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Abstract. Forecasting is an important analysis technique to support
decisions and functionalities in many application domains. While the
employed statistical models often provide a sufficient accuracy, recent
developments pose new challenges to the forecasting process. Typically
the available time for estimating the forecast models and providing ac-
curate predictions is significantly decreasing. This is especially an issue
in the energy domain, where forecast models often consider external in-
fluences to provide a high accuracy. As a result, these models exhibit a
higher number of parameters, resulting in increased estimation efforts.
Also, in the energy domain new measurements are constantly appended
to the time series, requiring a continuous adaptation of the models to new
developments. This typically involves a parameter re-estimation, which
is often almost as expensive as the initial estimation, conflicting with the
requirement for fast forecast computation. To address these challenges,
we present a framework that allows a more efficient integration of ex-
ternal information. First, external information are handled in a separate
model, because their linear and non-linear relationships are more stable
and thus, they can be excluded from most forecast model adaptations.
Second, we directly optimize the separate model using feature selection
and dimension reduction techniques. Our evaluation shows that our ap-
proach allows an efficient integration of external information and thus, an
increased forecasting accuracy, while reducing the re-estimation efforts.

Keywords: Forecasting, External Information, Efficiency.

1 Introduction

In the energy domain the availability of accurate forecasts of future electricity
consumption and production is a prerequisite for the balancing of energy demand
and supply and thus, for the stability and efficiency of the energy grids. Fore-
casting employs quantitative models—known as forecast models—that mathe-
matically describe the historical behavior of a time series. Most forecast models
� The author is currently visiting IBM Almaden Research Center, San Jose, CA, USA.
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Fig. 1. Example Time Series: Wind Energy Production and Wind Speed

capture a parameterized relationship between past and future values to express
different characteristics of the time series such as seasonal patterns or trends.
To produce accurate forecast, the parameters are estimated on a training data
set, with the goal of minimizing the forecast error. Commonly, this estimation is
conducted using local (e.g., LBFGS, Nelder Mead Downhill Simplex) or global
(e.g., Simulated Annealing) numerical optimization algorithms for non-linear op-
timization. The complexity of the parameter estimation greatly depends on the
number of parameters comprised in the forecasting model, because the parameter
search space increases exponentially with the number of parameters.

Current forecasting approaches for energy demand often produce accurate re-
sults, but new developments in the energy domain pose additional requirements
on the calculation speed of the employed forecast models. New market dynam-
ics in conjunction with the emerging smart grid technology and an increased
integration of renewable energy sources (RES) require real-time capabilities for
balancing energy demand and supply. Research projects such as MIRABEL [1]
and MeRegio [2] address the issue of real-time balancing by employing new
approaches like flexible demand and supply requests, dynamic price signals or
demand-response systems. A fundamental prerequisite for approaches in this
area is that accurate forecasts are available at any point in time. Fortunately,
in the energy domain the current consumption and production can be measured
constantly and thus, new values can be continuously appended to the time series.
However, to enable a certain degree of accuracy, forecast models must be con-
tinuously adapted with respect to the evolving time series. This generally means
the re-estimation of all model parameters. The matter becomes more involved as
many forecast models used in the energy domain consider external information
to increase the forecasting accuracy. The reason is that the future development
of most time series does not solely rely on historical values, but is influenced by
other correlated aspects [3,4,5]. The energy production of a wind power plant,
e.g., greatly depends on weather conditions like the wind speed. In Figure 1 we
present two time series from a real-world data set, showing (1) the energy supply
of a wind park and (2) the corresponding wind speed. The positive correlation
between both time series is obvious. Thus, to allow a certain degree of accuracy,
it is not sufficient to predict the future production solely based on the previously
produced power, but it is also necessary to consider weather information as an
external influence. The resulting accuracy gain depends on the degree of depen-
dence between the forecasted time series and the considered external influences.

Final edited form was published in "Advances on Databases and Information Systems: 16th East European Conference. 
Posen 2012", S. 139–152, ISBN 978-3-642-33074-2.  

http://dx.doi.org/10.1007/978-3-642-33074-2_11 

2 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



The inclusion of external information is typically conducted by adding the
external time series as an additional component into the forecast model. While
this naïve approach typically increases the forecasting accuracy, the integration
also adds additional parameters to the model and thus, additional dimensions to
the exponentially increasing parameter search space. As a result, the time nec-
essary for estimating the forecast model parameters increases with the number
of considered external information. Thus, highly accurate forecast models that
consider external information might be unusable in a real-time environment.

To still allow highly accurate forecasts, we propose an integration approach
that greatly reduces the additional efforts when adding external information.
Our approach reduces the number of additional parameters and at the same time
also optimizes the handling of external information. The core idea is to employ a
single separate model to represent all external information and their relationship
to the main dependent variable. This relationship remains relatively stable and
only changes slightly over long periods of time. This leads to the assumption
that the separate model is more stable and does not need to be included in
most adaptation processes. Furthermore, we also apply feature selection and
dimension reduction techniques to directly reduce the number of parameters in
the separate model. While we describe our approach in conjunction to the energy
domain, it can also be applied to time series with external influences and forecast
models for other domains. The paper is organized as follows:

– First, we describe the influence of exogenous information in Section 2.
– Second, we present our integration approach for external information that

especially considers the efficiency of the forecast model in Section 3.
– Fourth, we present the results of our evaluation that show significant speed-

up for the parameter estimation of multi-equation models in Section 4.
– Finally, we present related work and conclude the paper in Sections 5 and 6.

2 Background of Forecasting with External Influences

The standard approach for incorporating external information into forecast mod-
els is to include additional terms that reference the values of the external time
series. A typical model from the energy domain that supports external influences
is the highly accurate multi-equation model EGRV [6]. This model assigns indi-
vidual sub-models to each time period within a selected season (e.g., one hour
per day) and considers the temperature T as external influence. For this purpose,
each sub-model incorporates additional terms, where an example model for one
hour is denoted as:

Hour1 = α · Deterministic + β · Temperature + γ · Load8 + δ · Lags

Temperature = β1 · T + β2 · T 2 + β3 · 1
N

−N∑

d=0

T d + β4 · T max
d + β5 · T max

d−1
.

(1)

Thus, the model components are deterministic variables (e.g., current day), the
energy load at 8:00am of the previous day (Load8), a definable number of pre-
vious time series values (Lags) and the temperature as T plus T 2, which reflect
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the quadratic (i.e., non-linear) dependency between energy consumption and
temperature. Also, to involve the overall temperature level and the long term
temperature trend, the current and past days maximal temperature T max and
the moving average of the past seven days mid temperature T d are added.

Adding external information always comes with the trade-off of adding ad-
ditional parameters and thus, increasing the dimensionality of the parameter
search space. For multi-equation models like the introduced EGRV model, for
example, the inclusion of a single influence results in five additional parame-
ters per sub-model. This leads to an increased dimensionality of the parameter
search space for each sub-model when estimating the parameters; e.g., when as-
suming 10 parameters in the base model, the search space dimensionality of all
sub-models increases from X10 to X15. This significantly increases the necessary
time for finding a suitable parameter combination, which is especially an issue
in the face of evolving time series and the resulting necessity to continuously
adapt the forecast models to new situation. Thus, models considering external
information might get unusable when real-time capabilities are required.

3 Solution Overview: Integrating External Information

The core idea underlying our approach is to separate the modeling of external
information from the actual forecast model. The idea is reasoned by the fact that
the relationships between the dependent variable and the external information as
well as between the external information only change very slightly. This holds es-
pecially true for external information forming a stable physical system (because
physical systems typically do not change rapidly) and external information with
a high correlation to the main dependent variable (rapid changes would lead
to a rather low correlation). The weather information typically used as exter-
nal information in the energy domain, form such a stable physical system and
thus, exhibit a stable relationship to energy demand and supply. The stability of
the relationships lead to the assumption that a separate model for the external
information is also more stable than the forecasting model. Thus, for the fore-
cast model adaptation in most cases it is sufficient to just re-estimate the base
model’s parameters and exclude the separate external information model. This
means that in most cases no additional time for adapting the forecast model is
needed, even when integrating external information. Furthermore, when dealing
with multi-equation models, only a single external information model is nec-
essary that can be reused for all involved sub-models. To create the external

α β

Fig. 2. Process for Integrating External Information
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information model our framework comprises the process illustrated in Figure
2: First, we use feature selection techniques to select the most relevant exter-
nal information. Second, we apply dimension reduction techniques to reduce the
number of parameters involved in the external information model. Afterwards,
we estimate a function that describes the output of the dimension reduction
best. Finally, we combine the base forecast model with the external information
model. In the following, we describe the steps of our framework in more detail.

3.1 Feature Selection

In a first step to optimize the external information model, we determine the
most relevant external information. With this step, we avoid the inclusion of ir-
relevant factors that might have negative implications when used in conjunction
with dimension reduction techniques. For this purpose, we create a correlation
matrix, comprising the correlation between the dependent variable and the ex-
ternal factors as well as the correlation between external factors. The correlation
is quantified using a correlation measure like the Pearson Correlation Coefficient
(PCC) rx,y. The choice of a suitable correlation measure depends on the type
of the considered variables. While the PCC provides good results in conjunction
with continuous variables, rank correlations like Spearman’s Ro ρ [7] addition-
ally support ordinal variables. To also include nominal variables more advanced
techniques like statistical hypothesis testing are required. In this paper, we only
focus on continuous and ordinal variables. Figure 3 illustrates an example cor-
relation matrix using the PCC. With the help of the correlation matrix, we now
select the features as follows:

1. We determine an inclusion threshold ε that is the median of the absolute
correlations to the dependent variable. In our example ε = 0.35, thus X1 and
X2 (Black box in Figure 3) are selected as relevant influences.

2. To avoid redundant external factors, we evaluate the correlation between the
selected influences and prune one of two influences whenever the correlation
|r| is larger than our defined similarity threshold ω. In our example we define
ω = 0.9 and thus, no influences are pruned.

3. To also cover inter-relationships between the selected influences and all avail-
able external factors, we also evaluate the cross correlation between them.
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Fig. 4. Steps of the Principal Component Analysis

We then select all influences with a correlation factor |r| larger than our
defined cross-correlation threshold σ. In our example, σ = 0.5 and X3 with
a correlation of 0.6 to X2 (Grey dashed box in Figure 3) is selected.

As a result, from our example the influences X1, X2 and X3 are candidates for the
external information model. From multiple empirical evaluations we recommend
to define ω = 0.9 and σ = 0.5. While our approach provides a sufficient selection
for most cases, it is still possible that no influences are pruned at all. However, in
this case it is at least indicated that all provided external influences will create
a benefit for the forecasting process.

3.2 Increasing Estimation Efficiency by Reducing Dimensionality

In the feature selection step unnecessary influences are pruned form the exter-
nal influence model to avoid negative side effects. In a second step, we directly
reduce the parameters involved in the external influence model, using dimension
reduction techniques. We decided to focus on the Principal Component Analysis
(PCA) [8,9] that is a statistical approach to reduce the dimensionality of the
data. The PCA removes redundancies in the data, but aims to preserve as much
valuable information as possible. The PCA uses an orthogonal linear transforma-
tion to project a data set comprising multiple features into a new vector space
with less or equal dimensions than the original space. In the new space, the
original variables are represented by a set of linear combinations of them, where
as part of the transformation the correlation between the linear combinations is
minimized. The resulting combinations are called the principal components and
can be seen as lines through the multi-dimensional space starting from the origin
and minimizing the mean square error (MSE) to the data points. The principal
component with the smallest MSE is called the first principal component and
describes the greatest variance in the data. Each further principal component
must be orthogonal to the preceding one [9]. Thus, in contrast to other dimension
reduction techniques like the factor analysis, the PCA produces a result ordered
by the significance of the influence on the dependent variable. This helps to de-
cide which linear combinations should be included. Figure 4 illustrates the steps
of the PCA, which is applied to our external influence model as follows:
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1. We subtract the mean from the influences to create a mean-centered matrix.
2. From the mean-centered matrix we compute the p × p covariance matrix.
3. We conduct the eigenvalue decomposition to create the eigenvalues and cor-

responding eigenvectors.
4. Eigenvectors are principal components and can be sorted by their eigenval-

ues. The vector with the greatest eigenvalue is the first principal component.

The number of principal components beneficial for the forecasting model de-
pends on the desired accuracy and performance. Typically, the first principal
component provides sufficient accuracy and means the least number of involved
parameters. However, for some use cases it is also possible to dynamically add ad-
ditional principal components as long as they significantly increase the accuracy.
This means that in a worst case scenario the number of principal components
equals the number of original variables, resulting in a similar estimation time
compared to the naïve integration approach.

3.3 Determining the Final External Model

The selected principal components represent the entirety of all external factors
that mainly influence the development of the main time series. While we could
directly use them as linear combinations for our external model, from our experi-
ments we found that relating the principal components to the dependent variable
and estimating functions describing the relationship increases the final accuracy
for most data sets. In particular, each function approximates the response values
of the dependent variable for different values of the selected principal component.
To estimate suitable functions, we combine linear regression with the concept
of piecewise functions. Thus, we use different linear functions for different value
ranges. For this purpose, we follow a two-step process, were we (1) determine
suitable ranges and (2) then estimate a linear function for each range.

Finding the Value Ranges. To divide the data into suitable ranges, we first esti-
mate a function that describes the entire value range of the explanatory variable.
We can then use the extreme points of this function as the borders for the value
ranges. However, the most suitable degree of the function is unknown in advance.
Thus, we apply non-linear regression and increase the power of the polynomial
step-by-step, starting with a linear function. This process converges when the
accuracy benefit of increasing the degree is smaller than the configurable sig-
nificance parameter θ (e.g., from our experience: 1.0%). As soon as we found
a suitable polynomial, we calculate its extreme points and use these points to
divide our data. If the resulting polynomial is still linear, no extreme points exist
and we directly use the resulting linear function.

However, for some data this method fails, because the principal components
do not sufficiently describe the dependent variable. This is illustrated in Figure
5(a), where we see the first principal component and the energy response values.
This data is hard to fit and thus, it is hard to find suitable ranges for the
principal component. The issue mostly occurs when the external information are
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Fig. 5. Range Splitting Using Additional Variable

not significant enough. However, for the sake of an increased accuracy it might
still be worth to consider them. To address this issues, instead of only dividing the
data with respect to the principal component, we additionally employ the most
influencing factor of the dependent variable. For most time series this influencing
factor is time. Figure 5(b) illustrates the data divided per hour. The data for a
single hour is much easier to describe using a polynomial function. Thus, after
dividing the data with respect to the most influencing factor, we calculate the
extrema for all functions using the approach mentioned above.

Estimating the Range Functions. In the second step, we apply linear regression
for each identified range to calculate a linear function that describes this data
portion best. The result of our external influence model creation step is a set of
linear functions that forms in its entirety the separate external influence model.

3.4 Creating a Combined Forecast Model

In the next step we need to combine the external information model with the
original forecast model. We suggest two options: First, the Indirect Integration,
where both models are combined using a weighted linear combination. The efforts
for this additional estimation are low, because the linear combination consists
of only two parameters. Second, the Hybrid Integration, which is an enhance-
ment of the indirect integration. There, in addition to the external information
model, we include the most important external factor directly (and without us-
ing PCA) into the forecast model. Thus, we combine the efficiency of the indirect
integration with the possible accuracy gain of directly integrating external infor-
mation. Finally, with the external influence model in place, in most cases only
the parameters of the base forecast model must be re-estimated and thus, adding
additional external information does only have a minimal performance impact.
Plus, even in the rare case where all parameters must be estimated (e.g., for
the initialization), the estimation of the external information model can run in
parallel. In addition, when dealing with multi-equation models, instead of cre-
ating a separate external influence model for each employed sub-model, a single
external information model can be reused for all sub-models.
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4 Experimental Evaluation

In our evaluation, we substantiate the claims of our integration framework and
discuss options for implementing it. The evaluation shows that our approach
significantly reduces the additional efforts when integrating external information.
In addition, in some cases it even provides a better accuracy than the direct
integration. We used the introduced EGRV [6] model and the double seasonal
exponential smoothing (DSESM) model [10]. The employed datasets are:

– Wind energy supply from CRES [11]: Local wind park; January 1st 2003 to
December 31st 2003; 30 min granularity; External Information: windspeed,
wind direction, number of wind turbines, min/avg/max energy production.

– Energy demand from the MeRegio project [2]: Households (Selected 7, 40),
November 1st 2009 to June 30th 2012; 1 h granularity; External Information:
Weather data from the Deutsche Wetterdienst [12]; air temperature, ground
temperature, cloud cover, sun duration, wind speed, humidity, pressure.

For the parameter estimation, we used the Nelder Mead Downhill Simplex al-
gorithm [13]. The re-estimation process comprises the estimation of the forecast
model, the estimation of the separate external information model (EGRV: one
model for all sub-models) and the estimation of the final combination. For our
experiments we assumed exact predictions for the external information, because
uncertain time series are an orthogonal issue that we handle in future work.

As test system we used: Intel Core i7 2635QM (2.0 GHz), 4GB RAM, Mac
OSX 10.6.8, C++ (GCC 4.2.1). All results are the average of 20 subsequent runs.

4.1 Time vs. Accuracy

In the first experiment we evaluated the runtime and final accuracy of the pa-
rameter re-estimation. Overall, we compared our separate external information
model (Indirect Model) with the models when adding no external factors (Pure
Model), a naïve direct integration of the external information without using a
separate model (Direct Model) and the hybrid solution (Hybrid Model) (com-
pare Section 3.4). Selected results are illustrated in Figure 6 (EGRV model)
and Figure 7 (DSESM model). We observed very high forecast errors for the
CRES supply data set (Figures 6(a) and 7(a)) when not considering external
information (Pure Model). Thus, only including external information enables
accurate predictions for energy supply. For both forecast models and both data
sets, the Indirect Model showed the best runtime of all solutions considering ex-
ternal information. In addition, our approach even showed the best accuracy for
the CRES supply dataset, even though we used PCA. Focusing on the EGRV
forecast model: Using our Indirect Model approach we limited the additional ef-
forts for adding external information to only 48.64 ms and increased the accuracy
by 38.40 %. In contrast, using the naïve Direct Model the additional effort was
580.77 ms and the accuracy increase was only 34.24 %. The Hybrid Model did not
provide better results. Originally we assumed that our method exhibits the low-
est runtime, while the Direct Model provides the best accuracy. We account the
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(a) CRES Wind Supply (b) MeRegio Single Customer (7)

Fig. 6. EGRV Model: Different Integration Approaches

(a) CRES Wind Supply (b) MeRegio Single Customer (7)

Fig. 7. DSESM: Different Integration Approaches

accuracy advantage of our Indirect Model to a possible over fitting when directly
including external information. The results for the DSESM model are similar.
For the MeRegio single customer energy demand dataset (smaller dependency
on external information) the results are more diverse (Figures 6(b) and 7(b)).
Using our Indirect Model approach we still increased the accuracy with small
additional effort of only 12.40 ms, but as expected the accuracy gain was less
significant (only 0.63 %). For the EGRV model the Direct Model approach pro-
vided a better final accuracy (increase of 1.07 %), however, the additional effort is
much higher (857.24 ms). A suitable alternative in this case is the Hybrid Model,
providing a good balance between additional effort (305.78 ms) and accuracy
gain (1.30 %). Overall, our framework provides an efficient way of integrating
external information and increasing the forecasting accuracy.

4.2 Different Re-estimation Strategies

In this experiment, we evaluated different re-estimation strategies. We compared
(1) the re-estimation of all models, (2) the re-estimation of the forecast model and
the combined model, (3) the re-estimation of the external influence model and the
combined model and (4) the re-estimation of the combined model (Combination)
only. Figure 8 illustrates the results. For the CRES supply data set (Figure
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(a) EGRV Equation 23: CRES Supply (b) DSESM: MeRegio Customer 40

Fig. 8. Comparison of Re-Estimation Strategies

8(a)) all estimation methods finally reached the same accuracy. However, the
runtimes of strategies 1 and 3 were longer. When repeating the experiment at
different points in time, we observed that strategy 4 did not always reach the best
accuracy. Strategy 2 produced the maximal accuracy at all times. The results
are similar for the DSESM model. Using the MeRegio demand data set (Figure
8(b)), still all strategies ultimately reach the same accuracy, but their speed is
different. We observed the shortest runtime using strategy 4 followed by strategy
2. Strategy 1 and 3 are slower. Strategy 3 exhibits the longest runtime. However,
strategy 4 again did not reach the maximal accuracy at all points in time, which
finally renders method 2 as most appropriate for both data sets.

To substantiate the results, we simulated an evolving time series, repeating the
experiment at several points in time. To do so, we only used 3/4 of the CRES data
set (9 month) and added the remaining 1/4 of the data (3 month) successively.
After each added value we evaluated the accuracy. We triggered a re-estimation,
whenever the average error for the last 10 values was 10 % higher than the last
estimation error. We observed similar results at all occasions. However, when
only re-estimating the forecast model or the model combination the number of
re-estimations increased to 887 compared to 607 when re-estimating all models.
Thus, while in most cases it is sufficient to re-estimate the forecast model only,
from time to time all models should be re-estimated. However, the forecast model
and the external information model can be estimated in parallel, which means
an only slight increase of the runtime for most re-estimations.

4.3 Comparing Different Types of External Information Models

In this experiment, we evaluated design alternatives for the external influence
model. We compared our approach to alternatives that employ multiple linear
regression (MLR) or that directly use the eigenvectors of the PCA. Figure 9
illustrates the results for the EGRV model. For the CRES wind supply data set
(Figure 9(a)), all approaches need almost the same time to converge (∼910 ms),
but our framework provides the best final accuracy (improved by 15 %). For the
MeRegio demand dataset (Figure 9(b)) the pure PCA method and the MLR
provide slightly better results (∼0.75 %) compared to our approach. While the
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Fig. 9. Comparison of Different External Model Variants

MLR in return needs more time, the pure PCA method finishes in similar time.
We repeated the experiment for several points in time and observed similar
results, but with changing final accuracies. Hence, the pure PCA method seems
to be better suited for the MeRegio data set. We account the smaller dependence
of the time series on the external influences to be the reason. This results in the
need for a less complex model, where a single principal component is sufficient.
However, our approach provides more reliable results on both demand and supply
data sets. Furthermore, the difference on the demand data set is rather small,
while the advantage of our approach on the supply data set is significant. Thus,
our approach is more general and suits demand and supply data sets equally.

5 Related Work

Efficient statistical algorithms directly integrated into database systems gain
more and more attention in research and industry. Akdere et al. [14] and Parisi
et al. [15] describe several aspects of a predictive database system such as the
creation and integration of special forecasting operators. Similarly Duan and
Babu describe how to efficiently process forecasting queries [16]. Concerning
an increased forecasting efficiency Ge and Zdonik present a skip-list approach
to vary data granularity depending on the forecast requirements (e.g., horizon)
[17]. In previous work we optimized the forecasting process by introducing our
context-aware forecast model repository [18]. There, we store forecast models in
conjunction with their time series context (e.g., time series characteristic, exter-
nal information), to quickly retrieve them as soon as similar contexts appear.

With respect to integrating external information into forecast models, some
approaches already exist. Besides forecast models directly supporting external
information like the ARIMAX [19] or the introduced EGRV [6] models, other
solutions describe more efficient ways. One prominent solution is to directly
quantify the influence of the external information on the dependent time series
by using a special factor that modifies the model output. Bruhns et al. [20] use
such a factor to describe the temperature influence in their regression model.
Similarly, Young-Min use an exponential smoothing model that is adjusted to the
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current temperature with a weather adjustment factor [21]. While the solutions
provide an efficient way of integrating external information, they often are taylor-
made for a specific forecast model, because they directly describe the deviation
of that specific model when facing certain weather conditions. Thus, they cannot
be easily applied to other forecast models or external information.

To increase the efficiency of multi-equation models, Taylor proposes to re-
duce the number of sub-models by also applying Principal Component Analysis
(PCA) [22,23]. With his approach, Taylor only targets the relationship between
different times of the day and the similarities between sub-models. Thus, com-
ponents involved in the PCA describe the same variable. In contrast, we target
the relationship between the main time series and multiple external influences.
Thus, we refer to different influencing aspects and multiple variables. As a result,
Taylor’s approach is orthogonal to our solution and does not target the integra-
tion of external factors. Thus, we can combine both solutions to (1) optimize the
base forecast models and (2) to optimize the integration of external information.
This would lead to a very efficient and accurate forecasting solution.

Overall, our presented solution provides a universal framework to efficiently
add external information to forecast models. With the help of our approach,
even complex relationships involving a large number of external information can
be considered in environments with special efficiency constraints.

6 Conclusion

In this paper, we introduced a framework for an efficient integration of external
information into forecast models. We excluded the modeling of external informa-
tion from the main forecast model and proposed to create a separate model that
represents them. Due to the stable relationship between the external information
and the main time series, it is possible to exclude the separate model from most
model adaptations. In addition, for multi-equation models only a single external
information model is needed for all involved sub-models. We also increased the
efficiency of the external information model by applying feature selection and
dimension reduction techniques. The proposed framework can be configured very
flexibly regarding necessary accuracy and desired performance. Our experiments
showed that with the help of our approach, the time for re-estimating a forecast
model, while considering external influences, can be significantly reduced. At the
same time, for some data sets we even improved the accuracy compared to the
naïve direct integration. As a result, our approach enables a broad use of exter-
nal influences in the face of efficiency constraints as well as evolving time series
and thus, increases the accuracy when forecasting in real-time environments.
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