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A 16-Channel Fully Configurable Neural SoC With
1.52 µW/Ch Signal Acquisition, 2.79 µW/Ch

Real-Time Spike Classifier, and 1.79 TOPS/W Deep
Neural Network Accelerator in 22 nm FDSOI

Seyed Mohammad Ali Zeinolabedin , Member, IEEE, Franz Marcus Schüffny , Richard George, Florian Kelber,
Heiner Bauer , Stefan Scholze, Stefan Hänzsche, Marco Stolba, Andreas Dixius, Georg Ellguth, Dennis Walter,

Sebastian Höppner , and Christian Mayr , Member, IEEE

Abstract—With the advent of high-density micro-electrodes ar-
rays, developing neural probes satisfying the real-time and strin-
gent power-efficiency requirements becomes more challenging. A
smart neural probe is an essential device in future neuroscientific
research and medical applications. To realize such devices, we
present a 22 nm FDSOI SoC with complex on-chip real-time data
processing and training for neural signal analysis. It consists of a
digitally-assisted 16-channel analog front-end with 1.52 µW/Ch,
dedicated bio-processing accelerators for spike detection and clas-
sification with 2.79 µW/Ch, and a 125 MHz RISC-V CPU, utilizing
adaptive body biasing at 0.5 V with a supporting 1.79 TOPS/W
MAC array. The proposed SoC shows a proof-of-concept of how to
realize a high-level integration of various on-chip accelerators to
satisfy the neural probe requirements for modern applications.

Index Terms—Biomedical electronics, biomedical signal
processing, digital integrated circuits, energy efficiency, neural
recording system, implantable devices, accelerator architectures,
spike sorting, unsupervised learning.

I. INTRODUCTION

THE research of neuronal microcircuits and the creation
of neuroprosthetic devices requires the analysis of neural

activities recorded at high spatial and temporal resolution. Large
populations of neurons can be recorded extracellularly with
multi-channel arrays, however, the transferal of vast amounts
of raw data off-chip in such systems prohibits real-time appli-
cations, such as Brain-Machine Interfaces (BMIs) and neural
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prosthetics [1], [2]. Moreover, wireless transmission of the raw
data off-chip is limited by bandwidth limitations and the power
requirement, and furthermore requires large off-chip memory
capacities to save it.

The first step in the analysis of neuronal activity is decoding
extracellular potentials to identify spikes from neurons in the
vicinity of micro-electrodes. This process is called spike sorting
(SS), a classification that requires training on acquired data. Dur-
ing the training phase, an unsupervised/semi-supervised training
algorithm is executed to identify distinct spike sources by wave-
form shape. Training is performed intermittently and outside
regular operating mode. Classifications are performed by first
detecting the presence of an action potential, and subsequently
passing its shape through a clustering algorithm. The classifica-
tion phase disambiguates spike events from background activity
and superimposed multi-unit activity [1]–[3].

Conventional neural recording SoCs include analog front-
ends (AFEs) alone, to record and digitize the raw data. However,
developing high-density multi-electrode arrays (MEAs) requires
complex on-chip data processing to satisfy the real-time and
power consumption requirements of the neural probes. Fig. 1
shows that for a 1000-Channel recording system, the power con-
sumption of raw data transmission is about 250 mW. However,
it is not supported by implant applications where it should be
below 35 mW for reasons of thermal biocompatibility, as seen
in the 3D Utah electrode array [4]. Besides, the data rate in
such systems is estimated as high as 180 Mbps in the analysis
provided. Following these considerations, the design decision
to integrate on-chip digital processing is inevitable. On-chip
multi-channel spike detection reduces the power and data rate
by 66.72% as shown in Fig. 1. However, on-chip spike detection
requires transmitting the whole spike, e.g. 64 × 9bits per spike
Whereas further complex on-chip data processing like spike
classification reduces the power by 96.63% and reaches the data
rate of 1.8 Mbps, as given in Fig. 1. Including more on-chip dig-
ital processing causes the AFEs power consumption to become
dominant and therefore new circuit-level techniques should be
developed to keep the overall system power consumption low.

In an environment where electrode movement and tissue
reactions are the norm, as in modern high-density MEAs [5]–[9],
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Fig. 1. Analysis of a 1000-Ch neural recording system. (P(AFE) =
1.52 µW/Ch, P(SD) = 0.29 µW/Ch, P(Classification) = 2.5 µW/Ch, maximum
firing rate= 100 spikes/sec, transmission energy= 1 nJ/bit, sampling frequency
= 20 kHz, and 9-bit data.) .

on-chip programmability is crucial for real-time learning, adapt-
ing the spike-sorting classifier, and sustaining high classification
accuracy. For these purposes, biosignal processing SoCs require
the integration of an ultra-low power CPU, aided by hardware
accelerators. However, these new features are absent in state-of-
the-art works [5]–[19].

In [10], [11], spike detection (SD) and spike feature extractor
(SFE) are implemented for a 64-channel system. In [12], SD
and SFE are implemented as a part of classification phase for
128-Channel system. Reference [13] is the first 16-channel
SoC performing training and classification on-chip. Customized
hardware is designed for running the OSort online training algo-
rithm described in [20] where it is shared between all channels.
This design suffers from a large memory size and high power
consumption and therefore the number of channels is restricted.
The average classification accuracy is about 75%. A 32-Channel
chip is reported at [14] which only performs the classification
and the averaged classification accuracy is between 70% to 90%
and the training is performed offline. In [15], a single-channel
spike sorting chip is designed to perform the training and classi-
fication. The average classification accuracy is about 84.5% and
the power consumption is 148 μW/Ch which is very high for
high-density MEAs. A 128-ch chip reported at [16] integrates
classification and a modified K-means training. It achieves
the average classification accuracy of 74% and the power of
0.175 μW/Ch. A template matching classification method is
implemented in [17] to reduce the computational complexity of
spike sorting and it achieves 90% accuracy. However, this design
requires an extensive offline supervised training process to cal-
culate the templates. A parallel OSort algorithm is implemented
in [18] for a single channel and the average accuracy is 87%. It
also requires a large memory footprint for multi-channel design,
e.g around 8.6 Mb for a 16-channel implementation. An analog
neural signal recorder and classifier is implemented in [19] and
achieves 93.2% clustering accuracy. Reference [19] uses a fixed
and limited number of features that may not be sufficient to cover
varieties of the datasets.

None of these designs [10], [11], [13], [15]–[18] includes
the AFEs and instead focused on various on-chip data process-
ing/learning hardware realizations. References [13], [15], [16],
[18], [19] implement dedicated hardware to perform the training
phase in a power efficient mode. Although customized hardware
accelerators for training add some levels of adaptivity, they do
not provide trained parameters across a variety of conditions
which are detrimental considering the changing recording con-
ditions outlined above, in chronic implantation scenarios.

In this paper, we present a fully configurable neural SoC
integrating the following components:
� 16-channel analog front end (AFE) containing 16 LNAs

time-multiplexed to a chopped VGA and 9 b SAR ADC.
Digital assisted filtering makes the AFE more robust with
respect to PVT-variation.

� On-chip CPU providing the programmability feature to
perform various training/evaluation algorithms in power-
efficient modes.

� Dedicated bio-processing accelerators running detection
and classification independent of the CPU to achieve ultra-
low power performance.

� 16x4 multiply accumulate (MAC) array providing 8-bit un-
signed acceleration of time-critical matrix multiplications
or 2D (dimensional) convolution.

The proposed system achieves an average classification accu-
racy of 94.12% and a power consumption of 2.79 μW/Ch for the
classification and 1.52μW/Ch for the AFE. Various architecture-
and circuit-level techniques are deployed to achieve the ultra-low
power operation.

The remainder of this paper is organized as follows. Section II
briefly presents the basics of neural signal analysis taken into
account in the design of the SoC. Section III introduces the
proposed architecture with its components. Section IV describes
the analog front-end and the proposed bio-processing acceler-
ators are explained in Section V. Specifically, the MAC unit
is discussed in Section VI. The chip measurement results and
comparison with the state-of-the-art designs are presented in
Section VII, followed by a conclusion in Section VIII.

II. CONSIDERED FUNDAMENTALS OF NEURAL SIGNAL

ANALYSIS

The proposed smart neural SoC aims at providing a research
platform. It’s capable of recording and processing electrophysi-
ological data from a variety of different recording locations and
electrode types, in an experimental setting. As such, the main
motivation behind the use of an onboard processor was to gain
the flexibility to accommodate state-of-the-art algorithms for a
variety of real-time applications and recording configurations.

In this section, we provide a short overview of the signal
domains considered, implementable algorithms, and their use-
cases.
� Action Potentials (AP): AP are stereotypical signals in a

frequency range of 100 Hz-10 kHz. Unsupervised/semi-
supervised clustering algorithms, i.e. spike sorting algo-
rithms, are frequently used for the analysis of such neural
signals to identify the source [16], [21]. As such, real-time
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spike-detection and sorting is a crucial enabler of neurally
inspired bio-hybrid systems [22].

� Multi-Unit Activity (MUA): MUA occurs in cases where
the APs of several sources overlap. They are informative
for less granular measures such as average firing frequency
and time-to-first-spike, shown to be sufficient in a variety
of applications of BMIs, found e.g. in [23], [24].

� Local Field Potentials (LFP): Local depolarization of the
cellular membrane voltage creates superimposed electrical
fields that, in sum, are observed as local field potentials
within a comparably lower frequency range. Important
and informative features can be extracted from LFP as
biomarkers for Parkinson’s symptoms and a variety of other
neuropathologies [25].

� Electroencephalograms (EEG): EEG is recorded on the
subjects’ scalp and provides a signal that is low in spatial
and temporal resolution. Traditionally, EEG power spectra
are divided into arbitrary bands to study the physiological
signals (e.g. in the observation of sleep patterns and sensory
evoked potentials), and to diagnose neuropathologies.

Deep neural networks (DNN) pose an alternative solution to
detect biomarkers and possibly perform the matching of stim-
uli to corresponding evoked spike patterns in situations where
supervised learning is applicable. For example, the TrueNorth
neuromorphic architecture was successfully used to demonstrate
classification accuracy of 76% in a hand squeeze task, using
EEG recordings, at a maximum peak power consumption of
only 70 mW utilizing convolutional neural networks [26]. To
efficiently execute DNN models in low-power hardware, it is
recommended to incorporate a dedicated multiply accumulate
accelerator to perform computationally expensive operations in
a highly parallel and real-time fashion [27], [28]. Such acceler-
ators can be further utilized to effectively implement classical
frequency domain transforms such as Short-Time Fourier Trans-
form (STFT), Discrete Cosine Transform (DCT) and Discrete
Wavelet Transform (DWT) for an extended signal analysis in
the spectral domain to create feature vectors [29].

The proposed system provides a power-efficient platform to
analyze those above-mentioned applications in real-time thanks
to the high-level system integration of 16-channel AFE, on-chip
CPU, power-efficient bio-processing accelerators, and powerful
MAC unit.

III. PROPOSED ARCHITECTURE

Fig. 2 shows the proposed architecture of the neural SoC
comprising a 16-Channel AFEs, an in-order 32-bit RISC-V pro-
cessor (CPU) with support for IMCX-pulpv2 instructions [30]
with a separate 0.50 V power domain. The proposed architecture
also contains a bio-processing accelerator consisting of a spike
detector (SD), and spike feature extractor/classifier (SFEC)
hardware units, all within a separate 0.80 V power domain.

The CPU and the core interfaces of the dual-rail SRAM
macros are implemented at an ultra-low voltage of nominally
0.50 V. It is enabled by adaptive body-biasing (ABB), following
the ABB-aware implementation methodology from [31]. A for-
ward bias solution is chosen [32] to allow robust performance

Fig. 2. Block diagram of smart neural SoC including MAC-assisted CPU,
16-Ch AFE, bio-processing accelerator, and ABB unit. All blocks are located in
three power domains. CPU and SRAM periphery are in power domain 0.50 V
and the SRAM bit cells are in 0.80 V domain. Bio-processing accelerator has a
separate 0.80 V domain. (ZBB stands for Zero Body Bias.).

at 0.50 V over the full process, voltage and temperature range.
The all-digital-phase-locked-loop (ADPLL) based clock gener-
ator from [33] is used for clock generation. Furthermore, the
CPU is assisted by a dedicated accelerator specializing in fast
and power-efficient execution of matrix multiplication and 2D
(dimensional) convolution.

In the proposed architecture, the complex (re)training phase
is initially run on the CPU to identify spike sources. CPU is also
utilized to calculate the threshold values for SD and to check the
quality of cluster centroids over time. Running these intermittent
operations requires the flexibility provided by the CPU that
is absent in other designs. In contrast, in normal operating
mode, i.e. classification phase, SD and SFEC provide real-time
operation at frequencies of 400 kHz (SD) and 60 MHz (SFEC)
while the CPU is in sleep mode. Therefore the overall system
achieves the ultra-low power operation. The mentioned sequence
of the operating modes is controlled by the ‘Bio Controller’.

The Bio Controller unit (refer to Fig. 2) realizes various op-
erating/testing modes (M1-M7) which are listed below (shown
in Fig. 3):
� M1: Recording data via AFEs and performing various

training algorithms by means of CPU and optionally the
MAC array.

� M2: Utilizing SD individually by reading the input data
from a user-specified section of SRAM and store the results
back in SRAM. CPU is in sleep mode.

� M3: Utilizing SFEC individually by reading the input data
from a user-specified section of SRAM and store the results
back in SRAM. CPU is in sleep mode.

� M4: Recording data via AFEs and storing them in a user-
specified section of SRAM and transmitting it over GPIO,
as well. CPU is in sleep mode.
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Fig. 3. Active blocks in various operating modes. Bio Controller handles the
flow of data between different components. CPU is only active in M1 but not
necessarily in M7.

� M5: Recording data via AFEs and performing spike detec-
tion by SD in real-time. CPU is in sleep mode.

� M6: Recording data via AFEs and performing classifica-
tion by SD and SFEC in real-time. CPU is in sleep mode.

� M7: Utilizing the MAC array individually by reading the
input data from a user-specific section of SRAM and stor-
ing the results back in SRAM. CPU is in sleep mode.

In M1, SRAM is partially organized as two pages whose sizes
are user-defined e.g. 32 KB per page. In this mode, Bio Con-
troller stores the recorded data on page 1 and page 2 alternatively
so that once page 1 is full, an interrupt request is sent to the CPU
to process page 1. Meanwhile, Bio Controller continues storing
data on page 2. Because of the slow nature of the neural signal,
the CPU finishes the analysis of the page 1 before page 2 gets
full. In such way, the same memory region can be periodically
utilized to avoid a larger memory footprint. After (re)training
phase, the calculated parameters are stored either at register file
(RF) or SRAM for later use in M2 to M6.

M2 and M3 opt for serving as stand-alone accelerators to
perform spike detection or feature extraction and classification
transmitted to the chip via I/O without interfering with the CPU.
Testing modes M4-M6 are designed to perform the recording
and data processing in real-time and ultra-low power fashion
after (re)training is performed in M1.

As shown in Fig. 2, data is transferred between AFEs, SD, and
SFEC blocks via asynchronous FIFO by Bio Controller to satisfy
the various operating frequency requirement of each block. In
M6, Bio Controller concurrently sends the recorded data to SD
and also stores them in SRAM for the last 64 data of each
channel. The new data automatically overwrites the previous
ones so that there is always the latest 64 recorded data, i.e.
64-data-wide window, for any channel available in SRAM. Once
a spike is detected from any channel, Bio Controllers receives
a notification from SD, and then it retrieves the corresponding
64-data-wide window of that channel together with other related
parameters (explained in V) and sends them to SFEC for clas-
sification. After classification, the results are sent outside the
chip for real-time monitoring and also stored in SRAM. As a
result, all the blocks shown in the classification phase of Fig. 3
are involved in the operation in testing mode M6.

I/O block provides a general-purpose port, serial peripheral
interface (SPI), and JTAG interface to communicate off-chip. RF
enables users to configure various internal blocks via the JTAG

interface. A clock divider block generates the different clocks
for AFE, SD, and SFEC blocks from the ADPLL.

All main blocks that are destinations or sources for processed
data are connected by the network-on-chip (NoC) architecture.
A 2D-mesh structure is set up with two routers. Each router
supports up to 4 clients. NoC packet data rate is adopted to band-
width requirements. There is low-speed configuration data that
is distributed with 400 MByte/s and high speed neural data can
use up to 2.4 GByte/s. This allows low latency communication
of all information between all blocks. The NoC architecture is
fully digital, scalable and the clock is gated during IDLE times.
Packets are routed using a fully connected crossbar approach.

IV. ANALOG FRONT-ENDS

The front-end signal acquisition chain is shown in Fig. 4.
It consists of 16 LNA multiplexed to a single VGA and ADC
which are chopped. Its output is then processed digitally by
an averager, limiting the bandwidth to 9.8 kHz and a high-pass
filter. The LNA has the most power and noise contribution. Other
components add up to this given power and should be well below
the LNA power. To minimize noise contribution and increase
PVT robustness, the digital assisted architecture in Fig. 4 is
introduced in [34]. Two LNA versions are implemented on chip,
whereas the first one has a gain of 100 and the other one a gain
of 10. The variable gain amplifier (VGA) has a gain of either 2.6
or 4.

Small scaled technologies benefit from low area and power
for digital circuits but suffer from higher process variation. This
is critical for high PVT sensitive components like the sub-Hz
filter in the LNAs. Therefore as shown in Fig. 5 a high-ohmic
noise-contributing pseudo-resistor is replaced by a switch. If it
is activated to ensure DC operating point and ADC range, it
creates a step in the signal towards zero, as illustrated in Fig. 4
that is compensated digitally. In case of reset, the last sample is
subtracted from the integrator giving a step to compensate for
the reset pulse. Since this resetting creates a disturbance, it is
executed rarely at points of time with a low signal slope. A high
slope increases disturbance since the signal chain is blind during
the reset phase. The missing analog high-pass (HP) filtering is
implemented in the digital domain with a negative feed-back
integrator giving a 0.78 Hz well-defined corner frequency [34].

The second digital assisted noise reduction technique is chop-
ping of VGA and ADC. The multiplexed design switches be-
tween the channels. The multiplexer has two polarity options
for each channel to compensate for low-frequency noise and
offset in the VGA and ADC. This way, it is shifted to 20 kHz
and then removed in the digital averaging filter (AVG) [34].

The third power reduction is achieved by multiplexing one
ADC and VGA for 16 channels. For small-scale technologies, a
faster operating speed can be achieved but leakage is relatively
higher than in older technologies. That is why power reduction
is achieved by sharing VGA and ADC [34].

A. Noise and Power Reduction of LNA

To design the analog front-end the main concern is the lim-
ited power resource. As shown in the noise efficiency figure
(NEF) [35] current reduction increases (thermal) noise in the
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Fig. 4. Overall working principle of full-custom analog part.

Fig. 5. Detailed LNA schematic. A high-ohmic pseudo resistor is replaced
with a switch and its non-linear effect is compensated digitally at HP (refer to
Fig. 4).

LNA.

NEF = Virn

√
2 · I

π · VT · 4kT ·BW
(1)

For differential designs NEF usually above 1 is giving a
minimum current I for a given total noise Virn, bandwidth BW
and temperature T. This results in a given power.

Since the LNA has the most power and noise contribution, its
design is described more in detail here. NEF shows the relation
of noise, current, temperature, and bandwidth. It is based on
the thermal noise of a single transistor. It is minimized by
sub-threshold stacked input transistors to get maximum gm for a
given current. However, there is a slight technology dependency.
In addition to thermal noise giving a constant NEF, there is
flicker and igs-shot noise, degrading NEF. Increasing the gate
area decreases flicker noise but increases igs-shot noise. Addi-
tional noise from the feedback resistor is avoided by replacing
the feedback resistor with a reset switch [34]. Limited by the
threshold of the transistors, the overall power can be reduced by
the lower supply voltage.

B. Power Reduction of VGA, ADC and Digital Filter

The SAR ADC power is limited by its digital-to-analog con-
verter (DAC) and switching power. Because of kTC noise a
certain input cap is required, which then results in a required
output current of the VGA to charge the ADC during the

sampling phase. This is minimized by an AB output stage. The
reference current is shared with as many channels as possible, to
reduce power per channel. Multiplexing of more channels does
not help too much because VGA needs to have more current to
charge faster, which eats up power reduction per channel. The
noise added by VGA is minor because LNA amplification of 100
reduces noise requirement by a factor of 100. Since it is shared
with 16 channels, there is more current available anyway. ADC
resolution determines quantization noise. The minimum input
range is 2 mV. With an effective number of Bits (ENOB) of
7.44, we get a quantization noise of:

σ =
Δ√
12

=
2mV/27.44√

12
= 3.3μV < σLNA ≈ 5μV (2)

The digital filter should be as short/small as possible to save
power. Measurement showed that first-order high-pass (HP)
filter and averager (AVG) is enough [34]. Reset control is based
on a differentiation to detect low slopes to allow resetting. Sign
check to do resetting towards the middle range of ADC comes
cheap in hardware terms. Besides, there is a counter guaranteeing
minimum time between resets. Design supply voltage reduction
is feasible because the operating frequency is in the sub MHz
range.

V. BIO-PROCESSING ACCELERATORS

This section explains Spike Detector (SD) and Spike Feature
Extractor/Classifier (SFEC) shown in Fig. 2. They are two
CPU-independent accelerators that can provide real-time and
power-efficient operations to detect and classify action potential
activities in the neural signal.

A. Spike Detector (SD)

As explained in Section III, Bio Controller sends the recorded
data to SD in Modes M2, M5, and M6 via asynchronous FIFO.
Because a spike features sudden changes in the waveform, a
nonlinear energy operator (NEO) defined at (3) exploits it to
intensify the spike activity from the background noise. Besides,
NEO improves the (signal-to-noise ratio) SNR of the signal
resulting in being less sensitive to a threshold value compared
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Fig. 6. (a) NEO engine. (b) Register Bank for a sample channel (RBi).
(c) Block diagram of SD.

to a case without NEO [36]–[38].

Ψ(x(n)) = (x(n))2 + x(n− 1)x(n+ 1) (3)

where the Ψ(x(n)) is the NEO output of neural signal x(n) at
time n.

Fig. 6 shows the block diagram of SD. It proposes a time-
multiplexing architecture sharing a single NEO (Fig. 6(a)) en-
gine among 16 channels. The register bank (RBi) in Fig. 6(b)
stores the last three samples of each channel required to do the
calculation. Bio Controller transfers the 16 channels’ data at the
frequency of 400 kHz (i.e. =16 × 25 kHz) to SD. However,
each channel’s register bank receives the proper data every 16
clock cycles, i.e. each RBi should clock at 25 kHz. Therefore,
an extensive clock gating technique is applied to RBi to further
reduce the dynamic power. The Thr block in Fig. 6(c) compares
the output of the NEO point-by-point to a fixed threshold value
and generates a high signal if it is larger than the threshold value.
Although NEO is much less sensitive to a threshold value, it is
required to estimate the proper threshold value with the respect
to recorded data. To satisfy this condition, the threshold value
is calculated during the training and the result is stored at RF to
be utilized by SD during the operation.

There are most likely cases where the Thr block output is
activated multiple times for a given spike. To avoid that, the SD
Ctrl block only allows a single activation within the last n read
data, where n can be also set by the user. However, it is in general
set to the absolute refractory period where no spike activities can
occur [36].

B. Spike Feature Extractor/Classifier (SFEC)

SFEC can be utilized in modes M3 and M6. In M3, it performs
the feature extraction and classification over the data stored
in SRAM to characterize and verify the functionality of the

Fig. 7. Block diagram of SFEC.

SFEC. In M6, it acts as a part of the real-time recording and
classification of the neural signal.

In M6, there is always the latest 64-data-wide window of any
channel stored in SRAM and once SD detects a spike for any
channel it notifies the Bio Controller. The Bio Controller then
fetches both the 64-data-wide spike window centered around
the detection point, and trained parameters of that channel and
feeds them into the SFEC. Fig. 7 shows the block diagram of
the SFEC. It includes Spike feature Extractor (SFE) and adaptive
Spike Classifier (SC). For each channel, trained parameters are
1) filter’s coefficients (maximum 8th-order filter), 2) dimen-
sionality reduction (DR) scheme (2 to 7 features) [36], 3) the
number of clusters, and 4) corresponding cluster means, which
are all calculated during mode M1. The number of clusters is
set between three to eight because [39] shows that there are
most likely up to eight single-unit activities observable by each
micro-electrode. The first trained parameters are used by SFE
to perform the filtering and calculate features and the last three
ones are used by SC to assign the detected spike to the nearest
cluster.

SFE calculates the index of the maximum slope (4) of the
detected spike and performs the filtering at the same time.

idx = argmax
n

(x(n)− x(n− 1)) (4)

where idx is the maximum slope index.
SFE requires 69 clock cycles to finish these operations. It can

be at most 8th-order FIR filter and its coefficients can be specific
for each channel. Before the spike data is given to SFE, the filter
coefficients, DR scheme (feature_flag: a 7-bit vector indicating
which feature should be included), and the number of clusters are
transmitted sequentially. The Adapt. DR block is then selecting
up to 7 features. This procedure is applied to every detected spike
and the features are selected in alignment to the maximum slope
index because the maximum slope of the spike has biological
significance and results in superior clustering accuracy [36].

Once all features are ready, the cluster means are sequentially
transmitted to SC as described in (5).

distancej =

Num_feature∑
i=0

|fi − μji|

label = argmin (distancej) ∀j ∈ (3, . . ., Num_Cl)(5)

where the Num_feature and Num_Cl are the number of
features and number of clusters, correspondingly.

Each cluster mean can be up to a 7-dimensional vector. So to
optimize the SC architecture, a serial architecture is proposed
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Fig. 8. Proposed architecture of adaptive spike classifier (SC).

as shown in Fig. 8. Every time one dimension, μi, of the
current cluster arrives, the distance to its corresponding feature is
calculated. This procedure is iteratively done for all dimensions
of that cluster and all subsequent clusters in a sequential fashion
to calculate the distance of the detected spike to all cluster means.
Concurrently, whenever a distance is calculated it is compared to
the previous distance value and if it is smaller, the spike label is
updated. In the end, the label contains the nearest cluster index
to the detected spike. Depending on the number of features and
number of clusters, SC requires a different number of cycles to
finish the task as given in (6).

TSC =

9 +Num_Cl × (2.5×Num_feature+ 4) Cycles (6)

Fig. 9 indicates that SFE needs 69 clock cycles to calculate
the features and SC requires 181 clock cycles in the worst-case
scenario to perform the classification, resulting in 250 clock
cycles to complete one SFEC operation as given in (7).

TSFEC = TSC + 69 Cycles (7)

Realizing the high-density neural probes requires the real-
time and power/area-efficient design. To optimize the area and
energy efficiency, a single SFEC is shared among all channels
and it runs at 60 MHz to achieve the real-time operation.

Fig. 9. SFEC running time.

Equation (8) shows that for a typical case, SFEC can process
a detected spike in less than 2.5 μsec, that is, a time resolution
of 16-channel (1/400 kHz). In other words, the process of
the currently detected spike is finished before a new sample
of the next channel is recorded. In a worst-case scenario of
having a spike on all channels at the same time and assuming
Num_Cl=8, SFEC takes 66.7 μsec to process all channels as
given in (9), which is equivalent to recording 27 samples, that
is, 1.7 samples per channel. During the SFEC operation, Bio
Controller continues recording the data and therefore no data is
lost. In the worst-case scenario, SFEC reduces the data rate to
0.19 Mbit/s for the maximum firing rate of 100 spikes per second.
Therefore, single SFEC reduces the data rate significantly by
99% resulting in saving transmission power component and area.

if Num_Cl = 3, Num_feature = 7 ⇒
TSFEC(typ) = 142.5Cycles

operating time = 2.38μ sec < 2.5μ sec (8)

if Num_Cl = 8, Num_feature = 7 ⇒
TSFEC(worst_case) = 250Cycles

operating time = 250× 16× 1

60MHz
⇒

= 66.7μ sec (9)

VI. MAC UNIT

To enable real-time execution of time-critical signal process-
ing, a MAC array was included to speed up algorithms relying
on matrix multiplication (MM) or 2D convolution (CONV2D)
e.g. classification of causes of specific spike patterns. Though
the module can work independently, it functions as a support
module for the RISCV CPU and can be controlled over Ad-
vanced High-performance Bus (AHB) or through specific NoC
control packets. It is therefore possible to disable the CPU
during any execution of the accelerator to save energy. Fig. 10
provides an overview of the structure. The module consists of
16x4 multiply-accumulate cells processing 64x2 unsigned 8-bit
operations per clock cycle. For that, the accelerator fetches at
maximum 2x128 bits per clock cycle over a direct connection
to the SRAM and the NoC simultaneously. If the source has
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Fig. 10. Structure of the MAC array.

Fig. 11. Execution of matrix multiplication. The accelerator requests memory
aligned and zero padded data representing the matrices A and B. Per execution
step, 128-bit data arrives for matrix B (green) and 128 bits per 4 execution
steps for matrix A (green to purple). Each 8-bit value from incoming data is
distributed per row and column and processed by one MAC cell (green to purple
matching per execution step) in a SIMD (Single Instruction Multiple Data)
parallelization. After iterating through the shared matrix dimension, the content
of the accumulators is written out to the nearby PE SRAM (orange). The matrix
multiplication is done after going through the column dimension of matrix B
and row dimension of matrix A in this order.

increased clock delay, the NoC access can prefetch the data
before it is needed. An output stationary [40] dataflow was
chosen to mitigate partial-sum memory fetches for area/power
efficiency. Weights are reused with a horizontal broadcast while
input feature maps are distributed vertically through the ar-
ray. Figs. 11 and 12 are presenting the matrix multiplication
dataflow and cross-correlation dataflow respectively. To further
scale down memory requests, the CONV2D controller reuses
incoming rows of input feature maps by shifting them per
clock cycle and requesting only the necessary data. Furthermore,
instead of parallelizing the output feature map row dimension
we chose the output channel dimension to fully utilize the array
for scenarios with 1x1 kernel layers. For the accumulator a bit
size of 29 bits was chosen to ensure high accuracy for state

Fig. 12. Execution of 2D cross correlation. At the start, the input feature map
and kernel is fetched 128 bits each (green) and distributed to the MAC array
by row (kernel) and column (feature map). Per row another output channel
is allocated. Each execution step shifts another 8-bit value through register B
while register A iterates through kernel column and row in that order (yellow
to purple). During that process, the accelerator fetches 32 bits and 128 bits per
4 execution steps and retains and reuses the previously fetched data as much
as possible. After the output values are calculated, they get written back to the
SRAM (orange) while the NoC interface prefetches for the next output batch
(blue) and stores the values into the NoC FIFOs. The accelerator iterates over
output channel (batches of 4 due to array rows), output columns (batches of 16
due to array columns) and output rows until the cross correlation is done.

of the art worst-case sized models. The results are written out
into the SRAM. The Main Control block tracks the state of the
accelerator and synchronizes the memory fetches for the correct
execution while the dimensions and features can be adapted
by accessing the Control Regfile block. The module consumes
0.032mm2 in area.

For the general use-case, the array has NoC access and
therefore can either be supplied by SRAM memory or in an
online fashion directly from other sources like the ADCs or
Bio-Accelerators. The general dataflow for matrix multiplica-
tion and 2D convolution inside the array is illustrated in Figs. 11
and 12 respectively.

VII. MEASUREMENT AND COMPARISON

This section provides the power and area measurements and
the comparison results for the proposed system. The chip is
implemented in a 22 nm FDSOI technology and its micropho-
tograph is depicted in Fig. 13.

A. Testing Setup

The various operating modes and the components were tested
by applying real datasets [41]. Fig. 14 shows the laboratory
testing setup. To allow an evaluation that is both reproducible
and yet approximates realistic operating conditions, the IC was
connected to platinum recording electrodes inserted into Ringer
Solution (Na+ 147 mmol/l; K+ 4,0 mmol/l; Ca2+ 2,3 mmol/l;
Cl- 156 mmol/l). In this electrolyte similar to the extracellular
medium, an additional set of electrodes was used to provide a
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Fig. 13. 22 nm implemented smart neural chip microphotograph.

Fig. 14. Testing setup for laboratory verification of the developed front-end.
Measurement electrodes are directly connected to the smart neural chip, and
in contact with the Ringer solution. The Potentiostat provides a test-signal in a
reproducible manner using real datasets [41].

test signal, consisting of an electrophysiological recording, with
white noise added in the spectrum up to the frontends sample
rate, to compensate for the filtering performed in the original
acquisition process. In the application of the signal onto the
recording electrodes, a custom-built potentiostat was used, to
compensate for the effect of electrode/electrolyte interactions
on the signal-providing electrodes.

B. Power and Area

SD and SFEC are implemented using high-Vt devices that re-
sult in optimum leakage reduction at their low target frequencies
of 400 kHz (SD) and 60 MHz (SFEC). In total, 0.94 μW leakage
and 1.22 μW (SD) active power and 497.40 pJ/spike (SFEC) are
measured at 0.63 V (Fig. 15(a)).

The CPU is implemented with a target frequency of 125 MHz
at 0.50 V using low-Vt and super-low-Vt cells. As explained, the
CPU is only active during the (re)training phase and otherwise
remains in sleep mode. A modified training algorithm is devel-
oped based on [16] to calculate the required parameters. It takes
on average 220 cycles to process an input sample. Thus, the CPU
frequency must be more than 110 MHz (Fig. 16) to (re)train 16

Fig. 15. (a) Measurement result for SD and SFEC. (b) Measurement result for
CPU and SRAM.

Fig. 16. Training time analysis and CPU frequency calculation.

channels in less than 200 ms for a 250 ms recording window.
If a longer training period is required for any separate channel,
recording is only devoted to that channel to accumulate more
samples for training. With the on-chip programmability of the
CPU, transmitting a huge amount of multi-channel data off-chip
for training/evaluation (TE) can be avoided. Because TE is
performed infrequently, the CPU can be put into sleep mode most
of the time. The CPU operates from 0.50 V with 21 μW leakage
and 3.5 μW/MHz dynamic power. It uses dual-rail SRAM with
0.50 V logic and 0.80 V bit cell supply. The SRAM macros
used for CPU operation consume 3.0 μW/MHz. The complete
on-chip SRAM (16 × 8 Kbyte) consumes 16 μW leakage at
room temperature (Fig. 15(b)).
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Fig. 17. Energy Efficiency for (a) a matrix multiplication (b) a 2D convolution
execution.

Fig. 18. Area break-down of bio-processing accelerator excluding the AFEs.

The MAC accelerator designed for dense DNN classifi-
cation achieves 1.66 TOPS/W for matrix multiplication and
1.79 TOPS/W for 2D convolution with 125 MHz CPU frequency
and 0.50 V supply voltage as can be seen in Fig. 17. Furthermore,
it can reach up to 1.85 TOPS/W and 2.03 TOPS/W respectively if
the voltage is further decreased to 0.45 V. For each execution, one
example layer has been selected out of common classification
models and divided to fit into 128KByte SRAM.

CPU and SRAM consume 0.22 mm2 and the bio-processing
accelerators consume 0.007 mm2 out of which 23% is occu-
pied by SD and 67% by SFEC. The area breakdown of the
bio-processing accelerators is fully depicted in Fig. 18.

Fig. 19 shows a sample recorded and processed data by smart
neural chip tested in-vitro. The neural signal is first measured by

Fig. 19. A sample recorded and processed neural signal provided by the in-
vitro testing setup. An exemplary spike is highlighted to be detected using the
SD.

Fig. 20. AFE overall power per channel [34].

TABLE I
AFE COMPARISON WITH STATE-OF-THE-ART CHIP

the analog front-end and SD simultaneously processes the signal
to detect the potential spikes. The digital-assisted AFE consumes
1.52 μW/Ch and the SD and SFEC consume 2.79 μW/Ch.
The chip can run arbitrary (re)training algorithms compared to
fixed algorithms at [13]–[19]. The selected algorithm consumes
28.46μJ/Ch for 250 ms training window and training is typically
run no more than once per hour.

Power details of the AFE are shown in Fig. 20. LNAs power
dominates, but the digital filter is roughly the same. A design
with a lower supply voltage than 0.80 V would have been
beneficial and realistic due to the low speed of below 1 MHz.
The ADC itself has a DNL between 0.25 and −0.4.

C. Comparison

A comparison to other state-of-the-art AFEs is presented in
Table I. The proposed design has a low footprint but higher input
referred noise at the same power compared to other systems.

From an area perspective, the LNAs are dominant as well. It
can be seen that our design has a higher NEF than [6], but the
low FOM is gained by large caps and input transistors resulting
in a roughly 10x larger area per channel.

Final edited form was published in "IEEE Transactions on Biomedical Circuits and Systems". 16 (1), S. 94-107. ISSN: 1940-9990. 
https://doi.org/10.1109/TBCAS.2022.3142987

10 
 
 

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden



TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART CHIP

1 Integer coefficient detector (ICD). 2 Max-Min peaks of Haar DWT. 3 Adaptive discrete derivatives (ADDs).
4 Integer coefficient feature extractor (ICFE). 5 1st and 2nd derivative (FSDE). 6 Adaptive filter (AF).
7 With different datasets that are not available online.
8 It seems that three are only limited datasets from [46] utilized to calculate the accuracy.
9 The number of cluster is set to 4 by the user resulting in high clustering accuracy.
10 With all datasets in [46].
11 Only post-layout simulation.
12 Excluding AFE. P(AFE) = 1.52 µW/Ch, E(training) = 28.46 µJ/Ch running for 250 ms.
13 Including the bio-processing accelerators, used SRAM blocks and bio controller but excluding AFE. Including AFE area is = 0.038 mm2/Ch.

Fig. 21. Classification accuracy of smart neural chip compared to state-of-
the-art spike sorting algorithm either implemented offline or on-chip.

Fig. 21 shows that the proposed design outperforms state-
of-the-art online spike sorting algorithms which are publicly
available using the same datasets [46] in terms of the classifi-
cation accuracy. The mean classification accuracy is 94.12%.
WaveClus [46] algorithm and iterative K-mean with 100-
iteration still gives the better results because they are complex
offline spike sorter. However, this work achieves better accu-
racy than KlustaKwik (mean classification accuracy: 83%) [47]
and [13]–[19].

Table II compares the proposed neural chip with the latest
implemented designs. This work consists of 16 analog front-
ends, configurable ultra-low power bio-processing accelerators

and ultra-low power CPU with dedicated DNN accelerator.
The proposed SoC provides a platform to perform various
(re)training methods in a real-time and power-efficient operation
which is required for neural implants. This work achieves the
highest level of integration for a neural implant SoC compared
to recently published ones [10], [11], [13], [15]–[19]. In this
work, classification accuracy is calculated with all widely-used
datasets introduced in [46] and also compared to well-known
off-line spike sorting algorithms [48] like WaveClus [46], Klus-
taKwik [49] and OSort [20].

The classification power per channel in this work is one
of the lowest reported ones, considering the configurability of
the design to perform various training algorithms and thanks
to dedicated configurable bio-processing accelerators for the
classification. References [16], [17] report 0.175 μW/Ch and
0.064 μW/Ch, respectively. However, in [16], the training algo-
rithm is fixed and the corresponding SFEC is not configurable.
Reference [17] needs also off-chip supervised training which
makes it infeasible for neural implant applications.

The proposed SoC has been achieved the competitive power,
area, and accuracy performance because:
� It integrates ultra-low power CPU equipped with MAC

unit, 16-Ch AFEs, and dedicated power-efficient bio-
processing accelerators.

� programmability feature of CPU allows performing var-
ious complex algorithms for (re)training that results in a
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very high accuracy. Whereas, classification is performed by
the bio-processing accelerators operating in the ultra-low
power mode. Similarly, MAC unit realizes the intensive
arithmetic operations in an efficient way.

� Various architectural techniques are applied in the bio-
processing accelerators and MAC unit as explained in
Sections V and VI to either reduce the power or to meet
the timing.

� In AFE, avoiding a feedback resistor and replacing it by a
switch, reduces noise and thus allows to reduce power for
constant noise. Besides, digital filtering instead of analog
filtering improves the frequency accuracy.

� Advanced 22 nm Technology with the ABB technique
facilitates achieving the minimum power operation of CPU
at all different operating conditions at the given frequency.
It also ensures that CPU can reliably operate at the ultra-low
voltage of 0.50 V.

VIII. CONCLUSION

In this paper, we have outlined a complete neural processing
SoC with 16-Channel AFE, a low-power MAC-assisted CPU,
and SD/SFEC for analysis of a wide range of neural signals in
real-time. The on-chip ultra-low power CPU with its powerful
MAC unit is a key element to satisfy on-chip programmability
and flexibility. On-chip bio-processing accelerator facilitates the
application of various types of neural signal analysis algorithms
such as spike detection, feature extraction, and spike sorting
independent of the CPU to achieve in ultra-low power opera-
tion. This work achieves the best classification accuracy (mean
classification accuracy of 94.12%) compared to state-of-the-art
online spike sorting algorithms. Moreover, it provides one of the
highest levels of SoC integration for ultra-low power neuronal
recording applications. The digital-assisted AFE, consuming
1.52 μW/Ch, and the classification, consuming 2.79 μW/Ch,
were verified with synthetic and real datasets. The CPU op-
erates from 0.50 V with 21 μW leakage and 3.5 μW/MHz
dynamic power. For further processing, the MAC array achieves
1.66 TOPS/W for matrix multiplication and 1.79 TOPS/W for
2D convolution with 0.50 V and 125 MHz clock. Using this
design, both data rate and the transmission power can be reduced
by around 99% for 16-channel AFE, effectively laying the
groundwork for a new class of cortical active and intelligent
implants.
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spike-sorting processor with unsupervised clustering,” IEEE J. Solid-State
Circuits, vol. 48, no. 9, pp. 2230–2238, Sep. 2013.

[14] Y. Yang, S. Boling, and A. J. Mason, “A hardware-efficient scalable spike
sorting neural signal processor module for implantable high-channel-count
brain machine interfaces,” IEEE Trans. Biomed. Circuits Syst., vol. 11,
no. 4, pp. 743–754, Aug. 2017.

[15] M. Zamani, D. Jiang, and A. Demosthenous, “An adaptive neural spike pro-
cessor with embedded active learning for improved unsupervised sorting
accuracy,” IEEE Trans. Biomed. Circuits Syst., vol. 12, no. 3, pp. 665–676,
Jun. 2018.

[16] A. T. Do, S. M. A. Zeinolabedin, D. Jeon, D. Sylvester, and T. T. Kim,
“An area-efficient 128-channel spike sorting processor for real-time neural
recording with 0.175 µw/channel in 65-nm CMOS,” IEEE Trans. Very
Large Scale Integrat. Syst., vol. 27, no. 1, pp. 126–137, Jan. 2019.

[17] D. Valencia and A. Alimohammad, “An efficient hardware architecture
for template matching-based spike sorting,” IEEE Trans. Biomed. Circuits
Syst., vol. 13, no. 3, pp. 481–492, Jun. 2019.

[18] D. Valencia and A. Alimohammad, “A real-time spike sorting system using
parallel OSort clustering,” IEEE Trans. Biomed. Circuits Syst., vol. 13,
no. 6, pp. 1700–1713, Dec. 2019.

[19] H. Hao, J. Chen, A. G. Richardson, J. Van der Spiegel, and F. Aflatouni, “A
10.8 µw neural signal recorder and processor with unsupervised analog
classifier for spike sorting,” IEEE Trans. Biomed. Circuits Syst., vol. 15,
no. 2, pp. 351–364, Apr. 2021.

[20] U. Rutishauser, E. M. Schuman, and A. N. Mamelak, “Online detection
and sorting of extracellularly recorded action potentials in human medial
temporal lobe recordings, in vivo,” J. Neurosci. Methods, vol. 154, no. 1/2,
pp. 204–224, Jun. 2006.

[21] S. M. A. Zeinolabedin, A. T. Do, D. Jeon, D. Sylvester, and T. T.-H. Kim,
“A 128-channel spike sorting processor featuring 0.175 µw and 0.0033
mm2 per channel in 65-nm CMOS,” in Proc. IEEE Symp. VLSI Circuits,
2016, pp. 1–2.

[22] R. George et al., “Plasticity and adaptation in neuromorphic biohybrid
systems,” iScience, vol. 23, no. 10, Oct. 2020, Art. no. 101589.

[23] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B. Schwartz,
“Cortical control of a prosthetic arm for self-feeding,” Nature, vol. 453,
no. 7198, pp. 1098–1101, 2008.

[24] R. D. Flint, Z. A. Wright, M. R. Scheid, and M. W. Slutzky, “Long term,
stable brain machine interface performance using local field potentials and
multiunit spikes,” J. Neural Eng., vol. 10, no. 5, Aug. 2013, Art. no. 056005.

[25] N. C. Rowland et al., “Task-related activity in sensorimotor cortex in
parkinsons disease and essential tremor: Changes in beta and gamma
bands,” Front. Hum. Neurosci., vol. 9, p. 512, Sep. 2015.

[26] E. Nurse, B. S. Mashford, A. J. Yepes, I. Kiral-Kornek, S. Harrer, and D.
R. Freestone, “Decoding EEG and LFP signals using deep learning,” in
Proc. ACM Int. Conf. Comput. Front., 2016, pp. 259–266.

Final edited form was published in "IEEE Transactions on Biomedical Circuits and Systems". 16 (1), S. 94-107. ISSN: 1940-9990. 
https://doi.org/10.1109/TBCAS.2022.3142987

12 

Provided by Sächsische Landesb bliothek, Staats- und Universitätsbibliothek Dresden



[27] H. A. Gonzalez et al., “Hardware acceleration of eeg-based emotion
classification systems: A comprehensive survey,” IEEE Trans. Biomed.
Circuits Syst., vol. 15, no. 3, pp. 412–442, Jun. 2021.

[28] F. Kelber et al., “Mapping Deep Neural Networks on spinnaker2,” in
Proc. Neuro-Inspired Comput. Elements Workshop, New York, NY, USA:
Association for Computing Machinery, Mar. 2020, pp. 1–3.

[29] S. Mallat, A Wavelet Tour of Signal Processing. New York, NY, USA:
Academic, 1999.

[30] M. Gautschi et al., “Near-threshold RISC-v core with DSP extensions for
scalable IoT endpoint devices,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 25, no. 10, pp. 2700–2713, Oct. 2017.

[31] S. Höppner et al., “Adaptive body bias aware implementation for ultra-
low-voltage designs in 22FDX technology,” IEEE Trans. Circuits Syst. II,
vol. 67, no. 10, pp. 2159–2163, Oct. 2019.

[32] S. Höppner et al., “How to achieve world-leading energy efficiency using
22FDX with adaptive body biasing on an arm Cortex-M4 IoT SoC,”
in Proc. IEEE Eur. Solid-State Device Res. Conf. (ESSDERC), 2019,
pp. 66–69.

[33] F. Schraut, H. Eisenreich, S. Höppner, and C. Mayr, “A fast lock-in ultra
low-voltage ADPLL clock generator with adaptive body biasing in 22 nm
FDSOI technology,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2019,
pp. 1–5.

[34] F. Schüffny, S. Hoeppner, S. Hänzsche, R. George, S. M. A. Zeinolabedin,
and C. Mayr, “An ultra-low area digital-assisted neuro recording system
in 22 nm fdsoi technology,” IEEE Trans. Circuits Syst. II: Exp. Briefs, to
be published, doi: 10.1109/TCSII.2021.3121034.

[35] M. S. J. Steyaert and W. M. C. Sansen, “A micropower low-noise mono-
lithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State
Circuits, vol. 22, no. 6, pp. 1163–1168, Dec. 1987.

[36] S. Gibson, J. W. Judy, and D. Marković, “Spike sorting: The first step
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