective—forecast accuracy versus runtime of
forecast query processing.

5 Conclusions

We addressed a current research trend that deals with the
integration of statistical methods into data management sys-
tems. Within this article, we explicitly discussed the integra-
tion of time series forecasting, which allows for declarative,
transparent and efficient forecast queries. We introduced a
generic forecasting architecture that is based on the tradi-
tional ANSI/SPARC architecture and divides the forecast-
ing components into different abstraction layers. Although
different applications need to support different query and
model types, they build upon the same general forecasting
architecture. Thus, similar optimization opportunities and
challenges arise that need to be exploited in future work.
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