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A B S T R A C T

Studying the dynamic characteristics and evolution laws of the ballast bed under low-temperature, rain and snow 
environments has practical significance for the driving stability of railways in alpine. In this paper, a full-scale 
ballasted track model was constructed in a programmable temperature control laboratory, and the frequency 
response function (FRF) curves of the ballast bed under different temperature and humidity conditions were 
measured. Then the vibration characteristics and the evolution laws of the ballast bed under different conditions 
were analyzed. The longitudinal transfer behavior and the dissipation of the vibration energy in the ballast bed 
under different humidity and temperature environments were discussed combined with the finite element 
method. The results show that the influence of temperature on the vibration characteristics of the ballast bed is 
not significant in the dry and water-rich environments, but the vibration characteristics of the ballast bed in the 
frozen environment change dramatically with the decrease of temperature. The vibration energy is harder to 
dissipate in the frozen ballast bed than in the dry and water-rich ballast beds, and the frozen ballast bed is more 
prone to be sudden damaged when a train passes due to the significant increase in its stiffness. Thus, the per-
formance monitoring and emergency maintenance of the ballast bed in those environments should be 
strengthened.   

1. Introduction

A ballast bed is a layered accumulation formed by a certain particle
size distribution of crushed stones, which is widely used in the railway 
infrastructures in various complex environments [1]. Water and freezing 
disasters in railway constructions and operations, including in Norway, 
Sweden, Switzerland, Finland, China, Russia, Japan, Canada, Australia, 
Brazil and some parts of America, have received active attention from 
different countries [2–7]. In particular, the Qinghai-Tibet Railway in 
China, the Alaska Railway in the United States and the proposed 
Sichuan-Tibet Railway all across the cold regions, which require bal
lasted tracks to withstand the snow and low temperature [8]. The safe 
and high-speed running of a train requires high regularity of the track 
[9,10]. However, the poor drainage of the railway makes the subgrade 
soil intrusion into the ballast bed under train loads, causing disasters 
such as mud pumping and ballast bed hardening, and uneven stiffness of 
the track substructure [11–13]. In addition, soil freezing causes the frost 

heave of railway substructures and the uneven settlement of track 
structures. The snow and ice melt and the pore water pressure increases 
when the temperature rises, which cause the decrease of the stiffness and 
bearing capacity of the subgrade [14]. The volume of pore water in a 
ballast bed increases by 9% when it freezes [15]. If there is water 
intrusion at this time, ballast particles will freeze each other under the 
action of water, and the degree of frost heave of the ballast bed will be 
more intense [16]. 

Researches about the influence of rich-water, low-temperature and 
freezing environments on the dynamic performances of ballasted tracks 
can provide theoretical support for the construction, operation and 
maintenance of the ballasted tracks in rainy and alpine regions, and it 
also has important practical significance for the construction and oper
ation of plateau railways such as the Sichuan-Tibet Railway and the 
Qinghai-Tibet Railway in China and the railways in severe cold regions 
such as Northern Europe. The drainage performance of ballast is affected 
by the particle size distribution and dirty materials [17]. Indraratna 
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the ballast bed were fully wet (The preliminary test was carried out by 
human observation before the test. After the test, it was confirmed 
whether the particles inside the ballast bed was fully wet. If not, the test 
should be carried out again.). It should be pointed out that this work 
focuses on the variation law of the dynamic characteristics of the ballast 
bed under the water-rich condition, without considering the influence of 
rainfall values. Therefore, the ballast particles in the ballast bed were in 

a state of wetting but without the influence of water pressure with the 
drainage channels set up in the box. 

2.2. Ballasted track model 

The full-scale ballasted track model (Fig. 3) was constructed ac
cording to the standard of China’s new Grade I railways [30,31]. The 
particle size distribution curve of the ballast bed is shown in Fig. 2. Four 
China’s Type III prestressed reinforced concrete sleepers with shoulders 
were adopted in the model. The length of the sleeper was 2.6 m and the 
space between the sleepers was 0.6 m. The type of the rails was CHN60 
(60.64 kg/m). Type II clips were used for the fastening system, with the 
torque of 150 N·m. The density of the ballast bed was 1.76 g/cm3. 

The slope gradient of the ballast bed is 1:1.75. When building the 
full-scale ballasted track model, the ballast bed was first divided into 
four layers, each layer was compacted by a compactor at least five times 
(Fig. 4 (a)). Then the superstructure of the track (the width and length of 
a sleeper are 0.32 m and 2.6 m. The sleeper mass is 380 kg, the sleeper 
spacing is 0.6 m, and railway gauge is 1.435 m.) was placed on the 
ballast bed (Fig. 4 (b)). Next, the ballast particles were continued to be 
stacked on the ballast bed formed the shoulders (Fig. 4 (c)). Secondary 
compaction of the ballast bed was carried out with the compactor after 
the tamping with a small tamping machine. The constructed ballasted 
track model is shown as Fig. 4 (d). 

2.3. Test conditions 

2.3.1. Types of test conditions 
To make the tests close to the actual situations on site, the daily- 

Fig. 2. Particle size distribution.  

Fig. 3. Ballasted track model.  

Fig. 4. Construction process of the full-scale ballasted track model.  
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average temperature along the Qinghai-Tibet Railway in recent three 
years was investigated. The results showed that the extreme low tem
perature was generally about 20 ± 5 ◦C. Therefore, the dry and water- 
rich (frozen) test conditions were set according to the normal temper
ature (20 ◦C), 0 ◦C, 10 ◦C, 20 ◦C, and 30 ◦C. The impact excitation 
tests of the ballasted track under water-rich and low-temperature envi
ronments were carried out based on those conditions. It should be noted 
that the dry condition in this study refers to the summer humidity is 
close to or less than 40%, and winter humidity is close to or less than 
30% [32]. 

2.3.2. Temperature control duration 
The temperature control duration directly determines the tempera

ture state in the ballast bed. The temperature of ballast particles inside 
the ballast bed can be consistent with the ambient temperature when the 
duration is sufficient. Researches [28,33] have shown that the cooling in 
the ballast bed could be basically consistent with the ambient temper
ature and relatively stable after a constant cooling for a certain time (at 
least 24 h) in the laboratory environment. In order to ensure that the 
internal temperature of the ballast bed met the test requirements, the 
temperature setting of the laboratory was maintained for 36 h before the 
relevant tests were carried out. 

2.4. Impact excitation tests 

The impact excitation technology, also called as “modal test”, is a 
non-destructive technology to study the dynamic characteristics of 
structures. Its main purpose is to identify the dynamic parameters (e.g. 
mass, stiffness, and damping) of the target structure, so that researchers 
can conduct targeted modal analysis of the structure [34]. Many re
searchers [35–39] have used the impact excitation technology to iden
tify the state of ballasted track, indicating that the application of this 
technology in ballasted track is mature. In addition, Lam et al. [40,41], 
Hu et al. [42], and Mujib et al. [43] used the Bayesian method to analyze 
the vibration characteristics of the track structure based on the impact 
excitation technology. Therefore, we used the technology to explore the 
dynamic characteristics of the ballast bed under the complex 
environments. 

The references [35,44–46] found that acceleration sensors installed 
at the end of sleepers provide high-quality data. Therefore, three 
inductively coupled plasma (ICP) acceleration sensors were mounted on 
the same sides of three adjacent sleepers with number 1, 2 and 3. The 
remaining sleeper in the track model provided a place for the tester to 

stand, so as to minimize the interference of human movement on the 
tested sleepers and ballast in the tests. The working frequency range of 
the sensor was 0.2–2.5 kHz (the sampling times per second can be set to 
0.2–2.5 thousand), with the sensitivity of 500 mV/g, and the measuring 
range was 10 g. The hammer was a nylon head hammer with an ICP 
force sensor. The measuring range of the sensor is 125 kN and the 
sensitivity is 0.0417 mV/N (When the same energy is used to knock the 
specimen, different hammers can stimulate a variety of frequency 
bandwidth (the softer the hammer, the wider the pulse, the narrower the 
frequency bandwidth).). The rubber hammer is soft, and its measure
ment frequency is low. The measurement frequency of steel hammer is 
high. The measurement frequency of nylon hammer is between the 
above two hammers. According to the research and practice results in 
References [35–38,44], it is applicable to test the vibration frequency of 
0–1500 Hz for the sleeper-ballast bed system of ballasted tracks. In 
addition, the final pulse duration is also related to the stiffness of the 
impacted specimen. The impact energy is distributed in a wide fre
quency band when the hard hammer is used, which means that the 
power spectral density of the excitation may be low in some cases, or 

Fig. 5. Equipment layout.  

Fig. 6. Dynamic analysis model of the ballasted track system.  

Final edited form was published in "Engineering Structures". 252, Art. Nr. 113605. ISSN: 0141-0296. 
https://doi.org/10.1016/j.engstruct.2021.113605

4 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



Final edited form was published in "Engineering Structures". 252, Art. Nr. 113605. ISSN: 0141-0296. 
https://doi.org/10.1016/j.engstruct.2021.113605

5 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



Final edited form was published in "Engineering Structures". 252, Art. Nr. 113605. ISSN: 0141-0296. 
https://doi.org/10.1016/j.engstruct.2021.113605

6 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



Final edited form was published in "Engineering Structures". 252, Art. Nr. 113605. ISSN: 0141-0296. 
https://doi.org/10.1016/j.engstruct.2021.113605

7 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



water on the dynamic characteristics of ballasted track, the FRFs of the 
ballasted track structure under different test conditions were obtained 
based on the least square method, as shown in Table 1. Then the changes 
of the pad stiffness, pad damping, ballast bed stiffness and ballast bed 
damping under different test conditions were analyzed, as shown in 
Fig. 9. 

It can be seen from Table 1 that the parameter identification results 
of the track structure are close to the known theoretical values, so the 
parameter identification results are effective. Further analysis shows 
that the stiffness and damping of the pad increase with the decrease of 
temperature, which are the same as the conclusion in the existing 
research [48]. However, the values and trends of stiffness and damping 
of the pad in this study are different from the existing research results, 
which may be caused by the difference of the types and materials of 
rubber pads. In addition, it should be noted that the values and trends of 
stiffness and damping of the pad in dry and water-rich (frozen) envi
ronments are generally consistent (Fig. 9(a) and (b)). The above results 
show that the performance change of the pad is not sensitive to water 
and ice at normal temperature. It can be seen from Fig. 9(c) and (d) that 
the stiffness and damping of the ballast bed show small fluctuations with 
the decrease of temperature in the dry environment (The maximum 
change rate of ballast bed stiffness is 5.49%, and the maximum change 
rate of ballast bed damping is 17.50%). In the water-rich environment, 
the ballast bed stiffness decreases with the decrease of temperature, and 
the ballast bed damping increases with the decrease of temperature. The 
reason is that the mud formed by fine particles and water in the ballast 
bed can reduce the interlocking and friction between ballast particles 
under the combined action of water and low temperature (not lower 
than 0 ◦C). Moreover, the mixture of the fine particles and water is easier 

to fill the gaps between the ballast particles than the dry fine particles, 
which plays a ‘lubrication’ role between the ballast particles. In the 
frozen environments, the ballast bed stiffness increases with the 
decrease of temperature, and the ballast bed damping decreases with the 
decrease of temperature. This is because the lower the temperature is, 
which makes the water on the ballast surface condense into ice without 
rushing out, and the thicker the ice between the ballast particles is. The 
larger the surface area of ballast wrapped in by ice is, the stronger the 
bond strength forms. In addition, the characteristics between ballast and 
ice make it easier to form the mixed ‘big particle’ with ballast particles 
and ice layer as main components. This kind of ‘big particle’ is restricted 
by the surrounding ‘big particles’, so it is difficult to move and rotate 
[28]. 

In summary, when the temperature is higher than 0 ◦C, whether the 
ballast bed is wet or not has little effect on the vibration characteristics 
of the track structure, and the ranges of the dominant resonance fre
quencies are generally the same. When the temperature is lower than 
0 ◦C, the track bed wetting or not has significant effect on the vibration 
characteristics of the track structure, and the ranges of the dominant 
resonance frequencies are quite different. Special attention should be 
paid to the damage of the ballasted track under high-frequency train 
loads, especially in the extremely low-temperature frozen environment. 

3.3. Longitudinal transmission of the vibration in the ballast bed under 
different temperature and humidity 

Dynamic characteristics of the ballast bed under different tempera
ture and humidity were tested by the method of “single-point excitation 
and multipoint pick-up”. The hammer was used to knock the excitation 

Fig. 11. Two-layer track model (discretely supported).  

Fig. 12. Finite element model of the track structure.  
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point on the left end of Sleeper 1 in Fig. 5, and the vibration accelera
tions of the adjacent three sleepers were measured by the acceleration 
sensors. The FRFs of vibration were obtained in the modal space. The 
vibration energy of the ballasted track of the first resonant frequency 
was abundant compared with the other resonant frequency (Fig. 7). 
Therefore, the first resonant frequency of Sleeper 1 in each test condition 
was selected as the analysis basis to explore the transmission and 
dissipation of the vibration energy between adjacent sleepers. 

The longitudinal vibration attenuation rate of ballast bed is defined 
as Eq. (2) [39]. The attenuation rates of the ballast bed in each test 
condition is shown in Fig. 10. 

R
V1 Vi

V1
(2)  

where R is the longitudinal vibration attenuation rate, and V1 is the FRF 
value corresponding to the first resonant frequency of Sleeper 1. Vi is the 
FRF value of the adjacent Sleeper i at first resonant frequency of the 
Sleeper 1. The larger the R is, the weaker the longitudinal transmission 
capacity of vibration between sleepers is, that is, the stronger the 
damping capacity of the ballast layer between sleepers is. 

It can be seen from Fig. 10 that in the dry environment, the longi
tudinal vibration transmission of the ballast bed increases (R decreases) 
and fluctuates locally with the decrease of temperature. The maximum 

difference of the longitudinal vibration attenuation rate of Sleeper 1–2 is 
10.18%, and that of Sleeper 1–3 is 13.90% in each test condition. In the 
water-rich environment, the longitudinal vibration transmission of the 
ballast bed decreases with the decrease of temperature (R increases), but 
the change is not significant. The longitudinal vibration attenuation rate 
between Sleeper 1 and Sleeper 2 decreases by 1.84%, and the that be
tween Sleeper 1 and Sleeper 3 decreases by 4.47% when the temperature 
decreases from 20 ◦C to 0 ◦C. Combined with the analysis in Section 3.2, 
it can be found that the influence of water-rich state (non-excess-water 
state) on the vertical and longitudinal vibration characteristics of the 
ballast bed is not significant when the temperature is higher than 0 ◦C. 
The longitudinal transmission performance of the vibration in the ballast 
bed increases with the decrease of temperature (R decreases) in the 
frozen environment. The vibration attenuation rate between Sleeper 1 
and Sleeper 3 is only 13.41% when the temperature is 30 ◦C. Com
bined with the analysis in Section 3.2, we can see that the vibration 
energy is more difficult to dissipate in the frozen ballast bed than in a dry 
or water-rich one. Meanwhile, due to the significant increase in the 
stiffness of the ballast bed during freezing (about 180% increase at 

30 ◦C), the frozen ballast bed is more prone to sudden damage when 
trains pass. Therefore, the performance monitoring and emergency 
maintenance of the ballast bed in frozen environment should be 
strengthened. 

Fig. 13. Modal shapes of the first dominant resonant frequencies of the track structure in the frozen environments.  
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5. Conclusions

In this paper, a full-scale ballasted track model was built in a large
temperature-control laboratory. The modal tests of the ballast bed under 
different humidity and temperature conditions were carried out com
bined with the impact excitation technology. The evolution law of the 
vibration characteristics of the structure with humidity and temperature 
was analyzed, and the longitudinal transmission of vibration between 
sleepers under different humidity and temperature environments was 
discussed. The main conclusions are as follows.  

(1) The influence of frozen environment on the resonance frequency
of the track structure is more significant than that of dry envi
ronment (The second dominant resonance frequencies exceed
600 Hz at 20 ◦C and 30 ◦C.). When the temperature is higher
than 0 ◦C, the influence of water-rich state (non-excess-water
state) on the vertical and longitudinal vibration characteristics of
the ballast bed is not significant.

(2) The stiffness and damping of the ballast bed show small fluctu
ations with the decrease of temperature in the dry environment.
In the water-rich environment, the ‘lubrication’ of mud makes the
stiffness of the ballast bed decrease with the decrease of tem
perature, and the damping of the ballast bed increase with the
decrease of temperature. In the frozen environment, the stiffness
of the ballast bed increases with the decrease of temperature, and
its damping decreases with the decrease of temperature.

(3) The vibration modes at the first dominant frequency of the bal
lasted track in 20 ℃, 0 ℃, 10 ◦C wet or frozen environment are
mainly the torsional deformation of rails, while the torsional
deformation of rails and the bending deformation of sleepers are
the main in 20 ◦C and 30 ◦C frozen environments.

(4) Compared with dry and water-rich environments, vibration en
ergy is more difficult to dissipate in the frozen ballast bed.
Moreover, due to the significant increase in the stiffness of the
ballast bed during freezing (about 180% increase at 30 ◦C), the
frozen ballast bed is more prone to sudden damage when the train
passes. The performance monitoring and emergency mainte
nance of ballast bed in frozen environment should be
strengthened.
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