

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-830113

Steffen Preissler, Dirk Habich, Wolfgang Lehner

An XML-Based Streaming Concept for Business Process Execution

Erstveröffentlichung in / First published in:

Enterprise Information Systems: 12th International Conference. Funchal-Madeira, 08.-
12.06.2010. Springer, S. 60-75. ISBN 978-3-642-19802-1.

DOI: http://dx.doi.org/10.1007/978-3-642-19802-1 5

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-830113
http://dx.doi.org/10.1007/978-3-642-19802-1_5

An XML-Based Streaming Concept for
Business Process Execution

Steffen Preissler, Dirk Habich, and Wolfgang Lehner

Dresden University of Technology, Dresden 01187, Germany
{steffen.preissler,dirk.habich,wolfgang.lehner}@tu-dresden.de

http://wwwdb.inf.tu-dresden.de/˜research

Abstract. Service-oriented environments are central backbone of todays enter-
prise workflows. These workflow includes traditional process types like travel
booking or order processing as well as data-intensive integration processes like
operational business intelligence and data analytics. For the latter process types,
current execution semantics and concepts do not scale very well in terms of per-
formance and resource consumption. In this paper, we present a concept for data
streaming in business processes that is inspired by the typical execution semantics
in data management environments. Therefore, we present a conceptual process
and execution model that leverages the idea of stream-based service invocation
for a scalable and efficient process execution. In selected results of the evaluation
we show, that it outperforms the execution model of current process engines.

Keywords: Stream, Service, Business process, SOA.

1 Introduction

In order to support managerial decisions in enterprise workflows, business people de-
scribe the structures and processes of their environment using business process manage-
ment (BPM) tools [1]. The area of business processes is well-investigated and existing
tools support the life-cycle of business processes from their design, over their execution,
to their monitoring today. Business process modeling enables business people to focus
on business semantic and to define process flows with graphical support. Prominent
business process languages are WSBPEL [2] and BPMN [3].

The control flow semantic, on which BPM languages and their respective execution
engines are based on, has been proven to fit very well for traditional business processes
with small-sized data flows. Typical example processes are ”order processing” or ”travel
booking”. However, the characteristics of business processes are continuously changing
and the complexity grows. One observable trend is the adoption of more application
scenarios with more data-intensive processes like business analytics or data integration.
Thereby, the volume of data that is processed within a single business process increases
significantly [4].

Figure 1 depicts an example process in the area of business analytics that illustrates
the trend to an increased data volume. The process extracts data from different sources
and analyzes it in succeeding tasks. First, the process receives a set of customer infor-
mation as input (getCustInfos) which may include customer id, customer name

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://wwwdb.inf.tu-dresden.de/~research

getCustInfos
[receive]

getInvoices
[invoke] joinIDs

[assign]
analyze
[invoke]

transform
[assign] getOrders

[invoke]
filterOrders

[assign]

getInvoices
[service]

getOrders
[service]

analyze
[service]

...

typical data management
process

Fig. 1. Customer Data Integration Scenario

and customer address. Second, the customer ids are extracted and transformed to fit the
input structure of both succeeding activities (transform). In a third step, the cus-
tomer ids are enriched concurrently with invoice information (getInvoices) and
current open orders (getOrders) from external services. All open orders are filtered
(filterOrders) to get only approved orders. Afterwards all information for invoices
and orders are joined for every customer id (joinIDs) and analyzed (analyze). Fur-
ther activities are executed for different purposes. Since they are not essential for the
remainder of the paper, they are denoted by ellipses. The activity type for every task is
stated in square brackets ([]) beneath the activity name. These types are derived from
BPEL as standard process execution language for Web services.

As highlighted in Figure 1 by the dotted shaded rectangle, this part of the business
process is very similar to typical integration processes within the data management
domain with data extraction, data transformation and data storage. In this domain,
available modeling and execution concepts for data management tasks are aligned for
massive data processing [5]. Considering the execution concept, Data stream manage-
ment systems [6] or Extract-Transform-Load (ETL) tools [7] as prominent examples
incorporate a completely different execution paradigm. Instead of using a control flow
semantic, they utilize data flow concepts with a stream-based semantic that is typically
based on pipeline parallelism. Furthermore, large data sets are split into smaller subsets.
This execution has been proven very successfully for processing large data sets.

Furthermore, many existing work, e.g. [8,5,9], has been demonstrated and evaluated
that the SOA execution model is not appropriate for processes with large data sets.
Therefore, the changeover from the control flow-based execution model to a stream-
based execution model seams essential to react on the changing data characteristics of
current business processes. Nevertheless, the key concepts of SOA like flexible orches-
tration and loosely coupled services have to be preserved. This paper contributes to this
restructuring by providing a first integrated approach of a stream-based extension to the
service and process level.

Contribution and Outline. In this paper we contribute as follows: First, we sum-
marize give a brief introduction into the concept of stream-based service invocation in
SOA (Section 2). Second, the data flow-based process execution model is presented that
allows stream-based data processing (Section 3). Furthermore, our approach for stream-
based service invocation in [10] is extended to enable orchestration and usage of web
services as streaming data operators (Section 4). In Section 5, we discuss optimizations

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

for our execution concept. Finally, we evaluate our approach in terms of performance
(Section 6), present related work (Section 7) and conclude the paper (Section 8).

2 Stream-Based Service Invocation Revisited

In [11], we describe the concepts of control flow-based process execution that are used
in today’s SOA environments and highlight it’s shortcomings in terms of data-intensive
service applications. In a nutshell, two major drawbacks for data-intensive business
processes have been identified. Both are related to control flow-based process execution:
(1) on the process level with the step-by-step execution model in conjunction with an
implicit data flow and (2) on the service level with the inefficient, resource consuming
communication overhead for data exchange with external services based on the request–
response paradigm and XML as data format.

In [10], we already tackled the service level aspect by introducing the concept of
stream-based Web service invocation to overcome the resource restriction with large
data sizes. We recall the core concept briefly and point out limitations of this work.

The fundamental idea for the stream-based Web service invocation is to describe
the payload of a message as finite stream of equally structured data items. Figure 2(a)
depicts the concept in more detail. The message retains as the basic container that
wraps header and payload information for requests and responses. However, the pay-
load forms a stream that consists of an arbitrary number n of stream buckets bi with
1 ≤ i ≤ n. Every bucket bi is an equally structured subset of the application data that
usually is an array of sibling elements. Inherently, one common context is defined for
all data items that are transferred within the stream. The client controls the insertion
of data buckets into the stream and closes the stream on its own behalf. Figure 2(b)
depicts the interaction between client and service. Since the concept can be applied
bidirectional, a request is defined as input stream SI,j whereas a response is defined
as output stream SO,j with j denoting the corresponding service instance. By adding
bucket queues to the communication partners, sending and receiving of stream buckets
are decoupled from each other (in contrast to the traditional request–response paradigm)
and intermediate responses result.

It has been evaluated, that this concept reduces communication overhead in com-
parison to message chunking by no need for single message creation. In addition, it
provides a native common context for all stream items and context sensitive data oper-
ations like aggregation can be implemented straightforward. The main drawback of the
proposed concept is that it assumes all stream buckets to be application data and equal
in structure. This does not take dynamic service parameterization into account. Hence it
is not applicable for a more sophisticated stream environment with generalized services
operators.

To conclude this section, the stream-based service invocation approach represents
only one step in the direction of streaming semantic in service-oriented environments.
While the proposed step considers the service level aspect to overcome resource limi-
tations, the process level aspect is obviously an open issue. Therefore, we are going to
present a data flow-based process approach for messages processing in the following
section. In Section 4, we are extending the service level streaming technique to cover
new requirements from the proposed process perspective.

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

time

{meta data}

M
es

sa
ge

b1 bnbi
Stream S

Header Payload

(a) Stream-Based Message Container.

 Client
Instance

b1...bn ... bi

b'n...b'1 ... b'i

SI j

SO j

Web Service
Instance Wj

bucket queue

stream bucket

(b) Stream-Based Message Interaction.

Fig. 2. Stream-based Service Invocation

3 Stream-Based Process Execution

Basically, our concept for stream-based process execution advances the process level
with data flow semantics and introduces a corresponding data and process model for
stream-based data processing.

3.1 Data Model

When processing large XML messages, available main memory becomes the bottle-
neck in most cases. One solution is to split the message payload into smaller subsets
and to process them consecutively. This reduces memory peaks by not having to build
the whole message payload in memory. To allow native subset processing, we intro-
duce the notion of processing buckets, that enclose single message subsets and that
are used transparently in the processing framework. Let B be a process bucket with
B = (d, t, pt), where d denotes a bucket id, t denotes the bucket type and pt denotes
the XML payload in dependence on the bucket type t. The basic bucket type is data,
that identifies buckets that contain actual data from message subsets. Of course, a pro-
cessing bucket can also enclose the complete message payload pm with pm == pt, as
it is the case when the message payload initially enters the process or if pm is small in
size. Nevertheless, for large message payloads it would be beneficial to split them into
a set of process buckets bi with pt,i ⊆ pm.

Since process buckets carry XML data, XPath and XQuery expressions can be used
to query, modify and create the payload structure. As entry point for such expressions,
we define two different variables $ bucket and $ system that define different ac-
cess paths. Variable $ bucket is used to access the bucket payload while variable
$ system allows access to process-specific variables like process id or runtime state.

split

for $cust in $_bucket/custInfos/customerInfo
return $cust

 bucket bi
<custInfos>
 <customerInfo>
 <id> </id>

 </customerInfo>

</custInfos>

 bucket b'i,1
<customerInfo>
 <id> </id>

</customerInfo>

Fig. 3. Payload Splitting

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Example 1. Payload Splitting: Consider the activity getCustInfos from our appli-
cation scenario in Figure 1. It receives the message with the payload containing a set of
customer information. Figure 3 depicts the splitting of this payload into several smaller
process buckets. The split is described by a very simple XQuery expression with set-
ting the repeating element to $ bucket/custInfos/customerInfos. It creates one process
bucket for every customer information in the resulting sequence that can be processed
consecutively by succeeding activities.

3.2 Process Model

Instead of using a control flow-based process execution, our process model uses a data
flow-based process execution that is based on the pipes-and-filters execution model
found in various systems like ETL tools, database management systems or data stream
management systems. Using the pipes-and-filters execution model all activities ai ∈ A
of a control flow-based process plan P are executed concurrently as independent oper-
ators oi of a pipeline-based process plan PS . All operators are connected to data queues
qi between the operators that buffer incoming and outgoing data. Hence, a pipeline-
based process plan PS can be described via a directed, acyclic flow graph, where the
vertices are operators and the edges between operators are data queues. Figure 4 de-
picts the execution model of the pipeline-based version of our scenario process. Since
the data flow is modeled explicitly, the implicit, variable-based data flow from the tra-
ditional instance-based execution as described in [11] has been removed. This requires
the usage of the additional operator copy that copies the incoming bucket for every
outgoing data flow.

We define our stream-based process plan PS as PS = (C, O, Q, S) with C denoting
the process context, O with O = (o1, . . . , oi, . . . , ol) denoting the set of operators oi,
Q with Q = (q1, . . . , qj, . . . , qm) denoting the set of data queues between the operators
and S denoting the set of services the process interacts with. An operator o is defined
as o = (i, o, f, p) with i denoting the set of incoming data queues, o denoting the
set of outgoing data queues, f denoting the function (or activity type, in reference to
traditional workflow languages) that is applied to all incoming data and p denoting the
set of parameters that is used to configure f and the operator, respectively.

Figure 5 depicts two succeeding operators oj and oj+1 that are connected by a data
queue and that are configured by their parameters pj and pj+1. Since the operator oj+1

processes the data of its predecessor oj , the payload structure of buckets in queue qi

must match the structure that is expected by operator oj+1. Queues are not conceptually
bound to any specific XML structure. This increases the flexibility of data that flows
between the operators and can simplify data flow graphs by allowing operators with
multiple output structures. Nevertheless, for modeling purposes a set of different XML
schemas can be registered to every operator’s output that can be used for input validation
for the succeeding operators.

Example 2. Schema-Free Bucket Queues: Consider an XML file containing books and
authors as sibling element types. The receive operator produces buckets with either
the schema of books or authors. Since the bucket queues between operators are not
conceptually schema-bound, both types can be forwarded directly and, e.g., processed
by a routing operator that distributes the buckets to different processing flows.

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Process Engine
Pipes-and-Filter-based Process Plan PS i

data flow

receive assign invokeassign
invoke assign

invoke
data queues

copy

Fig. 4. Pipeline-Based Execution of Process
Plan PS

oj+1oj

queue qi

parameter pj parameter pj+1

bucket bk

Fig. 5. Operators and Processing Bucket
Queue

For parameter set p, we use the respective query languages that where defined with
our data model to configure the operator or to retrieve and modify the payload. Clearly,
a concrete parameter set of an operator o is solely defined by function f . For f , we
define a set of predefined algorithms that are needed for sophisticated data process-
ing. Inspired by [12], we define three classes of basic functions that semantically pro-
vide a foundation for data processing: These classes are interaction-oriented functions
including invoke, receive and reply, control-flow-oriented functions includ-
ing route, copy, and signal and data-flow-oriented functions including assign,
split, join, union,orderby, groupby,sort and filter. All functions work
on the granularity of process bucket B and are implemented as operators.

Now, we discuss the semantics of example operators for every function class in more
detail. In particular, this will be receive, for the class of interaction-oriented functions,
copy, for the class of control-flow-oriented functions, and join, for the class of data-
flow-oriented functions.

Receive Operator. The most important operator for preparing incoming messages is
the receive operator. This operator gets one bucket with the payload of the incoming
message to process. As parameter p, a split expression in XPath or XQuery must be
specified to create new buckets for every item in the resulting sequence. It is closely
related to the split operator. While split is used within the data flow to subdi-
vide buckets, receive is linked to the incoming messages and usually starts the process.
Please, refer to Example 1 for the usage of the receive operator.

Copy Operator. The copy operator, as it is used in our application scenario, has one
input queue and multiple output queues. It is used to execute concurrent data flows with
the same data. For l output queues it creates l−1 copies of every input bucket and feeds
them all output queues.

Join Operator. The join operator can have different semantics and usually joins two in-
coming streams of buckets. For this paper, we describe an equi-join that is implemented
as a sort-merge join. This requires the join keys to be ordered. In our application sce-
nario, this ordering is given inherently by the data set. Alternatively, the receive operator
can be parameterized to order all items by a certain key. If this requirement cannot be
fulfilled, another join algorithm has to be chosen. The set of parameters for a join op-
erator includes (1) paths to both input bucket stream elements, (2) the paths to both
key values that have to be equal and (3) the paths to the target destination in the output
structures of the join operator.

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

 bucket b'

 bucket bj

 bucket bi

 join operator

22

222

3

3

3

3

getInvoices
stream

getOrders
stream

left stream

right stream

3345

3455

$left_source := $_bucket/invoice
$left_key:=$_bucket/invoice/@custId
$right_source: $_bucket/order
$right_key:=$_bucket/orders/@custId

$left_target:=$_bucket//invoices
$right_target:=$_bucket//orders

<invoice custId="3" >
 <lineitem> </lineitem>

</invoice>

<order custId="3" >
 <lineitem> </lineitem>

</order>

<customer >
 <invoices>
 <invoice custId="3">

 </invoice>

 </invoices>
 <orders>
 <order custId="3" >

 </order>

 </orders>
</customer>

Fig. 6. Join Operator

Example 3. Merge join operator: Figure 6 depicts the join operator joinIDs that
joins the payload of order buckets and invoice buckets into one bucket for each
customer id. Thus, the customer id attribute is the join key in both input streams.
The join key paths are denoted by $left key and $right key. Although the in-
vocation of stream-based services will be discussed in the next section, assume that
the getInvoices operator produces one bucket for every invoice per customer id.
Thus, buckets with equal customer id arrive in a grouped fashion due to the preced-
ing invoke operators. The join algorithm takes every incoming bucket from both input
streams and compares the id that is currently joined. In our example, the current id
is 3. If the bucket ids equal the current id, the payloads according $left source
and $right source are extracted from that buckets and inserted into the new output
bucket according the target paths $left target and $right target. If the ids of
both streams become unequal, the created bucket is passed to the succeeding operator
as it is already done for id 2.

4 Generalized Stream-Based Services

Taking the presented process execution as our foundation, we address the communica-
tion between process and services in this section. The general idea is to develop stream-
based services that operate 1) as efficient, stream-based services for traditional service
operations like data extraction and data storage and 2) as stream operators for data-
oriented functionalities and for data analysis. This enables our stream-based process
model to integrate and orchestrate such services natively as remote operators. Thus, the
process can decide whether to execute an operator locally or in distributed fashion on a
different network node.

4.1 Service Invocation Extension

The main drawback of the presented stream-based service invocation approach from
Section 2 is the missing support for service parameterization. Only raw application data

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Client Service

Client Service

data parameter

b)

a)

Fig. 7. Extended Bucket Concept

and thus only one data structure without metadata is supported. Parameters are not con-
sidered specifically and the only way to pass parameters to the service is to incorporate
them into the application data structure (see Figure 7a). This blurs the semantics of both
distinct structure types and creates overhead if the parameter only initializes the service
instance. Furthermore, a mapping between stream buckets with its blurred structure on
the service level and our processing buckets on the process level has to be applied.

Example 4. Drawback of Single Bucket Structure: In our application scenario, the pa-
rameter for the service getInvoices would be a time frame definition, in which all
returned invoices had to be created. Although this one time frame is valid for all cus-
tomer ids that are processed by the service, it has to be transmitted with every stream
bucket.

We extend the stream item definition by deploying the proposed process bucket defini-
tion B from our data model directly into the invocation stream. Remember, a process
bucket is described by its type t and the payload pt that depends on t. Hence, we denote
buckets that carry application data with t = data. We introduce parameter buckets for
service initialization or reconfiguration by adding a new type t with t = param. Thus,
parameters are separate buckets that have their own payload and that are processed by
the service differently. Figure 7b depicts the concept of parameter separation. Besides
a more clear separation, this concept generalizes stream-based service implementations
by allowing to deploy parameterizable functions as Web services that are executed on
stream buckets.

Furthermore, it enables us to incorporate these services as remote operators into our
process model. A parameter set p that is currently used to configure a local operator oi

can be transferred to the service via dedicated parameter buckets. Hence, this service can
act as a remote operator, if it implements the same function f . The conceptual distinc-
tion between remote service and local operator becomes almost negligible. Of course,
central execution will certainly dominate the communication overhead compared to a
distributed execution. But further research should investigate this in more detail.

Example 5. Generalized Filter Service: Consider the filterOrders operator in our
application scenario. It filters incoming order buckets according to the order’s status.
The filter expression is described as XPath statement in its parameter set p. If the filter
algorithm f is deployed as a Web service, it is configured with p using the parameter
bucket structure. Thus, a service instance can filter arbitrary XML content according to
the currently configured filter expression.

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

4.2 Classification and Applicability

In order to integrate stream-based services as data sources and as remote operators into
our process execution, we first have to classify our defined process operators according
incoming and outgoing data flows. In a second step, we investigate how to map these
operator classes to stream-based services. Following [7], we can classify most operators
into unary operators (one input edge, one output edge, e.g.: invoke, signal and
groupby) and binary operators (two input edges, one output edge, e.g.: join and
union). Furthermore, unary operators can have an input–output relationship of 1:1,
1:N and N:1.

Applicability as unary operator: Naturally, a stream-based service has one input
stream and one output stream. Therefore, it can be directly mapped to an unary op-
erator. Since the receiving and sending of process buckets within a service instance are
decoupled, the input–output relationships of 1:1, 1:N and N:1 are supported in straight-
forward fashion.

Example 6. 1 : N relationship: Consider our data source getInvoices. The corre-
sponding invoke operator is depicted in Figure 8. First, the service is configured using
the parameter set with $valid year=2009 as predicate, so that only invoices that
were created in 2009 will be returned. Second, since the service directly accepts process
buckets, input buckets containing single customer ids are streamed to the service. These
customer id buckets are the result of the split in the getCustInfos operator and the
succeeding transform operator. The service retrieves all invoices and returns every
invoice for every customer id in one separate response bucket. Hence, the presented
service realizes a 1 : N input-output relationship. Since the service returns process
buckets, they can be directly forwarded to the joinIDs operator.

Applicability as binary operator: Since a stream-based service typically provides only
one input stream, it cannot be mapped directly to binary operators. A simple approach
to map the stream-based service to the type of a binary operator is to place all buckets
from both input queues to the one request stream to the service and to let the service
validate which bucket belongs to which operator input. As a first step, we focus on
this approach and also implemented it for our evaluation in Section 6. Further research
should investigate if a more sophisticated approach, e.g., one that implements two con-
current streams for one service instance, would be more applicable.

 bucket bj
invoke
operator

send receive

bi bj

bi-1

bi-2

bj+1

bj+2

<invoice custId="3" >
 <lineitem> </lineitem>

</invoice>

 bucket bi
<customer>
 <id> 3 </id>
</customerId> 1 N

parameter $valid_year=2009

Fig. 8. Invoke Operator

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

5 Process Model Optimizations and Extensions

In the following section we discuss implications and challenges for our process-based
data streaming approach. In particular, there are three topics that consider different
aspects of our approach:

5.1 Process Execution Optimization

Our optimization considerations can be classified into two main sections: (1) intra-
process optimizations, which analyzes optimization possibilities within one process in-
stance and (2) inter-process optimizations, which analyzes performance improvements
between consecutive process executions.

Intra-process Consideration and Optimization. Since our approach allows for data
splitting, it scales for arbitrary data sizes. However one implication is, that the scalabil-
ity depends on the bucket payload size and the number of buckets within the process.
Since all data queues block new insertions if they become empty or full, the maximum
number of buckets within the process is implicitly defined by the sum of slots in all data
queues. Furthermore, if a customer id and its invoices/orders are processed completely,
their buckets are consumed by the analyze operator and discarded afterwards. There-
fore we consider different queue sizes between the operators as possible optimization
parameter where processes with small queue sizes will require less main memory but
will be more prone to communication latencies for single buckets. Instead processes
with larger operator queues consume more main memory but will be able to termi-
nate fast preceding operators and free resources, while slow succeeding operators in the
chain can process their items more slowly without slowing down a fast preceding one.

Another implication in terms of bucket payload sizes is that the receive operator
does not build the incoming message payload in memory completely. Instead, it reads
the message payload from an internal storage and parses the XML file step by step,
according the split path in the receive operator. Of course, this may restrict the ex-
pressiveness of XQuery statements, since the processing is forward only. Furthermore
the payload size depends on the XPath expression and the input data structure. An op-
timization technique in this area is the packaging of single bucket payloads into one
physical bucket. While the logical separation of each payload is preserved by the op-
erators via modifications in the operator’s functionality, there are much less physical
buckets in the systems. We will analyze whether, and if, how many payloads have to be
packed into one physical bucket to improve process execution time.

Inter-process Optimization. Currently, the pipeline-based execution is only deployed
on an intra-process-based level. Thereby, the payload of every incoming message is
processed in pipeline-based, but different incoming messages are executed in separate
instances in consecutive executions. One optimization is to allow new messages to be
processed in the same instance as the previous messages. This leads to the processing of
a new message while the previous message is still be processed. However, the process
has to distinguish between single messages to maintain separate contexts. To mark the
start of a new message and thus the end of an old message, we deploy punctuation
as described in [13] by extending the data model and introducing a new bucket type

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

oj oj+1 oj+2

Msg 1

punctuation
bucket

Msg 2Msg 3...

Fig. 9. Inter-process Optimization with Punctuation Buckets

t = SEPCTX . Such a punctuation bucket is injected into the stream when a new
message starts (see Figure 9). It has a predefined payload structure in pt which includes
meta data from the next message like request id or response endpoint that are needed to
communicate results appropriately.

Furthermore, the process model is extended to be aware of punctuations and to ensure
the separation of message contexts. In general, if an operator consume a punctuation
bucket from the input queue, it resets its internal state and forwards the punctuation
bucket to each outgoing queue. For the copy operator, this implies that it copies the
punctuation bucket for every outgoing queue. Special considerations have to be made
for binary operators like join or union and for the invoke operator. Since binary
operators merge concurrent data flows, the operator function has to stop consuming
from one queue, if it encounters the punctuation in that queue. The operator has to
consume from the second queue, until it also encounters the punctuation bucket in the
second queue. Then, both punctuations are removed from the queue and one of them
is placed in the outgoing queue. For the invoke activity are two possibilities exist for
punctuation handling. If the remote service does not support punctuations, the operator
has to shut down the invocation stream normally as it would be the case when shutting
down the whole process normally. Afterwards, the punctuation is placed in the outgoing
queue and the new invocation stream is established for the next message context. If
the service supports punctuations, the operator has not be aware of any punctuation
semantic. The invocation stream is kept open and the punctuation is placed in the stream
with all other buckets, whereas the service resets its internal state and forwards the
punctuation back to the operator. Both types have been implemented and are evaluated
in Section 6.

If punctuations are not used at all but different message payloads are processed in
one shared context, it allows new application scenarios in the area of message stream
analysis that is described next.

5.2 Applicability and Operator Extension

In our presented application scenario, we considered equally structured items. This is a
typical data characteristic in data-intensive processes. However, if items are not equally-
structured, our process model supports this by schema-less data queues (see Example 2)
and multiple definitions in the route operator. Another reasonable application domain
is inter-message processing in the area of message stream analysis. Consider services,
that are monitored via sensors. These sensors forward metrics like response time and
availability in a predefined time interval. Decision rules and action chains can be de-
fined as a process-based data streaming application and would enable the reduction of

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

orthogonal, not XML-based systems like traditional data stream management systems.
To support such scenarios, we can leverage the semantics of punctuations described
earlier to provide one process instance and thus one common context for all arriving
messages. Additionally, only the process model has to be extended with more operator
types to support event processing operations like time windows and sequences. Further-
more, it has to be investigated, how decision rules can be mapped to our process graph
and how Complex Event Processing (CEP) can be embedded in this context.

6 Evaluation

In this section, we provide performance measurements for our stream-based process
execution. In general, it can be stated that the stream-based message processing leads
to significant performance improvements and scales for different data sizes.

6.1 Experimental Setup

We implemented our concept using Java 1.6 and the Web service framework Axis21,
and we ran our process instances on a standard blade with 3 GB Ram and four cores
at 2 GHz. The data sources were hosted on a dual core workstation with 2 GB Ram
connected in a LAN environment. Both nodes were assigned 1.5 GB Ram as Java Heap
Size. All experiments were executed on synthetically generated XML data and were
repeated 30 times for statistical correctness.

We used our running process example. For the traditional process execution, the pro-
cess graph consists of seven nodes: one receive activity, three assign activities (trans-
form, filterOrders and joinIds), and three invoke activities (getInvoices,
getOrders and analyze). For our stream-based process execution the process graph
consists of eight nodes. We additionally have the copy operator that distributes the
customer ids to both invoke operators. Furthermore, we replace the assign operators
filterOrders and joinIds with the respective filter and join operator.

We use n as the number of customer information that enter the process. In addi-
tion, we fix the number of invoices and orders returned for each customer id from the
services getInvoices and getOrders to 10 for all conducted experiments. This
leads to 20 invoices/orders for every processed customer id. The textual representation
of one customer information item that enters the process is about 1kb in size. It gets
transformed, enriched and joined to about 64kb throughout the process. Although real-
world scenarios for data integration often exhibit larger message sizes, these sizes are
sufficient for comparing the presented approaches.

6.2 Performance Measurements

For scalability over n, we measured the processing time for the traditional control-
flow-based process execution (CPE) and our stream-based process execution (SPE) in
Figure 10(a) with a logarithmic scale. Thereby, CPE denotes the control-flow-based
execution which processes all customer information n in one process instance. CPE

1 http://ws.apache.org/axis2/

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0 1000 2000 3000 4000

1
5

10
50

50
0

customer infos n

pr
oc

es
si

ng
 t

im
e

[i
n

s]

●

●

●

●

●

● CPE
CPE chunk10
CPE chunk100
SPE local
SPE distributed

(a) Scalability Over n.

0 1000 2000 3000 4000

0
20

0
40

0
60

0
80

0
10

00

customer infos n

st
an

da
rd

 d
ev

ia
ti

on
 [

in
 m

s]

CPE chunk10
SPE local

(b) Standard deviation over n.

●

●

●

0 200 400 600 800 1000

1
2

5
10

20

customer infos n

pr
oc

es
si

ng
 t

im
e

[i
n

s]

● CPE chunk10 1core
CPE chunk10 4cores
SPE 1core
SPE 2cores
SPE 4cores

(c) Influence CPU cores.

Fig. 10. Experimental Performance Evaluation Results

chunk10 and CPE chunk100 uses the CPE but distribute n items over n/chunkSize
service calls with chunkSize = {10, 100}. SPE local represents our stream-based pro-
cess execution with only getInvoices, getOrders and analyze being stream-
based invoke operations to external Web services. In contrast, SPE distributed replaces
the join operator joinIDs with a binary invoke operator described in Section 4.2 and
implements the join as stream-based service instance.

We can observe, that CPE does not scale over 1.000 customer ids with its 20.000
invoices/orders due to main memory limit of 1.5 GB and its variable-based data flow
which stores all data. In contrast, CPE chunk10 and CPE chunk100 scale for arbitrary
data sizes whereas a chunk size of 10 customer information per process call offers
the shortest processing time. Nevertheless, this data chunking leads to multiple process
calls for a specific n and alters the processing semantic by executing each process call in
an isolated context and thus assuming independency between all n items. Furthermore,
it also exhibits a more worse runtime behavior than SPE local and SPE distributed.
Since chunking scales for arbitrary data sizes, we will focus on these approaches in our
following experiments.

Figure 10(b) depicts the standard deviation of runtimes for CPE chunk10, CPE
chunk100 and SPE local. While the standard deviation of both chunk-based control-
flow execution concepts increases for larger n, the standard deviation of our stream-
based execution shows significantly lower. This is due to the fact, that with higher n the
number of service calls increases for the CPE approaches, which also involves service
instance creation and the all new routing of the message to the service endpoint. In con-
trast, our stream-based service invocation only creates one service instance per invoke
operator and the established streams are kept open for all n that flow through it.

In Figure 10(c) we measured the runtime performance with different numbers of
dedicated CPU cores to the process instances. We can observe, that the number of cores
does not affect the CPE approaches significantly. This is due to the fact that at most
2 threads are executed concurrently (both concurrent invokes for getInvoices and
getOrders in the process graph). Furthermore, waiting times for the return of the ser-
vice calls (processing, creation and transmission of invoices and orders) does even not
fully utilize one core and makes the presence of the remaining three cores obsolete. For
the SPE approach, we have 12 threads (8 operator nodes with one thread per operator
plus an additional thread for every invoke (+3) and join (+1) operator). The execution

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

transform getOrders joinIds

CPE
CPE chunk10
SPE local

Operators

pr
oc

es
si

ng
 t

im
e

[i
n

s]

0.
2

0.
5

2.
0

5.
0

20
.0

10
0

0

(a) Operator Execution Times.

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0 5 10 15 20

0
1

2
3

4

message rate

pr
oc

es
si

ng
 t

im
e

[i
n

s]

● SPE
SPE punct process
SPE punct service

(b) SPE Optimizations.

Fig. 11. Experimental Performance Evaluation Results

time for different n is significantly higher with only using one CPU core. Nevertheless,
the SPE also outperforms the CPE with one single CPU core. Again this points to the
fact of dominating waiting times for service calls in CPE-based processes. The assign-
ment of two CPU cores speeds up the SPE significantly whereas 4 CPU cores do not
increase performance that may justify its dedicated usage.

As a fourth experiment, Figure 11(a) depicts execution times for different operators
of CPE, CPE chunk10 and SPE local in a logarithmic scale. Here we fix n = 500
and measured the time the operators finish to process all items. In general, the exe-
cution of every SPE operator takes more time than the corresponding activities in the
CPE environment (except the CPE invoke). Furthermore, all SPE operators run quite
the same amount of time. This is due to the pipelined execution of all operators with its
blocking queue semantic. So while the transformID operator starts running, all suc-
ceeding operators are also started appropriately. So while the transformID operator
processes further buckets, e.g. the joinIDs operator already processes buckets from
it’s input queues. The blocking nature of the operators implies, that the pipeline is only
as fast as the slowest operator in the chain. As for the joinIDs activity in the CPE, is
the most time and resource consuming step. We used a standard Java XPath library to
implement the join for the CPE. Thereby, all invoices and orders for every customer
id are retrieved from internal variables (see [11] for more detail) and stored in internal
variables. For our SPE implementation, we used the same library and algorithm but
process only small message subsets with each join step. This seemed to speed up the
whole data processing significantly.

In Figure 11(b), we focused solely on our SPE implementation and compared the
plain execution with the optimized execution considering the punctuation semantics
from Section 5. Therefore, we fixed the message size to n = 10 and varied the mes-
sage rate r from 1 to 20. We measured cumulative time to finish all messages. Thereby,
SPE denotes the plain execution without optimization. Furthermore, SPE punct pro-
cess denotes the optimization where a punctuation is not supported by services and thus
terminates the invocation stream. Finally, SPE punct service denotes the optimization
where punctuations are supported by the stream-based services and thus the invocation
streams can be kept open. As expected, the plain SPE implementation is the most in-
efficient for consecutive process execution. While it scales very good with increasing
data volume within one process instance, it becomes a bottleneck if many consecutive

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

14

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

instances have to be created. This includes the instantiation of every operator before
any processing can be done and the expensive invocation stream establishment for ev-
ery invoke operator. On the opposite, SPE punct process keeps all operators and the
current process instance for consecutive requests. Thus, it eliminates operator creation
overhead and scales much better with increasing message rate. Finally, SPE punct ser-
vice additionally eliminates the expensive network stream establishment for consecutive
requests and the whole process pipeline remains filled.

To conclude, the evaluation of our concept has shown, that the pipeline-based exe-
cution in conjunction with the stream-based Web service invocation yields significant
performance and scalability improvements for our application scenario.

7 Related Work

In general, there exist several papers addressing the optimization of business processes.
The closest related work to ours is [14]. They investigate runtime states of activities
and their pipelined execution semantics. However, their proposal is more a theoreti-
cal consideration with regard to single activities. They describe how activities have to
be adjusted to enable pipelined processing, whereas they do not consider 1) message
splitting for efficient message processing and 2) communication with external systems.
Furthermore, [12] addresses the transparent rewriting of instance-based processes to
pipeline-based processes by considering cost-based rewriting rules. Similar to [14], they
do not address the optimization of data-intensive processes.

The optimization of data-intensive business processes is investigated in [15,16] and
[5]. While [15] proposes to extend WSBPEL with explicit database activities (SQL-
statements), [16] describes optimization techniques for such SQL-aware business
processes. In contrast to our work, their focus is on database operations in tight com-
bination with business processes. [5] presents an overall service-oriented solution for
data-intensive applications that handles the data flow separately from process execution
and uses database systems and specialized data propagation tools for data exchange.
However, the execution semantics of business processes is not touched and only the
data flow is optimized with special concepts – restricting the general usability of this
approach in a wider range.

8 Conclusions

In this paper we presented the concept of stream-based XML data processing in SOA
using common service-oriented concepts and techniques. There, we used pipeline par-
allelism to process data in smaller pieces. In addition, we addressed the communication
between process and services and introduced the concept of generalized stream-based
services. It allows the process to execute services as distributed operators with arbi-
trary functionality. Furthermore, we presented optimizations to increase scalability for
inter-process message processing. In experiments we showed the applicability of these
concepts in terms of performance. Future work should address the modeling aspects of
such processes in more detail. More specifically, it should be investigated, how nota-
tions like BPMN in conjunction with annotated business rules have to be mapped to

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

15

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

an operator graph of our process model. Additionally, a cost model is reasonable that
considers communication costs, complexity of data structures and complexity of imple-
mented operator functions to advise the remote or local execution of process operators.

References

1. Graml, T., Bracht, R., Spies, M.: Patterns of business rules to enable agile business processes.
Enterp. Inf. Syst. 2(4), 385–402 (2008)

2. OASIS. Web services business process execution language 2.0 (ws-bpel) (2007),
http://www.oasis-open.org/committees/wsbpel/

3. OMG. Business process modeling language 1.2 (2009),
http://www.omg.org/spec/BPMN/1.2/PDF/

4. Kouzes, R.T., Anderson, G.A., Elbert, S.T., Gorton, I., Gracio, D.K.: The changing paradigm
of data-intensive computing. IEEE Computer (2009)

5. Habich, D., Richly, S., Preissler, S., Grasselt, M., Lehner, W., Maier, A.: Bpel-dt - data-aware
extension of bpel to support data-intensive service applications. In: WEWST (2007)

6. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J.-H., Lind-
ner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.: The Design
of the Borealis Stream Processing Engine. In: CIDR (2005)

7. Vassiliadis, P., Simitsis, A., Baikousi, E.: A taxonomy of etl activities. In: DOLAP (2009)
8. Machado, A.C.C., Ferraz, C.A.G.: Guidelines for performance evaluation of web services.

In: Proceedings of the 11th Brazilian Symposium on Multimedia and the Web, WebMedia
2005, pp. 1–10. ACM Press, New York (2005)

9. Suzumura, T., Takase, T., Tatsubori, M.: Optimizing web services performance by differential
deserialization. In: Proceedings of the 2005 IEEE International Conference on Web Services,
ICWS 2005, Orlando, FL, USA, July 11-15, pp. 185–192 (2005)

10. Preissler, S., Voigt, H., Habich, D., Lehner, W.: Stream-based web service invocation. In:
BTW (2009)

11. Preissler, S., Habich, D., Lehner, W.: Process-based data streaming in service-oriented envi-
ronments - application and technique. In: Filipe, J., Cordeiro, J. (eds.) ICEIS 2010. LNBIP,
vol. 73, pp. 56–71. Springer, Heidelberg (2011)

12. Boehm, M., Habich, D., Preissler, S., Lehner, W., Wloka, U.: Cost-based vectorization of
instance-based integration processes. In: Grundspenkis, J., Morzy, T., Vossen, G. (eds.) AD-
BIS 2009. LNCS, vol. 5739, pp. 253–269. Springer, Heidelberg (2009)

13. Tucker, P.A., Maier, D., Sheard, T., Fegaras, L.: Exploiting Punctuation Semantics in Con-
tinuous Data Streams. IEEE Trans. on Knowl. and Data Eng. 15(3), 555–568 (2003)

14. Bioernstad, B., Pautasso, C., Alonso, G.: Control the flow: How to safely compose streaming
services into business processes. In: IEEE SCC, pp. 206–213 (2006)

15. Maier, A., Mitschang, B., Leymann, F., Wolfson, D.: On combining business process inte-
gration and etl technologies. In: BTW (2005)

16. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft, T.: An
approach to optimize data processing in business processes. In: VLDB, pp. 615–626 (2007)

Final edited form was published in "Enterprise Information Systems: 12th International Conference.
Funchal-Madeira 2010", S. 60-75, ISBN 978-3-642-19802-1

http://dx.doi.org/10.1007/978-3-642-19802-1_5

16

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

http://www.oasis-open.org/committees/wsbpel/
http://www.omg.org/spec/BPMN/1.2/PDF/

	An XML-Based Streaming Concept for Business Process Execution
	Introduction
	Stream-Based Service Invocation Revisited
	Stream-Based Process Execution
	Data Model
	Process Model

	Generalized Stream-Based Services
	Service Invocation Extension
	Classification and Applicability

	Process Model Optimizations and Extensions
	Process Execution Optimization
	Applicability and Operator Extension

	Evaluation
	Experimental Setup
	Performance Measurements

	Related Work
	Conclusions
	References

	ADPD009.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Steffen Preissler, Dirk Habich, Wolfgang Lehner

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

