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Non-uniformity issues and workarounds in bounded-size sampling

Rainer Gemulla · Peter J. Haas · Wolfgang Lehner

Abstract A variety of schemes have been proposed in the
literature to speed up query processing and analytics by incre-
mentally maintaining a bounded-size uniform sample from
a dataset in the presence of a sequence of insertion, deletion,
and update transactions. These algorithms vary according
to whether the dataset is an ordinary set or a multiset and
whether the transaction sequence consists only of insertions
or can include deletions and updates. We report on subtle
non-uniformity issues that we found in a number of these
prior bounded-size sampling schemes, including some of
our own. We provide workarounds that can avoid the non-
uniformity problem; these workarounds are easy to imple-
ment and incur negligible additional cost. We also consider
the impact of non-uniformity in practice and describe simple
statistical tests that can help detect non-uniformity in new
algorithms.

Keywords Database sampling · Reservoir sampling ·
Bernoulli sampling · Sample maintenance

1 Introduction

Use of random samples can speed up database querying and
analytics by orders of magnitude. Because such samples are
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usually too expensive to compute on demand, there has been
growing interest in algorithms for incrementally maintaining
a random sample as the underlying dataset evolves due to a
transaction sequence of insertions, deletions, or updates of
data items; see [4,11–13,15] and references therein. To keep
costs low, these algorithms avoid expensive accesses to the
dataset itself and try to touch only the sample and the trans-
action sequence. Most of the algorithms maintain a uniform
random sample (defined below), because such samples are
extremely flexible in applications and are the focus of a large
body of statistical estimation theory.1 Maintaining bounded-
size samples is also desirable, because such samples simplify
memory management and allow control of the computational
costs for algorithms that use the samples. In this note, we
describe some rather subtle non-uniformity issues that we
found in earlier algorithms (including ours) for incremen-
tally maintaining bounded-size uniform samples. Departures
from uniformity in a sample-maintenance scheme can lead
to errors in sample-based statistical procedures, such as point
or interval estimation, model fitting, or hypothesis testing.

Denote by R a dataset of interest and let S ⊆ R be a sample
of R. We focus on the case where R is not a static dataset but
evolves over time. That is, dataset R is subject to a sequence
of update, deletion, and insertion (UDI) transactions—in the
following, we focus on insertions and deletions, since an
update can be viewed as a deletion followed by an insertion.
The job of a sample-maintenance algorithm is to keep the
sample S “in sync” with the evolving dataset. In our set-
ting, this means that S should constitute a truly uniform ran-
dom sample of R after each transaction has been processed.

1 There is also a body of literature devoted to efficient maintenance of
various kinds of deliberately non-uniform samples, usually with some
particular analysis task in mind. See [5] for a recent example, aimed at
estimating “subset sums.”
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We consider sample-maintenance algorithms that are des-
igned for the case in which R is subject only to insertions
and for the case in which R is subject to a general UDI
sequence. (In the insertion-only setting, our setup also mod-
els the task of computing, in a single scan, a sample of a
dataset of unknown size).

Uniformity of samples is meant to capture the intuitive
notion of randomness, and its precise definition depends
on the type of sampling involved. Specifically, sample-
maintenance algorithms can be classified according to
whether the dataset R and the sample S are sets or multisets.
In the context of set sampling, both R and S are sets, and S is
said to be uniform if Pr [ S = A ] = Pr [ S = B ] for all pairs
A, B ⊆ R satisfying |A| = |B|, where |U | denotes the num-
ber of elements in set U . Subsets of equal size are therefore
produced by the sampling algorithm with equal probability.
The uniformity condition can be restated concisely as

Pr [ S = A ] = Pr [ |S| = |A| ]
(|R|
|A|

)−1

for all A ⊆ R. In multiset sampling, both R and S are mul-
tisets, so that duplicate values are allowed, and items having
the same value are indistinguishable. For a multiset A, denote
by |A| the size of A (including duplicates), by D(A) the set
of distinct values in A, and by |A(r)| the frequency of r in
A for r ∈ D(A). We use the usual multiset semantics and
write S ⊆ R if and only if |S(r)| ≤ |R(r)| for r ∈ D(S).
Suppose that R = { 3, 3, 7 } and consider a size-1 sample S
of R. Since the value 3 occurs twice as often as the value 7
in R, we want Pr [ S = { 3 } ] = 2Pr [ S = { 7 } ]. In general,
a multiset sample S is uniform if

Pr [ S = A ] = Pr [ |S| = |A| ]
(|R|
|A|

)−1 ∏
r∈D(A)

(|R(r)|
|A(r)|

)

(1)
for all A ⊆ R. In distinct-item sampling, R is a multiset and
S is a subset of D(R), so that S is an ordinary set. A multiset
sample S of size n is uniform if

Pr [ S = A ] = Pr [ |S| = |A| ]
(|D(R)|
|A|

)−1

with deletion transactions; see Sect. 3. Several strategies have
been proposed to try and profit from both the ease of Bernoulli
sampling and the above-mentioned benefits of maintaining
strict bounds on the sample size. One approach, used for
“growing” datasets in which the long-run average rate of
insertions exceeds the long-run average rate of deletions, is
to start with a Bernoulli sample and switch over to reservoir
sampling as soon as the sample size hits a specified upper
bound. Examples of this approach include “hybrid Bernoulli
sampling” [4] and “Bernoulli resizing” [12]. The goal of the
former method is to use the Bernoulli scheme as long as pos-
sible to facilitate parallel sampling, and the goal of the latter
method is to use Bernoulli sampling for as short a period as
possible to dynamically increase the sample-size bound in
the presence of a growing dataset. A related approach that
we call “Bernoulli sampling with purging” (see [13]) uses
Bernoulli subsampling to reduce the sample size—or sam-
ple footprint in the case of multisets—whenever it exceeds
a specified bound. In the setting of distinct-item sampling,
the “dynamic inverse sampling” method [6] proceeds rather
differently than the above methods and makes use of a set of
pairwise-independent hash functions.

In Sects. 2–7, we show, perhaps surprisingly, that all of
these methods, as well as some “intuitive” additional meth-
ods, can produce non-uniform samples. A few of these results
have appeared in the literature [4,12], and we summarize
them for completeness, but most of the analyses are new.
These non-uniformity issues often arise in rather subtle ways.
For example, bounded-size Bernoulli samples do not consti-
tute true Bernoulli samples, and switch-over or subsampling
procedures that rely on characteristics of true Bernoulli sam-
ples lead to non-uniformity. We provide alternatives to each
of the incorrect algorithms, using novel ideas such as ran-
domizing switch-over times, invoking subsampling based on
the dataset size rather than the sample size, and replacing
Bernoulli sampling with a “random pairing” scheme during
sample resizing. In some cases, these workarounds elimi-
nate the non-uniformity problems while still providing strict
sample-size bounds; in other cases, one must settle for prob-
abilistic sample-size bounds, though the exceedance proba-
bilities for these bounds are tightly controlled.

Table 1 summarizes our results. In the table, we clas-
sify sampling scenarios as set sampling, multiset sampling,
and distinct-item sampling. Within each of these categories,
we distinguish between insertion-only transaction sequences
(“I-only”) and UDI sequences. A sampling scheme is clas-
sified as “Bounded” if it produces strictly bounded samples
(i.e., samples that are bounded with probability 1), as “proba-
bilistically bounded” (“Prob. bounded”) if the bound may be
exceeded, but the exceedance probability is small and tightly
controlled, and as dynamically bounded (“Dyn. bounded”) if
the samples are strictly bounded at any point in time, but the
sample-size bound can be increased over time as the dataset

for all A ⊆ D(R).
There are two basic sampling schemes that underlie sam-

ple maintenance in both set sampling and multiset sampling 
scenarios: Bernoulli sampling and reservoir sampling; see 
Sect. 2 below for details. Bernoulli samples are easy to imple-
ment and parallelize, but offer only probabilistic bounds on 
the sample size. (The expected sample size is proportional 
to the dataset size.) Reservoir samples are more involved 
to implement and parallelize but provide a bounded sample 
size. Both schemes were originally developed for insertion-
only transaction sequences, but have been extended to deal
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Table 1 Overview of bounded-size sampling schemes

Name Abbr. Section Sample size

Set sampling

I-Only U Reservoir sampling [7] RS(M) 2 Bounded

Bernoulli sampling with purging [13]a BSP(q0, M) 2.2 Bounded

Hybrid Bernoulli sampling with randomized switch-over∗ HBSR(q, M) 2.4 Bounded

NU Hybrid Bernoulli sampling [4] HBS(q, M) 2.1 Bounded

Adapted reservoir sampling [15] ARS(M) 3.1 Bounded

Adapted counting sampling [15] ABSP(M) 3.4 Bounded

UDI U Bernoulli sampling with probabilistic bounds∗ PBS(M, δ) 2.3, 3.5 Prob. bounded

Random pairing [12] RP(M) 3.2 Bounded

Random pairing resizing∗ RPR 7.2 Dyn. bounded

NU Bernoulli sampling with purging [13] BSP(q0, M) 2.2 Bounded

Hybrid Bernoulli sampling with randomized switch-over HBSR(q, M) 3.3 Bounded

Bernoulli resizing [12] BR 7.1 Dyn. Bounded

Multiset sampling

I-Only U Any insertion-only, boundedb set sampling method 4 Bounded

NU Bernoulli sampling with purging (bounded footprint) [13] BSP(q0, F) 3.4 Bounded footprint

UDI U Augmented Bernoulli sampling with probabilistic bounds∗ PABS(F, δ) 4.2 Prob. bounded footprint

Distinct-item sampling

I-Only U Min-wise hashing [2] MIN(M) 5.3 Bounded

UDI U Distinct-item Bernoulli sampling with. prob. bounds∗ DPBS(F, δ) 5.2 Prob. bounded footprint

Distinct-item subsampling for PABS(F, δ) [10] PABSD(F, δ) 5.4 Prob. bounded footprint

Augmented Min-wise hashing [1] AKMV(F) 5.3 Bounded footprint

Dynamic inverse sampling, indep. hashing∗ DIS∞(F) 5.1 Bounded footprint

NU Dynamic inverse sampling, pairwise-indep. hashing [6] DIS2(F) 5.1 Bounded footprint

U uniform, NU non-uniform, and ∗ indicates a new workaround algorithm. Note that a scheme that is uniform for UDI transactions is also uniform
for insertion-only transactions; a scheme that is non-uniform for insertion-only transactions is also non-uniform for UDI transactions
a Correctness is conjectured but not proved
b Bounded means bounded sample size, not bounded footprint

grows. Some of these results are of primarily of theoretical
interest; in Sect. 9, we give practical guidelines on which
methods to use in various scenarios.

In Sect. 8, we discuss several practical issues pertinent to
our results. Given the number of incorrect methods that have
appeared in the literature, we first describe in Sect. 8.1 a sim-
ple statistical procedure that we have found useful in iden-
tifying departures from uniformity in purportedly uniform
sampling procedures. We then turn to the practical impact
of non-uniformity. It is difficult in general to theoretically
quantify the magnitude of departures from uniformity and
even harder to quantify the practical effects of non-uniformity
on analytic or statistical procedures that assume truly uni-
form samples. To develop intuition, we provide a numerical
case study (Sect. 8.2) of the non-uniformity effects arising
from the use of hybrid Bernoulli samples. Our results indi-
cate that the degree of non-uniformity becomes small as the
sample size increases. Although a simple example shows
that the absolute estimation error for a given degree of non-

uniformity is unbounded, the relative error tends to be small.
We believe that it would be a mistake, however, to take these
results to mean that non-uniformity issues can simply be
ignored. As is well known in the context of uniform pseudo-
random number generation, even small, subtle departures
from uniformity can result in highly anomalous statistical
results; see, e.g., [9]. There is every reason to fear that simi-
lar problems will arise from the non-uniformity of “uniform”
samples over the wide range of applications for which such
samples are used. Since the workarounds described here typ-
ically are as easy to implement as the incorrect versions and
incur no significant additional overheads, there is no reason
to use incorrect non-uniform sampling methods.

2 Set sampling for insertion-only sequences

In this section, we assume that the sequence of transactions
consists only of insertions and that R is a set. We discuss
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deletions in Sect. 3, multisets in Sects. 4 and 5, merging
problems in Sect. 6, and resizing problems in Sect. 7.

To set the stage for our discussion of bounded-size set sam-
pling algorithms, we briefly describe both Bernoulli sampling
and reservoir sampling in the insertion-only setting. Both
schemes start with an initially empty sample. In Bernoulli
sampling with sampling rate q , abbreviated Bern(q), each
arriving item is accepted into the sample with probability
q and rejected with probability 1 − q , independently of the
other items. In reservoir sampling with sample size parameter
M , abbreviated RS(M), the first M items are directly added
to the sample. Subsequent items are accepted with probabil-
ity M/ i and rejected otherwise, where i is the number of
items already processed (including the new item). In case
of acceptance, the new item replaces a randomly and uni-
formly selected sample item. Note that the sample size of
RS(M) equals M after processing i ≥ M items. In contrast,
the sample size of a Bern(q) sample follows a Binomial(i, q)

distribution; the sample has mean size iq and thus grows with
the dataset.

As shown in the following sections, a hybrid scheme that
naively switches from Bernoulli to reservoir sampling when
the sample size hits an upper bound leads to non-uniformity.
A couple of workarounds use Bernoulli sampling only, but
with occasional “purges,” that is, subsampling steps, to con-
trol the sample size. A different workaround retains the
switch-over strategy, but randomizes the switch-over time. It
is important to note that these workarounds provide random-
sized samples that are truly uniform (equal-size samples have
equal probability of being produced) but, if the sample size is
bounded, then the sample cannot be a true Bernoulli sample
even during the “Bernoulli sampling” phase of an algorithm.
That is, the sample-size distribution is not binomial as with
Bernoulli samples, but is usually rather complex.

2.1 Incorrect: hybrid Bernoulli sampling

Consider a switch-over algorithm as in [4,12]—denoted
HBS(q, M)—that initially uses Bernoulli sampling with rate
q and then switches to reservoir sampling as soon as the
sample size reaches an upper bound M > 0. Suppose that
q = 1/2 and M = 2 and that we process the sequence
+r1,+r2,+r3 of three insertions into an initially empty
dataset. Denote by Ri and Si the dataset and sample after
processing of the first i items, respectively. Since the algo-
rithm starts with Bernoulli sampling, we have

Pr [ S1 = ∅ ] = Pr [ S1 = {r1} ] = 1/2

and

Pr [ S2 = ∅ ] = Pr [ S2 = {r1} ] = Pr [ S2 = {r2} ]
= Pr [ S2 = {r1, r2} ] = 1/4,

so that both S1 and S2 are uniform. There are two cases:
(i) |S2| < M and (ii) |S2| = M ; these cases occur with
respective probabilities 3/4 and 1/4. In case (i), Bernoulli
sampling is continued when processing r3, and we have, e.g.,

Pr [ S3 = ∅, |S2| < M ] = Pr [ S3 = ∅, S2 = ∅ ]

= 1

2
· 1

4
= 1

8
,

so that

Pr
[

S3 = ∅
∣∣ |S2| < M

]
= Pr

[
S3 = ∅, |S2| < M

]
/Pr [ |S2| < M ]

= 1

8
÷ 3

4
= 1

6
.

Similar calculations show that

Pr
[

S3 = {r1}
∣∣ |S2| < M

]
= Pr

[
S3 = {r2}

∣∣ |S2| < M
]

= Pr
[

S3 = {r3}
∣∣ |S2| < M

]
= Pr

[
S3 = {r1, r3}

∣∣ |S2| < M
]

= Pr
[

S3 = {r2, r3}
∣∣ |S2| < M

] = 1/6.

Observe that, conditionally on |S2| < M (so that the switch-
over has not yet occurred), the sample S3 is not uniform,
because sample {r1, r2} is chosen with probability 0, whereas
samples {r1, r3} and {r2, r3} are each chosen with probability
1/6 > 0. For case (ii), where |S2| = M = 2 (specifically,
S2 = {r1, r2}), reservoir sampling commences, so that

Pr
[

S3 = {r1, r2}
∣∣ |S2| = M

]
= Pr

[
S3 = {r1, r3}

∣∣ |S2| = M
]

= Pr
[

S3 = {r2, r3}
∣∣ |S2| = M

] = 1/3.

We can now uncondition on |S2| to obtain

Pr [ S3 = {r1, r2} ]
= Pr [ S3 = {r1, r2} | |S2| < M ] · Pr [ |S2| < M ]

+Pr [ S3 = {r1, r2} | |S2| = M ] · Pr [ |S2| = M ]

= 0 · 3

4
+ 1

3
· 1

4
= 1/12

and, by similar calculations,

Pr [ S3 = {r1, r3} ] = Pr [ S3 = {r2, r3} ] = 5/24.

Since these two probabilities differ, S3 does not constitute
a uniform random sample of R. Note that, even when con-
ditioned on the event |S3| = M , i.e., on the event that the
switch-over has occurred, the sample S3 is not uniform.

The reason for the non-uniformity can be explained as
follows. For m ≥ 1, denote by T (m) the first sampling
step such that the sample size is equal to m: T (m) =
inf{ i ≥ 1 : |Si | = m }. If we are processing a stream
of insertions using Bernoulli sampling, then S1, S2, . . . , is
certainly a sequence of Bernoulli, hence uniform, samples.
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However, the randomly selected sample ST (M) is not
uniform: Specifically, since the sample size has just increased
from M − 1 to M , it follows that Pr

[
rT (M) ∈ ST (M)

] = 1.
If we then apply reservoir sampling to produce the sequence
ST (M)+1, ST (M)+2, . . ., then the samples in this sequence
will be non-uniform since we are applying an algorithm that
assumes initial uniformity when this initial condition fails to
hold.

2.2 Alternative: Bernoulli sampling with purging

The problem above can be avoided by avoiding the switch-
over to reservoir sampling: The “Bernoulli sampling with
purging” scheme—denoted BSP(q0, M)—is based on
Bernoulli sampling only; the key idea is to incrementally
reduce the sampling rate q to maintain the upper bound
M . In the context of set sampling, BSP(M) is equivalent
to the “concise-sampling” scheme of [13]. In more detail,
BSP(q0, M) initially runs Bernoulli sampling with sam-
pling rate q = q0. Whenever the sample size exceeds
M, BSP(q0, M) performs a purge step: It reduces the over-
all sampling rate to some value q ′ < q (e.g., q ′ = 0.8q);
each item in the sample is retained with probability q ′/q
and rejected with probability 1 − q ′/q , independently of
the other sample items. If the sample size is less than or
equal to M after the purging step, BSP(q0, M) will recom-
mence using Bern(q ′) sampling; otherwise, another purging
step is run. BSP(q0, M) appears to produce uniform samples
under the insertion-only regime, although correctness has not
been established formally. In any case, the sampling scheme
given in Sect. 2.4 improves on BSP(q0, M) by combining
Bernoulli sampling with reservoir sampling, which leads to
improved sample size stability and provably uniform sam-
ples. As shown in Sect. 3.4, the BSP(q0, M) scheme does
not yield uniform samples in the presence of deletions.

2.3 Alternative: Bernoulli sampling with probabilistic
sample size bounds

A different, correct approach to avoiding non-uniformity in
HBS(q, M)—denoted PBS(M, δ)—is to settle for provid-
ing probabilistic bounds, rather than absolute bounds, on the
sample size. Such bounds are not guaranteed to hold all the
time but the probability of failure is small and tightly con-
trolled. The trick is to make the sampling rate q dependent on
the size of the dataset, and not of the sample. In the simplest
setting, the dataset size N = |R| is known beforehand. The
key idea is then to set the sampling rate q slightly lower than
M/N so that the sample size exceeds M with probability no
more than a specified failure probability δ. As shown in [4],

an approximate formula for the required sampling rate is

q ≈
N (2M + z2

δ )− zδ

√
N (N z2

δ + 4N M − 4M2)

2N (N + z2
δ )

, (2)

where zδ is the (1 − δ)-quantile of the standard normal dis-
tribution. Small values of δ can be chosen without incur-
ring too much space overhead. For example, suppose that
N = 10,000,000, M = 10,000, and δ = 0.01. The value of
q is then given by 0.00095, and the expected sample size is
9,500 items, which is close to M . Our choice of q ensures
that, with a probability of approximately 99 %, the actual
sample size will not exceed M .

When the dataset size is not known in advance, the value
of q cannot be predetermined. We can still provide proba-
bilistic bounds as follows. We start with a high value of q,
typically 1, and gradually reduce the sampling rate q as the
dataset grows [11]. Subsampling is used to reduce q, but in
contrast to BSP(q0, M), subsampling is initiated whenever
the dataset size exceeds certain values. For example, the sam-
pling fraction might be readjusted when the dataset size has
grown by a specified amount (10,000 insertions, 1 %, and so
on) after the last readjustment. In general, we can choose
any non-increasing function f whose range is [0,1] and set
qi = f (|Ri |); we execute a subsampling operation when-
ever qi decreases. For practical schemes, we want to choose
the value of q conservatively at each subsampling step. That
is, the value of N used in its derivation is set to the dataset
size at which the next subsampling step is going to be ini-
tiated. This way, the success probability 1 − δ of staying
within the current sample-size bound can be guaranteed at
all times.

2.4 Alternative: hybrid Bernoulli sampling
with randomized switch-over

An alternative approach for the insertion-only setting explic-
itly avoids the problem discussed in Sect. 2.1 by modifying
the switch-over procedure as follows; the resulting algorithm
is denoted HBSR(q, M). Starting with an empty sample, per-
form Bern(q) sampling until the sample size is M + 1; this
will occur at random time T (M + 1). (To simplify notation,
we write T = T (M + 1) in the sequel.) By our prior discus-
sion, we know that the sample ST is of the form { rT }∪ST−1,
where rT is the item that has just been inserted into the sam-
ple. Moreover, ST−1 is a sample of size M from RT−1, and
symmetry considerations (which can be formalized) show
that ST−1 is in fact a uniform sample from RT−1. We can
then switch to reservoir sampling, starting with item rT , and
uniformity will be preserved.

Thus, we avoid the non-uniformity problem of the naive
switch-over approach by further randomizing the time at
which reservoir sampling starts. In the naive approach, we
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start reservoir sampling at T (M), whereas in the modi-
fied approach, we wait for an additional, random number
T (M + 1) − T (M) of sampling steps. The key properties
of this “randomized switching” scheme are given by the fol-
lowing result, whose proof is in the Appendix.

Theorem 1 Suppose that R1, R2, . . . are the successive
states of a database R that result from a stream of insertion-
only transactions and that S1, S2, . . . are the successive states
of a sample S of R that is maintained using an HBSR(q, M)

scheme with q ∈ (0, 1) and M ≥ 1. Then,

1. Pr [Sk = A | T ≤ k] = ( k
M

)−1
for any k ≥ 1 and A ⊆

Rk with |A| = M.
2. Pr [Sk = A | T > k] = q |A|(1 − q)k−|A|/

∑
l>k πl for

any k ≥ 1 and A ⊆ Rk with |A| < M.
3. For all k ≥ 1, the set Sk is a uniform sample from Rk.

Here, T is the random switch-over time and πl=Pr [T = l] =(l−1
M

)
q M+1(1− q)l−1−M for l ≥ M + 1.

To illustrate the first assertion of the theorem using our
previous example, assume that T = 3 and denote by S′3 the
sample right before running the reservoir step. Observe that
Pr

[
S′3 = {r1, r2, r3}

∣∣ T = 3
] = 1 so that Pr

[
S2 = {r1, r2}

∣∣
T = 3

] = 1. We obtain S3 from S2 by processing r3 with a
standard reservoir step so that

Pr
[

S3 = {r1, r2}
∣∣ T = 3

]
= Pr

[
S3 = {r1, r3}

∣∣ T = 3
]

= Pr
[

S3 = {r2, r3}
∣∣ T = 3

] = 1

3
.

3 Deletions

We now discuss bounded-size set sampling methods in the
setting of general UDI transaction sequences. Reservoir sam-
pling can be adapted to deal with deletions using a “random
pairing” technique. On the other hand, techniques such as
hybrid Bernoulli sampling with randomized switch-over and
Bernoulli sampling with purging—both of which yield cor-
rect results in the insertion-only setting—fail in the general
UDI scenario.

3.1 Incorrect: adapted reservoir sampling

Tao et al. [15] propose an “adapted” reservoir sampling algo-
rithm, denoted by ARS(M), that tries to handle deletions.
This algorithm maintains an array RS of length M , in which
elements tagged as “valid” correspond to items in the sam-
ple. Whenever an item is deleted from the dataset, the item
is also removed from the sample, if present, by tagging the
corresponding element in RS as “invalid.” When an item is
inserted into the dataset, it is assigned a random integer J
uniformly distributed in [1, nI ], where nI is the total number
of insertions so far (including the newly inserted record). If
J > M , then the record is ignored. Otherwise, the algorithm
adds the item to the sample by writing it to position J in
RS, overwriting any prior contents at this position, and then
tagging RS[J ] as “valid.” Depending on the prior contents of
RS[J ], such an insertion might correspond either to simple
addition of the item in the sample or to replacement by the
item of a previous sample element.

Unfortunately, this algorithm does not yield uniform sam-
ples even for insertion-only transaction sequences. For exam-
ple, suppose that M = 2 and the transaction sequence is
γ = (+r1,+r2,+r3). A straightforward calculation shows
that

Pr [ S3 = { r1 } ] = 0

Pr [ S3 = { r2 } ] = 1/6

Pr [ S3 = { r3 } ] = 1/6

Pr [ S3 = { r1, r2 } ] = 1/6

Pr [ S3 = { r1, r3 } ] = 1/6

Pr [ S3 = { r2, r3 } ] = 1/3,

which is clearly non-uniform. In this particular counterex-
ample, the first item r1 is written into position 1 with prob-
ability 1. Item r2 then either overwrites r1 or is written into
position 2; in either case, the sample no longer contains r1

on its own. In contrast, there is a positive probability that
r2 appears on its own—if it overwrites r1 and then r3 is not
accepted into the sample—and similarly for r3.

A corrected variant of this algorithm is given in [11,
Sec. 3.5.1F]. Experiments in [11] show, however, that

Thus, S3 is a uniform sample, given that T = 3. By the 
correctness of reservoir sampling [14], it follows that, con-
ditional on T = 3, each of S4, S5, . . .  is a uniform sample 
of size M . Here, Si is obtained from Si−1 via a reservoir 
sampling step.

The second assertion of the theorem implies that, before 
the switch-over time T , the sample is not a true Bernoulli 
sample (even though we are using a “corrected” switch-over 
time). Indeed, the conditional probability that Sk = A equals 
the “pure” Bernoulli probability q |A|(1 − q)k−|A| divided 
by the factor 

∑
l>k πl . The probability depends on A only 

through |A|, however, and so Sk is conditionally a uniform 
sample. The final assertion of the theorem is that uniformity 
actually holds unconditionally.

One key issue not addressed so far is how to choose the 
Bernoulli sampling rate q so as to extend Bernoulli sampling 
as long as possible while avoiding an under-full sample. This 
issue, however, is analogous to the problem of how to choose 
q when imposing probabilistic bounds on the sample size, 
and the discussion in Sect. 2.3 applies.
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this variant is dominated by the random pairing algorithm
described below, which is both less expensive and yields a
larger average sample size. We therefore do not consider the
ARS(M) approach further.

3.2 Alternative: random pairing

The foregoing problems can be avoided by using an algo-
rithm called random pairing [12], denoted RP(M), briefly
described here. As before, the deletion of an item is handled
by removing the item from the sample, if present. As a con-
sequence, the sample size may drop to a value less than the
desired size M . To avoid undersized samples, RP makes use
of future insertions to “compensate” for deletions. In more
detail, RP keeps track of the number d of deletions that have
not yet been compensated. Insertions are processed as fol-
lows. If d = 0, so that there are no uncompensated deletions,
then RP executes a standard reservoir sampling step. If d > 0,
the decision of whether or not to include the inserted item
into the sample is randomized. The inclusion probability p
is carefully chosen so that the uniformity of the sample is
maintained; specifically, p = (

min(M, |R| + d) − |S|)/d.
After the insertion has been processed, one deletion has been
compensated and d is decremented by one.

RP maintains the following invariant [12]: At any time,
the sample size follows a hypergeometric distribution with
parameters depending only on the values of |R|, d , and M :

Pr [ |S| = k ] =
(|R|

k

)(
d

M − k

)/(|R| + d

M

)
. (3)

Since the values of |R| and d are completely determined by
the sequence of transactions, so is the sample size distribu-
tion. In particular, whenever d = 0, the sample size equals
M with probability 1.

3.3 Incorrect: hybrid Bernoulli sampling with randomized
switch-over and deletions

Pure Bernoulli sampling can handle UDI transactions, but
the hybrid Bernoulli sampling scheme, even with randomized
switch-over times and with reservoir sampling being replaced
by random pairing, cannot. Specifically, suppose that we try
to apply the HBSR(q, M) algorithm to a UDI stream, and at
first, we see only insertions. Then, as above, the switch-over
will occur at some random time T . Now suppose at some time
j > T , we see a deletion transaction −ri with i < T . This
sequence γ of transactions is equivalent to a sequence γ ′ in
which element ri was never inserted into the sample at all. But
for γ ′, the switch-over happens at some time T ′ that is greater
than T .2 In general, the bookkeeping required to roll back the

2 More precisely, T ′ is “stochastically larger” than T in that
Pr

[
T ′ > n

]
> Pr [ T > n ] for all n ≥ 0.

sample from j to T ′ and “correct” the subsequent processing
requires expensive accesses to the dataset and appears to be
impractical. (We do not give an explicit counterexample here
since HBSR(q, M) has not been proposed in prior literature.)

3.4 Incorrect: Bernoulli sampling with purging
and deletions

In the following, we show that the BSP(q0, M) scheme
produces non-uniform samples in the presence of dele-
tions. In the context of set sampling, BSP(q0, M) essentially
coincides with the concise-sampling and counting-sampling
schemes of [13], which therefore also yield non-uniform
samples for UDI transaction sequences. To simplify the
discussion, we assume that q ′ = pq for a fixed constant
p ∈ (0, 1); similar arguments apply when q ′/q can vary
over the subsampling steps.

The purge operation is executed whenever the sample size
increases to M + 1, due to an accepted insertion transac-
tion. Each purge involves L Bernoulli subsampling steps with
sampling rate p, where L is a geometrically distributed ran-
dom variable with

Pr [ L = k ] = p′(1− p′)k−1

for k ≥ 1. Here, p′ = 1 − pM+1 denotes the probability
that at least one of the M sample items is rejected so that the
purge operation terminates. Denoting by S′ the subsample
that results from executing the purge operation on S, we have
for any A ⊂ S

Pr
[

S′ = A
] = Pr [ all r ∈ A retained, all r ∈ S\A

purged |≥ 1 item purged ]
= p|A|(1− p)M+1−|A|

p′
. (4)

After the purge operation has terminated, the sampling
process proceeds with the new sampling rate qpL .

We now give a simple example where BSP(q0, M) does
not produce a uniform sample; an illustration is given in
Fig. 1. Consider the sequence γ = (+r1,+r2,−r1,+r3) and
set q0 = 1, M = 1. Denote by Ri the dataset, by Si the sam-
ple, and by Qi the (random) sampling rate after processing
the i th transaction, starting with R0 = S0 = ∅ and Q0 = 1.
The first insertion +r1 is directly included into the sample;
the sampling rate remains unmodified, Q1 = 1. The insertion
of r2 triggers a purge operation and, using (4) with A = { r1 },
we find that r2 is selected as the sample item with probabil-
ity p1 = p(1 − p)/(1 − p2). The same holds for r1, and
the sample becomes empty with probability 1 − 2p1. Also,
the sampling rate is adjusted depending on the number L of
purges so that Q2 = pL . Transaction −r1 simply removes
r1 if present in the sample; Q3 = Q2. Transaction +r3 is
accepted with probability Q3 = pL and rejected otherwise.
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In the case of a rejection, the sample remains unmodified.
Otherwise, if r3 is accepted, it is included into the sample
and, when additionally S3 = { r2 }, another purge operation
is triggered. By multiplying the probabilities along the paths
in Fig. 1, summing up and replacing Q3 by pL , we obtain

Pr [ S4 = { r2 } | L ] = p1(1− Q3)+ p1 Q3 p1

= pL(p2
1 − p1)+ p1,

and

Pr [ S4 = { r3 } | L ] = (1− 2p1)Q3 + p1 Q3 + p1 Q3 p1

= pL(p2
1 − p1 + 1).

We can now uncondition on L and simplify:

Pr [ S4 = { r3 } ] =
∞∑

k=1

Pr [ L = k ] Pr [ S4 = { r3 } | L = k ]

=
∞∑

k=1

(1− p2)(p2)k−1 pk(p2
1 − p1 + 1)

= 1− p2

p2 (p2
1 − p1 + 1)

∞∑
k=1

(p3)k

= p

p + 1
.

Fig. 1 Counterexample for counting sampling on sets (BSP(1, 1))

Similarly,

Pr [ S4 = { r2 } ] =
∞∑

k=1

Pr [ L = k ]
(

pk(p2
1 − p1)+ p1

)

= p

p + 1

p2 + 1

p2 + p + 1
.

It follows that

Pr [ S4 = { r2 } ] < Pr [ S4 = { r3 } ]

for p > 0, so that BSP(q0, M) biases the sample toward
recent items. For example, a common choice is p = 0.8;
the two probabilities are then given by ≈ 0.30 and ≈ 0.44,
respectively. The purge operation thus introduces some sub-
tle dependencies among the sample items, and these depen-
dencies lead to non-uniform samples when the transaction
sequence contains deletions.

As a final note, Tao et al. [15] proposed an exten-
sion of BSP(q0, M)—called adapted counting sampling,
ABSP(M)—that attempts to avoid the cost of executing purg-
ing steps by continually adjusting the sampling rate. This
can be shown to produce non-uniform samples even in the
insertion-only setting. A simple counterexample is provided
by the sequence γ = (+r1,+r2,+r3) with M = 1, which
can be shown to yield

Pr [ S3 = { r1 } ] = 3/8

Pr [ S3 = { r2 } ] = 3/8

Pr [ S3 = { r3 } ] = 1/4,

a clearly non-uniform result.

3.5 Alternative: Bernoulli sampling with
probabilistic sample size bounds

The PBS(M) scheme with probabilistic bounds given in
Sect. 2.3 extends to the case of deletions. The idea is to
choose a non-increasing function f whose range is [0,1],
set qi = f (max j≤i |Ri |), and execute a subsampling oper-
ation whenever qi decreases. This extension is the only
Bernoulli-based scheme that supports arbitrary UDI transac-
tions. As before, the sequence {qi } is a deterministic decreas-
ing sequence, given the sequence of transactions, and at any
point in time, the current sample is true Bern(qi ) sample.
Because Bernoulli sampling supports deletion transactions,
the sample remains uniform under such deletions. Note, how-
ever, that we cannot increase q when the dataset shrinks due
to deletions.
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4 Multiset sampling methods

In the foregoing discussion, we have assumed that, after every
transaction, the dataset R and sample S are both true sets, i.e.,
containing no duplicate items. We now focus on the case in
which R and S are multisets, so that they can contain dupli-
cates, and items having the same value are indistinguishable.
In this setting, we can save space by storing the sample in a
compressed format. The compressed sample H of S contains
a pair (r, nr ) for every distinct r ∈ S, where nr = |S(r)| is the
multiplicity of r in S. Thus, we store (item, frequency)-pairs
in H , instead of repeatedly storing duplicate items.3 In what
follows, we refer to |S| as the sample size (including dupli-
cates) and |H | = |D(S)| as the sample footprint (excluding
duplicates); note that |H | ≤ |S|.

Importantly, for an insertion-only transaction sequence,
we can apply any of the uniform set sampling algorithms
that work in this scenario, regardless of the format in which
we store the sample—whether we insert an accepted sample
value into a sample array or increment a counter for the value
is immaterial. This approach does not work in the UDI set-
ting, however. Suppose, for example, that a transaction of the
form−r arrives, where r = 4. We clearly need to decrement
by 1 the number of 4’s in the dataset. It is not clear, however,
whether or not to decrease the number of 4’s in the sam-
ple. Multiset sampling methods deal with this question in a
manner that guarantees uniformity. Some multiset sampling
methods attempt to provide strict bounds directly on the sam-
ple footprint. As shown in the following sections, such strict
bounds always lead to non-uniformity, and only probabilistic
bounds are available. To avoid confusion between bounded-
size and bounded-footprint methods, we consistently denote
sample-size bounds by M (including duplicates) and sample-
footprint bounds by F (excluding duplicates).

4.1 Incorrect: Bernoulli sampling with purging
and bounded footprint

Denote by BSP(q0, F) the variant of Bernoulli sampling with
purging in which subsampling is triggered when a specified
sample footprint is exceeded. Brown and Haas [4] observed
that BSP(q0, F), and indeed any algorithm that attempts to
strictly bound the sample footprint, must yield non-uniform
samples, even for an insertion-only sequence. To see this,
suppose that the dataset is empty initially and consider a
transaction sequence γ = (+r1,+r1,+r2). Suppose that
F = 1, so that only one (item, frequency)-pair can be stored
in the sample, and consider the samples S1 = { r1, r1 } and
S2 = { r1, r2 }. The corresponding compressed samples are
given by H1 = { (r1, 2) } and H2 = { (r1, 1), (r2, 1) }. If BSP

3 Even more space can be saved by representing a singleton value (r, 1)

simply as (r); see [13]. For simplicity, we ignore this refinement here.

were uniform, we would have Pr [ S2 ] = 2Pr [ S1 ] > 0 or
Pr [ S2 ] = 2Pr [ S1 ] = 0. By inspection, we can see that
H1 has a positive probability of being produced, whereas
H2 is never produced since it exceeds the footprint F = 1.
This argument applies to any multiset sampling scheme that
strictly bounds the footprint.

The concise-sampling and counting-sampling schemes in
[13] enforce strict bounds on the sample footprint and hence
yield non-uniform samples in the multiset context, even for
insertion-only sequences. In the set sampling scenario, the
footprint coincides with the sample size, so these algorithms
will yield uniform samples for an insertion-only transaction
sequence. (Recall from Sect. 3.4 that these algorithms fail to
produce uniform samples in the presence of deletions.)

4.2 Alternative: augmented Bernoulli sampling
with probabilistic sample size bounds

In the UDI setting, we can obtain a uniform sampling algo-
rithm with a probabilistically bounded sample size and com-
pressed sample format based on the augmented Bernoulli
sampling ABS(q) scheme given in [10]. The ABS(q) algo-
rithm borrows an idea from [13] and maintains for each item r
in the sample both Xi (r) = |Si (r)|, the frequency of r in the
sample, and a “tracking counter” Yi (r). Whenever Xi (r) is
positive, the counter Yi (r) records the number of net inser-
tions of r into the dataset that have occurred since the inser-
tion of the first of the current Xi (r) sample items; the dataset
insertion corresponding to the first of these Xi (r) sample
inclusions is counted as part of Yi (r).

The general layout of the sample Si is as follows: For each
distinct item r ∈ R that occurs in the sample at least once, Si

contains the triple (r, Xi (r), Yi (r)); the sample is therefore
“augmented” with tracking counters. To save space, the entry
for r is stored as (r, Xi (r), Yi (r)) if Yi (r) > 1 and simply as
(r) if Xi (r) = Yi (r) = 1.

Recall that, in Bernoulli sampling, each item is sampled
independently of all the other items. Without loss of general-
ity, therefore, fix an item r and focus on the maintenance of
Xi (r) and Yi (r) as a transaction sequence γ is processed—
assume that γ consists solely of insertions and deletions
of item r . We represent the state of Si as (Xi , Yi ), that is,
we suppress the dependence on r in our notation. We have
Xi = Yi = 0 whenever r /∈ Si . As before, we assume that
both the dataset and the sample are initially empty so that
X0 = Y0 = 0.

The algorithm works as follows: For an insertion transac-
tion γi+1 = +r , set

(Xi+1, Yi+1)←
⎧⎨
⎩

(Xi + 1, Yi + 1) if Φi+1 = 1
(Xi , Yi + 1) if Φi+1 = 0, Xi > 0
(0, 0) otherwise,
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where Φi+1 is a 0/1 random variable such that
Pr

[
Φi+1=1

] = q. For a deletion γi+1 = −r , set

(Xi+1, Yi+1)←⎧⎪⎪⎨
⎪⎪⎩

(0, 0) if Xi = 0
(0, 0) if Xi = Yi = 1
(Xi − 1, Yi − 1) if Xi ≥ 1, Yi > 1, Ψi+1 = 1
(Xi , Yi − 1) otherwise,

where Ψi+1 is a 0/1 random variable such that

Pr
[
Ψi+1 = 1

] = Xi − 1

Yi − 1
.

Note that Pr
[
Ψi+1 = 1

] = 0 whenever Xi = 1; we have
Xi+1 ≥ 1 whenever Yi > 1. As before, item r is removed
from the sample if Xi > 0, Xi+1 = 0 and added to the
sample if Xi = 0, Xi+1 > 0.

Although this algorithm does not provide any bounds on
the sample size, we can proceed as in Sect. 2.3, initially
setting q = 1 and then periodically reducing q and purg-
ing the sample when the dataset size (including duplicates)
exceeds specified bounds. We refer to this variant of ABS(q)

as PABS(F, δ). Here, parameter F bounds the footprint of
the sample probabilistically, with exceedance probability δ.
The sample size

∑
r∈S Xi (r) is also bounded probabilisti-

cally by F , but the number of net insertions
∑

r∈S Yi (r) is
not.

sampling, we will need to store hash function h in addition
to the sample. If H is pairwise independent, it suffices to
store the integers a and b of Eq. (5). If H is fully indepen-
dent, we essentially have to store the hash value of every item
r ∈ D(R), which is prohibitive. In practice, however, cryp-
tographic hash functions (e.g., based on AES) often “look”
fully independent and may be used to approximate fully inde-
pendent hashing [11] for practical purposes, although no the-
oretical guarantees are provided.

Most of the sampling techniques discussed below have
rather strong independence requirements on the class of hash
functions. As outlined above, the higher the requirements on
independence, the more cost is incurred for storing and, in
many cases, applying the hash functions. It is thus of practical
interest to make use of k-wise independent hash functions for
some small value of k. The only known sampling scheme that
uses pairwise-independent hashing is the dynamic inverse
sampling scheme of [6]; we show below that this scheme
is not uniform. We also briefly outline a number of other
distinct-item sampling techniques proposed in the literature;
in particular, the PABSD(F, δ) scheme is the only sampling
scheme that does not make use of hashing.

5.1 Incorrect: dynamic inverse sampling
with pairwise-independent hashing

Cormode et al. [6] proposed a strictly bounded-size scheme
for distinct-item sampling. The scheme—called dynamic
inverse sampling and denoted DIS2(F)—can handle arbi-
trary insertions and deletions. It makes use of F data struc-
tures and F pairwise-independent hash functions, one per
data structure. Each data structure maintains—with some
success probability p > 0—a single item chosen uniformly
and at random from the set D(R) of distinct items in R. The
sample size is thus random in [0, F] and sampling is with
replacement.

Each data structure consists of O(log|D |) buckets. Each
inserted or deleted item affects exactly one of the buck-
ets in a data structure; the hash function associated with
the data structure ensures that each item maps to the same
bucket whenever it occurs in the transaction sequence. In
more detail, an item is hashed to bucket i with probabil-
ity (1 − α)αi−1, where 0 < α < 1 is a parameter of the
algorithm.4 Each bucket consists of the sum of the items
(treated as integers) inserted into it, a counter of the number
of inserted items, and a data structure for collision detection.
Adding an item to (resp., deleting an item from) a bucket sim-
ply involves incrementing (resp., decrementing) the counter
by 1, incrementing (resp., decrementing) the sum by the item
value and updating the collision detection structure accord-
ingly. If there is a bucket in the data structure that contains

4 The bucket number of item r is given by �log1/α(|B|/[h(r)+ 1])�.

5 Distinct-item sampling

Recall that the goal of distinct-item sampling is to obtain 
a uniform sample of D(R), the set of distinct items in the 
dataset. Most (but not all) of the existing sampling techniques 
in this setting make use of a random hash function as source 
of randomness.

Denote by H = 
{ 

h1, . . ,  h|H | 
} 

a class of hash func-tions with domain D and range B. Following [16], we say 
that H is k-wise independent if for any k distinct ele-
ments a1, . . . , ak ∈ D and k not necessarily distinct ele-
ments b1, . . . , bk ∈ B, there are exactly |H |/|B|k functions 
h ∈ H such that h(ai ) = bi for 1 ≤ i ≤ k. For example, 
let p be an arbitrary prime number and denote by Z p the 
finite field over { 0, 1, . . . ,  p − 1 } with integer addition and 
multiplication modulo p. Then,

Hp ={ h(x)=(ax + b)modp : a, b ∈{ 0, . . . ,  p−1 }} (5)

is pairwise independent (i.e., k = 2) with D = B = 
{ 0, 1, . . . ,  p − 1 }. Finally, say that H is fully independent 
if it is k-wise independent for all values of k; only the set of 
all functions from D to B is fully independent.

In what follows, we assume that D(R) ⊆ D at all times, 
that B = { 0, . . . , |B| −  1 }, and that h is picked uniformly 
and at random from H . When using hashing for distinct-item
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Table 2 Frequencies of each possible sample for DIS2(1) after N data-
base insertions

N = 2 N = 3

S = ∅ 6,776,653 3,388,337
S = { 0 } 30,157,914 23,029,192

S = { 1 } 30,157,914 17,645,760

S = { 2 } 23,029,192

Uniform? � –

exactly one distinct item, then the data structure “succeeds,”
and this item is returned as a random sample of size 1; other-
wise, the data structure fails. Note that the lower-numbered
buckets are more likely to succeed when the dataset size is
small; the higher-numbered buckets handle large datasets.
The point is that the stored items do not need to be main-
tained individually; in the important case where a bucket
contains only a single distinct item (as indicated by the colli-
sion detection data structure), the value of the sum is equal to
the value of the counter times the value of the item; the item
can thus be extracted. [6] have shown that, for an appropriate
choice of α, the success probability p is at least 14.2 %.

Because a DIS2(F) data structure is successful if there
exists a bucket comprising a single distinct item, and because
this event depends on the hash values of all items in R,
one might suspect that the use of pairwise-independent hash
functions leads to non-uniform samples. A simple setup
can be used to show that DIS2(F) is indeed non-uniform:
Pick a pairwise-independent class of hash functions, run
DIS2(F) on some dataset R for all h ∈H , and test whether
every sample of the same size is produced by exactly the
same number of hash functions. Table 2 shows results for
DIS2(1),H = H8191, R2 = { 0, 1 }, and R3 = { 0, 1, 2 }.5
As can be seen, DIS2(F) is uniform for R2, but it is non-
uniform for R3.

A simple fix to DIS2(F) would be to make use of fully
independent hash functions, and we denote by DIS∞(F) the
resulting sampling scheme. It may be possible, however, to
make use of a weaker class of hash functions. Specifically, it
seems plausible that some variant of min-wise independent
permutations [3] is sufficient to ensure the uniformity of DIS,
in light of the discussion on min-wise hashing in Sect. 5.3
below and the fact that a succeeding DIS data structure out-
puts the item with the largest hash value.

5.2 Alternative: distinct-item Bernoulli sampling
with probabilistic bounds

Set h′(x) = h(x)/|B| for h ∈ H , and consider the follow-
ing hash-based variant of Bernoulli sampling with sampling

5 We used α = √2/3 and the greedy version of DIS2(1). Other values
of α as well as the basic version led to similar results.

rate q: When processing an insertion+r , accept the item into
the sample if h′(r) < q; otherwise, ignore the item. When
processing deletion−r , remove one occurrence of r from the
sample, if present. As before, we store the sample in com-
pressed form. It is easy to see that if R is produced by a
sequence of insertions and transactions, and S is obtained by
running the sampling algorithm above on the same sequence,
we have

|S(r)| =
{ |R(r)| if h′(r) < q

0 otherwise.

If H is fully independent and q = k/|B| for some integer
0 ≤ k ≤ |B|, then

Pr [ D(S) = A ] = q |A|(1− q)|D(R)|−|A|;
thus, D(S) has the same distribution as a Bern(q) sample of
D(R) and uniformity follows.

To obtain a bounded-footprint sampling scheme, we can
now employ probabilistic bounds as before, i.e., we start
with a high value of q and gradually reduce the sampling
rate as the dataset grows. We denote the resulting scheme
by DPBS(F, δ). To reduce q to q ′ < q, we retain items
r ∈ S with h′(r) < q ′ and remove items with h′(r) ≥ q ′.
Note that DPBS(F, δ) does not guarantee a bounded sam-
ple size; for example, if R = { r0 }N and h′(r0) = 0, then
|S| = N for all q > 0. DPBS(F, δ) does, however, pro-
vide bounds on the sample footprint |D(S)|. In particular, if
we choose q as in Eq. (2) (using M = F), then |D(S)| ≤ F
with high probability. This bound is somewhat unsatisfactory
though: Duplicates do not affect the sample footprint, but q is
selected based on |R| (i.e., including duplicates) and can thus
be unnecessarily small. An alternative approach is to select
q based on |D(R)|—i.e., taking N = |D(R)| in Eq. (2)—or
an estimate of |D(R)|; if the estimate is not based on the
sample, uniformity is retained.

5.3 Alternative: min-wise hashing

We now briefly discuss some alternative schemes that have
been proposed in the literature. In min-wise hashing [2],
denoted MIN(M), the sample S consists of the distinct items
in R having the M smallest hash values. The sample S can be
maintained incrementally in the insertion-only setting, as fol-
lows. Insert the first M distinct items directly into the sample.
Then, whenever an item r+ is inserted into R and r+ /∈ S,
check whether h(r+) < h(r−), where r− = argmaxr∈Sh(r).
If so, add r+ to the sample and remove r−. The MIN(M)

scheme produces uniform samples if H is a family of M-
min-wise independent permutations [3].

Deletions can be handled by augmenting the sample with
frequency counters as in DPBS(F, δ); the resulting scheme
is due to Beyer et al. [1] and denoted AKMV(F) (for “aug-
mented k-minimum values”). The frequency counters record
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the exact frequency in R of each sampled element, and
AKMV(F) retains sample elements whose frequency has
dropped to 0 to ensure uniformity; all frequency-0 items are
ignored for estimation purposes.

5.4 Alternative: distinct-item subsampling for PABS(F, δ)

PABS(F, δ) samples can also be used to obtain a distinct-
item sample of R under UDI transactions [10]; denote by
PABSD(F, δ) the resulting scheme. In particular, let S be a
PABS(F, δ) sample of R and denote by q its current sampling
rate. To obtain distinct-item sample S′, include r ∈ D(S) into
S′ with probability

p(r) =
{

1 if Y (r) = 1
q if Y (r) > 1.

ing technique cannot be used, and the parallelization advan-
tages of Bernoulli sampling thus vanish. A notable excep-
tion is PBS(M, δ), which provides probabilistic sample size
bounds; here, the sample constitutes a true Bernoulli sample
at any time.

Brown and Haas [4] provide an algorithm, called MERGE,
that is designed to merge uniform samples S1 and S2 into
a sample S in the insertion-only environment; the algo-
rithm makes no assumptions about the method used to create
the uniform samples S1 and S2. The MERGE algorithm as
described by [4] accesses S1 and S2 to create a uniform sam-
ple S of size m = min(|S1|, |S2|). The basic idea is to select
X1 random items from S1 and X2 = m−X1 items from S2 to
include in S, with X1 being hypergeometrically distributed:

Pr [ X1 = k ] =
(|R1|

k

)( |R2|
m − k

)/(|R1| + |R2|
m

)
. (6)

Indeed, the right side of (6) is the probability that exactly
k out of m random items from R1 ∪ R2 belong to R1. The
resulting sample is therefore statistically equivalent to a size-
m uniform sample from R1 ∪ R2 so that MERGE is indeed
correct. MERGE can also be used in the deletion setting but
has the disadvantage that the size of the merged sample is
limited by the size of the smallest constituent sample and
hence is sensitive to skew in the local sample sizes caused
by uncompensated deletions [12].

To address this problem when S1 and S2 are both cre-
ated using the RP algorithm, Gemulla et al. [12] provide an
extension of MERGE, called RPMERGE, that yields larger
merged samples and is resistant to skew; moreover, the sam-
ple is accompanied by sufficient information so that incre-
mental maintenance can be continued.

The merging problem is more complicated for multi-
set sampling. In an insertion-only setting, we can use set
sampling methods (see Sect. 4) and the foregoing dis-
cussion applies. In the presence of deletions, however,
the PABS(F, δ) algorithm is the only available sample-
maintenance method. It would be desirable to be able to
merge two PABS samples into a combined PABS sample,
so that incremental maintenance of this latter sample can be
continued. Unfortunately, as shown in [10], if multiset parti-
tions R1 and R2 share any common values, then such merg-
ing is impossible without accessing the underlying dataset.
The best that one can do is compute a onetime Bernoulli
sample S by discarding the tracking counters and setting
|S(r)| = |S1(r)|+ |S2(r)| for each r ∈ D(S1∪ S2); the com-
bined sample S cannot be maintained further by a bounded
uniform sampling technique (strict or probabilistic).

Similar reasoning applies to PABSD(F, δ) for distinct-
item sampling: We cannot merge samples if partitions share
any common values. In contrast, all other distinct-item
schemes support both merging and subsequent incremen-
tal maintenance when the same hash function is used to

Then, S′ is a Bern(q) sample of D(R). PABSD(F, δ)  is the 
only distinct-item scheme that does not make use of hash-
ing. Note, however, that PABS(F, δ)  generally has a larger 
footprint that DPBS(F, δ)  (though both footprints are prob-
abilistically bounded by F). To see this, fix some sampling 
rate q and item r ∈ R. We have r ∈ D(S) with probabil-
ity 1 − (1 − q)|R(r)| for PABS(F, δ), and r ∈ D(S) with 
probability q for DPBS(F, δ). Since both samplers produce 
a Bern(q) sample of D(R), and since 1 − (1 − q)|R(r)| ≥ q, 
the expected sample footprint of PABS is larger than or equal 
to the one of DPBS.

6 Merging

One factor in choosing between sampling methods is whether 
samples can easily be merged, and so we briefly summarize 
some results on this topic. Merging is of particular interest 
when a dataset R is partitioned across several nodes; see [4] 
for an example. In this case, it may be desirable to indepen-
dently maintain a local sample of each partition and compute 
a global sample of the complete dataset (or, in general, of any 
desired union of the partitions) by merging these local sam-
ples. This approach is often superior, in terms of parallelism 
and communication cost, to first reconstructing R and sam-
pling afterward.

The easiest case is when S1 and S2 are Bernoulli sam-
ples of partitions R1 and R2 with respective sampling rates 
q1 and q2 [4]. Simply purge one of the samples so that both 
samples are Bernoulli with common rate q = min(q1, q2), 
and then set S = S1 ∪ S2. This procedure exploits the fact 
that the items in the dataset are accepted into or rejected 
from the sample in a mutually independent fashion. The 
ease of parallelization of Bernoulli sampling was one of the 
motivations for developing hybrid sampling schemes such as 
BSP(q0, M) and HBSR(q, M). Since hybrid schemes do not 
maintain true Bernoulli samples, however, the above merg-

Final edited form was published in "The VLDB Journal" 22 (6), S. 753–772. ISSN: 0949-877X 
http://dx.doi.org/10.1007/s00778-013-0307-0  

 

12 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



construct S1 and S2. For MIN and AKMV, Beyer et al. [1]
propose merging schemes that can obtain MIN(M) and
AKMV(F) samples of R1 ∪ R2, where M = min(M1, M2)

and F = min(F1, F2); here, Mi and Fi denote the parameters
of Si for i ∈ { 1, 2 }. For DPBS(F, δ), we proceed similarly
to Bernoulli sampling, first purging to q = min(q1, q2) and
then taking the multiset union. Finally, for DIS∞(F) and
F = F1 = F2, we sum up the counters and collision detec-
tion data structures of the corresponding buckets in S1 and S2.

7 Resizing

In this section, we focus on maintaining a bounded uniform
sample S in the presence of a “growing” dataset R in which
insertions occur more frequently than deletions over the long
run. A key challenge in this setting is that the sample size
M = |S| may eventually become too small relative to |R|,
leading to an unacceptable loss of precision when using the
sample. Resizing schemes aim to increase the sample-size
bound from M to a specified value M ′ > M in a con-
trolled manner, while preserving uniformity. Such resizing
operations can be performed periodically as R continues to
grow.

7.1 Incorrect: Bernoulli resizing

As mentioned previously, the Bernoulli resizing (BR) algo-
rithm in [12] first converts the initial reservoir sample to a
Bernoulli sample, then performs Bernoulli sampling (with
deletions) until the sample size has reached the new upper
bound, and finally switches back to reservoir sampling. For
example, suppose that the initial sample-size bound is M = 2
and that a sequence of insertions produces both the dataset
R = { 1, 2, . . . , 10 } and a reservoir sample S = { 2, 3 }. To
obtain a new sample of size M ′ = 4, the BR algorithm con-
verts S to a Bernoulli sample by first generating a sample
size U according to a Bernoulli(N , q) distribution, where q
is a parameter of the algorithm. Supposing for our example
that U = 3, the algorithm then creates the initial sample by
augmenting S with a randomly selected element from the
set { 1, 4, 5, . . . , 10 }, say 7, so that S = { 2, 3, 7 }. Bernoulli
sampling is now performed until |S| = 4, at which point
reservoir sampling recommences. When U ≤ M , the ini-
tial Bernoulli sample is obtained by uniformly subsampling
S; when U > M ′, the sample S is augmented with a uni-
form sample of size M ′ − M from R\S. As can be seen, the
BR algorithm may incur an expensive access to the under-
lying dataset R; it is shown in [12] that such accesses are
unavoidable in any resizing scheme. The parameter q is cho-
sen to optimally balance the time for accessing R and the
time to subsequently grow the sample size up to M ′; the goal

is to incur substantially less time than would be required to
recompute the sample from scratch.

By the arguments of Sect. 2.1, the scheme does not pro-
duce uniform samples. Indeed, attempting to enforce unifor-
mity can be viewed as even more challenging in the current
setting than in that of previous sections. First, since deletions
are allowed, the modified switch-over scheme HBSR(q, M)

of Sect. 2.4 cannot help. Second, even for an insertion-
only transaction sequence, there is an additional problem
unique to Bernoulli resizing. Specifically, the “conversion”
to a “Bernoulli” sample is not quite correct: While executing
Bernoulli sampling steps during the resizing phase, we know
that the sample size must be less than M ′. Hence the sample
cannot be a true Bernoulli sample, since such a sample has a
size exceeding M ′ with non-zero probability. Since the sam-
ple is not Bernoulli, application of Bernoulli “coin flips” to
this sample yields erroneous results.

7.2 Alternative: random pairing resizing

Our workaround for resizing is to not rely on Bernoulli sam-
pling at all. The key idea of the corrected resizing algorithm is
to first convert the initial sample to a random pairing sample
for some value of d and then run the random pairing algorithm
until d becomes 0. At that time, resizing is completed. Note
that, in contrast to Bernoulli resizing, the number of steps in
the second phase—i.e., after the conversion of the sample—
is completely determined by the transaction sequence and
the initial value of d. This guarantees the correctness of the
algorithm. We also provide guidance into the choice of para-
meter d; here, we use the same cost model as in [12], but the
parameter choice is simplified somewhat in RPR.

Suppose that the initial sample size is |S| = M and the
target sample size is M ′ > M , where M, M ′ < |R|. We
say that a sample S is an RP(M ′, d) sample of R if it is
produced by running RP with sample-size parameter M ′ on
a sequence that produces R and contains d uncompensated
deletions. Such a sequence exists for any value of d; for
example, the sequence may consist of |R| insertions, one for
each item in R, followed by the insertion of d “transient”
items, which are subsequently deleted. As mentioned above,
the key idea of random pairing resizing (RPR) is to convert
sample S to an RP(M ′, d) sample, where d is treated as a
parameter of the conversion process. The conversion may
require access to the base data, but—as we discuss in the fol-
lowing section—the probability and number of such accesses
depend on d. After conversion, subsequent transactions are
processed using RP so that, after a sufficiently large num-
ber of insertions, the sample size reaches its target value M ′.
When base data accesses are expensive and insertions occur
frequently, this approach can be much faster than recomput-
ing the sample from scratch.
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very simple model of the transaction stream. A discussion
of more complex cost models and their implications on the
resizing cost can be found in [12]. Given a cost model, numer-
ical methods can be used to determine d∗, the optimal value
of d. Since numerical optimization can be too expensive at
run time, we also consider an approximate model of the cost
function that can be minimized analytically. Our experiments
(see Sect. 7.4) indicate that both the approximate model of
expected cost and the resulting choice of d closely agree with
the results obtained via numerical methods, thereby justify-
ing the use of the quick approximate analytical method.

7.3 Modeling the resizing process

We first consider the cost of phase 1. During this phase, the
algorithm obtains N (U ) items from R\S, where

N (u) = max(u − M, 0)

for 0 ≤ u ≤ M ′. As discussed above, we assume that these
items are obtained using repeated simple random sampling
from R with replacement, with an acceptance-rejection step
to ensure that each newly sampled item is not an element of
S and is distinct from all of the items sampled so far. Using
a result from [12], we find that a good approximation of the
expected number of base data accesses when U = u is given
by

g(u) = |R| ln
( |R| − M

|R| − M − N (u)

)
. (7)

Supposing that each base data access takes ta time units, the
expected phase 1 cost is

T1(d) = taEd [ g(U ) ],

where we use the subscript d to emphasize the fact that the
expected value depends on the value of d.

We now consider the cost of phase 2. In this phase, the
resizing algorithm executes L steps of the random pairing
algorithm, where L depends on the transaction sequence. To
make further progress, we need a model of the insertion and
deletion process. The simplest model, which we will use here,
is to assume that, during phase 2, a sampling step occurs
every tb time units. The quantity tb primarily reflects the
time between successive transactions. With probability p, the
transaction is an insertion, and with probability q = (1− p),
the transaction is a deletion. We assume that p > 1/2, since
the dataset is growing. The parameters tb and p can easily be
estimated from observations of the arrival process.

The distribution of the number L of transactions in phase 2
can be obtained by an analogy to a ruin problem, see, for
example, [8]. In the classical ruin problem, a gambler wins or
loses a dollar with probability p and q = 1− p, respectively.
The gambler is given initial capital z and the game ends when
the gambler’s capital reduces to zero (=ruin) or reaches value

We now describe the algorithm in more detail. In phase 1 
(conversion), RPR generates a realization of a random vari-
able U , which is distributed as in (3) and represents the 
initial RP(M ′, d) sample size. From standard properties of 
the hypergeometric distribution, we obtain that E[ U ] = 
M ′|R|/(|R| +  d). For  d = 0, we have U = M ′ with prob-
ability 1; for larger values of d, the (expected) value of U 
decreases. The algorithm now uses as many items from S as 
possible to make up the RP(M ′, d) sample. Base data are only 
accessed when U > M , in which case we add U −M random 
items from R\S to S to form the initial sample. In phase 2 
(growth), the algorithm increases the sample to the desired 
size by running the RP algorithm on subsequent transactions. 
Since the dataset is growing, the sample size will eventually 
reach its target value M ′. The phase ends as soon as the num-
ber of uncompensated deletions reaches 0, in which case the 
sample size is guaranteed to equal M ′.

We assume that the dataset is “locked” during phase 1, so 
that the process of incoming transactions is temporarily sus-
pended. For ease of exposition, we assume that the sample 
of R\S is obtained using “draw-sequential” sampling tech-
niques. These techniques obtain a single random item from 
R\S by first extracting a random item from the dataset R and 
accepting the item if it is not already in the sample (which 
is the usual case); otherwise, the item is rejected and the 
process starts over. As discussed in [12], more sophisticated 
and efficient data access methods may be available, depend-
ing upon the specific system architecture and data layout. 
Our goal, given cost models for a specified base data access 
mechanism and the sequence of transactions, is to optimally 
balance the amount of time required to access the base data 
in phase 1 and the amount of time required to finish growing 
the sample (using new insertions) in phase 2.

The value of the parameter d determines the relative time 
required for phases 1 and 2. Intuitively, when base data 
accesses are expensive but new insertions occur frequently, 
we might want to choose a large value of d so as to resample 
as few items as possible and shift most of the work to phase 2. 
In contrast, when base data accesses are fast with respect to 
the arrival rate of new insertions, a small value of d might be 
preferable to minimize the complete resizing time.

The next section addresses the key problem of choosing 
the parameter d in the corrected resizing algorithm; our dis-
cussion parallels that in [12]. For a given choice of d, the  
resizing cost—i.e., the time required for resizing—is ran-
dom. Indeed, the time required for phase 1 depends on the 
value of the hypergeometric random variable U , and the time 
required for phase 2 depends on both d and the transaction 
sequence. Our goal is therefore to develop a probabilistic 
model of the resizing process and choose d to minimize the 
expected resizing cost.

We develop perhaps the simplest possible model, based 
on the dataset-access paradigm described previously and a
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a (=win). We are interested in the expected number of steps
until the gambler either wins or is ruined. In our setting, we
have z = |R| and a = |R| + d . The expected value of the
duration of the ruin problem is given by [8, p. 348]

Ed [ L ] = |R|
q − p

− |R| + d

q − p

1− (q/p)|R|

1− (q/p)|R|+d
. (8)

The expected cost of phase 2 can now be written as

T2(d) = tbEd [ L ],

and the total resizing cost can be written as

T (d) = T1(d)+ T2(d) = Ed [ tag(U )+ tbL ].

7.3.1 Finding an optimum parameterization

We can now apply numerical methods to find the optimum
value d∗ for d so that T (d) is minimized. The expected cost of
phase 1 can be computed numerically, based on the formula

Ed [ g(U ) ] =
M ′∑

u=l

g(u)Pr [ U = u ] (9)

where Pr [ U = u ] is given by (3) and l = max(M ′ − d, 0)

denotes the minimum value of U under our assumption that
M ′ < |R|. The above sum can be evaluated quite efficiently
because only a small number of terms contribute significantly
to the sum. The expected cost of phase 2 can be computed
using (8). Given both formulas, we can use standard numeri-
cal optimization algorithms to compute d∗. Under more com-
plex cost models—e.g., when the goal is to minimize the
probability that the resizing time exceeds a specified value
or when a more sophisticated model of disk access is used—
or under more complex stochastic models of the transaction
stream, stochastic optimization techniques as described in
[12, App. B] can be used to compute d∗.

We now explore a closed-form approximation to the func-
tion T (d) that is highly accurate and agrees closely with our
numerical results. This approximation immediately leads to
an effective approximation of d∗. The first step in the approx-
imation is to assume that U = E[ U ] = M ′|R|/(|R| + d)

with probability 1. Analogously to [12], our motivation is
that the coefficient of variation

CV[U ] =
√

Var [ U ]

E2[ U ]
=

√
d(|R| + d − M ′)

M ′|R|(|R| + d − 1)

is of order O(|R|−1/2), and |R| is typically very large. Thus,
U will be close to its expected value with high probability.

Under the above assumption, the approximate expected
phase 1 cost is

T̂1(d) = g(E[ U ]) = g

(
M ′ |R||R| + d

)

= ta|R| ln

⎡
⎣ |R| − M

|R| − M − N
(

M ′ |R||R|+d

)
⎤
⎦ .

Making use of the fact that N (u) = 0 for u ≤ M , and since

M ′ |R||R| + d
≤ M for d ≥ |R|M

′ − M

M
,

we find that

T̂1(d) =
⎧⎨
⎩

ta|R| ln

[
(|R| − M)(|R| + d)

|R|(|R| + d − M ′)

]
d < θ

0 d ≥ θ,

where θ = |R|(M ′−M)/M . The function T̂1(d) is monoton-
ically decreasing, convex, and differentiable on the interval
[0, θ).

To approximate the expected phase 2 cost T2(d), we follow
[12] and observe that the expected change of the dataset size
after each transaction is p ·1+(1− p)·(−1) = 2p−1, so that
the expected number of steps to increase the dataset size by
1 is roughly equal to 1/(2p− 1). Thus, roughly d/(2p− 1)

steps are required, on average, to increase the dataset size by
d and therefore to finish phase 2. This leads to an approximate
expected phase 2 cost of

T̂2(d) = tb
d

2p − 1
.

The above equation is precisely the limit of (8) as |R| → ∞;
in practice, the approximation is accurate when |R| is not too
small. The expected total time required to resize a sample is
approximately equal to T̂ (d) = T̂1(d)+ T̂2(d).

We now choose d = d̂∗, where d̂∗ minimizes the
function T̂ . Note that our search for d̂∗ can be restricted to
the interval [0, θ ], because T̂2(d) is increasing and T̂1(d) = 0
for d ≥ θ . Thus, to compute d̂∗, first set

d0 = M ′

2
− |R| +

√
(M ′)2

4
+ ta

tb
|R|M ′(2p − 1). (10)

If d0 ∈ [0, θ), then d0 satisfies T̂ ′(d0) = 0, and we take
d̂∗ = d0. Otherwise, we take d̂∗ to be either 0 or θ , depending
upon which of the quantities T̂ (0) or T̂ (θ) is smaller.

7.4 Example

We conducted a small experimental study to evaluate the
performance of the RPR algorithm and provide additional
insight into the effect of parameter d. The setup is the same
as that for evaluating BR in [12]; we obtain very similar
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results, i.e., RPR is as efficient as BR but, in contrast, provides
uniform samples.

Throughout, unless specified otherwise, we used initial
and final sample sizes of M = 100,000, M ′ = 200,000,
respectively, and also set |R| = 1,000,000. In addition, we
set p = 0.6 and tb = 1ms; recall that p represents the
probability that a transaction is an insertion, and tb is the
expected time between arrivals during phase 2. The experi-
mental results for various other choices of parameters were
qualitatively similar.

Figure 2 displays the expected resizing cost T (d) for var-
ious values of d, when the base data access cost ta equals 20,
50, and 90 milliseconds.6 There are three possible behaviors
of the T function in the search interval: increasing, decreas-
ing, and internal minimum point. Our choices of ta illustrate
these three possible behaviors. For each scenario, the approx-
imate cost T̂ is represented as a solid curve. Superimposed on
this curve are points that represent the exact (expected) cost
T for various values of d . As expected, when the base data
access cost ta is relatively small, the cost function achieves
its minimum value at d = 0, and the optimal strategy is to
increase the sample size to M ′ during phase 1, and not execute
phase 2. When ta is relatively large, the cost function achieves
its minimum value at d = 1,000,000, and the optimal strat-
egy is to not sample the base data at all, and increase the
sample size to M ′ exclusively during phase 2. For an interme-
diate value of ta, the optimal value of d falls in between 0 and
1,000,000—here, d∗ ≈ 517, 745 for ta = 50ms—so that the
resizing work is allocated between the two phases. Note that,
in this example, the expected costs corresponding to the best
and worst choices of d can vary by a factor of two. Moreover,
the approximate and exact costs are extremely close to each
other. This high degree of consistency, which was observed
for all parameter values that we investigated, increases our
confidence in the quick approximate cost model.

The high accuracy of the cost approximation leads us to
expect that our numerical and approximate methods will also
yield similar estimates for d∗. This expectation is fulfilled,
as shown in Figs. 3 and 4. Figure 3 shows the optimal value
d∗ for various values of ta, while Fig. 4 shows the (exact)
expected resizing cost for the numeric and approximate value
of d∗. As before, the solid line represents values computed
via the quick approximate method and the circular points
represent the numerical solutions. The approximate method
seems to slightly underestimate the exact value of d∗. How-
ever, even when the value of d∗ produced by the numerical
method differs slightly from the result of the approximate
closed-form model, the resulting resizing costs do not differ
perceptibly. The reason is that the cost curve—as shown in
Fig. 2—is flat around the optimum value of d∗.

Fig. 2 Expected resizing cost T (d)

Fig. 3 Optimal value of d

Fig. 4 Optimal expected resizing cost T (d∗)

To evaluate the stability of RPR with respect to its perfor-
mance, we ran as a final experiment 100 independent repe-
titions of a Java implementation of RPR. We used the three
scenarios ta = 20, ta = 50, and ta = 90 and set d to its

6 A complete recomputation of the sample from scratch therefore takes 
4,000s, 10,000s, and 18,000s, respectively.
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Fig. 5 Actual resizing cost at optimum parameterization

respective optimum value. Within each run, we monitored the
number of base data accesses and the total number of arriving
transactions until the resizing process ended. The results are
given in Fig. 5, where we print a symbol for each individ-
ual run. As can be seen, the running times are very stable,
with little variation across multiple runs. We conclude that
the actual running time of the RPR algorithm stays close to
its expected value with high probability, so that RPR exhibits
a stable performance.

8 Practical considerations

In this section, we provide a simple technique for testing
an implementation of a sampling scheme for uniformity. We
also discuss the impact of non-uniformity in practice.

8.1 Testing “uniform” sampling schemes

We propose a simple statistical test for detecting whether a
given sampling scheme A is non-uniform. In brief, we first
run A many times on some small transaction sequence γ

and then run a chi-squared test on the expected and observed
frequencies of all possible samples. If A fails the test, it is
very likely to be non-uniform. If A passes, no conclusion can
be drawn. We found, however, that most of the non-uniform
schemes discussed in this article do not pass our statistical
test.

In more detail, denote by γ a (small) sequence of inser-
tions and transactions and denote by R the correspond-
ing dataset. We now perform many independent runs of
A on γ to obtain a multiset S = { S1, . . . , Sl } of sam-
ples. For every sample size n in { 0, . . . , |R| }, denote by
Sn =

{
Sn,1, . . . , Sn,ln

}
the multiset of samples in S of size

exactly n. Finally, denote by Rn the set of all size-n subsets
of R (using multiset semantics). For each A ∈ Rn , denote

by pn(A) = lnPr [ S = A | |S| = n ] the expected frequency
of A; from Eq. (1), we obtain

pn(A) = ln

(|R|
n

)−1 ∏
r∈D(A)

(|R(r)|
|A(r)|

)
.

Finally, denote by fn(A) the observed frequency of A in Sn .
Our test is as follows: If D(Sn)\Rn �= ∅, then A is

clearly non-uniform: It produces a size-n “sample” that is not
a size-n subset of R. Otherwise, set pn = (pn(A) : A ∈ Rn)

and f n = ( fn(A) : A ∈ Rn). We now run a chi-squared test
with the null hypothesis that A is uniform for size-n samples,
i.e., f n is consistent with pn . If the test fails for some n, then
A is likely to be non-uniform. For convenience, a Python
implementation of our test is provided at http://www.mpi-inf.
mpg.de/~rgemulla/code/uniformity-testing.tgz.

8.2 Impact of non-uniformity

To shed some light on the degree of non-uniformity in
practice, we investigated the non-uniformity introduced by
HBS(q, M). In particular, we created a sequence of inser-
tions γN = (+r1,+r2, . . . ,+rN ) and computed the exact
marginal inclusion probability Pr [ r ∈ SN ] of each r ∈
{ r1, . . . , rN } in an HBS(q, M) sample. If HBS(q, M) were
truly uniform, the marginal inclusion probabilities would be
identical for all items (the converse does not hold).

For 1 ≤ N ≤ 50, Fig. 6 plots the inclusion probabilities
of each item as obtained by HBS(0.5,10) conditioned on a
switch-over point of T (M) = 20, i.e., conditioned on the
event that we switch to reservoir sampling after exactly 20
insertions. The x-axis in the figure corresponds to the num-
ber N of insertions. Each line corresponds to one item and is
printed transparently (darker regions thus indicate that many
items have the same marginal inclusion probability); the line
starts when the item is inserted. First, observe that after 20
insertions, item r20 is present in the sample with probability
1 (the topmost line); this is because we conditioned on the
event T (M) = 20 and rT (M) ∈ ST (M). After all insertions
have been processed, r20 has the highest inclusion probability
(overrepresented), items r1, . . . , r19 have the lowest inclu-
sion probability (underrepresented), and items r21, . . . , r50

have an intermediate inclusion probability (correctly repre-
sented).

Figure 7 shows the unconditional marginal inclusion prob-
abilities of HBS(0.5,10). As can be seen, there is still a
wide spread of inclusion probabilities. Again, early items
are underrepresented, items around the expected switch-
over time are overrepresented, and the marginal inclusion
probabilities of late items converge to the correct value
(as N → ∞). In Fig. 8, we show a similar plot for
a larger sample size, i.e., HBS(0.5,100) (only every 10th
item is shown). As can be seen, the spread of inclusion
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Fig. 6 Marginal inclusion probabilities of HBS(0.5, 10) sampling con-
ditioned on switch-over point T (M) = 20 (50 insertions)
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Fig. 8 Marginal inclusion probabilities of HBS(0.5,100) sample (500
insertions)

form, often in subtle ways. Errors creep in when switching
from a Bernoulli sampling scheme to a reservoir sampling
scheme, and when treating a non-Bernoulli sample as if it
were Bernoulli. Attempts to directly bound the sample foot-
print can also lead to problems, as can the use of hash func-
tions that are not fully independent. Although the effects
of non-uniformity are often small, they are unpredictable.
Moreover, they can be easily detected by using simple sta-
tistical tests and can be easily avoided by using a variety
of workarounds such as randomized switching, relaxation to
tightly controlled probabilistic bounds, and use of indepen-
dent hash functions.

A key question facing the practitioner is which sampling
methods to use in different scenarios. Our results lead to the
following guidelines.

Set sampling: RP suffices for most applications, since
it enforces a strict sample-size bound, and supports both
insertion-only and general UDI transaction sequences. More-
over, samples can be merged using RPMERGE to facilitate
distributed sampling and can be resized using the RPR algo-
rithm. In insertion-only environments, the BSP(q0, M) algo-
rithm is dominated by the HBSR(q, M) algorithm, which
maintains more stable sample sizes. Given the superior prop-
erties of RP, however, both of these algorithms are of more
theoretical than practical interest. The PBS(M, δ) algorithm
may be useful in distributed sampling settings, since it main-
tains Bernoulli samples that can be easily merged (and incre-
mentally maintained, if desired). The downside of this latter
algorithm is that only probabilistic bounds, and not strict
bounds, are enforced.

Multiset sampling: In insertion-only settings, the RP algo-
rithm (which reduces to reservoir sampling) is superior for
the reasons outlined above. In the presence of deletions, the
PABS(F, δ) algorithm is the only known option, and hence
only probabilistic sample-size bounds seem possible.

Fig. 7 Marginal inclusion probabilities of HBS(0.5,10) sampling (50 
insertions)

probabilities decreases significantly: When the sample size 
is large, the non-uniformity of the HBS switch-over is spread 
over more items so that the impact per item is smaller. 
Thus, the larger the sample size, the lower the effect of non-
uniformity.

Even though the degree of non-uniformity in terms of mar-
ginal inclusion probabilities appears to vanish as the sample 
size grows, the workaround HBSR(q, M) has virtually the 
same costs as HBS(q, M) but always guarantees uniformity. 
Thus, HBSR(q, M) is manifestly preferable to HBS(q, M). 
Similar arguments hold for most of the workarounds pro-
posed in this article.

9 Summary and guidelines

We have shown that a number of previously proposed “uni-
form” bounded sampling schemes actually fail to be uni-
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Distinct-item sampling: In insertion-only settings, the
MIN(M) algorithm is superior to the UDI algorithms since it
provides a stable sample size, a stable footprint, and has low
computational costs. In the UDI setting, AKMV(F) appears
to be the method of choice; it provides a strict sample size and
footprint bound and is almost as computationally efficient
as MIN(M). Since AKMV(F) samples can also be merged
efficiently, the scheme is superior to DPBS(F, δ) (only prob-
abilistic bounds) and DIS∞(F) (large memory consumption
and runtime costs). All of the above methods make use of
an F-wise independent or fully independent hash function,
which may be too expensive to use in practice. An alterna-
tive might be to use cryptographic hash functions instead;
experiments in [11] suggest that the samples obtained in
this manner still pass statistical tests for uniformity, but cor-
rectness is not guaranteed. These problems are avoided by
PABSD(F, δ), which does not make use of hashing; dis-
advantages of PABSD(F, δ) are, however, that it provides
only probabilistic bounds on the sample footprint and that
the obtained distinct-item sample is generally smaller than
that of AKMV(F) and DPBS(F). When a multiset sample
needs to be maintained in addition to the distinct-item sam-
ple, PABSD(F, δ) is attractive: The PABSD(F, δ) sample
can be obtained for free from a PABS(F, δ) multiset sample.

Appendix: Proof of Theorem 1

First, note that, in the first two assertions of the theorem,
A ⊆ Rk implies that |A| ≤ k, so that expressions such as
k − |A| are always non-negative. Next observe that T = l
if and only if exactly M items are accepted into the sample
during the first l− 1 steps of Bernoulli sampling and then an
item is accepted at the lth step. The probability of the first
event is binomial:

(l−1
M

)
q M (1− q)l−1−M . The probability of

the second event is q . Because successive steps of Bernoulli
sampling are independent, the joint probability of the two
events is simply the product of the individual probabilities,
which yields the definition of πk given in the theorem.

To prove the first assertion of the theorem, fix k ≥ M + 1
and A ⊆ Rk with |A| = M , and observe that

Pr [Sk = A, T ≤ k] =
k∑

l=M+1

Pr [Sk = A, T = l]

=
k∑

l=M+1

Pr [Sk = A | T = l] πl .

Straightforward generalization of the reasoning given in
the example after the statement of the theorem shows that

Pr [Sk = A | T = l] = ( k
|A|

)−1 = ( k
M

)−1
for each value of l,

so that

Pr [Sk = A, T ≤ k] =
(

k

M

)−1 k∑
l=M+1

πl

=
(

k

M

)−1

Pr [T ≤ k] .

Dividing through by Pr [T ≤ k] yields the desired result.
To prove the second assertion, first assume that |A| < M .

Denote by B1, B2, . . . , the sequence of samples obtained by
applying pure Bernoulli sampling to the transaction stream.
Observe that the event {Sk = A} implies the event {T > k},
so that Pr [Sk = A, T > k] = Pr [Bk = A]. It follows that

Pr [Sk = A, T > k] = q |A|(1− q)k−|A|. (11)

Now assume that |A| = M . It is no longer true that
Sk = A implies T > k, but it is still true that the event
{ Sk = A, T > k } occurs if and only if RS is still in Bernoulli
sampling mode at the kth step and Sk = A, so that (11)
holds for this case also. Dividing both sides of (11) by
Pr [T > k] =∑

l>k πl yields the desired result.
Combining these results, we have, for any k ≥ 1 and

A ⊆ Rk ,

Pr [Sk = A] = Pr [Sk = A, T ≤ k]+ Pr [Sk = A, T > k]

=
{

q |A|(1− q)k−|A| if |A| < M( k
|A|

)−1 ∑k
l=M+1 πl + q |A|(1− q)k−|A| if |A| = M.

Because the right side depends on A only through |A|, the
third assertion of the theorem follows.
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