

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821799

Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Dirk Habich, Wolfgang Lehner

Conflict Detection-Based Run-Length Encoding: AVX-512 CD Instruction
Set in Action

Erstveröffentlichung in / First published in:

2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW). Paris,
16.-20.04.2018. Springer, S. 96-101. ISBN 978-1-5386-6306-6.

DOI: http://dx.doi.org/10.1109/ICDEW.2018.00023

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821799
http://dx.doi.org/10.1109/ICDEW.2018.00023

Abstract—Data as well as hardware characteristics are two key
aspects for efficient data management. This holds in particular
for the field of in-memory data processing. Aside from increasing
main memory capacities, efficient in-memory processing benefits
from novel processing concepts based on lightweight compressed
data. Thus, an active research field deals with the adaptation
of new hardware features such as vectorization using SIMD
instructions to speedup lightweight data compression algorithms.
Following this trend, we propose a novel approach for run-
length encoding, a well-known and often applied lightweight
compression technique. Our novel approach is based on newly
introduced conflict detection (CD) instructions in Intel’s AVX-512
instruction set extension. As we are going to show, our CD-based
approach has unique properties and outperforms the state-of-
the-art RLE approach for data sets with small run lengths.

I. INTRODUCTION

The continuous growth of data volumes is still a major

challenge for efficient data processing. This applies not only

to database systems [1], [2], but also to other areas, such as

information retrieval [3], [4] or machine learning [5]. With

growing capacities of the main memory, efficient analytical in-

memory data processing becomes viable [1], [2], [6]. However,

the gap between computing power of the CPUs and main

memory bandwidth continuously increases being now the

main bottleneck [1]. To overcome this issue, the mentioned

application domains have a common approach: (i) encode

values of each data attribute as a sequence of integers using

some kind of dictionary encoding [7], [8] and (ii) apply

lightweight lossless data compression to each sequence of

integers. Besides reducing the amount of data, operations can

be directly performed on compressed data [5], [7], [9].

For the lightweight lossless compression of a sequence of

integers, a large corpus of algorithms has been developed [7],

[3], [4], [10], [11], [12], [13], [14], [15]. In contrast to

heavyweight algorithms, like arithmetic coding [16], Huffman

[17], or Lempel Ziv [18], lightweight algorithms achieve

comparable or even better compression rates [7], [3], [4], [10],

[11], [12], [13], [14], [15]. Moreover, the computational effort

for (de)compression is lower than for heavyweight algorithms.

To achieve these unique properties, each lightweight com-

pression algorithm employs one or more basic compression

techniques such as frame-of-reference [10], [12], run-length

encoding (RLE) [7], [14] or null suppression [7], [14], that

allow the appropriate utilization of contextual knowledge like

value distribution, sorting, or data locality. In particular, RLE

is the only technique tackling uninterrupted sequences of oc-

currences of the same value, so called runs. In its compressed

format, each run is represented by its value and length. Thus,

the compressed data is a sequence of such pairs.

In recent years, the efficient vectorized implementation of

these algorithms using SIMD (Single Instruction Multiple

Data) instructions has attracted a lot of attention [4], [13],

[19], [20], since it further reduces the computational effort.

Generally, SIMD extensions such as Intel’s SSE (Streaming

SIMD Extensions) or AVX (Advanced Vector Extensions)

have been available in modern processors for several years.

SIMD instructions apply one operation to multiple elements

of so-called vector registers at once. The available operations

include parallel arithmetic, logical, and shift operations as

well as permutations. Although the vectorization of RLE by

means of these common operations is possible [21], [22],

this implementation shows poor performance for sequences of

integers with small run lengths as already shown in [21]. The

reason is that uninterrupted sequences of occurrences of the

same value have to be determined and this data dependency

within the input sequence makes vectorization challenging. To

overcome that, we developed a novel vectorization concept for

the compression part of RLE using new conflict detection (CD)
instructions which have been introduced in Intel’s AVX-512

instruction set extension. In detail, our main contributions in

this paper are:

1) In Section II, we recap the state-of-the-art RLE vector-

ization concept as presented in [21], [22]. Based on that,

we clearly describe the shortcomings of this concept. As

we are going to show, these shortcomings increase with

increasing vector sizes, which is a current hardware trend.

2) Section III starts with a description of the newly intro-

duced conflict detection (CD) instructions in detail. Then,

we describe the application of these CD instructions for

the RLE encoding of a sequence of integers.

3) We exhaustively evaluated our CD-based RLE approach

to clearly show the benefits and the unique properties

of our approach. In Section IV, we highlight selective

results of this evaluation. In particular, we will show that

our CD-based implementation concept is up to 3.2 times

faster for sequences of integers with short run lengths.

Finally, we review related work in Section V. Then, we

conclude the paper by summarizing our lesson learned in

Section VI.

Conflict Detection-based Run-Length Encoding —
AVX-512 CD Instruction Set in Action

Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Dirk Habich, Wolfgang Lehner

Database Systems Group, Technische Universität Dresden
Dresden, Germany

{firstname.lastname}@tu-dresden.de

Final edited form was published in "2018 IEEE 34th International Conference on Data Engineering Workshops. Paris 2018", S. 96-101, ISBN 978-1-5386-6306-6
http://dx.doi.org/10.1109/ICDEW.2018.00023

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 1. Example for input and output of RLE compression.

II. STATE-OF-THE-ART VECTORIZATION OF RLE

Run-Length Encoding (RLE) is a well-known lightweight

compression technique [7], [14] and Fig. 1 shows an example.

As illustrated, uninterrupted sequences of occurrences of the

same integer value in the input data are represented by a run

value and a run length in the compressed output format in

a lossless way. As we can see, a compression at run level

starting at run length 3 is achieved, while the compression rate

improves with increasing run lengths. That means, as long as

the average run length over all runs is greater than 2, we get a

data size reduction with RLE. In our example, the average run

length is 3 with a variance of 1. Thus, these data properties

mainly influence the achievable compression rate.

A. Comparison-based Vectorization

In this paper, we mainly focus on the compression part, be-

cause the state-of-the-art comparison-based vectorization has

shortcomings in this area. Generally, to compress a sequence

of integers with RLE, the corresponding runs have to be

determined and this can be done by comparing each element

with its predecessor. If they are equal, a run continues. If they

are not equal, a new run starts. These comparisons can be done

for more than one element at once using SIMD instructions

as shown in [21], [22]. In detail, this state-of-the-art RLE

comparison-based vectorization works as follows, whereby the

authors used 128-bit vector registers:

1) One 128-bit vector register v1 is loaded with four copies

of the current input element.

2) The next four input elements are loaded into a vector

register v2.

3) The intrinsic _mm_cmpeq_epi32() is employed for a

parallel comparison, so that the four elements in v1 and

v2 are pair-wise compared at once. The result is stored

in a vector register.

4) Next, a 4-bit comparison mask is obtained using the

intrinsic _mm_movemask_ps(). Each bit in the mask

indicates the (non-)equality of two corresponding vector

elements. The number of trailing one-bits in this mask is

the number of elements for which the run continues. If

this number is 4, then a run’s end has not been reached

and the execution continues at step 2 (new iteration).

Otherwise, a run’s end is reached that means that run

value and run length are appended to the output. The

execution continues with step 1 at the next element after

the run’s end (new iteration).

The execution behavior of this vectorization concept is

depicted in Fig. 2 for two different data sets. A detailed

description follows in the next section. In the remainder of

Fig. 2. Execution behavior of the comparison-based implementation. As
illustrated, the number of necessary iterations depends on data characteristics.

this paper, we refer to this 128-bit implementation as RLE128.

Since only common intrinsics are used, this comparison-based

implementation can easily be adapted to 256 and 512 bit-

wide registers by loading more elements in the wider registers

and by using the appropriate intrinsics of AVX2 (256 bit)

or AVX-512. Additionally, step 3 and 4 can be merged into

one step in AVX-512, because there is an intrinsic producing

a bitmask directly from the comparison. The corresponding

implementations are denoted as RLE256 and RLE512.

B. Shortcomings of this Comparison-based Vectorization

As already mentioned, Fig. 2 highlights the resulting exe-

cution behavior for two different input sequences of integers.

Both have in common that in each iteration, four integers

are loaded and compared with a vector containing the current

run value. If this comparison for equality is not true for all

elements, the current run ends. In this case, the register with

the run value is filled with four copies of the new value and

the next four elements after the beginning of the new run are

loaded. Obviously, the number of necessary iterations is data

dependent and Fig. 2 shows that clearly. In detail, Example 1 in

Fig. 2 depicts a fully vectorized execution behavior. Fully vec-

torized means that each integer value is only processed once.

In contrast to that, in Example 2 several integers are loaded and

compared multiple times. The redundant processing is usually

negligible as long as the overhead is not dramatic.

To analyze the magnitude of this redundant processing,

we counted the load instructions for different average run

lengths and all possible variances for each average run length,

whereby we used an input sequence with 100 million integers

in all experiments. For instance, the maximal variance for an

average run length of 5 is ±4 resulting in the interval [1, 9] for

the possible run lengths. Then, we selected the minimal and

the maximal number of load instructions and visualized them

in Fig. 3(a) for RLE128, RLE256, and RLE512. The x-axis

shows the average run length and the y-axis shows the number

of loaded elements as a percentage of the elements in the input

sequence, e.g. 200% means that on average every element is

loaded twice. The colored area shows the range between the

maximal and minimal number of load instructions. Fig. 3(b)

shows a close up of Fig. 3(a) with the y-axis ranging only

until 200%. From these experiments, we can conclude:

Final edited form was published in "2018 IEEE 34th International Conference on Data Engineering Workshops. Paris 2018", S. 96-101, ISBN 978-1-5386-6306-6
http://dx.doi.org/10.1109/ICDEW.2018.00023

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 3. (a) The number of loaded integers as a percentage of the integers
in the uncompressed data set. Depending on the vector width, the average
run length, and the variance of the run length, the number of loaded integers
differs heavily. In particular for data sets with small average run lengths. (b)
A close up of (a) to show the repeating pattern at every vector size.

1) The state-of-the-art RLE vectorization uses a significantly

higher number of load operations for sequences with short

runs than for sequences with long runs.

2) The redundant processing dramatically increases with

increasing vector widths. For example, RLE512 processes

each element 5 times on average when the average run

length is 3. Furthermore, not only the absolute number

increases, but also the size of the covered area grows.

3) There is a pattern with a minimum and a maximum

spanning exactly one vector width, which is repeated for

every vector width (in number of elements).

4) For large run lengths, the number of loaded integers

approaches more or less 100%, i.e. every value is only

processed once, which is the optimal scenario.

C. Impact on Performance

The presented high proportion of redundancy for sequences

with small runs has a negative effect on the performance–

measured in million integers per second (mis)–as illustrated in

Fig. 4(a). In this experiment, we used again input sequences

with 100 million integers and varied the average run length,

whereby we used a fixed variance of ±5. However, the results

were the same for other data characteristics. As shown, only

run lengths, which are greater than ∼150 reach the peak

performance for all vector widths, while small run lengths

reach only a fraction of the peak performance. Additionally,

the performance increases not even smoothly for RLE512.

This becomes more obvious when looking at the speed up

in Fig. 4(b). The speed up of RLE512 compared to RLE128

increases until a run length of ∼8 is reached and decreases

afterwards. The sampled run lengths in this region are 20 and

36, both being shortly after a maximum load number in Fig. 3.

For larger run lengths, the number of loaded values becomes

smaller and the speed up becomes constant.

III. CONFLICT DETECTION-BASED VECTORIZED RLE

Intel’s latest version of their vectorization extension is AVX-

512. In addition to an increased vector width of 512-bit (16 x

32-bit), AVX-512 also offers a variety of new instructions.

One of the new instruction feature sets is called Conflict
Detection (AVX-512 CD) which allows the vectorization of

loops with possible address conflicts. This instruction feature

Fig. 4. RLE compression speed and speed up for different average run
lengths, a fixed run length variance of ±5, and different vector widths.

set is currently supported by Intel Xeon Phi Knights Landing

(KNL) and will be available in future Xeon processors.

Some key features of AVX-512 CD are (i) the gener-

ation of conflict free subsets, i.e. subsets which contain

no equal elements, and (ii) the count of leading zeros

of the elements in a vector. For example, the intrinsic

_mm512_conflict_epi32 creates a vector register con-

taining a conflict free subset of a given source register. An

example for this is shown in Fig. 5. In other words and

as illustrated in this figure, this intrinsic transforms a vector

register with 16 32-bit elements (illustrated by A,B and C) in

a new vector register with 16 bitmasks (each represented by

32-bit values). Each bitmask encodes the positions of equal

previous elements in the vector. The bitmasks for the first

three elements A, B, and C are zero in our example, because

there are no equal previous elements. The A element at the

third position in the input register is in conflict (equal to) with

the element at position 0 in the input register. Thus, the least

significant bit of the corresponding bitmask is set to 1, the rest

of the bitmask is filled with zeros. The element A at position

4 is in conflict with the previous elements at positions 3 and

0 (equal previous elements). Therefore, the corresponding bits

in the bitmask are set to 1, all other bits are zero. Another

CD-feature is the intrinsic _mm512_lzcnt_epi32, which

counts leading zeros. Given a vector of 16 values, this intrinsic

counts the number of leading zeros for all values at once and

writes the results in a vector register with 16 values.

A. RLE Implementation Concept with AVX-512 CD

To overcome the presented shortcomings of the comparison-

based RLE vectorization, our novel approach–called RLE512-
CD–uses the conflict detection innovations of AVX-512 in

A A C B A

Read direction

Input register

b4 b3 b2 b1 b0 Output register

4 3 2 1 0

C B A Previous
elements

0 0 1filled
with 0’s

A C B A Previous
elements

1 0 0 1

No equal previous elements � bitmasks are zero

b3b4filled
with 0’s

� �� � � � � � � �� � � �

mm512 conflict
epi32()

Vector Position

Fig. 5. Example for the mm512 conflict epi32 intrinsic.

Final edited form was published in "2018 IEEE 34th International Conference on Data Engineering Workshops. Paris 2018", S. 96-101, ISBN 978-1-5386-6306-6
http://dx.doi.org/10.1109/ICDEW.2018.00023

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 6. Run detection using conflict detection instructions

an appropriate way. Generally, our novel approach consists

of four steps, which are repeated until all input elements are

processed:

Loading Step: In this first step, 16 input elements are loaded

into a 512-bit vector register.

Run Detection Step: In the second step, we detect if there are

any runs beginning in this register and where they begin.

Run Length Detection Step: The run length of all finished

runs have to be determined in the third step.

Storage Step: The determined runs are written to memory.

While the loading step is trivial, the steps 2-4 are explained

in more detail below.

B. Run Detection Step

To avoid any redundant element processing for small run

lengths, the main challenge of this step is to detect all runs

included within the loaded 16 elements. This challenge can

effectively be realized using the AVX512-CD innovations as

illustrated in Fig. 6:

In the first sub-step, we create a new vector regis-

ter containing a conflict free subset (cfss) of the given

source register with the 16 loaded elements using the

_mm512_conflict_epi32 intrinsic. The example in

Fig. 6 shows the first 7 values of a vector register containing

two different values spread over 3 runs. As described above,

the newly created vector register consists of 16 bitmasks,

where each bitmask shows the equality to all previous ele-

ments. However, for detecting a run it is sufficient to know

if the direct predecessor of an element is equal because

all elements are either the beginning of a new run or the

continuation of another run. If an element is equal to its direct

predecessor, the element continues a run. If they are not equal,

a new run starts. Hence, only one bit in every bitmask of cfss
is of interest, i.e. the bit which indicates the equality with the

direct predecessor. To find this bit for all elements in parallel,

two more operations are necessary:

First (second sub-step), we count the leading zeros of all

bitmasks in cfss (lzcnt). The number of leading zeros should

decrease with every element if a run is continued because there

is always one more bit set in the subsequent element, e.g. the

bitmask at position 1 should have 32− 1 = 31 leading zeros,

the bitmask at position 2 should have 32 − 2 = 30 leading

zeros and so on. If a run is not continued, the next bit is

not set and the number of leading zeros does not decrease.

Fig. 7. Run length determination using conflict detection instructions.

To find out, if the number of leading zeros is decreasing, we

compare lzcnt with a predefined vector, containing decreasing

numbers, for inequality (third sub-step). As shown in Fig. 6,

this comparison returns 0 for every element which continues

a run. Vice versa, it returns 1 for all elements which start a

new run. Thus, the position of the ones in the final bitmask

indicates the position of the start of all runs in this register.

Note that the first element always starts a new run.

C. Run Length Detection Step

With the previous step, we know the start positions and the

run values of all runs within the register. The next challenge is

to determine the run length of each run. Fundamentally, the run

length is already encoded in the results of the conflict detection

(cfss) operation, because each continuous sequence of 1s in the

bitmasks indicates a subsequent occurrence of equal numbers.

Hence, the number of the most significant subsequent 1s in

the bitmask of every last element of a run indicates the length

of the run. To get this number, at first the position of the

last element of every run has to be determined. This can be

done by using the bitmask generated as the result of the run

detection (cfss). Since every 1 in this bitmask indicates the

beginning of a new run, we can get the end of the runs by

shifting this mask one bit to the right. Now every 1 indicates

the end of a run. Then, the bitmasks at these end positions in

the output of the conflict detection (in cfss) are selected. In

Fig. 7, which continues the example from Fig. 6, one bitmask

is selected as an example. In this example the second run,

consisting of 3 elements is treated. The continuous sequence

of 1s is highlighted. There are only 2 instead of 3 set bits

because the bit of the first element, i.e. the least significant

element, of a run is always set to 0. We will add this bit later.

In order to retrieve the number of subsequent set bits in this

bitmask, 3 sub-steps are executed:

1) Shift the elements in the result of

_mm512_conflict_epi32 by the number of

leading zeros (leading zeros were derived during run

detection). In Fig. 7 we shift by 28 bits. Now, the

sequence is at the beginning of the bitvector.

2) There is no intrinsic for counting leading 1s, so the result

from the previous sub-step is inverted.

3) Then, the leading zeros are counted in the third sub-step.

In the example, there are two leading zeros.

Since the bit for the first element of a run is always set to

Final edited form was published in "2018 IEEE 34th International Conference on Data Engineering Workshops. Paris 2018", S. 96-101, ISBN 978-1-5386-6306-6
http://dx.doi.org/10.1109/ICDEW.2018.00023

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 8. (a) The number of loaded integer as a percentage of the integers in
the data set. Only RLE512-CD shows a constant behavior. (b) The number of
vector instructions per million loaded integers (excluding loading and storing)
is significantly higher for RLE512-CD compared to RLE512 and RLE256.
This shows that the lower number of loaded integers do not come for free.

0 during conflict detection, the result has to be increased by

1. Hence, the run length for the second run is 2 + 1 = 3. In

our implementation, these steps are executed in parallel for all

runs by using the intrinsics shown in Fig. 7.

D. Storing the Result

Before storing the results, it must be checked whether the

first run of a register is a continuation of the last run of

the previous register. If it is a continuation, the run lengths

are added and the run is stored once. While these are trivial

steps, we avoided branching by applying bitmasks instead

of conditions, i.e. the comparison between the last and the

first run of two registers returns whether the last bit in a

bitmask is set. This bitmask is then used to add the run lengths

by applying _mm512_mask_add_epi32, which adds the

content of two registers only if the corresponding bit in the

bitmask is set.

Finally, the run values and run lengths must be written back

to main memory. For this, there are two possible cases: (a) per

integer or (b) per vector. Case (a) represents the output format

proposed by the state-of-the-art implementation [21], where a

sequence of (value, run length)-tuples is stored. An advantage

of option (a) is that the output is independent from the vector

word size. The disadvantage is that the values and run lengths

cannot be loaded sequentially into a vector register again for

processing the compressed values, e.g. for aggregating. Case

(b) stores sequences of values and run lengths which are as

long as a vector word, e.g. 16 values followed by 16 run

lengths. Option (b) requires the vector word width as necessary

meta data but it is also ideal for processing the compressed

data with vector instructions. We implemented both cases, case

(a) using a scatter store provided by AVX-512 and case (b)

using the result of the run detection as a write mask and the

_mm512_mask_storeu_epi32 intrinsic.

IV. EVALUATION

In this section, we evaluate and compare our novel CD-

based RLE implementation (RLE512-CD) with the state-of-

the-art implementation. For this evaluation, all implementa-

tions are done with C/C++ and we compiled them with g++

7.0.1 using the optimization flag -O3. Then, all experiments

were executed on a Intel Xeon Phi KNL 7250 with a main

Fig. 9. (a) The compression speed for RLE512 varies depending on the run
length and the variance of the run length, while our novel implementation
shows a constant compression speed. The costs of the scatter store for
RLE512CD are clearly visible. (b) The minimum and maximum speedup for
RLE512-CDAligned compared to RLE512.

memory capacity of 192GB supporting all vector widths of

128 (SSE), 256 (AVX2), and 512 (AVX-512). The maximum

core frequency is 1.6 GHz. Moreover, all experiments were

performed with our benchmark framework [23] running en-

tirely in main memory and single-threaded.

A. Data Processing Behavior

In Section II-B, we analyzed the processing behavior of

the state-of-the-art implementation. For this analysis, we also

used the above mentioned evaluation setting. As we have

shown, this implementation suffers from a significantly higher

number of redundant load operations for sequences of integer

values with short average run lengths. In contrast to that, our

novel RLE512-CD implementation is branch-free and every

integer sequence value is only loaded once as illustrated in

Fig. 8(a). The y-axis shows the number of loaded integers

as the percentage of the integer count in the uncompressed

data for RLE128, RLE256, RLE512, and for RLE512-CD. It

is clearly visible that our novel implementation loads the input

data set only once, independent of the data characteristics, and

that the amount of loaded data is smaller than for the state-

of-the-art implementation. Additionally, we observe that the

difference is smaller when the average run-lengths are longer.

However, this constant data loading behavior comes at a

cost. The total number of executed vector instructions of

RLE512-CD is higher than for the state-of-the-art implemen-

tation. Fig. 8(b) shows the number of vector instructions per

million loaded integers (excluding operations on masks and

other scalar operations) for RLE512, RLE256 and RLE512-
CD. Thus, it comes down to the number of loaded and

processed integers versus the amount of executed instructions.

Depending on the system, this can have different effects on

the compression speed.

B. Performance

Fig. 9(a) shows the compression speed for RLE512 and

RLE512-CD with two different storage options: RLE512-CD

stores the result data integer-wise like RLE512 with a scatter

store while RLE512-CDAligned stores the result vector-wise.

Again, each run length has been tested with all possible run

length variances. The first obvious finding is that RLE512-

CD shows an almost constant compression speed as expected.

However, the scatter store used in RLE512-CD is too slow to

Final edited form was published in "2018 IEEE 34th International Conference on Data Engineering Workshops. Paris 2018", S. 96-101, ISBN 978-1-5386-6306-6
http://dx.doi.org/10.1109/ICDEW.2018.00023

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

compete with RLE512. For RLE512-CDAligned, there are 3

different regions: (1) RLE512-CDAligned always outperforms

RLE512 for very small run lengths (<12). (2) Between the

run lengths of 11 and 40, there is no binary decision possible

between RLE512 and RLE512-CDAligned. RLE512 shows

the highest peak performance but also the lowest possible

performance. RLE512-CDAligned does not reach the peak

performance but guarantees a constant compression speed, i.e.

it is robust. (3) for run lengths greater than 40, the state-of-

the-art implementation always shows the highest compression

speed. Hence, at the transitions of these regions, the applied

implementation should be changed. Additionally, in region (2)

a decision between maximal peak performance and robustness

must be made.

The same regions as for the compression speed can be

shown for the speed up in Fig. 9(b). Here, the base line is

RLE512 and the maximal and the minimal speed up is shown

for RLE512-CDAligned. The lower curve compares to the

maximal compression speed of RLE512 and the upper curve

compares against the minimal compression speed. The graph

shows that the chances to gain a speed up greater than 1 are

higher, the lower the run length is. As already mentioned,

this graph can look different on another system, where the

execution of vector instructions or the loading of a vector

register is faster or slower. Additionally, in a multi-threaded

scenario the loading of integers might become a bottleneck

earlier, e.g. because of shared caches (focus of future research).

V. RELATED WORK

The efficient utilization of SIMD (Single Instruction Mul-

tiple Data) instructions in database systems is a very active

research field [24], [25]. On the one hand, these instructions

are frequently applied in lightweight data compression algo-

rithms [20]. In this domain, null suppression (NS) is the most

studied lightweight compression approach, whereby the basic

idea is the omission of leading zeros in the bit representation of

integers [13], [19]. However, none of these approaches uses the

leading zero count intrinsic of the Conflict Detection feature

set of AVX-512. The application would be very interesting

and should be definitely investigated. On the other hand,

SIMD instructions are also used in other database operations

like scans [26], aggregations [25] or joins [27]. To best of

our knowledge, none of these approaches uses AVX-512 CD,

although the operations could benefit from CD.

VI. CONCLUSION

In this paper, we described the newly introduced conflict
detection (CD) instructions which are available in Intel’s AVX-

512 instruction set extension. Furthermore, we proposed the

application of these CD instructions to speedup the RLE com-

pression of sequences of integers with small run lengths. How-

ever, our novel concept is not suitable for integer sequences

with long run lengths because too many instructions have to

be executed in comparison to the state-of-the-art approach.

Nevertheless, new instructions in addition to wider vectors are

useful, but they require new implementation concepts.

ACKNOWLEDGMENTS

This work is partly funded by the German Research Foun-

dation (DFG) in the Collaborative Research Center 912 and

by the individual DFG project LE-1416/26-1.

REFERENCES

[1] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the memory
wall in monetdb,” Commun. ACM, vol. 51, no. 12, pp. 77–85, 2008.

[2] H. Plattner, “A common database approach for OLTP and OLAP using
an in-memory column database,” in SIGMOD, 2009, pp. 1–2.

[3] D. Arroyuelo, S. González, M. Oyarzún, and V. Sepulveda, “Document
identifier reassignment and run-length-compressed inverted indexes for
improved search performance,” in SIGIR, 2013.

[4] A. A. Stepanov, A. R. Gangolli, D. E. Rose, R. J. Ernst, and P. S. Oberoi,
“Simd-based decoding of posting lists,” in CIKM, 2011.

[5] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald,
“Compressed linear algebra for large-scale machine learning,” PVLDB,
vol. 9, no. 12, 2016.

[6] T. Kissinger, T. Kiefer, B. Schlegel, D. Habich, D. Molka, and
W. Lehner, “ERIS: A numa-aware in-memory storage engine for an-
alytical workloads,” in ADMS, 2014.

[7] D. J. Abadi, S. Madden, and M. Ferreira, “Integrating compression and
execution in column-oriented database systems,” in SIGMOD, 2006.

[8] C. Binnig, S. Hildenbrand, and F. Färber, “Dictionary-based order-
preserving string compression for main memory column stores,” in
SIGMOD, 2009, pp. 283–296.

[9] J. Hildebrandt, D. Habich, P. Damme, and W. Lehner, “Compression-
aware in-memory query processing: Vision, system design and beyond,”
in IMDM@VLDB, 2016, pp. 40–56.

[10] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz, “Super-scalar RAM-
CPU cache compression,” in ICDE, 2006.

[11] V. N. Anh and A. Moffat, “Index compression using 64-bit words,”
Softw., Pract. Exper., vol. 40, no. 2, 2010.

[12] J. Goldstein, R. Ramakrishnan, and U. Shaft, “Compressing relations
and indexes,” in ICDE, 1998.

[13] D. Lemire and L. Boytsov, “Decoding billions of integers per second
through vectorization,” Softw., Pract. Exper., vol. 45, no. 1, 2015.

[14] M. A. Roth and S. J. Van Horn, “Database compression,” SIGMOD Rec.,
vol. 22, no. 3, 1993.

[15] F. Silvestri and R. Venturini, “Vsencoding: Efficient coding and fast
decoding of integer lists via dynamic programming,” in CIKM, 2010.

[16] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, 1987.

[17] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the Institute of Radio Engineers, vol. 40, no. 9,
1952.

[18] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Inf. Theor., vol. 23, no. 3, 1977.

[19] J. Plaisance, N. Kurz, and D. Lemire, “Vectorized vbyte decoding,”
CoRR, vol. abs/1503.07387, 2015.

[20] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J. Nie, H. Yan, and
J. Wen, “A general simd-based approach to accelerating compression
algorithms,” ACM Trans. Inf. Syst., vol. 33, no. 3, 2015.

[21] P. Damme, D. Habich, J. Hildebrandt, and W. Lehner, “Lightweight
data compression algorithms: An experimental survey (experiments and
analyses),” in EDBT, 2017, pp. 72–83.

[22] A. Ungethüm, P. Damme, J. Pietrzyk, A. Krause, D. Habich, and
W. Lehner, “Balancing performance and energy for lightweight data
compression algorithms,” in ADBIS Short Papers, 2017, pp. 37–44.

[23] P. Damme, D. Habich, and W. Lehner, “A benchmark framework for
data compression techniques,” in TPCTC, 2015.

[24] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking SIMD
vectorization for in-memory databases,” in SIGMOD, 2015, pp. 1493–
1508.

[25] J. Zhou and K. A. Ross, “Implementing database operations using simd
instructions,” in SIGMOD, 2002, pp. 145–156.

[26] Z. Feng, E. Lo, B. Kao, and W. Xu, “Byteslice: Pushing the envelop of
main memory data processing with a new storage layout,” in SIGMOD,
2015, pp. 31–46.

[27] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core, main-
memory joins: Sort vs. hash revisited,” PVLDB, vol. 7, no. 1, pp. 85–96,
2013.

Final edited form was published in "2018 IEEE 34th International Conference on Data Engineering Workshops. Paris 2018", S. 96-101, ISBN 978-1-5386-6306-6
http://dx.doi.org/10.1109/ICDEW.2018.00023

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPBD.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Dirk Habich, Wolfgang Lehner

