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Abstract. Large numeric matrices and multidimensional data arrays
appear in many science domains, as well as in applications of finan-
cial and business warehousing. Common applications include eigenvalue
determination of large matrices, which decompose into a set of linear
algebra operations. With the rise of in-memory databases it is now fea-
sible to execute these complex analytical queries directly in a relational
database system without the need of transfering data out of the sys-
tem and being restricted by hard disc latencies for random accesses. In
this paper, we present a way to integrate linear algebra operations and
large matrices as first class citizens into an in-memory database following
a two-layered architectural model. The architecture consists of a logical
component receiving manipulation statements and linear algebra expres-
sions, and of a physical layer, which autonomously administrates multiple
matrix storage representations. A cost-based hybrid storage representa-
tion is presented and an experimental implementation is evaluated for
matrix-vector multiplications.

1 Introduction

Within the recent decades, data scientists of all domains are increasingly faced 
with a growing data volume produced by historical events, experiments, and sim-
ulations. The era of data deluge and big data has shown the limitation of existing, 
often non-scalable and domain-specific persistence and computation solutions, 
which brought scalable database systems back into the discussion. Large numeric 
data, arranged in vectors and matrices, appear in many science domains, as well 
as in business warehouse environments. Examples can be found in theoretical 
nuclear science, genetics, engineering and economical correlation analysis. Ana-
lytical algorithms in those fields are often composed of linear algebra opera-
tions, including matrix-matrix, matrix-vector and elementwise multiplications. 
Moreover, linear algebra operations form the building blocks of machine learning 
algorithms [1] used in data warehousing environments, which is a common domain 
for commercial databases.

As conventional database management systems (DBMS) neither provide 
appropriate data objects nor an interface for linear algebra primitives, data sci-
entists rely on custom, highly specialized and hand-written solutions instead.
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However, rather than being responsible for reliable and hardware-dependent
solutions, many scientists would prefer to get rid of implementational details.
A DBMS with integrated scalable linear algebra implementations could serve as
framework that provides basic primitives for their analytical queries, and avoids
redundant data copying into any external algebra system. The drop in RAM
prices over the last years laid the foundation for shifting databases from hard
disc into memory, and analytical queries gained a considerable performance boost
on large data sets [2]. By accessing data directly in memory, this development
permits to bridge the gap between databases and complex analytical algorithms.
Hence, database-integrated linear algebra primitives can now be provided with-
out significant loss of performance, and use cases from the science and business
world benefit from such an architecture in many ways:

• Single source of truth. The data is persisted and kept consistently in the
database, so there is no redundant copying from other data sources to external
libraries needed. Furthermore, the corresponding metadata of data sets can
be updated synchronously and consistently with the numerical data.

• Efficient implementation. Algorithms for linear algebra operations have
been researched thoroughly for decades, so there is no need to re-invent the
wheel. But tuned linear algebra libraries can be exploited as kernels in the
database engine to offer a computational performance that is competitive with
existing numeric libraries.

• Transparency. A DBMS with our architecture handles different physical
storage representations autonomously and provides internally well-partitioned
matrices and vectors as self-contained data objects transparent to the user.

• Manipulation of data. In common analytic workflows, large matrices are
no static objects. As they are manipulated in an iterative process, the data
manipulation capabilities of a database will meet the analytical demands bet-
ter than the tedious maintaining of multiple data files.

This work presents an architectural model for integrating large linear algebra
objects and basic operations into a column-oriented in-memory database sys-
tem. Section 2 provides an overview of recent research about the integration of
array structures into databases and efficient linear algebra algorithms in general.
The two-layered architectural model, a list of conceptual requirements for the
logical data model and its physical mapping to the column store are presented
in Sect. 3. Section 4 proposes a hybrid storage representation for large matrices
and a strategy to cluster a large matrix into dense and sparse subparts. Our
experimental setup and an evaluation of a sparse matrix vector multiplication
are shown in Sect. 5. Finally, Sect. 6 summarizes our findings.

2 Related Work

2.1 Linear Algebra in Databases

The gap between the requirements of scientific computing and what is pro-
vided by relational databases is a well-known topic in the database community.
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Ways to integrate multidimensional array data into the database context have
recently been presented by the SciDB [3] team with ArrayQL1, following the
SQL extension SciQL [4]. The latter provides operators for spatial filters used
for image processing but it lacks support for linear algebra objects as first class
citizens.

A lot of research has been done in the context of data analytics and busi-
ness intelligence, where linear algebra operations are the building blocks of data
mining algorithms. Prior work [5] has shown how vanilla SQL can be used to cal-
culate linear algebra expressions, although they add some user defined functions
and infix operators to make the query look more natural. However, they admit
that SQL terms rather pair up scalar values than treating vectors as “whole-
objects” and does thus not fit the natural way of thinking of a data scientist
with a mathematical background. They also state that expressions based on
SQL require the knowledge of a certain storage representation, for instance the
triple representation for matrices, which is not optimal for many use cases. From
a performance perspective, Stonebraker et al. [6] propose the reuse of carefully
optimized external C++ libraries as user defined functions for linear algebra cal-
culations, but they leave the problem with resource management and suitable
data structures in this “hybrid” world yet unsolved. Another approach based on
Hadoop is SystemML [1], where basic linear algebra primitives are addressable
via a subset of the R language with a MapReduce backend. Few commercial
data warehouse vendors already offer minor support for linear algebra opera-
tions integrated in the database engine, but to the best of our knowledge there
is no solution which integrates transparent optimization based on topological
features of the matrix (e.g., sparsity).

2.2 BLAS and Matrix Multiplications

As we want to provide a solution that is able to compete with hand-tuned
implementations, we have to glimpse outside the database world, where efficient
linear algebra computation has been thoroughly researched for several decades.
It is commonly agreed that a tuned BLAS2 implementation is the best choice
for computing small, dense matrices. Its interface is implemented by specially
tuned libraries utilizing single-instruction multiple-data (SIMD) instructions.
Libraries are provided by the open-source world or directly by hardware ven-
dors, like ATLAS3 or Intel MKL4. Although the current theoretical lower com-
plexity bound for dense matrix multiplication is O(n2.3727), initially presented
by Coppersmith and Winograd [7,8], BLAS implementations still rely on the
naive O(n3) algorithm, since the constant of the Coppersmith-Winograd algo-
rithm is simply too high for being practicable. Nevertheless, for very large matri-
ces a recent paper [9] shows that Strassen’s Algorithm with the complexity of

1 Array Query Language, http://www.xldb.org/arrayql/.
2 Basic Linear Algebra Subprograms, http://www.netlib.org/blas/.
3 Automatically Tuned Linear Algebra Software, http://math-atlas.sourceforge.net/.
4 Intel Math Kernel Library 11.0, http://software.intel.com/en-us/intel-mkl.
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O(n2.8074) combined with a NUMA-aware hierarchical storage format outper-
forms the ATLAS library.

Research on sparse matrices has been less established as for dense, so there
were some efforts within the last years to reduce the complexity for fast sparse
matrix multiplication from a theoretical perspective [10,11]. Their general idea is
to separate the matrix column/row-wise into a dense and a sparse part where the
split point is determined by minimizing the number of total algebraic operations,
while they admit that their work is only of theoretical value because they rely on
Coppersmith-Winograd complexity for rectangular matrix multiplication. This
at least confirms our conceptual model to cluster the matrix parts according to
their density and treat sparse and dense parts differently. From an algorithmical
perspective, there has been recent work on parallel sparse matrix-matrix multi-
plication [12] and cache-oblivious sparse matrix-vector multiplications [13] using
a hypergraph partitioning method.

2.3 Storage Representation of Sparse Matrices

It is widely known that there are various ways to store a sparse matrix, and each
of them might be best for a certain situation. The efficiency of a certain storage
representation strongly depends on the specific topology of the matrix, since
there are typically recurring shapes, such as diagonal, block diagonal or blocked
matrices. A comprehensive overview over the different types of sparse storage
representation is given in the work of Saad et al. [14]. Storing matrices in hybrid
sparse-dense representations, in the way we will present in the remainder of this
paper, has – to the best of our knowledge – not been presented in literature
so far.

3 Architecture and Requirements

Our architectural model of the linear algebra database engine, sketched in Fig. 1,
can be logically separated into two main components: First, the logical layer
contains the data model and provides methods to parse linear algebra expres-
sions and choose an appropriate algorithm for the operations to execute. Sec-
ond, in the physical layer, the storage agent maps the logical linear algebra
objects (i.e. matrices and vectors) into the column-oriented storage model by
utilizing different internal representations depending on sparsity and shape.
The requirements for the logical component include:

• Linear Algebra Query Language. The common query language of rela-
tional databases is SQL, which was originally designed and established for
expressions of the relational algebra. As a matter of fact, SQL does not com-
prise operations or data types of the linear algebra. In order to provide a
natural interface for a database user with mathematical background it is cru-
cial to provide matrices, vectors and multidimensional arrays in general as
first class citizens. Moreover, for being able to optimize on the logical level, it
is also necessary to pass a complete expression string containing basic linear
algebra operators to the DBMS.
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Fig. 1. Linear algebra engine architecture

• Manipulation Language. In contrast to a broad perception, matrices in
analytical workflows are often dynamic objects that underly steady manipula-
tions (e.g., in [15] several base states, which correspond to rows in the Hamil-
tonean matrix, are truncated before the eigenvalue calculation is repeated).
Typical operations on matrices involve insertions, removals, and updates of
single elements or whole rows or columns. Such in-place modifications are
common in typical database applications, but infeasible with existing linear
algebra libraries. The language should therefore offer a way to manipulate
linear algebra objects element-, row-, column- and blockwise.

• Linear Algebra Expression Optimization. A linear algebra expression
consists of operations on an arbitrary number of matrices or vectors. Opti-
mizing the execution order on this layer can help to reduce the number of
floating point operations significantly. As an example, consider a multiplica-
tion of three matrices A ∈ R

m×k, B ∈ R
k×l, A ∈ R

l×n

expression = “A · B · C ” (1)

Following associations law expression (1) can be evaluated in two ways, either
multiply (A · B) first and then C from the right side or multiply (B · C)
first and A from the left side. Assuming dense algebra, it turns out that with
k � {l,m, n}, the second execution order requires 2

1+ε times the number of
floating point operations than the first order.

It is noteworthy that this holds only for dense operations, i.e., every matrix
element is taken into account, regardless whether it is zero or not. Since
multiplications with zero are as expensive as non-zero multiplications, the
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optimizer should be aware of the sparsity, which might change the optimal
execution order. The number of operations Nop then can be obtained by con-
sidering matrix elements as triple relations {row, col, (A)ij}. It is propor-
tional to the join product of two matrix relations A and B with the condition
A.col = B.row. The multiplication then rather turns into a relational join fol-
lowed by a projection [10] where techniques of join size estimation (e.g., based
on hashing [16]) can be applied to estimate the cost of the sparse algorithm.

Because of the importance of sparsity for optimizing the expression execution,
it is desirable that the logical layer receives information about the physical data
structure. This should be managed by a globally acting optimizer, which forms
the interface between both layers. It combines the physical structure information
with statistical information about prevalent algorithmic patterns performed on
certain objects, as an efficient execution strongly depends on the conformance
between the algorithm and the data representation. This information can in
return be passed as a hint to the physical component, which should be able to
reorganize the storage representation. The requirements of the physical layer are:

• Multiple In-Memory Storage Representations. In order to minimize
the storage consumption of a large matrix, dense and sparse subparts are
stored in separate representations. Each of the storage classes internally
uses the native column-oriented storage of the database. As matrices are
two-dimensional objects, they cannot be stored naturally in the sequentially
addressable columns. Thus, matrices have to be linearized, which is effec-
tively a mapping of matrix elements from the two-dimensional into the one-
dimensional space. This is accomplished by ordering the elements according to
a certain order (i.e., a space filling curve). 2D-arrays in common programming
languages are arranged according to row-major (C++, Python) or column-
major (Fortran, MATLAB) order. Examples for isotropic curves are the
z-curve (or Morten-order) [17] and the Hilbert-curve. The adequacy of
the order may depend on specific algorithmic patterns on the object, and
as the columns are completely held in memory, the jumps caused by an inap-
propriate order will at most result in cache misses. However, most numeric
libraries require a certain order, and to use them as kernels, our architecture
provides a flexible transformation mechanism.

• Leveraging Parallelization and SIMD Instructions. In the context of
distributed memory there has been recent work about parallel (sparse) matrix-
vector and matrix-matrix multiplications [12]. The fundamental trade-off is
communication costs versus computation costs, depending on the level of par-
allelization.

Low-level parallelization and multithreading is already provided by many
numeric libraries, such as ATLAS or Intel MKL. Moreover, most linear algebra
calculations degenerate to numerical operations on vectors, thus they fully
benefit from SIMD instruction sets. Wherever possible, we want to make use
of vendor-provided C++ BLAS kernels that have already been well tuned for
the specific hardware characteristics.
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• Data Load. The common storage format of large scientific data sets that
are produced by simulations and experiments are files. Our model foresees an
initial loading of data from files by using any CSV-parser that connects via a
client driver to the database.

4 Topology-Aware Restructuring Using Clustering
Strategies

Matrices that are initially loaded into the database are first staged in a tempo-
rary sparse structure, for instance in the triple representation. As a consequence,
algorithms on staged matrices will in general perform miserably, especially if the
matrix has a rather dense topology. The database user does generally not know
the topology of the matrix, at least it should not be required to specify the
structure in advance. In our model the linear algebra engine restructures the
staged matrices by clustering subparts into dense and sparse regions. A rea-
sonable approach is to cluster regions density-based [18], hence classify clusters
where the density distribution exceeds a certain threshold as dense and the
remaining parts as sparse. The resulting clusters should have rectangular shapes
with a minimal extent that should be defined according to the hardware spec-
ifications, for example a block should just be large enough to fit into the CPU
cache. Figure 2 shows a 800 × 800 sparse Hamiltonean matrix5 as an example
from nuclear physics research (see Sect. 5.3). For the illustration we used square
blocks of dimensions 100 × 100 and a density-based clustering with the kernel:

K(i, j, i0, j0) =
{

1
C for (i, j) ∈ Block(i0, j0)
0 else (2)

where i is the row coordinate of a matrix, j the column coordinate, C a nor-
mation factor and (i0, j0) are the coordinates of a matrix element inside a fixed
Block(i0,j0). After applying K to the data of Fig. 2 we effectively get a 2D
histogram with 2D block bars of different heights. Figure 3 shows the density
distribution relative to two different block density thresholds ρc. It can be imag-
ined as a rectangular mountain range in the ocean with a variable water surface
level. The higher ρc is, the fewer are the remaining dense parts which “protrude”
from the surface. The actual question is where to place the cut level ρc, which
is in general a nontrivial, multidimensional optimization problem.

A m × n matrix can be clustered into NC rectangular m
(j)
d × n

(j)
d dense

regions and m
(i)
sp × n

(i)
sp sparse regions with density ρi. Assuming costs τsp and

τd for a single element operation in the sparse and dense storage representation,
5 For illustration purposes we regard a relatively small matrix. Depending on the

scenario, the matrices can reach dimensions of up to 1010 × 1010.
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Fig. 2. A 800 × 800 Hamiltonean matrix resembling the quantum mechanical state of
an atomic nucleus in the NCSM model. (Example from theoretical nuclear physics.)

the total cost T of a complete matrix operation6 on a hybrid representation can
be estimated as

T =

⎛
⎝ ∑

j∈{d}
Ad

(
m

(j)
d n

(j)
d

)⎞
⎠ τd +

⎛
⎝ ∑

i∈{sp}
Asp

(
N (i)

nnz

)⎞
⎠ τsp + γAC

(
NC

)
(3)

where Nnnz,i = ρim
(i)
sp n

(i)
sp is the absolute number of nonzero elements in the

ith sparse part. The A’s denote the algorithmic complexity of the corresponding
algorithm, for instance Ad(N) = N3/2 for the naive matrix-matrix multiplica-
tion. The last term in (3) refers to the algorithmic overhead, which is connected
with the number of subparts NC . The clustering is ideal if T is minimal. Find-
ing the absolute minimum is generally a nontrivial variational problem in a
high-dimensional space. However, depending on the operation, T can degener-
ate into much simpler expressions, as for the general matrix-vector multiplication
(GEMV). The algorithmic access pattern of the GEMV algorithm on a matrix
is strictly row-major, thus a row-wise clustering keeps the conformance between
algorithm and representation. This effectively means that the m rows of the
matrix are clustered into msp sparse and md dense rows. With AGEMV

d,sp (N) = N ,
nd,sp = n and md = m − msp Eq. (3) can be transformed into

TGEMV = nmτd + n

msp∑
i

(ρiτsp − mspτd) (4)

6 T is proportional to the number of single element operations, according to the RAM
model.
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Fig. 3. Matrix density distributions relative to threshold ρc = 0.5 (left) and ρc = 0.6
(right). Dark blue denote regions with ρi ≥ ρc, light blue means ρi < ρc (Color figure
online).

The right hand side of (4) is minimal if for the row-density in the equation
ρi < τd/τsp holds.

5 Experiments and Evaluation

5.1 Experimental Environment

In the context of the column-oriented SAP HANA database, we implemented
parts of the physical layer in an in-memory column store prototype. Figure 4
shows the internal mapping of matrices of dense and sparse parts, where K :
N

n → N can generally represent an arbitrary space-filling order (here shown with
row-major order). Our sparse matrix-vector multiplication algorithm works with
pure dense, pure sparse or hybrid representations.

5.2 Evaluation

The platform for our prototype implementation is an Intel Xeon X5650 sys-
tem with 12 cores and 48 GB RAM. The performance for the GEMV operation
was evaluated for sparse matrices in a pure dense, pure sparse and in a hybrid
representation, containing subparts according to the density row-based cluster-
ing of (4). Without loss of generality, the relative row density was varied using
generated matrices following a triangle random distribution to enable a row-
based clustering into dense and sparse parts. Moreover we varied the overall
density 0.24 < ρ < 1.00 to illustrate the duality of dense and sparse represen-
tations. Figure 5 shows the graph of the measurements for the multiplication of
a 12800 × 12800 matrix with a vector. As expected, the hybrid storage repre-
sentation is always better than either pure sparse or pure dense. It converges
against the performance for sparse matrices for small values of ρ and against the
performance for dense matrices for high values of ρ.
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Fig. 4. The upper half shows the sparse representation in two columns: The first column
contains the K-coordinate, the second the value of a nonzero element. Below, the dense
representation: A single column contains every matrix element, including zero elements.

5.3 Lanczos Algorithm

The Lanczos algorithm is an iterative converging method, similar to the power
method, to determine the eigenvalues of a real symmetric matrix. It used to
find the energy states of an atomic nucleus, which correspond to the eigenvalues
of the quantum mechanical Hamiltonean matrix [15,19]. Technically, the algo-
rithm is composed of iterative sparse matrix-vector multiplications. According to
the precision of the model, the Hamiltonean matrix can have arbitrarily many
dimensions and can easily consume up to terabytes of storage. In our evalua-
tion we used three matrices of different dimensions. Table 1 shows the speedup

Fig. 5. Speedup in the multiplication of sparse matrices with vectors by using the
hybrid representation. On the left side the speedup is shown relative to a pure sparse
(dashed line) and pure dense (dotted line), and on the right it is compared to the
respective best pure representation.
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Table 1. Performance speedup of the multiplication of the sparse Hamiltonean n × n
matrix with a random vector. The evaluation was performed on three matrices of
different dimension (i.e. C1A, C2A, C2B) in either pure sparse, pure dense or in the
hybrid representation. NC is the number of subparts. The speedup is shown relative
to the pure sparse and to the pure dense representation.

Matrix n Nnz Density NC HybridVsSparse HybridVsDense

C1A 800 309816 0.484 27 52.0 % 0.1 %

C2A 3440 2930834 0.248 15 3.3 % 39.2 %

C1B 17040 42962108 0.148 60 0.7 % 149.7 %

of the hybrid representation compared to pure dense or pure sparse. There is
again a positive speedup for each case, which however becomes less significant
for the 17040 × 17040 matrix. This is substantiated with the complex topology
of the matrixes as in Fig. 2, revealing that the rather simple row-based density
clustering leaves room for optimization.

6 Summary and Conclusions

The problem of combining linear algebra operations with an efficient and scalable
database environment is well-known in the database community as there are var-
ious use cases from science and business domains. We showed that it is feasible
to integrate complex calculations in in-memory DBMS engines. Our architec-
tural model aimes at applying database principles to linear algebra. It enables
dynamic manipulation of matrix data and abstracts the problem of choosing
an appropriate algorithm and storage representation from the user by letting
the database optimize logical and physical execution. We identified sparsity as
the main performance influencing characteristic of large linear algebra objects
and proposed hybrid representations mapped to an in-memory column store. A
cost-model based density clustering has been proposed to optimize sparse storage
structure depending on matrix topology and algorithmic pattern. The evaluation
showed that overall performance can benefit from an architecture that combines
multiple internal storage representations.

Challenges to our architecture involve the exploitation of efficient BLAS ker-
nels, distribution strategies, and the development of a natural query and manip-
ulation language.
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