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Abstract

Azopolymers represent a wide class of polymeric systems in which the azoben-
zene chromophores are either incorporated into the main chain or covalently
attached to it as a part of side chain. Light with an appropriate wavelength
induces cyclic trans-cis isomerization, which results in preferred orientation of
the trans-isomers perpendicular to the light polarization. Most azopolymer ma-
terials directionally deform in the presence of various light polarizations.

In this thesis, a study is presented for photoinduced deformations in glassy
side-chain azopolymers under different irradiation patterns. In particular, the
photodeformations are investigated under homogeneous irradiation with linearly
and circularly polarized light, and under inhomogeneous irradiation with in-
tensity and polarization interference patterns. It is proposed to explain these
mechanical deformations using the orientation approach, which takes into ac-
count the reorientation of the chromophores. Due to the rigid attachment of
the chromophores with the main chain, the backbone segments in side-chain
azopolymers should reorient into the polarization plane, which is accompanied
by appearance of light induced stress. To describe the time evolution of light in-
duced stresses, the side-chain azopolymers are modeled as an ensemble of rigid
segments in presence of the effective orientation potential. Implementing the
stress in a viscoplastic material model of the finite element software ANSYS, it
is shown that a square azopolymer post elongates along the polarization for the
linearly polarized light and contracts along the propagation direction for the
circularly polarized light. Also, the deformations in the elongated oriented col-
loids under intensity interference patterns are modeled and it is found that the
formation of beads and wave-like structures are in accordance with the experi-
ment. The orientation approach also reproduces the peculiar structures at the
edges of thin azopolymer film under polarization interference patterns. Hence,
the orientation approach correctly predicts local variations of the light induced
stress in each illumination pattern for both initially isotropic and highly oriented
materials.

With this, it is proved that the orientation approach implements a self-
sufficient and convincing mechanism to describe photoinduced deformation in
azopolymer materials, which does not rely on the photo-fluidization concept.
The viscoplastic material modeling, developed in this thesis, can be used to de-
scribe the inscription of intricate surface structures under complex interference
patterns.
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Chapter 1

Introduction

Azobenzene containing polymers or shortly azopolymers represent a wide class
of polymeric systems in which the azobenzene chromophores are either incorpo-
rated into the main chain or covalently attached to it as a part of the side chain.
The azobenzene chromophores are photosensitive, i.e. in the presence of light
the azobenzene molecule isomerizes between trans and cis states. Additionally,
when azobenzenes are irradiated with linearly polarized light, they reorient pref-
erentially perpendicular to the light polarization direction[1, 2]. Such sensitivity
of the azobenzene chromophores makes the whole azopolymer system photosen-
sitive. Even chirality, solubility and polarity can be changed by applying the
light to the photo-switchable compounds. In principle, the melting point and
hence mechanical properties (viscosity, moduli) of azobenzene containing ma-
terials can be changed using light of appropriate wavelength, which results in
photoinduced solid to liquid transitions [3]. These solid to liquid transitions can
be manipulated in such a way to imprint nanopatterns on the surface of the
azopolymeric materials [4].

Photosensitive azopolymers are known as highly versatile systems which have
many applications in different fields. These materials can be used as molecular
switches [5, 6] and fancy molecular motors [7, 8], because the parent azobenzene
exists in two isomeric forms, which can be interchanged using light of appropriate
wavelength or heat [9]. The light-responsive materials made of azopolymers are
used in medicine [10], nano and liquid crystalline technology [11, 12, 13], as
smart polymers for soft-robotics [1, 14, 15], large-scale multiplexed gratings for
photonic applications [16] and intelligent enzymes [17]. Also azo-structures can
be used in devices with light-controlled wettability [18, 19, 20]. Some natural
phenomena like fly trapping plants [21] can be mimicked by designing micro-
robotic systems incorporating azobenzene chromophores.

Azopolymers are used in the various branches of biology. For DNA com-
pacting, azobenzene containing surfactants are developed which can have appli-
cation in the drug delivery [22, 23]. In the past two decades, many techniques
are being developed to engineer biological membranes using azobenzene sys-
tems to produce light-gated ion channels [24, 25, 26]. Many such applications

2



of azopolymers in the biological systems are discussed in the review of Barrett
et al. [27].

Azopolymers have played a very important role in electronics and modern
photonics which can not be ignored. The azopolymers can be used as an optical
storage medium [28, 29, 30, 31, 32], liquid crystal anchoring and to structure
waveguides and waveguide couplers [33, 34]. The azobenzene liquid-crystal films
can be used for optical switching and image storage [35]. Due to the photo-
switching ability of azobezene, the light energy can be transformed into the
mechanical energy which makes the system a prototype of light-powered engine
[36].

The use of light as an external stimulus is rather attractive, as it can provide
a remote control of the device or help to restore its function, for example, to heal
the electrical conductivity after mechanical failure [37]. With this aim, photo-
sensitive azopolymers, which deform in the presence of light, can be used. Such
polymers exhibit considerable photodeformations even below the glass transition
temperature TG, because the light-induced mechanical stress can be larger than
the yield stress. The azopolymers were observed to experience photomechanical
bending under light irradiation; with this property there are possibilities that
they can be used as fluid actuators [38]. A very interesting research is ongoing
for light driven artificial muscles made of azobenzene containing materials [1,
39].

Unusual photo-mechanical effects have been observed in side-chain azoben-
zene containing polymers. First of all, they include inscription of surface relief
gratings on the top of azopolymer films [40, 41], the efficiency of which depends
on the light interference pattern [42]. Secondly, response of azopolymers with
different chemical architecture was studied under linearly polarized light in thin
azopolymer films placed on the water surface [43]. The deformations had an op-
posite sign depending on the polymer architecture: the polymer with rigid back
backbone deformed in the direction of light polarization, whereas the polymer
with flexible backbone deformed in the direction perpendicular to the light po-
larization [43]. The efficiency of surface relief grating inscription also depends on
the architecture of the used azopolymer [42, 44, 45, 46]. Recently, formation of
triangular and hexagonal shaped pillars was found in the azo-molecular glasses
when irradiated with circularly polarized light [47, 48]. All these phenomena
await an explanation on the molecular level.

1.1 Motivation
As we have discussed in the previous section, azobenzene containing polymers
exhibit a versatile behaviour when irradiated by polarized light. Below we men-
tion few experiments which excite the most, as the light-induced deformations
in these polymers take place much below the glass transition temperature.

• Inscription of surface relief gratings

The phenomenon was discovered in 1995, when two research groups [41,
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40] reported independently about the formation of surface relief gratings.
Inscription was done by exposing an azopolymer film to periodic intensity
or polarization patterns that resulted from the interference of two polar-
ized laser beams. The wavelength of the laser was in the absorption region
associated with the cyclic trans-cis-trans isomerization of the azo dye. Fol-
lowing these initial reports, not only one dimensional linear gratings but
also two-dimensional periodic structures were inscribed onto film surfaces
[41, 49, 50].

• Uniaxial deformations of azopolymer posts

An epoxy-based side-chain azopolymer with TG = 120 °C deforms vertical-
ly/horizontally for the vertical/horizontal linear polarization. In the case
of circularly polarized light, an initially square post is deformed radially
[37].

• Inscription of stripe patterns by moving laser beam

A puzzling phenomenon was discovered by Ambrosio et al. [51]. When
a highly focused linearly polarized Gaussian beam is moved over a thin
azo-polyurethane film in two different directions, parallel and perpendic-
ular to the light polarization, the film surface deforms differently. In the
case of parallel movement, the material deforms in the direction of light
polarization by making an elongated protrusion [51]. In case of the move-
ment perpendicular to the light polarization, a groove was observed. The
authors checked that in both cases the overall volume stays conserved.
Interestingly, the depth of the grooves has been found to be much larger
than the height of the protrusions.

• Structuring of spherical colloids by interference patterns

An experiment was conducted in the group of Santer [52] on the spher-
ically shaped azopolymer colloids, which were first illuminated with the
horizontally polarized light. After some time the colloid elongates in the
polarization direction, reaching an aspect ratio up to 5. In a second step
the elongated colloid was illuminated with the light having sinusoidal in-
tensity distribution. Formations of beads and wave-like structure were
observed for light polarized along and perpendicular to the long axis of
the colloid, respectively.

Several models of grating inscription [53, 43, 54] have been proposed but none
of these provided a satisfactory explanation at a molecular level. At present,
the models based on the light-induced reorientation of azobenzene moieties look
as the most promising explanation [55, 43, 49]. The reorientation arises statisti-
cally, after a number of isomerization cycles, with the long axis of trans-isomers
lying preferably perpendicular to the light polarization. This causes a reori-
entation of the polymer backbones to which the azobenzenes are attached and
appearance of the light-induced stress which dictates a direction of the macro-
scopic deformation. Our motivation in this thesis is to explain the directional
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deformations in azopolymers, as listed above, using this orientational hypothe-
sis.

1.2 Goals
In this thesis, we aim to provide an explanation for some of the above discussed
puzzling phenomena. To explain directional deformations induced by the polar-
ized light, it is necessary to establish a relation between the light characteristics
and the properties of azopolymer material. For this purpose, orientation ap-
proach is used in which the trans-cis photo-isomerization events are described
by the effective orientation potential acting on the azobenzene chromophores
[56].

As in this thesis we focus on the side-chain azopolymers, the effective orien-
tation potential should be recalculated for the main chain, for that the chemical
architecture of the azopolymer is taken into account. The main chains reorient
under the polarized light, which results in induction of light-induced stress. Our
goal is to predict the time dependent orientation tensor of polymer backbones
and corresponding stress tensor.

Different azopolymers were used in the experiments mentioned in Motiva-
tion, and all of them are glassy materials. Therefore, to explain the movement
of material under various polarizations, we model it as a viscoplastic solid. By
using the orientation approach, we aim to explain the following phenomena:

• Directional deformations in the square post under homogeneous light in-
tensity,

• Formation of grooves and hills under moving light beam with horizontal
and vertical polarization,

• Bead and wave-like structure formation in spherical colloids under inten-
sity interference patterns,

• Structuring of film edges under polarization interference patterns.

To achieve this goal, we implement the stress fields induced in these experiments,
in finite element modeling software (ANSYS). Finally, the deformations achieved
in the material modeling are compared with the experimental ones to check the
validity of the orientation approach.

1.3 Outline of thesis
After introducing the background of the thesis work in the present chapter, the
following points will be explained in the next chapters:

• In Chapter 2 azopolymers are introduced as glassy materials with the
help of experiments that support the thermal stability of the azopoly-
mers at temperatures below the glass transition temperature. Further,
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we discuss the uniaxial and biaxial orientational states observed in these
materials under light irradiation. Later the experimental setup and elec-
tric field vector distributions corresponding to various polarizations are
described. Then we introduce the effective orientation potential originat-
ing from cyclic trans-cis isomerization of azobenzenes in the presence of
linearly polarized light. The last part of this chapter is devoted to the
experiments which confirm that the magnitude of light-induced stresses in
azopolymers is larger than the yield stress.

• In the first part of Chapter 3 the effective orientation potential for the
circularly polarized light is calculated based on the angular hole burning
effect. Later this chapter is focused on the derivation of time dependent
orientation and stress tensors for uniaxial and biaxial orientational states.
For calculating these tensors, the azopolymers are modeled as an ensemble
of rigid Kuhn segments in the presence of external orientation potential.
To calculate the components of orientation tensor, suitable closure ap-
proximations are developed for uniaxial and biaxial order.

• In Chapter 4 the description of the methods which we have developed
is given. To calculate the light-induced deformations, the finite element
modeling software ANSYS is used, in which the viscoplastic Perzyna model
is applied to describe material properties of glassy azopolymers. In AN-
SYS, we implement the light-induced stress either directly in case of ho-
mogeneous stresses or indirectly using Userthstrain subroutine in case of
spatially dependent stresses.

• In Chapter 5, we study the directional deformations in the azopolymer
square post irradiated with the linearly and circularly polarized light. In
this case, the mechanical strains can be calculated analytically and com-
pared with the predictions from finite element modeling in ANSYS. With
the help of this comparison the mesh size and the length of time steps
are calibrated in ANSYS to reproduce the exact analytical solution. After
that, using the orientation approach we reproduce the directional defor-
mations observed in the experiment done by Lee et al.[37].

• In Chapter 6, we model the effect of fast moving light beam on the azopoly-
mer surface, for the case of horizontally and vertically polarized light. In
accordance with the experiment, [57] we observe formation of grooves and
hills under irradiation with Gaussian distributed light intensity.

• Further, in Chapter 7 we focus on the modeling of azopolymer structuring
under light interference patterns. The first part of the chapter is about
elongation of spherical colloids in the presence of linearly polarized light,
similar to the experiment of Santer et al.[52]. Later, we model the de-
formations in the elongated spherical colloids under intensity interference
patterns and observe the formation of beads and wave-like structures in
accordance with the experiment. In the last part of the chapter the for-
mation of peculiar structures at the edges of thin film under polarization
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interference patterns is modeled. A striking resemblance between the real
and modelled structures is established.

• In chapter 8 the thesis work is summarized by emphasizing on the impor-
tance of the orientation approach to explain the directional deformations
under various light polarizations and interference patterns. The thesis is
closed by a brief outlook.
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Chapter 2

Azopolymer properties and
behaviour

Azobenzene containing polymers are defined as polymeric systems in which the
azobenzene chromophores are incorporated into the main chain or covalently
attached to it as a part of the side chain. Azobenzene molecules are made of
two phenyl rings that have a nitrogen double bond between them, called the
azo-bond, see Figure 2.1. Azobenzene chromophores tend to switch between
trans- and cis-isomeric states in the presence of polarized light and the rate of
isomerization depends on the polarization direction [58, 59, 60, 61, 62, 63, 64].
The cis-isomers have a bent structure because the two phenyl rings are attached
at 900 but the trans isomers have a straight rode-like structure, as shown in Fig-
ure 2.1.
As mentioned in Chapter 1, azopolymer materials show directional deforma-

tions when irradiated with polarized light. In this chapter, we focus on the light
characteristics and the properties of azopolymer material to set up a background
for modeling the directional deformations.

2.1 Models to explain photodeformations
The photodeformations in azopolymer materials are stable below the glass tran-
sition temperature and can not be further changed in the absence of the light
irradiation [37]. To explain the directional photodeformations in azopolymers,
several models are proposed. Here, in this section, a brief discussion about the
models and their shortcomings is provided.

Photo-softening models [65, 66, 67]

The inscription of surface relief gratings is done at room temperature which is
far below the glass transition temperature. The azopolymers are in glassy state
which means that their Young’s modulus and viscosity are extremely large. The
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(a) (b)

Figure 2.1: Chemical structure of azobenzene chromophore a) in the straight trans-state
and b) in the bent cis-state.

Figure 2.2: Isomerization between trans- and cis-isomers of azobenzene chromophore in the
presence of light.
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material displacement in the glassy state is assumed to be due to the photo-
softening effect, either due to light-induced mobility of the main chains or due to
formation of a thermal gradient that results in the surface relief gratings. Still,
these models can not explain the photodeformations due to following reasons.

Shortcomings

• It was observed that Young’s modulus of polymer materials decreases un-
der light irradiation from 3.4 GPa to 0.9 GPa [66, 68, 69]. This is not
enough to induce the transition from glassy state into low viscosity poly-
mer melt [70], characterized by high mobility of the main chains.

• During formation of surface relief gratings, the thermal gradient is be-
low 10 K and can not explain the material displacement below the glass
transitions temperature [71].

• The dependence of photodeformations on light polarization is not taken
into account.

Gradient force model [65, 72, 54, 73, 74]

To explain the grating formation, Kumar et al. proposed that the electric field
vector E in the direction of mass migration is required. Also, it was assumed
that the material is polarized by the electric field and the spatially dependent
light intensity I changes the material susceptibility tensor χ. With these as-
sumptions, the polarization P is defined as follows:

P = ϵ0χ(I)E (2.1)

Here, ϵ0 is the vacuum permittivity.
The time averaged force F generated in the material under electric field gradient
is [73]:

F = ⟨(P · ∇)E⟩ (2.2)

Hence, the gradient force depends on the material susceptibility, magnitude and
gradient of the electric field vector. The gradient force model predicts the for-
mation of surface relief gratings depending on the light polarization.

Shortcoming

• It has been calculated that the magnitude of force density is of the order
of 100 N/m3, which is even smaller than the gravitational force. With
this it can be concluded that the gradient force concept can not explain
the material movement under light irradiation [75].
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Asymmetric diffusion theory [65, 72, 76, 77]

In this model, it was assumed that the orientational concentration gradient is
responsible for the material movement. It was proposed that the trans-cis cyclic
photo-isomerization enables the random motion of azobenzene molecules along
the longer axis of the chromophore. The probability of the random-walk step is
directly proportional to the probability of isomerization which depends on the
light intensity and the angle between the electric field vector and chromophore
dipole. The theory predicts the movement of molecules from illuminated area
to the dark area, which explains some of the experimental observations.

Shortcomings

• This model can explain the grating formation in a system of small molecules
but for larger molecules and polymer chains it becomes a tug of war situ-
ation which can defeat the net movement of the main chains [72]. Thus,
asymmetric diffusion is not sufficient to explain the formation of surface
relief gratings in azopolymers.

Isomerization pressure approach [65, 72, 78, 79]

Barrett et al. were one of the first who tried to explain the formation of surface
relief gratings by the generation of pressure gradient because of the free volume
required in the isomerization process, which is directly proportional to the in-
tensity of light. Thus, the formation of surface relief gratings can be explained
by assuming that the pressure generated is larger than the yield point. The
following Navier-Stokes equation is used to describe the viscous flow of polymer
material under pressure gradient:

ρ
∂v
∂t

= −∇P + µ∆v (2.3)

Here, ρ is the density, v refers to the velocity, P is the pressure and µ is the
viscosity of the material.

Shortcomings

• This approach can not explain the photodeformations under polarization
inference patterns with constant light intensity.

• The assumption that the pressure generated is larger than the yield point
was not verified.

Mean-field theory [65, 72, 80, 81]

The mean-field theory takes into account the intensity and polarization of spa-
tially distributed light field. In this model, the chromophores are considered as
liquid crystalline moieties and each chromophore is assumed to experience a net
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or mean-field potential resulting from all the chromophore dipoles in the mate-
rial. The mean-field potential is given by the Maier-Saupe approximation. The
light irradiation is responsible for the reorientation and alignment of the chro-
mophores. The azobenzenes, which are aligned parallelly, experience a strong
attractive force between them due to the mean-field potential. Hence, the chro-
mophores accumulate in higher light intensity regions. Thus, the peaks in the
surface relief grating appear at the light maxima.

Shortcomings

• The mean-field theory is consistent with some experiments on liquid crys-
tal systems but can not explain the deformations in the amorphous sam-
ples, particularly in glassy azopolymer samples.

• This model does not differentiate between isomerising and non-isomerising
liquid crystal systems. Also, the formation of gratings is not observed yet
for the non-isomerising systems which do not contain azobenzene chro-
mophores.

Orientation approach [82, 56, 83, 84]

The formation of surface relief gratings is assumed to be caused by an external
potential which is called the effective orientation potential. It results from the
kinetics of trans-cis photo-isomerization and reorients the chromophores per-
pendicular to the light polarization. As chromophores are attached to the main
chains, they will be reoriented too. The orientation potential approach explains
the following points.

• In this approach, the spatially dependent polarization and intensity of
light are taken into account.

• Chemical architecture of the azopolymers is taken into account.

• This is the first theory that explains the photodeformations in the glassy
azopolymers due to light-induced stresses (10 - 50 MPa) which are con-
siderably larger than the yield stress [56, 52].

It can be concluded that the orientation approach is very promising to ex-
plain the light-induced deformations in the glassy azopolymers. Because of this
reason, we will use the orientation approach to model the directional deforma-
tions observed in the experiments mentioned in Chapter 1. Later in the current
chapter, the effective orientation potential is introduced in detail.

2.2 Order parameter
The orientation order in azobenzene containing side-chain azopolymers is de-
fined via the order parameter for rigid segments (Kuhn segments) comprising
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the polymer backbones [85]. The orientation of each Kuhn segment is rep-
resented by the unit vector u, which makes an angle θ with the preferential
orientation direction (nematic director), see Figure 2.3. The direction of ne-
matic vector n is along the x axis. The projection of the unit orientation vector
on x, y and z axes around the nematic director n can be written as follows:

ux = cos θ (2.4)

uy = sin θ sinϕ (2.5)

uz = sin θ cosϕ (2.6)

Here, θ is the polar angle and ϕ is the azimuthal angle. General form of nematic
order parameter can be represented by the following tensor [86]:

Q =
3

2
⟨uu⟩ − 1

2
δ, (2.7)

where ⟨uu⟩ is the 2nd order orientation tensor and δ is a unit tensor. The an-
gular brackets describe the averaging over the ensemble of Kuhn segments.

For the azobenzene chromophores the probability to find a dipole in direction
p is the same as -p. With this, it can be concluded that the nematic directors
n and -n are indistinguishable [87]. We assume the distribution function of ori-
entation vector to be f(θ, ϕ)dΩ, where dΩ = sin θdθdϕ. The indistinguishable
property of nematic directors provides the following symmetry of the distribu-
tion function: f(θ, ϕ) = f(π − θ, ϕ) = f(π, 2π − ϕ). To simplify the 2nd order
tensor ⟨uu⟩, we calculate first the following moment:

⟨u · n⟩ = ⟨cos θ⟩ =
∫

f(θ, ϕ) cos θdΩ (2.8)

It vanishes as a result of the f(θ, ϕ) = f(π − θ, ϕ) property of the distribution
function. Similarly, the other moments can be calculated: ⟨sin2 θ sinϕ cosϕ⟩ =
⟨cos θ sin θ sinϕ⟩ = ⟨cos θ sin θ cosϕ⟩ = 0. Thus, it can be shown that the off-
diagonal components of 2nd order orientation tensor ⟨uu⟩ and hence the nematic
order tensor Q are zero.The xx component of the nematic order tensor defines
the nematic order parameter Q:

Qxx =
3

2
⟨cos2 θ⟩ − 1

2
= ⟨P2(cos θ)⟩ = Q (2.9)

Here, P2(cos θ) =
3 cos2 θ−1

2 is the 2nd order Lagrange polynomial.

Uniaxial order: Conventional nematics are characterised by the uniaxial or-
der, when the distribution function f(θ, ϕ) is independent of ϕ [87]. To simplify
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Figure 2.3: Representation of the orientation vector u in the polar co-ordinate system. The
nematic director n is along the x axis.

the nematic order tensor let us calculate the following moments:

⟨u2
y⟩ = ⟨sin2 θ⟩⟨sin2 ϕ⟩ = ⟨sin2 θ⟩

2
(2.10)

⟨u2
z⟩ = ⟨sin2 θ⟩⟨cos2 ϕ⟩ = ⟨sin2 θ⟩

2
(2.11)

Here,
∫
sin2 ϕdϕ =

∫
cos2 ϕdϕ = 1

2 . Further, the diagonal components of the
nematic order tensor can be written as Qyy = Qzz = −Q/2. The nematic order
tensor in the uniaxial order case is as follows:

Q =

 Q 0 0
0 −Q/2 0
0 0 −Q/2

 (2.12)

Biaxial order: For azobenzene chromophores with strong orientational inter-
actions, the light can induce a uniaxial to biaxial phase transition with two
distinct axes [84]. One is given by E and another is perpendicular to it. The
chromophores will be oriented preferentially in the plane perpendicular to the
polarization direction E. However, in case of biaxial nematic order θ and ϕ
are not independent anymore, which makes the yy and zz components to be
dependent on each other. With this, the nematic order tensor can be written
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as follows [84]:

Q =

 Q 0 0

0 −Q
2 + 3µ

4 0

0 0 −Q
2 − 3µ

4

 (2.13)

Here, µ = ⟨u2
z⟩ − ⟨u2

y⟩ is the biaxial order parameter, it becomes zero for the
uniaxial order. The orientation tensor is trace-less for all cases, see Equations
2.12 and 2.13.

2.3 Light polarizations
In this thesis, we perform modeling of the experiments in which the azopolymer
samples are irradiated with different kind of polarized light that leads to specific
structure formation.
As we know, light is an electromagnetic wave that is comprised of coupled mag-
netic and electric fields oscillating in perpendicular planes. By convention the
polarization direction is along the electric field vector. In the experiments by
varying the direction of electric field vector with time or space the resultant
polarization of light can be manipulated. To create light interference patterns,
a special optical setup is required which is called a two-beam interferometer
[44]. By setting up different polarizations of two light beams in the interferom-
eter, a large variety of intensity and polarization interference patterns can be
produced. Below we describe the light polarizations and patterns, relevant to
the experiments we aim to model.

2.3.1 Linear polarization of light
The linearly polarized light is the one which has electric field vector only in one
direction which does not change with time and space. One of the example of
linear polarization is as follows.

Polarization along y direction:

When light is polarized along the y-direction, the electric field vector E is also
along the y-direction. The propagation direction is assumed to be in the z-
direction, as shown in Figure 2.4. Thus, components of the electric field vector
can be written as follows:

Ex(z, t) = 0 (2.14)

Ey(z, t) = E0 cos (kz − ωt) (2.15)

Ez(z, t) = 0 (2.16)
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Figure 2.4: The linearly polarized light is propagating in the z direction and its electric field
vector (represented with gray arrows) lies along the y direction.

E(z, t) = Ey(z, t)y (2.17)

Here, E is the polarization vector and E0 is its amplitude, y is the unit vector in
the y direction, k = 2π/λ is the wave number, λ is the wavelength of light and
ω is the angular frequency. The light polarized in the x or z-direction is the π/2
rotation of the coordinate system around the z-axis and x-axis, respectively.

2.3.2 Circular polarization of light
In the case of circularly polarized light, the electric field vector rotates around
the propagation direction with time. The electric field vector E for the circu-
larly polarized light propagating in z direction can be written as follows:

E(z, t) = Ex(z, t)x + Ey(z, t)y (2.18)

Here x and y represent the unit vectors along x and y directions, respectively.
For left handed circularly polarized light:

Ey(z, t) = E0 cos (kz − ωt)

and
Ex(z, t) = E0 cos (π/2 + kz − ωt)

for right handed circularly polarized light:

Ey(z, t) = E0 cos (kz − ωt)

and
Ex(z, t) = −E0 cos (π/2 + kz − ωt)

The x and y components of the electric field vector are with π/2 phase difference.
This makes the electric field vector rotating around the propagation direction,
as shown in Figures 2.5 and 2.6.
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Figure 2.5: In left handed circularly polarized light, the electric field vectors, represented by
gray color, rotate anti-clockwise with respect to the observer and the light propagates along
the z direction.

Figure 2.6: In right handed circularly polarized light, the electric field vectors, represented
by gray color, rotate clockwise with respect to the observer and the light propagates along
the z direction.
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2.3.3 Light interference patterns
The light interference patterns are formed by two interfering coherent beams
(coming from the same laser) with different polarization, as shown in Figure
2.7. The resultant electric field vector E for the interference pattern can be
written as follows:

E = E1 + E2 (2.19)

Here, E1 and E2 represent the electric field vectors corresponding to first and
second light beams. The interference patterns are of two types which are inten-
sity and polarization interference patterns with polarization and intensity being
constant in time and space, respectively.

SS and PP intensity interference patterns

SS and PP light interference patterns are produced in the experiments by in-
teraction of S and P polarized light beams. Two propagating beams form the
incidence plane, as shown in Figure 2.7. When the light beam is polarized in
the direction perpendicular to the incident plane, it is called S polarized light
and, when it is polarized along the incident plane, it is called the P polarized
light beam.

Here, we assume the light beams are propagating in the xz plane. With this,
the electric field vector for S polarized light beam is:

E = E0 cos (ωt− kr)y (2.20)

Here, r is the beam path along the propagation direction.
The electric field vector for P polarized light beam is:

E = E0 cos (ωt− kr)(cos θx+ sin θz) (2.21)

Here, x and z are the unit vectors in the x and z directions and θ is the incidence
angle.

SS interference pattern
When two S polarized light beams interfere, the SS interference pattern forms.
The electric field vectors for the beams in this case are:

E1 = E0 cos (ωt− kr1)y (2.22)

and
E2 = E0 cos (ωt− kr2)y (2.23)

Here, r1 = z cos−1 θ + x sin θ and r2 = z cos−1 θ − x sin θ are the beam paths.
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(a)

(b) (c)

Figure 2.7: a) Typical setup for interference patterns where red lines represent the two light
beams, whose wavefronts propagate in the shaded incidence plane. b) Representation of SS
c) and PP interference patterns, where length of arrow represents the intensity of light and
direction gives polarization.
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Thus, the resultant electric field vector E can be written as follows:

E = 2E0 cos (ωt− kz cos−1 θ) cos (kx sin θ)y (2.24)

Spatial distribution of light intensity corresponding to the resultant electric field
vector is:

I(x) = E2 ∝ E2
0 cos

2 (kx sin θ) (2.25)

Introducing the grating period D = λ/(2 sin θ), the intensity of light can be
written as follows:

I(x) ∝ E2
0 cos

2 (
πx

D
) (2.26)

The optical period can be regulated by changing the angle θ between the beams,
D is usually in the range of 0.5− 4 µm.

PP interference pattern
When two P polarized light beams interfere, the PP interference pattern forms.
The electric field vectors for the beams are :

E1 = E0 cos (ωt− kr1)(cos θx+ sin θz) (2.27)

and
E2 = E0 cos (ωt− kr2)(cos θx+ sin θz) (2.28)

Under an assumption θ to be very small, the z component of E1 and E2 can be
neglected. Thus, the resultant electric field vector for PP interference pattern
can be written as follows:

E = 2E0 cos (ωt− kz cos−1 θ) cos (kx sin θ)x (2.29)

Intensity of light corresponding to the resultant electric field vector is:

I ∝ E2
0 cos

2 (
πx

D
) (2.30)

For SS and PP interference patterns, the polarization direction is constant but
the intensity has spatial dependence as can be seen from Equation 2.26 and
2.30. Therefore, they are called intensity interference patterns.

RL and LR polarization interference patterns

RL and LR interference patterns are formed when left and right hand circularly
polarized light beams interfere. The electric field vector for right hand circularly
polarized light (RCP) beam is:

Ercp = E0(cos (ωt− kr1) cos θx+sin (ωt− kr1)y−cos (ωt− kr1) sin θz) (2.31)
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The electric field vector for left hand circularly polarized (LCP) light beam is:

Elcp = E0(cos (ωt− kr1) cos θx− sin (ωt− kr1)y + cos (ωt− kr1) sin θz)
(2.32)

The position of LCP and RCP, see Figure 2.5 and 2.6, defines the resultant
interference pattern, as explained below.

RL interference pattern
When the beam 1 is the right circularly polarized and beam 2 is left circularly
polarized, the resultant interference pattern is called the RL interference pat-
tern and its electric field vector is as follows:

E = 2E0 cos (ωt− kz cos−1 θ)(cos (kx sin θ)x− sin (kx sin θ)y) (2.33)

The intensity of light corresponding to the resultant electric field vector E is:

I = E2 ∝ 2E2
0 (2.34)

LR interference pattern
When the beam 1 is the left circularly polarized and beam 2 is right circularly
polarized, the resultant interference pattern is called the LR interference pat-
tern and its electric field vector is as follows:

E = 2E0 cos (ωt− kz cos−1 θ)(cos (kx sin θ)x+ sin (kx sin θ)y) (2.35)

The intensity of light corresponding to the resultant electric field vector E is:

I = E2 ∝ 2E2
0 (2.36)

As it can be seen from Equation 2.34 and 2.36, the intensity of light is constant
for RL and LR interference patterns. On the other side, from Equations 2.33
and 2.35 it follows that the polarization of light is varying in the xy plane (the
substrate plane). Therefore, the RL and LR patterns are called polarization
interference patterns.

2.4 Effective orientation potential for linearly po-
larized light

As discussed in the Section 2.1, the orientation approach is very promising to
explain the photodeformations in azopolymers. A theoretical formalism for the
“hole burning” effect for the azo dyes in amorphous polymers was introduced by
Dumont et al. [88]. As the azobenzene chromophores isomerize in the presence
of light, the isomerization events depend on the probability of absorption. The
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Figure 2.8: Light-induced orientation of azobenzenes in the plane perpendicular to the light
polarization E of the linearly polarized light.

mechanism of angular hole-burning becomes clear if one considers the probabil-
ity of absorption by trans- and cis-isomers:

PJ(θ) = IPσJ [1 +
1

2
ϵaJ(3 cos

2(Θ)− 1)] (2.37)

Here, IP is the flux of photons proportional to the intensity of a pumping
beam in W/cm2, σJ and aJ are the average absorption cross-section and the
molecular anisotropy of trans (J = T ) and cis (J = C) isomers, respectively.
Θ is the angle between the transition dipole moment of the chromophores (for
the trans isomer it is oriented along the long molecular axis) and the symmetry
axis that lies along the polarization direction, for the linearly polarized light it
is defined by the electric field vector E. The molecular anisotropy of axially
symmetrical trans-isomers aT = 1 [88]. It is reasonable to consider an angular
independent absorption by bent cis-isomers due to their isotropic polarizability
tensor [37, 89]. The molecular anisotropy of cis-isomers aC = 0 and the prob-
ability of absorption by cis-isomers for linearly polarized light is: PC = IPσC ,
the parameter ϵ = 2 for linearly polarized beam [90]. Probability of absorption
by trans-isomers when irradiated with linearly polarized light is:

PT,lin = 3IPσT cos2(Θ) (2.38)

Hence, the probability of excitation PT,lin by linearly polarized light is pro-
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portional to cos2(Θ), where the angle Θ is counted from the direction of light
polarization E, as shown in Figure 2.8. From Equation (2.38), it can be seen
that the chromophores which are oriented perpendicular to the light polarization
do not absorb light [56]. The probability to be excited is highest for the trans-
isomer oriented parallel to E (it is marked as a red “hot” isomer). Therefore,
starting from a sample with an isotropic distribution of chromophores, multiple
trans-cis-trans photo-isomerizations will result in a preferential orientation of
the chromophores in the plane perpendicular to the vector E (those are marked
as gray “cold” isomers).
The azobenzene chromophores reorient under irradiation with polarized light
due to angular selective isomerization process [83, 56, 1, 2]. Using kinetic equa-
tions for the photo-isomerization dynamics, it has been explained theoretically
and using computer simulations that the action of polarized light on azobenzene
chromophores is as effective as application of external potential ueff , which re-
orients the chromophores perpendicular to the polarization direction [56]:

ueff = V0 cos
2(Θ), V0 =

pT kT ⟨sin2 χ⟩
4Dr

(2.39)

The potential acts on each azobenzene and its strength V0 depends on the prob-
ability of trans-cis isomerization pT ≈ IPσT , magnitude of stochastic jumps χ
performed during photo-isomerization and the orientation diffusion coefficient
Dr of the azobenzene, which is defined by the viscosity of the material.
The effective potential acting on the backbone segments can be obtained as the
sum of potentials acting on each chromophore present in the segment [83]:

Ueff = mV0⟨cos2(Θ)⟩ (2.40)

Here, m is the number of azobenzenes in the backbone segment. After averaging
over all possible chromophore orientations, the effective orientation potential for
the backbone segments can be written as follows:

Ueff = qmV0 cos
2(θ) (2.41)

Here, q = [3⟨cos2 α⟩ − 1]/2 is the shape factor, α is the angle at which the
chromophores are attached to the backbone. For the side-chain polymers α is
close to π/2, which makes q ≈ −0.5. θ is the angle between the orientation of
the segment and the electric field vector, as represented in Figure 2.9. Thus,
Equation (2.41) can be redefined as:

Ueff = qmV0(Ê · u)2 (2.42)

where Ê = E/|E| is the unit vector of light polarization. From Equation (2.42),
it can be seen that the effective potential for the segment is minimum when the
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(a) (b)

Figure 2.9: a) Representation of the azopolymer Kuhn segment, the orange-colored chro-
mophores are rigidly attached to the main chain via a spacer (both are represented by blue
color), the gray arrow represents the orientation vector for the Kuhn segment and b) the
electric field vector makes an angle θ with the unit orientation vector.

segment is aligned along the electric field vector, and maximum when the seg-
ment is perpendicular to the electric field vector. As every system tries to
minimise its potential energy for attaining the equilibrium, it can be concluded
that the preferred direction for the segment is along the electric field vector. In
the reorientation process of polymer backbones, the light-induced stress should
appear in the material, as we discuss below.

2.5 Magnitude of light-induced stress and yield
stress in glassy azopolymers

It was observed in the experiments that the deformations induced in glassy
azopolymer materials by the polarized light stay preserved even after removing
the light source [37, 52, 91, 92]. With this particular observation it can be
concluded that the deformations are not elastic but plastic. To attain plastic
deformations the stress induced in the material should be larger than the yield
stress [93]. As mentioned above, the already existing theories other than the
orientation approach do not predict sufficient light-induced stress or force for
the structuring of azopolymer materials.
The yield stress for azopolymers was estimated in the range of 20 − 30 MPa
[94]. The magnitude of light-induced potential (≈ 7 × 10−18 J) was predicted
using the orientation approach, which provided the light-induced stress of about
4 GPa [56]. In Ref. [85], the authors estimated the light-induced stress using
computer simulations, which is in the range 50 MPa - 5 GPa. Also, it was shown
experimentally that the light-induced stress can be as large as 2 GPa and was
capable of breaking the metallic layer on the surface of a glassy azo-polymer as
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well as of deforming the covalent bonds [95, 91, 96]. Hence, it was shown that
the light-induced stress in azopolymers can be much larger than the yield stress.
The orientation approach provides the effective potential, as described by Equa-
tion (2.42), which depends on the azopolymer material properties as well as on
the characteristics of linearly polarized light. As mentioned in section 1.2, we
aim to model the experiments performed using variously polarized light, espe-
cially circularly polarized one. The time-dependent stress induced under linearly
and circularly polarized light is derived in the next chapter.
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Chapter 3

Light-induced orientation and
stress

Azobenzene chromophores isomerise cyclically in the presence of light with an
appropriate wavelength. Due to the cyclic isomerization, the chromophores will
gradually reorient themselves in a preferred direction which is perpendicular to
the light polarization [1, 2]. Because of this reorientation, a light-induced stress
will appear which can be defined via the introduction of the effective orientation
potential, for linearly polarized light it is already discussed in Chapter 2. In the
present chapter the orientation potential for circularly polarized light will be
introduced. Further, the time dependent light-induced orientation and stress
tensors are calculated for the linearly and circularly polarized light.

3.1 Effective orientation potential for circularly
polarized light

The probability of absorption by trans- and cis-isomers is given by Equation
(2.37) from Chapter 2. The molecular anisotropy of cis-isomers aC = 0 and the
probability of absorption by cis-isomers is the same for linearly and circularly
polarized light: PC = IPσC . According to Dumont et al. [90], the parame-
ter ϵ = −1 for circularly polarized (or unpolarized) beam propagating along
k. With this, the probability of absorption for trans-isomers under circularly
polarized light can be written as follows:

PT,circ =
3

2
IPσT sin2(Θ) (3.1)

This probability PT,circ is proportional to sin2(Θ), where angle Θ is counted
from the direction of light propagation k, as shown in Figure 3.1. The proba-
bility to be excited is highest for the trans-isomers (red “hot” isomers) oriented
in the plane with rapidly rotating electric field vector E. Therefore, multiple
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Figure 3.1: Light-induced orientation of azobenzenes along the propagation direction k of
the circularly polarized light.

trans-cis photo-isomerizations caused by the circularly polarized light will re-
sult in the preferential orientation of a chromophore (a gray “cold” isomer) along
the direction of light propagation k. In analogy to linearly polarized light, the
process of time dependent orientation induced by the circularly polarized light
should be described by the effective orientation potential:

ucirc(Θ) =
V0

2
sin2(Θ) (3.2)

Here, V0 is the strength of the orientation potential which is defined by the
same Equation (2.39). Also, ucirc can be derived directly by averaging orien-
tation potential (2.39) over all polarizations in the plane perpendicular to the
propagation direction.

This thesis is focused on the modeling of amorphous azopolymers in which
the chromophores are attached to the main chain either directly or via a very
short spacer. Similar as it was done for the linearly polarized light, the effective
orientation potential ucirc acting on the azobenzenes can be recalculated to the
orientation potential acting on the backbone segments:

Ucirc(θ) = qm
V0

2
sin2(θ) = qm

V0

2
[1− (k̂ · u)]2 (3.3)

Here, θ is counted between the orientation of rigid segment and light propaga-
tion direction k. Further, sin(θ) is expressed through the scalar product between
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the unit vectors of light propagation k̂ = k/|k| and the orientation vector u of
the rigid segment. We remind that in the above equation m is the number of
azobenzenes in the backbone segment and q is the shape factor which defines
the direction of the backbone reorientation and its effectiveness.
As we discussed in Chapter 2, the azobenzene chromophores are attached pref-
erentially perpendicularly to the main chain which results in a negative shape
factor, q ≈ −0.5. This means that the main chains will reorient perpendicular to
the direction of azobenzene orientation. Therefore, the effective potential (3.3)
should reorient the main chains in the polarization plane. The reorientation of
the main chain results in appearance of light-induced stress. Further, in the
next section we focus on calculation of the time dependent light-induced stress.

3.2 Derivation of stress tensor
In this thesis, we model azopolymers as an ensemble of rigid rod-like (Kuhn)
segments. The internal stress induced in the ensemble of rod-like particles in
the presence of external potential Ueff is given by Equation (A) from Table
14.3-1 in the text book of R.B. Bird [97]:

τ = −3nkT ⟨uu⟩+ nktδ − n⟨u∂Ueff

∂u
⟩ (3.4)

Here, n is the number density of the rigid segments, each characterized by the
unit orientation vector u, and δ is the unit tensor. The angular brackets indi-
cate averaging over the ensemble of rigid segments. The time evolution of 2nd
order orientation tensor ⟨uu⟩, which describes an average orientation state of
the segments, is given by Equation (14.2-11) from the same book [97]:

∂

∂t
⟨uu⟩ = 1

3λ
δ − 1

λ
⟨uu⟩ − 1

6kTλ
⟨∂Ueff

∂u
u+ u

∂Ueff

∂u
⟩ (3.5)

Here, λ is the rotational time of the rigid segment in the absence of external
potential. It characterizes the relaxation of the 2nd order Legendre polynomial
⟨P2(u(t)·u(0))⟩ = exp (−6Drt) [98], and is related to the rotation diffusivity Dr:

λ =
1

6Dr
=

πηL3

18kT (ln r + C)
(3.6)

Here, L and r are the length and aspect ratio of the rod-like particle; the con-
stant C = 0.662 + 0.917/r− 0.05/r2 takes into account the end-effect terms for
short rods [99]. Using parameters of the rigid segment L ≈ 3.52 nm and r ≈ 5.8
obtained for the side-chain azopolymer in Ref. [52], it can be shown that the
viscosity of the plastic flow η = Cηλ, where Cη is about 0.68 MPa.
It can be seen from Equations (3.4) and (3.5) that the orientation tensor is
symmetric, while a contribution to the stress tensor from the external potential,
given by the third term in Equation (3.4) is not necessarily symmetric. One

28



finds publications that claim this contribution should be also symmetric [100].
To simplify the analysis, in the present study it will be assumed that the stress
tensor is symmetric and Equation (3.4) can be rewritten as follows:

τ = −3nkT ⟨uu⟩+ nktδ + τ light (3.7)

The total internal stress τ takes into account the entropic contribution described
by the first two terms in the above equation. The third term τ light represents
the light-induced stress which is given by the following relation:

τ light = −n

2
⟨∂Ueff

∂u
u+ u

∂Ueff

∂u
⟩ (3.8)

Firstly, it can be seen from Equation (3.7) that in the absence of light, the sample
of amorphous azopolymer with initially isotropic orientation of side chains and
backbones (⟨uu⟩ = δ/3) is stress free. Secondly, a relatively high stress appears
in a sample of strongly oriented azopolymer due to the entropic contribution.
For example, for perfect uniaxial orientation along the x-axis, u2

x = 1, in the ab-
sence of light the tensile stress τtens = τxx−τyy has the magnitude of 3nkT [101].
Considering a typical number density of the azobenzenes n ≈ 1.0× 1021 cm−3,
the magnitude of tensile stress at room temperature, kT ≈ 4.1× 1021J, reaches
12 MPa. To be able to withstand such internal stress, the glassy azopolymer
should have the yield stress above this value. Indeed, tensile measurements of
azo-containing polyamides provide the yield stresses of 20 − 35 MPa, [83, 82,
56] quite close to our simple estimate.

Stress tensor calculations for linearly polarized light

The action of linearly polarized light on the rigid backbone segments is described
by the effective potential Ulin, see Equation (2.42). Its derivative over the unit
vector u is defined by the term:

∂

∂u
(Ê·u)2 = 2(Ê·u)(∂Ê · u

∂u
) = 2(Ê·u)Ê·(δ−uu) = 2(Ê·uÊ−Ê·uÊ·uu) (3.9)

To derive the above equation, we used that ∂
∂uu = δ − uu [97]. Thus, the

derivative of Ulin over u can be written as follows:

∂Ulin

∂u
= 2qmV0(Ê · uÊ − Ê · uÊ · uu) (3.10)

Multiplying Equation (3.10) by the unit vector u from the right and using the
tensor equalities (b · c)ad = a(b · c)d and ab : cd = a · db · c, we obtain:

∂Ulin

∂u
u = 2qmV0(Ê · uÊu− Ê · uÊ · uuu)

= 2qmV0(ÊÊ · uu− ÊÊ : uuuu)

(3.11)
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Multiplying Equation (3.10) by the unit vector u from the left and using the
tensor equalities a(b · c)d = a(c · b)d and ab : cd = a · db · c, we obtain

u
∂Ulin

∂u
= 2qmV0(uÊ · Êu− uÊ · uÊ · uu)

= 2qmV0(uu · ÊÊ − ÊÊ : uuuu)

(3.12)

Thus, the stress induced by the linearly polarized light is given by:

τ light = −n

2
⟨∂Ueff

∂u
u+ u

∂Ueff

∂u
⟩

= −nqmV0⟨uu · ÊÊ + ÊÊ · uu− 2ÊÊ : uuuu⟩
(3.13)

Taking the average from each of the three terms on the right hand side of Equa-
tion (3.13), we finally obtain:

τ light = −nqmV0(⟨uu⟩ · ÊÊ + ÊÊ · ⟨uu⟩ − 2ÊÊ : ⟨uuuu⟩) (3.14)

Here, the 2nd and 4th order orientation tensors ⟨uu⟩ and ⟨uuuu⟩ describe an
average orientation state of the ensemble of rigid backbone segments. Note, the
light-induced stress tensor can be concisely expressed as a contraction of the
orientation tensors with the dyadic product of light polarization Ê.

Stress tensor calculations for circularly polarized light

The action of circularly polarized light on the rigid backbone segments is de-
scribed by the effective potential Ucirc, see Equation (3.3). The derivative of
Ucirc over the unit vector u is defined by the term:

∂

∂u
[1− (k̂ · u)2] = −(k̂ · u)(k̂ · ∂

∂u
u) = −(k̂ · u)k̂ · (δ − uu)

= −(k̂ · uk̂ − k̂ · uk̂ · uu)
(3.15)

As this derivative has the same form as in Equation (3.9), we can immediately
write an expression for the stress induced by the circularly polarized light:

τ light = nqm
V0

2
(⟨uu⟩ · k̂k̂ + k̂k̂ · ⟨uu⟩ − 2k̂k̂ : ⟨uuuu⟩) (3.16)

Again we note that the light-induced stress tensor can be concisely expressed
as a contraction of the orientation tensors with the dyadic product of the light
propagation direction k̂.
Next, we focus on the time dependence of the orientation tensor ⟨uu⟩, which
leads to induction of light-induced stress in the azopolymer materials.
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3.2.1 Derivation of time-dependent orientation tensor
The light induced stress is time dependent, because the 2nd and 4th order ori-
entation tensors evolve with time. First we calculate the time evolution of ⟨uu⟩
and then show how the 4th order orientation tensor depends on it.

Linearly polarized light

By substituting Equations (3.11) and (3.12) into Equation (3.5), the time evo-
lution of ⟨uu⟩ can be written as follows:

∂

∂tλ
⟨uu⟩ = −qmV0

3kT
[⟨uu⟩ · ÊÊ + ÊÊ · ⟨uu⟩ − 2ÊÊ : ⟨uuuu⟩]− ⟨uu⟩+ δ

3
(3.17)

Circularly polarized light

Similarly, the time evolution of ⟨uu⟩ for circularly polarized light can be ob-
tained:

(3.18)
∂

∂tλ
⟨uu⟩ = qmV0

6kT
[⟨uu⟩ · k̂k̂ + k̂k̂ · ⟨uu⟩ − 2k̂k̂ : ⟨uuuu⟩]− ⟨uu⟩+ δ

3

To simplify the above equations, the time derivative has been defined in the
units of rotational time λ of the rigid segment. As it is already mentioned, this
time is related with the rotational diffusivity Dr. Importantly, after multiplying
the right hand sides of Equations (3.17) and (3.18) by 3nkT and comparing the
results with Equations (3.14) and (3.16), the total stress tensor can be directly
related to the time evolution of the 2nd order orientation tensor:

τ = 3nkT
∂

∂tλ
⟨uu⟩ (3.19)

This is so-called Giesekus form of the stress tensor [97], which will be used in
the following analysis, as it allows together with Equations (3.17) and (3.18)
straightforward calculation of the stress tensor.
Let us calculate the components of the orientation tensor for linearly polarized
light. Assuming the light is polarized in the x direction, Ê = (1, 0, 0), the dyadic
product of Ê is

ÊÊ =

 1 0 0
0 0 0
0 0 0

 (3.20)

The dyadic product of the unit orientation vector u is:
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uu =

 u2
x uxuy uxuz

uxuy u2
y uyuz

uxuz uyuz u2
z

 (3.21)

Its average defines the 2nd order orientation tensor, multiplying it from left and
right side by the dyadic product ÊÊ, we can write the following relation:

ÊÊ · ⟨uu⟩+ ⟨uu⟩ · ÊÊ =

 ⟨2u2
x⟩ 0 0

0 0 0
0 0 0

 (3.22)

Using the tensor equality ÊÊ : uuuu = Ê · uÊ · uuu and Ê · u = ux, we can
write the tensor product in simplified way:

ÊÊ : uuuu = u2
xuu (3.23)

Finally from Equation (3.17), we receive the time evolution of diagonal compo-
nents of orientation tensor.

∂

∂tλ
⟨u2

x⟩ = −2qmV0

3kT
[⟨u2

x⟩ − ⟨u4
x⟩]− ⟨u2

x⟩+
1

3
(3.24)

∂

∂tλ
⟨u2

y⟩ =
2qmV0

3kT
⟨u2

xu
2
y⟩ − ⟨u2

y⟩+
1

3
(3.25)

∂

∂tλ
⟨u2

z⟩ =
2qmV0

3kT
⟨u2

xu
2
z⟩ − ⟨u2

z⟩+
1

3
(3.26)

As mentioned in Chapter 2, the off-diagonal components of the orientation ten-
sor are null (⟨uxuy⟩ = ⟨uxuz⟩ = ⟨uyuz⟩ = 0).
Similarly, we can calculate the time derivative of components of the orientation
tensor under circularly polarized light. Let us assume that the circularly polar-
ized light is propagating in the z direction, k̂ = (0, 0, 1), with this the dyadic
product is:

k̂k̂ =

 0 0 0
0 0 0
0 0 1

 (3.27)

After multiplying the 2nd order orientation tensor from left and right side by
the dyadic product k̂k̂, we can write the following relation:
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k̂k̂ · ⟨uu⟩+ ⟨uu⟩ · k̂k̂ =

 0 0 0
0 0 0
0 0 ⟨2u2

z⟩

 (3.28)

Using the tensor equality k̂k̂ : uuuu = k̂ · uk̂ · uuu and k̂ · u = uz, we can
write the tensor product in simplified way:

k̂k̂ : uuuu = u2
zuu (3.29)

From Equation (3.18), the time evolution of diagonal components of the orien-
tation tensor can be obtained as follows:

∂

∂tλ
⟨u2

y⟩ = −qmV0

3kT
⟨u2

zu
2
y⟩ − ⟨u2

y⟩+
1

3
(3.30)

∂

∂tλ
⟨u2

x⟩ = −qmV0

3kT
⟨u2

zu
2
x⟩ − ⟨u2

x⟩+
1

3
(3.31)

∂

∂tλ
⟨u2

z⟩ =
qmV0

3kT
[⟨u2

z⟩ − ⟨u4
z⟩]− ⟨u2

z⟩+
1

3
(3.32)

It is not trivial to solve the above differential equations, as they contain the
components of 4th order orientation tensor. Thus, we propose to use suitable
closure approximations to reduce its order to components of 2nd order orienta-
tion tensor.

3.3 Closure approximations for orientation ten-
sor

For a quantitative analysis of the light-induced orientation process, it is neces-
sary to eliminate the 4th order terms ⟨u4

x⟩, ⟨u2
xu

2
y⟩, ⟨u2

xu
2
z⟩ from Equations (3.24),

(3.25), (3.26), (3.30), (3.31) and (3.32). Otherwise, it would not be possible to
solve the ordinary differential equations containing 4th order terms. To truncate
higher order terms in the ordinary differential equations, closure approximations
are usually applied. We will use the simplified closure approximations which pro-
vide nearly the same functional dependence as a more elaborated closure based
on the effective orientation potential [101]. In this section, we find out the best
suitable closure approximation for uniaxial and biaxial orientation order.
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3.3.1 Uniaxial orientation order
The light polarized in the x direction induces uniaxial order with the 2nd order
orientation tensor to be symmetric around x, which means ⟨u2

y⟩ = ⟨u2
z⟩. Hence,

the following relation can be written:

⟨u2
y⟩ = ⟨u2

z⟩ =
1− ⟨u2

x⟩
2

(3.33)

and we need to calculate only the time dependence of ⟨u2
x⟩. Later, ⟨u2

y⟩ and ⟨u2
z⟩

can be expressed in terms of ⟨u2
x⟩.

For the linearly polarized light, the closure approximation based on the effective
orientation potential Ulin has been introduced in ref. [101]. This closure agrees
well with the results of direct numerical calculations. It is based on the following
distribution function:

η(θ) =
1

z
exp (−Ulin) =

1

z
exp (−V0 cos

2(θ)) (3.34)

Here, z =
∫
η(θ) sin θdθ is the normalization factor. Using the above distribu-

tion function, the components of 2nd and 4th order orientation tensor can be
calculated as follows:

⟨un
x⟩ =

∫
cosn (θ)η(θ) sin θdθ, n = 2, 4 (3.35)

From the above equation, the dependence of 4th order term on the 2th order
term can be established numerically, as shown in Figure 3.2. The moments
corresponding to different limits of orientation potential strength are:

• a) V0 → −∞, ⟨u2
x⟩ = 1 and ⟨u4

x⟩ = 1

• b) V0 → 0, ⟨u2
x⟩ = 1/3 and ⟨u4

x⟩ = 1/5

• c) V0 →∞, ⟨u2
x⟩ = 0 and ⟨u4

x⟩ = 0

It can be seen that the exact solutions for the perfect uniaxially oriented state,
isotropic state and perfect orientation in the plane perpendicular to the polar-
ization direction x are reproduced by cases a), b) and c), respectively. However,
it is difficult to use this closure in the differential equations (3.24) and (3.32) ,
as it does not provide analytical solution for the 4th order terms. Therefore, we
focus further on finding a simpler closure approximation which on one side fits
well the results of closure based on the effective orientation potential but on the
other side can be represented by analytical expression. With this purpose, next
in this chapter, we define and compare the two types of closure approximations
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Figure 3.2: Comparison of the linear and hybrid closure approximations with the closure
based on the effective orientation potential, as assigned in the legend.

which are linear and hybrid closure approximations.

• Linear closure approximation

In the linear closure approximation a linear fit connects the exact solution
points ⟨u2

x⟩ = 0 , 1/3 , 1 for three different cases discussed above.

⟨u4
x⟩ =

{
3
5 ⟨u

2
x⟩, ⟨u2

x⟩ < 1
3

6
5 ⟨u

2
x⟩ − 1

5 , ⟨u2
x⟩ ≥ 1

3

(3.36)

Using the above equation, ⟨u4
x⟩ dependence on ⟨u2

x⟩ is plotted, see the
yellow line in Figure 3.2.

• Hybrid closure approximation

The name hybrid closure suggests that this approximation is a combina-
tion of linear and quadratic terms. In particular, we will use the following
expression:

⟨u4
x⟩ =

3

5
⟨u2

x⟩2 +
2

5
⟨u2

x⟩ (3.37)

Using the hybrid closure approximation, ⟨u4
x⟩ depending on ⟨u2

x⟩ is plotted,
see the red line in Figure 3.2.

Further, we compare linear and hybrid closure approximations with the closure
approximation corresponding to the effective potential. It can be seen from
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Figure 3.2 that the hybrid closure is the better fit to the orientation potential
closure. Thus, we choose to use the hybrid closure approximation for the 4th

order terms, such as ⟨u4
x⟩, ⟨u4

y⟩ and ⟨u4
z⟩.

3.3.2 Biaxial orientation order
When the azopolymer segments oriented along the x axis are irradiated with the
light polarized in the y direction, the initial orientation tensor becomes asym-
metric around the polarization of light y. This results in biaxial orientation
order and the time evolution of ⟨u2

x⟩ and ⟨u2
z⟩ can not be written in terms of

⟨u2
y⟩, as it is done for the uniaxial orientation order (3.33). It is required to

truncate all 4th order orientation tensor components like ⟨u2
yu

2
z⟩ and ⟨u2

xu
2
y⟩ to

2nd order terms. In this section, we develop additional closure approximations
for the biaxial orientation order.
For unit orientation vector the following relation is always valid:

u2
x + u2

y + u2
z = 1 (3.38)

First squaring and then averaging Equation (3.38), the following expression is
obtained:

⟨u4
x⟩+ ⟨u4

y⟩+ ⟨u4
z⟩+ 2⟨u2

xu
2
y⟩

+ 2⟨u2
yu

2
z⟩+ 2⟨u2

xu
2
z⟩ = 1

(3.39)

Alternatively, first averaging and then squaring Equation (3.38), the following
relation can be written:

⟨u2
x⟩2 + ⟨u2

y⟩2 + ⟨u2
z⟩2

+2⟨u2
x⟩⟨u2

y⟩
+ 2⟨u2

y⟩⟨u2
z⟩+ 2⟨u2

x⟩⟨u2
z⟩ = 1

(3.40)

Using Equations (3.39) and (3.40), we can write:

⟨u4
x⟩+ ⟨u4

z⟩ =
3

5
⟨u2

x⟩2 +
2

5
⟨u2

x⟩+
3

5
⟨u2

z⟩2

+
2

5
⟨u2

z⟩+
6

5
⟨u2

x⟩⟨u2
z⟩ − 2⟨u2

xu
2
z⟩

(3.41)

The above equation can be split in two parts by noticing that equal correction
terms are added to ⟨u4

x⟩ and ⟨u4
z⟩ from the hybrid closure approximation (3.37):

⟨u4
x⟩ =

3

5
⟨u2

x⟩2 +
2

5
⟨u2

x⟩+
3

5
⟨u2

x⟩⟨u2
z⟩ − ⟨u2

xu
2
z⟩ (3.42)
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and
⟨u4

z⟩ =
3

5
⟨u2

z⟩2 +
2

5
⟨u2

z⟩+
3

5
⟨u2

x⟩⟨u2
z⟩ − ⟨u2

xu
2
z⟩ (3.43)

Substituting Equations (3.40) and (3.39) into Equation (3.42) we get:

⟨u2
xu

2
y⟩ =

3

5
⟨u2

x⟩⟨u2
y⟩ (3.44)

Substituting Equations (3.40) and (3.39) into Equation (3.43) we get:

⟨u2
yu

2
z⟩ =

3

5
⟨u2

y⟩⟨u2
z⟩ (3.45)

Let us check the validity of the obtained closure approximations for the case of
initial isotropic orientation with ⟨u2

x⟩ = ⟨u2
y⟩ = ⟨u2

z⟩ = 1
3 . From Equation (3.44)

we get:

⟨u2
xu

2
y⟩ =

1

15
(3.46)

On the other side, the hybrid closure (3.37) can be used to calculate ⟨u2
xu

2
y⟩ for

the case of initial isotropic orientation:

⟨u2
xu

2
y⟩ =

⟨u2
x⟩ − ⟨u4

x⟩
2

=
1

15
(3.47)

Comparing Equations (3.46) and (3.47), it can be seen that the proposed closure
approximations for the biaxial orientation order provide the correct result for
initial isotropic state. Similarly, it can be shown that they are valid for descrip-
tion of two other limiting cases with ⟨u2

y⟩ = 0, 1.

3.4 Calculation of orientation tensor
To solve the system of differential Equations (3.24) - (3.26) and (3.30) - (3.32),
the 4th order terms are truncated to 2nd order terms using the closure approx-
imations defined above. The time dependent components of the orientation
tensor for the uniaxial and biaxial order are calculated in this section.

3.4.1 Uniaxial orientation order
For the light linearly polarized in the x direction, the time derivative of the
orientation tensor components is represented by Equations (3.24) - (3.26). As
there is a symmetry in diagonal components of initial orientation tensor around
x axis, as shown in Equation (3.33), it is enough to solve Equation (3.24) using
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the hybrid closure approximation (3.37). The evolution of ⟨u2
x⟩ is described by

the 2nd order differential equation [101]:

∂

∂tλ
⟨u2

x⟩ = −2qmV0

5kT
[⟨u2

x⟩ − ⟨u2
x⟩2]− ⟨u2

x⟩+
1

3
(3.48)

For V0 > 0, the solution for the time-dependent xx orientation tensor compo-
nent under the linearly polarized light is as follows:

⟨u2
x⟩(t) =

u1 − u2
u0−u1

u0−u1
ea(u1−u2)t

1− u0−u1

u0−u1
ea(u1−u2)t

(3.49)

Here, u0 = ⟨u2
x⟩(0) is the initial value in the absence of light and

u1,2 =
1

2
+

1

2Vr
± 1

2

√
(1 +

1

Vr
)2 − 4

3Vr
(3.50)

Here, u1 and u2 are the roots of the quadratic equation defined by the right
hand side of Equation (3.48). Both, the reduced potential Vr = 2qmV0

5kT and
the exponent a = Vr

λ , introduced in Equations (A.2) and (3.50), take negative
values for side-chain azopolymers because of the negative shape factor q. This
solution provides the stationary orientation ⟨u2

x⟩st = u1 at t → ∞, when both
exponential terms in Equation (3.50) take zero values. As can be seen from
Equation (A.2), u1 → 1 under strong irradiation, when Vr → −∞, and the
stationary state of the ensemble of rigid backbone segments approaches a perfect
uniaxial orientation along Ê||x̂. As ⟨u2

x⟩ increases with time by higher rate under
larger reduced potential strength, the saturation point is attained at smaller
time values, as shown in Figure 3.3(a).
Similarly the orientation tensor for circularly polarized light can be expressed

as:

⟨u2
z⟩(t) =

u1 − u2
u0−u1

u0−u2
ea(u1−u2)t

1− u0−u1

u0−u2
ea(u1−u2)t

(3.51)

Here, u0 = ⟨u2
z⟩(0) is the initial value in the absence of light and the roots are

u1,2 =
1

2
− 1

Vr
± 1

2

√
(1− 2

Vr
)2 +

8

3Vr
(3.52)

3.4.2 Biaxial orientation order
For the light linearly polarized in the y-direction, the time derivative of the
orientation tensor with ⟨u2

x⟩ ̸= ⟨u2
z⟩ is represented by Equations (3.24) - (3.26).
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Figure 3.3: Time evolution of the orientation tensor components: a) ⟨u2
x⟩ and b) ⟨u2

y⟩ = ⟨u2
z⟩

for different strengths of the reduced potential Vr. Time is expressed in the units of λ,
rotational time of the rigid segments.

Applying the closure approximations (3.37) - (3.45), the orientation tensor com-
ponents can be calculated by solving the following system of differential equa-
tions:

∂

∂tλ
⟨u2

y⟩ = −2qmV0

5kT
[⟨u2

y⟩ − ⟨u2
y⟩2]− ⟨u2

y⟩+
1

3
(3.53)

∂

∂tλ
⟨u2

x⟩ =
2qmV0

5kT
⟨u2

x⟩⟨u2
y⟩ − ⟨u2

x⟩+
1

3
(3.54)

∂

∂tλ
⟨u2

z⟩ =
2qmV0

5kT
⟨u2

y⟩⟨u2
z⟩ − ⟨u2

z⟩+
1

3
(3.55)

Equation (3.53) for ⟨u2
y⟩ can be solved analytically, similar as it was done for

⟨u2
x⟩ in Equation (3.48). The time dependent solution for ⟨u2

y⟩ can be written
as follows:

⟨u2
y⟩(t) =

u1 − u2
u0−u1

u0−u1
ea(u1−u2)t

1− u0−u1

u0−u1
ea(u1−u2)t

(3.56)

Here, u0 = ⟨u2
y⟩(0) is the initial value in the absence of light and the roots u1,2

are given by Equation (3.50).
After that, ⟨u2

x⟩ and ⟨u2
z⟩ in Equations (3.54) and (3.55) are solved numerically

using Euler’s forward method:

⟨u2
x⟩(t+ dt) = ⟨u2

x⟩(t) + dt
∂

∂tλ
⟨u2

x⟩ (3.57)
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Figure 3.4: All three components of the orientation tensor corresponding to maximum stress
under the SS interference pattern for τxx,0 = 25 MPa.

⟨u2
z⟩(t+ dt) = ⟨u2

z⟩(t) + dt
∂

∂tλ
⟨u2

z⟩ (3.58)

The exemplary solution for biaxial orientation order is represented in Figure
3.4. The initial conditions are ⟨u2

x⟩ = 0.74, ⟨u2
y⟩ = ⟨u2

z⟩ = 0.13. It can be seen
that in the case of biaxial order, the orientation component ⟨u2

y⟩ in the direction
of light polarization increases and approaches to one, while two other diagonal
components decrease from their different initial values. Hence, we observe here
the reorientation transition: the segments, initially oriented in the x direction,
gradually reorient in the light polarization direction y.
The light-induced stress tensor can be calculated from the orientation tensor, as
shown in Equation (3.19). To implement the light-induced stress, it is necessary
to choose a proper simulation tool and to define the diverse material properties.
With this purpose, we dedicate the next chapter to modeling the azopolymer
material samples.
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Chapter 4

Viscoplastic modeling of
glassy azopolymers

In this present chapter, we focus on defining the azopolymer material model,
which is necessary to implement the light-induced stress for different light po-
larizations and intensities. The glassy azopolymers remain in the solid state
under illumination at moderate laser intensities, 0.1 − 0.2 W/cm2 [56, 83, 82].
This is especially true for the azopolymers, whose glass transition temperature
is above 373 K [37]. Therefore, description of the light-induced deformation in
glassy azo-materials should be based on a viscoplastic material model [101, 102,
103].
In this thesis we use the finite element modeling software ANSYS to model the
viscoplastic response of glassy azopolymers under the light-induced stress. In
particular, we choose Perzyna option which is suitable for modeling the vis-
coplastic materials under external applied stress.

4.1 Viscoplastic material modeling
Glassy azopolymers are viscoplastic materials and can be modelled as the Bing-
ham solid [101, 103, 102]. It is a material that can support a finite stress elasti-
cally without flow and which flows with constant viscosity when the stresses are
sufficiently large. The Bingham solid is defined by the following equation [104]:

τ =

{
2Gϵel, τeq ≤ τyield

τ yield + 2ηϵ̇pl, τeq > τyield
(4.1)

Here, τeq is the equivalent stress, G is the shear modulus of the azopolymer, ϵel
is the elastic strain tensor, τyield is the yield stress of the azopolymer, η is the
viscosity of the plastic flow and ϵ̇pl is the rate of plastic strain tensor. Above
the yield stress the total strain in the azopolymer is calculated as the sum of
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elastic and true plastic strains:

ϵ = ϵel + ϵpl (4.2)

where ϵel = τ yield/E and ϵpl =
∫
ϵ̇pldt. A Young’s modulus E = 2G is about 2

GPa and the yield stress for azopolymers is of the order of 10 MPa [94]. Accord-
ingly, an instantaneous elastic strain ϵel should be considerably smaller than the
plastic strain accumulated in the process of photodeformation.
It is assumed that the material yields when the stress state reaches the yield
surface and further loading causes plastic deformation. The yield surface is com-
monly defined for isotropic polymers by the von Mises criterion τeq − τyield = 0
with the von Mises equivalent stress:

τeq =

√
3

2
τ : τ (4.3)

The above relation can be written in terms of the stress tensor components:

τeq =

√
1

2
((τ11 − τ22)2 + (τ22 − τ33)2 + (τ33 − τ11)2 + 6(τ212 + τ223 + τ231)) (4.4)

Using Bingham solid model, the plastic strain corresponding to the equivalent
stress can be calculated for the homogeneous stress distribution. In the case
when the light-induced stress tensor has spatial dependence, it is not possible
to calculate the plastic strain analytically. Therefore, the light-induced deforma-
tions in the azopolymer material are modelled using a finite element modeling
software ANSYS.

4.2 Material modeling in ANSYS
The ANSYS (Analysis System) software package is well suited for predicting ma-
terial behaviour under complex mechanical deformations. In this work, Release
21.1 of ANSYS ©Academic Research Mechanical is used. To model azopoly-
mers as viscoplastic solids, we apply the Perzyna option provided in the ANSYS
software:

ϵ̇pl = γ
( τeq
τyield

− 1
)1/m

(4.5)

Here, ϵ̇pl is the rate of equivalent plastic strain and γ = τyield/3η is the viscosity
parameter which is related to the viscosity η in Equation (4.1). The Perzyna
option with m = 1 describes the Bingham solid model. This option can be
applied in two ways, which are mechanical APDL (ANSYS Parametric Design
Language) and ANSYS workbench, to calculate the plastic deformation in the
material. In both cases the command to switch on the Perzyna option is "Tb,
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Figure 4.1: Dependence of stress on strain in the bilinear isotropic hardening (BISO) model:
E is the Young’s modulus and Et is the tangent modulus.

rate".
Further, the material is characterised by the BISO command in ANSYS, which
is bilinear isotropic hardening. It is defined via two parameters: the initial yield
stress τyield,ini and the tangent modulus Et which is the slope of stress-strain
curve above the yield stress, see Figure 4.1. The value of τyield at any point of
time is:

τyield = τyield,ini + Etϵpl (4.6)

The only information known about the yield stress of glassy azopolymers is its
magnitude which is about 20−30 MPa [94]. Due to that, we prefer to choose the
yield stress to be constant under the influence of external applied stress. From
Equation (4.6) it can be seen that the yield stress τyield grows with the plastic
strain with the slope equal to the tangent modulus Et. To keep the yield stress
constant, we choose the value of the tangent modulus Et four orders of mag-
nitude smaller than the initial yield stress: τyield,ini = 10 MPa and Et = 10−3

MPa. Even at large plastic strains, for example at ϵpl = 10, the yield stress
τyield remains constant for the chosen values of τyield,ini and Et. Also, we define
the Young’s modulus (E = 103 MPa) and Poisson ratio (= 0.49) with the help
of MP,Ex and MP,NUXY commands, respectively [105].
As mentioned in Chapter 3, the light-induced stress has time dependence which
makes the rate of change of plastic strain also time dependent. The time de-
pendent stress can be easily implemented in ANSYS for the homogeneous stress
field, but it is not straightforward to implement the time as well as spatially
dependent light induced stress field. For that, we collaborated with Dr. Hen-
drik Donner, who is responsible for the ANSYS maintenance and professional
development at the CADFEM firm. It was suggested to use Userthstrain sub-
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routine and explained in detail how to implement the spatially as well as time
dependent light-induced stress in terms of thermal strain.

4.3 Application of light-induced stress in ANSYS
Exterior excitations like light-induced and thermal stresses can be incorporated
in ANSYS using external subroutines like Usermat and Userthstrain. Implemen-
tation of Userthstrain subroutine is more simple and suitable for the application
of light-induced stress in ANSYS. The main advantage of this subroutine is a
simple combination with natively implemented material models via mechanical
APDL.
The main idea of Userthstrain lies in the decomposition of the total strain tensor
into mechanical ϵmech and thermal ϵth strain tensors:

ϵ = ϵmech + ϵth (4.7)

Under suppressed deformations ϵ = 0, ϵmech = −ϵth. For isotropic linear elastic
materials the light-induced stress can be written as follows:

τ = −Eϵth = Eϵmech (4.8)

Hence, it can be concluded that a suitable thermal strain ϵth can generate me-
chanical deformations which correspond to the light-induced stress.
In order to incorporate inelastic material properties, like plasticity, the total
strain tensor for viscoplastic materials is decomposed by ANSYS as follows:

ϵ = ϵel + ϵth + ϵpl (4.9)

For the inelastic case, under suppressed deformations ϵ = 0, ϵth = −(ϵel + ϵpl).
For the viscoplastic materials, the thermal strain is chosen in the Userthstrain
subroutine with the help of Perzyna option (see Equation (4.5) ) in such a way
that it produces the mechanical deformations prescribed locally by light-induced
stress. With this implementation, the time dependent thermal strain can be de-
fined at each material point. In this case, the temperature is used as a dummy
variable to characterize the time range.
The final stress state depends not only on the applied light-induced stress but
also on the boundary conditions. The different boundary conditions can pro-
duce different stress fields, as explained in Figure 4.2. It is very important to
understand in ANSYS calculations that the final mechanical stress field, elastic
and plastic strain fields are the results of modeling procedure at chosen bound-
ary conditions, but not the initial input fields. Contrary, the external fields such
as gravitational, magnetic or light-induced stress field, are the examples of the
initial input fields.
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Figure 4.2: Distribution of stress fields τ in the block a) hanging at the ceiling and b) lying
on the ground, under the effect of gravitational force mg. Here, l is the length of the block,
m is the mass and ρ is the density of the block.

Userthstrain is linked to mechanical APDL via some commands, which set ma-
terial properties and state variables. State variables are needed to store values
at previous time steps. Necessary material properties, for example, the shear
modulus or the yield stress, can be put into the Mechanical APDL with the help
of commands: TB, TBDATA, MP. The command INISTATE can prescribe ini-
tial stresses, strains, state variables and plastic strains, etc. Using INISTATE,
spatially inhomogeneous stress field can be defined (for e.g. the stress field which
appears under light interference patterns). The magnitudes of state variables
can be defined node-wise, element-wise, for each Gauss point, and with respect
to different coordinate systems.
To summarise, with the help of Userthstrain subroutine, the locally varying
stress field corresponding to light-induced stress can be implemented in ANSYS
using different Mechanical APDL commands under the influence of suitable
boundary conditions.
Further, the material model should be calibrated with respect to the exact ana-
lytical solutions by adjusting the mesh and time step size. For viscoplastic ma-
terials, we mesh the sample with tetrahedral elements. In the next chapter, we
focus on implementation of light-induced stress in ANSYS under homogeneous
light intensity. For this case, the light-induced deformations can be calculated
exactly and can be used to calibrate the ANSYS results. After that, the mod-
eling results are compared with the experimental observations in azopolymer
square posts under homogeneous light illuminations.
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Chapter 5

Directional deformations
under homogeneous light
illumination

The photodeformation phenomenon of azopolymers under light illumination has
been studied for the last three decades. Several interesting observations are
made when samples are irradiated with polarized light, as discussed in Chapter
1. In this chapter we focus on one of these observations, which is the experi-
ment done by Lee et al. [37], as shown in Figure 5.1. Here, the epoxy-based
azopolymer square post is deformed in the presence of horizontally, vertically
and circularly polarized light. It can be seen that deformations are directional:
for linearly polarized light the post elongates in the direction of light polarization
and for circularly polarized light the post deforms radially in the polarization
plane.
The explanation of these deformations will be provided in this chapter using

the orientation approach.1Because the deformations under homogeneous light
illumination can be calculated analytically, we will use this system as a reference
system to calibrate the material model. Later in the next chapters, using the

Figure 5.1: Deformations of a) the initial square post in the presence of homogeneous
light intensity. Deformed post in the presence of b) vertically polarized light, c) horizontally
polarized light and d) circularly polarized light. Modified and reproduced from Ref. [37].
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Figure 5.2: The time dependent components of the light-induced stress tensor at different
strengths of the reduced potential Vr = −5,−10,−15: a) τxx for horizontally and b) τzz for
circularly polarized light.

same calibration, more complicated inscriptions can be modelled, for example
surface relief gratings.

5.1 Light-induced stress tensor
The light-induced stress tensor for linearly and circularly polarized light is de-
rived in Chapter 3 starting from initial isotropic state. For the light polarized
in x direction, the τxx component of light-induced stress can be calculated using
Equations (3.19) and (A.2). Additionally, for circularly polarized light, the τzz
component of light-induced stress can be calculated using Equations (3.19) and
(3.51). These components are presented in Figure 5.2 for different strengths
of the reduced potential Vr = −5,−10,−15. It can be seen that for linearly
polarized light τxx component of the stress tensor first experiences a jump at
t = 0 and then decreases with time. On the other side, for circularly polarized
light τzz component of the light-induced stress tensor is negative and its magni-
tude decreases with time. Further in this section, we will provide the analytical
solutions for the plastic deformations developing under linearly and circularly
polarized light.

5.1.1 Linearly polarized light
In the experiment discussed earlier in the current Chapter, see Figure 5.1, two
kinds of linearly polarized light are used, horizontally and vertically polarized

1The results presented in this chapter are published in Yadav et al. [101]
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Figure 5.3: The time dependent true plastic strain for the linearly polarized light at different
magnitudes of initial equivalent stress τeq . τyield = 10 MPa, λ = 50∆t.

light. We assume that the light polarization for horizontally polarized light is
in the x direction and for vertically polarized light it is in the y direction.

Horizontally polarized light:

For the light linearly polarized in the x-direction, the yy and zz components of
the 2nd order orientation tensor ⟨uu⟩ are equal and can be calculated from its
xx component, as shown in Equation (3.33). As discussed in Chapter 3, the off-
diagonal components of ⟨uu⟩ are zero. Using the Giesekus equation (3.19), the
stress tensor can be calculated and it can be shown that τyy = τzz = −τxx/2.
Note that the trace of the stress tensor is zero: τxx + τyy + τzz = 0.
Hence, the stress tensor for light polarized in the x direction can be written as
follows:

τ =

 τxx 0 0
0 − τxx

2 0
0 0 − τxx

2

 (5.1)

Vertically polarized light:

For the light linearly polarized in the y direction, the xx and zz components of
2nd order orientation tensor ⟨uu⟩ are equal. Similar to the light polarized in
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Figure 5.4: The time dependent true plastic strain for the circularly polarized light at
different equivalent stress τeq . τyield = 10 MPa, λ = 50∆t.

the x direction, the light-induced stress tensor can be calculated as follows:

τ =

 − τyy

2 0 0
0 τyy 0
0 0 − τyy

2

 (5.2)

The plastic strain for viscoplastic materials can be calculated analytically using
Equation (4.1) for different magnitudes of the equivalent stress τeq. For uniax-
ially deformed sample, τeq is equal to the magnitude of the tensile stress. In
particular, for horizontally polarized light τeq =| τxx−τyy |= 3 | τxx | /2. For the
constant applied stress, the plastic strain will linearly increase with time that
makes the material to deform infinitely without stopping. On the other side, for
azopolymers the light-induced stress is time dependent, see Figure 5.2(a). The
analytically calculated true plastic strain (ϵpl =

∫
ϵ̇pldt) is presented in Figure

5.3 for the following values of material parameters: yield stress τyield = 10 MPa,
γ = (10∆t)−1 and the rotational time λ should be about 50∆t, where ∆t is the
measure of time scale, ca. 10 − 60 s. The true plastic strain is zero for the
equivalent stresses less than or equal to the yield stress τyield. It is positive (=
sample elongates) and increases with time with the slope proportional to the
magnitude of initial equivalent stress. Later on, the true plastic strain tends to
saturate.
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Figure 5.5: The dependence of stopping time on the initial equivalent stress when the
azopolymer sample is illuminated with linearly (blue) and circularly (red) polarized light.

5.1.2 Circularly polarized light
For circularly polarized light propagating in the z-direction and the polarization
vector rotating in the xy plane, the stress tensor can be written as follows:

τ =

 − τzz
2 0 0
0 − τzz

2 0
0 0 τzz

 (5.3)

The equivalent stress for circularly polarized light is: τeq = 3 | τzz | /2. The
analytically calculated true plastic strain is zero for the stresses less than the
yield stress and it is negative (= sample contracts) for larger stresses, as shown
in Figure 5.4. At short times, the magnitude of plastic strain increases linearly
with the slope proportional to the magnitude of initial equivalent stress. At
longer times, the true plastic strain tends to saturate, which means the sample
stops to deform.

Stopping time

For linearly and circularly polarized light the equivalent stress depends on the
magnitude of τxx and τzz components, respectively. As discussed before, these
components of the light-induced stress tensor vanish with time, as shown in Fig-
ure 5.2. Correspondingly, the equivalent stress in the both cases decreases with
time. The material stops to deform at the moment when the equivalent stress
becomes equal to the yield stress (as described in the viscoplastic modeling part
in Chapter 4). This time, at which the deformations stop, we call the stopping
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Figure 5.6: The dependence of stationary plastic strain on the initial equivalent stress when
the azopolymer sample is illuminated with linearly (blue) and circularly (red) polarized light.

time tstop and represent it in Figure 5.5.
The stopping time for linearly polarized light is larger than for circularly po-
larized light at the same equivalent stress. This is due to the fact that the
magnitude of initial equivalent stress |τeq|= nkTVr for the linear polarization
and |τeq|= nkTVr/2 for the circular polarization. Thus, at the same equivalent
stress, the value of reduced potential Vr is twice larger for the circular polar-
ization. A larger Vr results in a faster drop of the light-induced stress, which
reaches the value of yield stress at smaller tstop.
It is clearly seen from Figure 5.5 that at the same initial equivalent stress the
value of tstop is considerably smaller for the circularly polarized light and hence
the sample deformation is diminished. Further, the stationary plastic strain is
compared for the both cases. It can be seen from Figure 5.6 that the stationary
plastic strain for linearly polarized light is larger than for the circularly polar-
ized light at the same equivalent stress. With this, it can be predicted that the
sample will deform much more under linearly polarized light.
Fortunately, the directional photodeformations under homogeneous light illu-

mination can be calculated analytically. However, it can not be done for the
complex interference patterns. With this purpose, in the next section, we will
optimize the ANSYS modeling in correspondence to the analytical results by
calibrating the time step and the mesh size.
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(a) (b)

Figure 5.7: ANSYS undeformed square post: (a) 3D view of 1/8 of the post and (b) top
view.

5.2 Cuboid azopolymer sample
An azopolymer square post irradiated with linearly and circularly polarized
light experiences mechanical deformation in the polarization and propagation
direction, respectively, see Figure 5.1. Here, we simulate the deformations in
a square post for both polarizations using the ANSYS software. The height of
the post is taken the same as its length. Because of symmetry, it is enough to
consider only the 1/8 of the original post, the 3D view of which is shown in
Figure 5.7 (a). Symmetric boundary conditions are used here, which restrict
the three connected faces of the cube sample to displace in the direction nor-
mal to the surface. The edge length of cubical sample in ANSYS is 10 µm.
The parameters used in ANSYS modeling are Poisson’s ratio= 0.49, yield stress
τyield = 10 MPa, tangent modulus = 103 Pa, γ = 0.1 s−1. The mesh size and
the time step size are calibrated below.

Calibration

We compare the analytically calculated plastic strain with the plastic strain ob-
tained in ANSYS for the square post under homogeneous intensity distribution.
The time dependent plastic strains are presented in Figure 5.8 (a) for different
time step sizes at the same mesh size, i.e. 0.5 µm. Very good fits with the
analytical result are achieved for the time steps less than or equal to 0.1 µm.
This step is valid for the whole range of applied stresses. Further, the mesh size
is calibrated for the highest applied initial equivalent stress of 50 MPa and it
can be seen from Figure 5.8 (b) that for the mesh sizes smaller than or equal
to 1 µm, the plastic strains from ANSYS coincide with the analytical result.
Therefore, the mesh size can be taken ≤ 1 and the time step size can be taken
≤ 0.1∆t for all the calculations in ANSYS.
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Figure 5.8: Plastic strain with respect to time a) for τeq = 30 MPa with different time step
sizes at 0.5 µm mesh size, b) for τeq = 50 MPa with different mesh sizes at the time step
0.1∆t.

5.2.1 Effect of linearly polarized light
The positive value of plastic strain means that the sample elongates along the
light polarization. The magnitude of elongation can be calculated as:

l/l0 = exp(ϵ) ≈ exp(ϵpl) (5.4)

Here, l0 and l are the edge length of the square post in the absence and presence
of illumination. As we discussed in Chapter 4, the elastic strain is considerably
smaller than the accumulated plastic strain and can be neglected.
Figures 5.1 (b, c) and 5.9 show the end state of a plastically deformed post under
linearly polarized light in the experiment and when simulated with ANSYS,
respectively. The post is elongated more than twice of its original length along
the light polarization till the moment tstop ≈ 5∆t at τeq = 30 MPa. The
magnitude of elongation is comparable with that observed for the vertical and
horizontal polarizations in the experiment, see Figure 5.1 (b, c).

5.2.2 Effect of circularly polarized light
Under circularly polarized light it was observed that there is no plastic deforma-
tion if the initial equivalent stress is less than or equal to τyield = 10 MPa, see
Figure 5.4. Above the yield stress, the plastic strain with negative values devel-
ops. This means that the sample contracts along the light propagation direction
and expands in the plane perpendicular to it. The magnitude of expansion can
be calculated as:

53



(a) (b)

Figure 5.9: Stationary deformation of 1/8 of the square post in the presence of linearly polar-
ized light: (a) 3D view and (b) the top view shows the elongation along the light polarization
l/l0 = 2.19, τeq = 30 MPa.

l/l0 = exp(ϵ/2) ≈ exp(ϵpl/2) (5.5)

The end state of plastically deformed post is shown in Figure 5.10 for circularly
polarized light. The theoretical prediction agrees with the experimental results
by Lee et al. [37], as shown in Figure 5.1 (d) .

Conclusions

Comparing the deformed posts in Figures 5.1, 5.9 and 5.10, it can be concluded
that the photo-induced deformations under linearly and circularly polarized
light can be well explained using the proposed orientation approach. In accor-
dance with the experiment, under linearly polarized light, the cube elongates
in the direction of light polarization by forming a cuboid. On the other side,
under circularly polarized light the post contracts in the direction of light prop-
agation and expands in the polarization plane. The cross-section of simulated
post maintains its square form under light irradiation, while the cross-section
of real post transforms from a square to a circular form. Although the square
has rounded edges, it should deform keeping its original form in the absence of
surface tension. To understand the appearance of circular cross-section, it is im-
portant to note that the light intensity employed in the experimental study was
rather high: 0.6W/cm2. This is much higher than the estimate of 0.1W/cm2,
after which the photothermal effect starts to play an essential role [106]. There-
fore, we expect that the temperature of the post irradiated with the circularly
polarized light gradually increases with the exposure time. In the beginning of
irradiation, the glassy azopolymer post deforms accordingly to the light-induced
stresses caused by the reorientation of polymer backbones. However, at longer
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(a) (b)

Figure 5.10: Stationary deformation of 1/8 of the square post in the presence of circularly
polarized light: (a) 3D view and (b) the top view shows the expansion perpendicular to the
light propagation direction l/l0 = 1.23, τeq = 50 MPa.

exposure times, the post becomes heated above the glass transition tempera-
ture, where it starts to soften considerably and the surface tension forces come
into play. This would explain why the cross-section attains a circular form after
5 min irradiation with the intensity of 0.6W/cm2. A similar softening effect
of individual azopolymer pillars under a long laser exposure has been reported
in Ref. [107]. Why the posts irradiated with the vertically and horizontally
polarized light show the softening effects only at the short edges can be possibly
explained by the following consideration. At the same light intensity, both the
light-induced stress and the plastic strain are twice larger for the linear polar-
ization than for the circular polarization. Hence, the conversion of light power
into the mechanical power P = τ · ϵpl should be approximately four times less
effective for the circular polarization. As a result, much more energy is con-
verted into heat and this could lead to pronounced softening observed for the
irradiation with circularly polarized light. No softening effect has been observed
for the same azopolymer irradiated with 10mW/cm2 [108].
In the next chapter, we focus on modeling the deformations under spatially
dependent intensity interference patterns. For that, we use the ANSYS model
which has been calibrated in the current chapter.
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Chapter 6

Stripe patterns under
Gaussian distributed light
intensity

In this chapter, using the orientation approach, we give the theoretical interpre-
tation of the experiment done by Ambrosio et al. [51]. This experiment shows
that the surface deformations differ depending on the direction of movement of
the laser beam with respect to the polarization direction, see Figure 6.1. When
the laser beam is moved along the polarization direction, the formation of pro-
trusions was observed. In the case when the laser beam is moved perpendicular
to the polarization direction, the formation of grooves was observed.
The laser beam represents a light source with Gaussian distributed intensity. As
we have discussed in the last chapters, the light-induced stress field is directly
proportional to the light intensity and can be calculated using the orientation
approach [101]. Implementing the Gaussian distributed stress field, the plastic
deformations can be obtained using the ANSYS software and compared with the
experimental results. Additionally, the effect of beam focusing on the strength
of deformations is checked.1

6.1 Strongly focused beam
The laser beam has Gaussian distributed intensity which is maximum at the
center of the beam and rapidly decreases away from the center:

I(x, y) = I0 exp
(
− 2

(x− a)2 + (y − b)2

w2

)
(6.1)

1The results presented in this chapter are published in Yadav et al. [103].
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Figure 6.1: The laser beam is represented by the green stick moved in the y-direction (shown
by the dotted red line). The formation of a) a groove and b) a protrusion is observed in the
thin polymer films for light polarized in the x and y direction, respectively [109, 103].

Here, I0 is the intensity at the beam center (x = a, y = b) and w is the beam
radius at which the intensity falls to the 1/e2 of its maximal value I0.
The total intensity for a particular laser beam is considered as constant, ir-
respective how strongly is the beam focused. The strength of beam focusing
depends on the beam radius: the laser beam is more focused when the beam
radius is smaller.

6.2 Light-induced stress field
The magnitude of effective potential depends on the light intensity, see Equa-
tion (2.39) from Chapter 2. Therefore, for Gaussian distributed light beam the
magnitude of effective potential has spatial dependence which comes from the
light intensity. With this effective potential, the corresponding light-induced
stress tensor can be calculated using Equation (3.4).
In the experiment of Ambrosio et al. [51], the direction of light polarization was
kept constant but the film was moved in different directions. In one case par-
allelly and in another case perpendicularly to the polarization direction. This
is equivalent to moving the beam with different polarizations in the same di-
rection, here along the y axis, as shown in Figures 6.1 (a) and 6.1 (b). With
such an assignment, the stress tensor can be written in a simplified diagonal
form which appears due to the axial symmetry of the system with respect to
the polarization vector Ê [56, 101].

For light polarized along x axis

The electric field vector Ê = (1,0,0), its dyadic product and the correspond-
ing stress tensor have the following form:
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ÊÊ =

 1 0 0
0 0 0
0 0 0

 and τ = τ(x)

 1 0 0
0 − 1

2 0
0 0 − 1

2

 (6.2)

Here, τ(x) is the spatially dependent magnitude of the stress tensor.

For light polarized along y axis

The electric field vector Ê (0,1,0), its dyadic product and the corresponding
stress tensor are as follows:

ÊÊ =

 0 0 0
0 1 0
0 0 0

 and τ = τ(x)

 − 1
2 0 0
0 1 0
0 0 − 1

2

 (6.3)

For a fast movement in the y-direction, the intensity can be averaged over all
possible y inside the laser spot which results in the following expression:

Iav(x) = CI0 exp
(
− 2(x− a)2

w2

)
(6.4)

Here, C =
√
π/2erf(

√
2)/2 ≈ 0.60.

As explained in Chapter 3, the light-induced stress depends on various optical
and material parameters, the intensity of light being one of them. Hence, the
magnitude of the stress tensor in Equations (6.2) and (6.3), τ(x) ∼ Iav, will
have the same x dependence as the average intensity of the beam:

τ(x) = τ0 exp
(
− 2(x− a)2

w2

)
(6.5)

Here, τ0 is the magnitude of the stress tensor at the stripe center (x = a).
When the glassy azopolymer sample is put under light illumination for a longer
time (in order of minutes), the stress tensor decays gradually with time due to a
slow reorientation of backbone segments, as shown in Figure 5.2 from Chapter
5. However, for the case when the thin azopolymer films are moved very fast
under the Gaussian beam, the exposure time for one spot on film is very short
(in order of seconds). In particular, the inscription time for a 26µm long stripe
was about 2 min 22 s [110]. Therefore, the deformations of a fast moving thin
film are mostly caused by the light-induced stress generated at the very begin-
ning of illumination. With this, we can assume that τ0 is constant in time for
the fast moving laser beam.
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Figure 6.2: The x component of the volume force: (a) stretching for light polarized in x
direction and (b) compressive for light polarized in y direction. τ0 = 40 MPa. The beam
radius w = 2

√
10 µm.

Volume Force and Traction

Using the orientation approach, we are able to predict the light-induced stress
field in the azopolymer sample. However, in mechanical applications it is not
possible to apply the forces to a solid body in the form of the stress tensor
directly. They can be either applied to the interior of the body in the form of
so called volume forces or to the surface of the body as surface traction [111].
Let us first consider the volume force formalism, as it easily explains why x and
y polarized light beams induce different deformations. The external force per
unit volume can be calculated from the stress tensor as:

f = −∇ · τ (6.6)

The k component is as follows:

fk = −
∑
i

dτik
dxi

(6.7)

The stress components in the both cases have only x dependence, see Equations
(6.2), (6.3) and (6.5). For the both polarization only the x component of the
volume force has a non-zero value.
For the light polarized in x direction, the x component of the volume force can
be written as:

fx = −dτ

dx
= 4τ0

x− a

w2
exp

(
− 2(x− a)2

w2

)
(6.8)
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For the light polarized in y direction, the x component of the volume force can
be written as:

fx =
1

2

dτ

dx
= −2τ0

x− a

w2
exp

(
− 2(x− a)2

w2

)
(6.9)

The magnitude of volume force for light polarized in x direction is twice the
magnitude of the volume force for light polarized in y direction. Hence, we can
expect that the magnitude of deformations caused by the light polarized in x
direction will be larger than the deformations caused by the light polarized in
y direction. The opposite sign of the volume force in Equations (6.8) and (6.9)
predicts that the deformations will be in opposite direction for two different
polarization. As can be seen from Figure 6.2 (a), x polarized light produces
the stretching force, as it is positive at x > a = 30 µm and negative at x < a.
Contrary, y polarized light results in the compressive force along the x direction,
see Figure 6.2 (b).
Interestingly, the formalism of volume force predicts that no effect should be
observed for the light polarized at a particular angle to the moving direction y.
This angle can be found by considering the light-induced stress tensor in the
principle axes and then rotating it into the laboratory coordinate system. The
volume force for an arbitrary angle φ between the light polarization and the x
axis is:

fx = −1

2

dτ

dx

(
3 cos2 φ− 1

)
(6.10)

Hence, the force becomes equal to zero at φ = 54.7◦, i.e. at 35.3◦ to the moving
direction.

6.3 Modeling conditions
ANSYS modeling

As we discussed in Chapters 4 and 5, we use the Perzyna option in ANSYS,
represented by Equation (4.5), to calculate the light-induced plastic deforma-
tions. All material properties are same as used in Chapter 5 for modeling the
directional photodeformations under homogeneous light intensity.
At first we put a cubic sample, which has the edge of 30µm, under Gaussian
distributed light beam. The cube is finely meshed in ANSYS with the mesh size
of 0.1µm, which is in the calibrated range determined in Chapter 5. The most
important part of modeling in ANSYS is setting up adequate boundary condi-
tions as they define the final stress field. The following boundary conditions are
chosen:
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Figure 6.3: The surface represented with the light gray colour is free to move in all three
directions and the all four side surfaces represented with dark grey color are restricted to move
in the normal direction.

• The bottom face of the sample is restricted from moving in all three direc-
tions similar to the experiments, where the azopolymer sample is "glued"
to the substrate surface due to a strong adhesion [37, 52].

• The upper surface is free to move in all three directions.

• All other sides are restricted from moving in the normal direction, see
Figure 6.3.

Application of stress field

It can be proved that the stretching volume force (6.8) applied to the elastic
solid at previously mentioned boundary conditions induces the same deforma-
tion field as the traction force acting normally on the upper sample surface in
negative direction (inwardly):

tz(x) = −τmax exp(−
2(x− a)2

w2
) (6.11)

with τmax = τ0. Similarly, the contractive volume force (6.9) is equivalent to
the traction force acting in positive direction (outwardly):

tz(x) = τmax exp(−
2(x− a)2

w2
) (6.12)

with τmax = τ0/2.
In both cases, to test the strength of the effect, we apply different maximal
traction τmax at the stripe center, ranging from 40 MPa to 80 MPa. Figure
6.5 presents exemplary how the azopolymer surface will deform after 5 s in the
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Figure 6.4: The top surface represented with the light gray colour is free to move in all
three directions and the all four side surfaces represented with dark grey color are restricted
to move in the normal direction.

presence of light polarized in the x direction at τmax = 50 MPa and the beam
radius w = 2

√
10 µm. In accordance with the experiment of Ambrosio et al. [51],

the deformed surface looks like a stripe-like well with uplifted ends. Figure 6.9
shows an example of the deformed surface in the presence of light polarized in the
y direction at the same conditions. Again, in accordance with the experiment,
a stripe-like protrusion can be observed. Comparing modeling results with the
depth 0.2 µm and the height of stripes 0.05 µm inscribed experimentally [51], it
is found that traction forces with τmax above 50 MPa considerably overpredict
the strength of the effect. The surface deformations are far above 10 µm and
do not disappear at the sample boundaries in the x-direction.
Therefore, in an attempt to reproduce the experiment of Ambrosio et al. [51] not
only qualitatively but also quantitatively, we chose another sample (0 ≤ x ≤ 60µ
m, 0 ≤ y ≤ 15µm, 0 ≤ z ≤ 15µm), which is twice as long in the x-direction and
twice as short in two other directions. The latter adjustment is made to keep
the computational effort in reasonable limits. The boundary conditions are the
same as for the first sample, see Figure 6.4.

6.4 Modeling results
The stress tensor corresponding to light polarized in x and y direction is repre-
sented by Equations (6.2) and (6.3). The traction force is applied to the sample
(0 ≤ x ≤ 60µ m, 0 ≤ y ≤ 15µm, 0 ≤ z ≤ 15µm) using Equation (6.11) and
(6.12) for light polarized in x and y direction, respectively. The applied traction
force is maximum at the centre of the beam. Next, we discuss the modeling
results corresponding to both polarizations.

Light polarized in x direction

In this case, the formation of grooves is observed at the centre of the illuminated
sample x = 30 µm due to pushing the material away from the center. The ma-
terial which is pushed away builds in small hills at the both sides of the groove.
To check the effect of the intensity of light, the traction forces corresponding
to different light-induced stresses are applied. The maximal stress τmax rang-
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Figure 6.5: The deformations for the upper surface of the material in the presence of x
polarized light. τmax = 50 MPa. The film dimensions are 0 ≤ x ≤ 60 µm, 0 ≤ y ≤ 15 µm,
0 ≤ z ≤ 15 µm and the beam radius w = 2

√
10 µm.
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Figure 6.6: The deformations in z direction for light polarized in x direction.The film di-
mensions are 0 ≤ x ≤ 60 µm, 0 ≤ y ≤ 15 µm, 0 ≤ z ≤ 15 µm and the beam radius w = 2

√
10

µm.
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Figure 6.7: Time-dependent deformations in z direction for light polarized in the x direction.
Value of the maximum traction τmax is shown in the legend. The film dimensions are 0 ≤
x ≤ 60 µm, 0 ≤ y ≤ 15 µm, 0 ≤ z ≤ 15 µm and the beam radius w = 2

√
10 µm.

ing from 41 MPa to 45 MPa gives an effect comparable to the experimental
observations [51]. The depth of the grooves increases with magnitude of the
maximal stress, see Figure 6.6. Also, it is observed that the depth of the well
for a particular light-induced stress increases with the time, see Figure 6.7.
To study the effect of beam focusing on the deformations, we select the beams

with different radii w but having the same total intensity Itot, obtained by in-
tegration of Iav in Equation (6.4):

Itot =

∫
CI0 exp

(
− 2(x− a)2

w2

)
dx =

1

2
πI0w

2 (6.13)

It can be seen that the total intensity Itot is directly proportional to the square
of beam radius w2. Usually, the source of laser light has a constant total inten-
sity (power) Itot. For example, in the experiment of Ambrosio et al. [51], the
power of the laser used is 12 µW . Focusing a beam to the spots with decreasing
radius can lead to increase of the intensity at the center of beam by orders of
magnitude.
Figure 6.8 illustrates a possibility to manipulate the strength of the effect by
changing the radius w of the light polarized in the x direction. The maximal
traction (at x = 30 µm) is equal to 40 MPa at w = 2

√
10 µm and it is adjusted

for other beam radii in such a way that the total intensity transmitted by the
Gaussian beam stayed constant. It can be seen from Figure 6.8 that the depth
of the groove and height of accompanying protrusions are very sensitive to the
small adjustments in the size of the laser spot. In particular, weaker focusing
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results in a quick disappearance of the surface modulation, which can be ex-
plained by the drop of light-induced stress below the yield stress in the most
part of the illuminated area.
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Figure 6.8: The deformations in z direction for the light polarized in x direction at different
values of squared beam radius w2, shown in the legend. The film dimensions are 0 ≤ x ≤ 60
µm, 0 ≤ y ≤ 15 µm, 0 ≤ z ≤ 15 µm.

Light polarized in y direction

The volume force for the light polarized in the y direction is half of the volume
force appearing under the light polarized in the x direction, compare Equations
(6.8) and (6.9). Thus, we apply twice smaller maximal stresses τmax, when the
beam is moved in the direction perpendicular to the light polarization. In this
case, formation of the protrusions is observed at the center of the illuminated
area x = 30 µm. At the both sides to the protrusions, shallow grooves are
formed. The deformed upper surface of the sample is represented in Figure
6.9. The height of the protrusion increases with the magnitude of light-induced
stress, see Figure 6.10. Additionally, we study the evolution of the protrusion
height with time for a beam radius w = 2

√
10 µm, see Figure 6.8. The height

of protrusions slightly increases with time and it reaches saturation at longer
times.

Conclusions

We can conclude that the formation of protrusions and grooves caused by the
laser moving parallelly and perpendicularly to the polarization direction is well
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Figure 6.9: The deformations for the upper surface of the material in the presence of y
polarized light. τmax = 50 MPa. The film dimensions are 0 ≤ x ≤ 60 µm, 0 ≤ y ≤ 15 µm,
0 ≤ z ≤ 15 µm and the beam radius w = 2

√
10 µm.
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Figure 6.10: The deformations in z direction for light polarized in y direction.The film
dimensions are 0 ≤ x ≤ 60 µm, 0 ≤ y ≤ 15 µm, 0 ≤ z ≤ 15 µm and the beam radius
w = 2

√
10 µm.
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Figure 6.11: Time-dependent deformations in z direction for light polarized in the y direc-
tion. Value of the maximum traction τmax is shown in the legend. The film dimensions are
0 ≤ x ≤ 60 µm, 0 ≤ y ≤ 15 µm, 0 ≤ z ≤ 15 µm and the beam radius w = 2

√
10 µm.

explained using the proposed orientation approach. Additionally, it can be
understood, why the magnitude of deformations, when the laser is moved in
the polarization direction, is much smaller than the magnitude of deformations,
when it is moved perpendicularly to the polarization direction. This is because
the traction force produced in the first case is only half of the traction force
produced in the second case.
For larger traction forces the difference between light-induced stress and the
yield stress is higher, which corresponds to profound plastic deformations for
the larger area on the illuminated film, see Equation (4.5) and Figure 6.12.

In the next chapter, we focus on modeling the inscription of surface relief
gratings under spatially dependent light interference patterns. The samples are
illuminated by a particular pattern till saturation of plastic deformations. Thus,
the light-induced stress has time dependence and an external subroutine will be
used to implement it.
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Figure 6.12: The film area in which the stresses exceed the yield stress rapidly shrinks with
decrease of τmax. This example is calculated for the beam radius w = 2

√
10µm [103].

68





Chapter 7

Complex photodeformations
under intensity interference
patterns

This chapter is dedicated to the complex structuring of azopolymer samples un-
der intensity interference patterns. Since the discovery of surface relief gratings
made by Tripathy et al. [41] and Natansohn et al. [40], there is no convincing
theoretical explanation for the formation of these gratings, as we discussed in
Chapter 2. In this chapter, we will prove that the orientation approach can give
appropriate explanation for the photodeformations in azopolymers under light
interference patterns. In particular, we will explain the following phenomena
observed in the group of Santer et al. [52, 102]:

• Directional deformation of azopolymeric spherical colloid under linearly
polarized light, as shown in Figure 7,

• Formation of a necklace structure with beads and of a wave-like structure
when elongated colloid is irradiated with PP and SS interference patterns,
see Figure 7.2,

• Restructuring of the gap edges in a scratched azopolymer film during
irradiation with the RL and LR polarization patterns, see Figure 7.3.

In Chapter 6, we have described and explained the photodeformations under
moving laser beam that has spatially varying intensity. In this current chapter,
we reproduce the experiments in which the sample is irradiated for long time.
Thus, the light-induced stress for such cases must have not only the spatial but
also the time dependence, as it is discussed in Chapter 3. Next, we focus on the
viscoplastic finite element modeling of the three phenomena mentioned above.1

1The results presented in this chapter are published in Loebner and Yadav et al. [102]
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(a) (b)

Figure 7.1: AFM micrograph of the initial and elongated colloid in the presence of linearly
polarized light. The light-induced elongation ratios is about 5. Modified and reproduced from
Ref. [52].

(a) (b)

Figure 7.2: AFM micrograph of the SRG inscribed in colloidal particles using a) PP inter-
ference pattern and b) SS interference pattern. The arrows show the polarization direction
and their length is related to the light intensity. Modified and reproduced from Ref. [102].

(a) (b)

Figure 7.3: AFM micrographs of the gap edges structured during irradiation with (a) RL and
(b) LR polarization pattern. White and black arrows show the distribution of the electrical
field vectors. Modified and reproduced from Ref. [102].
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7.1 Formation of ellipsoidal colloid and effect of
spatially varying light intensity

This section of the thesis is based on the experiments performed at the chair of
Prof. Santer, University of Potsdam. In particular, the photodeformations in
the spherical colloid consisting of azobenzene containing polymer (PMMA-co-
DRIA) are studied. The diameter of azopolymer colloid used in the experiment
is between 0.1-1 µm. Firstly, the colloid is put under linearly polarized light.
It deforms in the direction of the light polarization by forming an elongated
spheroid, see Figure 7.1. For large colloids the elongation ratios can be as high
as 5. The opto-mechanical stress needed for such large deformations is estimated
to be of the order of 100 MPa [52].
Secondly, the same elongated colloid is irradiated with SS and PP interference
patterns. Formation of necklace structure and of wave-like structure is observed
on the elongated spheroid, as shown in Figure 7.2, when irradiated with PP
and SS interference pattern, respectively. In the experiment, it is observed that
the behaviour of the colloid under these interference patterns is different: the
movement of the material is in the opposite direction for a particular point in
the sample. For the SS polarized light there is a hill formation at the maximum
intensity and a well formation at the minimum intensity, while in the case of
PP irradiation a well forms at the maximum intensity and a hill forms at the
minimum intensity, as seen in Figure 7.2.
We start our modeling with initial spherical colloid of 1µm diameter under
linearly polarized light. For this purpose, the orientation approach is used to
predict the light-induced stress in the spherical colloid.

7.1.1 Spherical azopolymer colloid in the presence of lin-
early polarized light

We assume that the electric field vector of linearly polarized light is in the
x-direction. As shown in Chapter 5, the light-induced stress arising due to re-
orientation of polymer backbones can be written as follows:

τ = τxx

 1 0 0
0 − 1

2 0
0 0 − 1

2

 (7.1)

Here, τxx is the maximal normal stress acting in the x direction. We remind
that τxx can be calculated with the help of Geisekus equation (3.19):

τxx = 3nkT
∂

∂tλ
⟨u2

x⟩ (7.2)

where the derivation of time dependent ⟨u2
x⟩ is described in Chapter 3.

To calculate the directional deformations corresponding to the light-induced
stress, we use the finite element software ANSYS. The direct implementation
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Figure 7.4: a) Time evolution of equivalent stress corresponding to τxx,0 = 30 MPa. b)
Dependence of stopping time on the initial applied stress.

of the spatially and time-dependent stresses is not trivial in ANSYS. Thus,
the stresses are applied with the help of Userthstrain subroutine, described in
detail in section 4.2. The modeling parameters corresponding to the ANSYS
calculations are given below.

Modeling parameters

The glassy azopolymer (PMMA-co-DRIA) is characterized by the same material
model used previously in Chapters 5 and 6 [101, 103]: the Young’s modulus of 1
GPa, Poisson ratio of 0.49 (quasi incompressible material) and the yield stress
of 10 MPa. To reduce the computational time, we choose γ = 0.01s−1 and
λ = 1000s, which provides Cη = 0.33 MPa, quite close to the previous estimate
Cη = 0.68 MPa for the homogeneous irradiation, see Section 3.2. The reduced
potential strength Vr defines the magnitude of light-induced stress τxx,0 in the
beginning of the irradiation:

τxx,0 = −2

3
nkTVr (7.3)

The strength of the effective orientation potential depends on a number of ma-
terial and optical parameters, see Equation (2.39). Hence, there is no straight-
forward way to predict Vr from the light intensity used in this experiment,
instead different stress are probed in the modeling to achieve similar elongation
of a colloid. We applied τxx,0 = 15, 20, 25 and 30 MPa which corresponds to
Vr = −21.7,−28.9,−36.2,−43.4. Here, we remind that the light-induced stress
slightly increases in the beginning of illumination and then gradually diminishes
to 0, as shown in Figure 7.4 (a). The plastic deformations develop only when
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(a) (b)

Figure 7.5: Initial half of the sphere with diameter 1µm: (a) top view (b) 3D view.

the light-induced stress is greater than the yield stress. The time, at which the
light-induced stress decreases to the yield stress and the plastic deformations
saturate, is defined as the stopping time tstop. As shown in Figure 7.4, the stop-
ping time is not a monotonic function of τxx,0. At smaller τxx, the stopping time
tstop rapidly increases to its maximum value and then slowly decreases at larger
τxx,0. Because the stopping time is different for different τxx,0, we choose to
simulate for a fixed time which is 50 seconds. The simulation time is somewhat
smaller than the stopping time for all applied stresses. Thus, the deformations
do not reach saturation during the simulation time, which is similar to the ex-
perimental situation [52].

The initial diameter of spherical colloid is chosen to be 1µm and only a half of
it is simulated to suppress translation and rotation of the sample, see Figure
7.5. The following boundary conditions are used in the ANSYS modeling:

• The curved surface is free to move in all three directions,

• The symmetry plane is restricted to move in the normal direction,

• The center of the symmetry plane is pinned by restricting it to move in
all three directions.

Under homogeneous irradiation, the colloid elongates along the light polariza-
tion, see Figure 7.6 and Table 7.1. The length of the half-sphere gradually in-
creases with time reaching 2.08 and 2.76 µm after 50 s of radiation at τxx,0 = 25
and 30 MPa, respectively. The radius of cross-section decreases with time but
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(c) (d)

(e)

Figure 7.6: The deformed half-spheroid after 50 s of irradiation for τxx,0 equal to a) 15
MPa, b) 20 MPa, c) 25 MPa and d) 30 MPa is shown here. e) The time dependence of length
of the half-spheroid at different τxx,0.
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τxx,0
(MPa)

radius
(µm)

length
(µm)

⟨u2
x⟩ ⟨u2

y⟩ volume
(µm3)

S

15 0.34 1.01 0.58 0.21 0.48 0.37
20 0.28 1.48 0.66 0.17 0.48 0.49
25 0.24 2.08 0.74 0.13 0.50 0.61
30 0.21 2.76 0.80 0.10 0.50 0.70

Table 7.1: Light-induced changes in the half-spheroid corresponding to the different initial
applied stresses τxx,0 after 50 s of irradiation.

the volume stays unchanged.

To measure the magnitude of elongation in the direction of light polarization,
the elongation ratio is calculated which is as follows:

el = lf/li (7.4)

Here, li and lf are the initial and final length of the half-spheroid.
The elongation ratio for τxx,0 = 25 and 30 MPa is 4.2 and 5.5, which is compara-
ble with that observed in the experiment. The polymer chains in the stretched
colloid become highly oriented along the direction of light polarization at large
stresses, for example ⟨u2

x⟩ = 0.74 for τxx,0 = 25 MPa and ⟨u2
x⟩ = 0.80 for

τxx,0 = 30 MPa. The scalar order parameter S = [3⟨u2
x⟩ − 1]/2 for the nematic

director along the x axis changes from 0 for isotropic initial state to 0.6 - 0.7
for highly oriented state, see Table 7.1. For smaller stresses the orientation and
elongation effects are accordingly smaller.
Further, the same elongated colloid is irradiated with spatially varying intensity,
as described in the next section.

7.1.2 Light-induced stress for spatially varying intensity
In accordance with the experiment [102], we applied linearly polarized light with
sinusoidally varying intensity to the elongated colloids:

I(x) = 2I0 cos
2 πx/D (7.5)

Here, I0 is the total intensity of the laser and D is the optical period of grating.
The factor 2 ensures that the light intensity, averaged over the grating period,
is equal to the intensity I0 of the laser. The intensity of light is maximum at
x = 0, where it equals to 2I0.
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Figure 7.7: The variation of the light intensity with optical period D and light polarization
direction in x direction for PP interference pattern is represented by the blue curve.

PP interference pattern

In the PP interference pattern, the light is polarized in the x direction and
hence has the same polarization as the light used to irradiate the initial colloid.
The initial orientation state for this case is the final orientation state which is
represented in Table 7.1 for different τxx,0. Due to the orientation symmetry
around the x-axis (i.e. ⟨u2

y⟩ = ⟨u2
z⟩), the induced stress field is also uniaxially

symmetric (i.e. τyy = τzz). The spatially dependent intensity I(x), as shown in
Figure 7.7, induces spatially dependent reduced potential:

Vr(x) = 2Vr cos
2 πx/D (7.6)

The initial magnitude of τxx can be calculated using Equations (7.3) and (7.6)
as follows:

τxx,0 = −4

3
nkTVr cos

2 πx/D (7.7)

The time evolution of τxx is calculated using Equations (3.24) and (7.2) with an
initial value of ⟨u2

x⟩ which corresponds to the orientation of backbone segments
at the end of the homogeneous irradiation, see Table 7.1.

ANSYS software is used to calculate the plastic deformations in the elon-
gated azopolymer colloid. Boundary conditions, similar to those used for the
initial half-sphere, are applied. The spatially distributed light-induced stresses
are again applied with the help of Userthstrain subroutine, described in section
4.2. In the experiment, the irradiation time for interference patterns is 3-5 times
less than for the homogeneous illumination used to elongate the initial sphere
[52]. Thus, the light-induced stress is applied for 10 seconds which is 5 times
shorter than the time used to elongate the half-sphere.
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Figure 7.8: The deformed half-spheroid after 10 s of irradiation for initial τxx,0 a) 15 MPa,
b) 20 MPa, c) 25 MPa and d) 30 MPa is shown here.
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Figure 7.9: Dependence of a) length and b) radius of half-spheroid on the initial value of
τxx,0 under the PP interference pattern.
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Figure 7.10: The final deformations in y direction at different τxx,0 under the PP interference
pattern.

Under the PP interference pattern, the elongated colloid develops a modulated
cross-section, which is symmetric around x-axis, see Figure 7.8 (a) - (d). For-
mation of a well at the maximum intensity and a hill at the minimum intensity
of the light interference pattern can be observed, as shown in Figure 7.8 (a) -
(d). At the sample positions with larger light intensities, the difference between
light-induced stress and the yield stress is higher, which explains more profound
plastic deformations. As the light is polarized in the x direction, it induces fur-
ther elongation of the colloid along this direction. Therefore, the length of the
half-spheroid increases slightly with the time, see Figure 7.9 (a). Additionally,
the radius of cross-section at x = 0 is decreased with the time for all applied
stresses, see Figure 7.9 (b). In the experiment, this further stretching in the
polarization direction is hindered due to the strong adhesion to the substrate.
The elongation of the half-spheroid and the intensity modulation are working
against each other which results in a non-monotonic dependence of plastic de-
formation in y direction on initially applied stress τxx,0 at the same x position,
as shown in Figure 7.10.
In Figure 7.11, the directional deformations in the y direction are compared
for two different irradiation times. At intensity minima, there are nearly no
deformations after 5 s and only small deformations develop after 10 s due to
material transport from intensity maxima, see Figure 7.11. At positions with
maximum intensity, the plastic deformation after 10 s of irradiation is less than
the twice of deformation after 5 s. This is explained by the fact that the rate
of deformation is decreasing with irradiation time.
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Figure 7.11: Directional deformation in y direction under the PP interference pattern after
5 s (red line) and 10 s (blue line) of irradiation time, at τxx,0 = 25 MPa.

Further, we study how the optical period affects the deformation in the half-
spheroid under the PP interference pattern. The selected optical periods for
this study are D = 0.8, 1.0 and 1.2 µm at applied stress τxx,0 = 25 MPa. The
value of the optical period prescribes the position of the grating maxima and
minima. As the length of the optical period increases, the maximum directional
deformations in the y direction decrease, see Figure 7.12 (a). Additionally,
the length of the half-spheroid slightly differs for different optical periods, see
Figure 7.12 (b). This is due to the two effects compensating each other, which
are elongation of the colloid and surface modulation.

SS interference pattern

In the SS interference pattern, the light is polarized along the y direction, as
shown in Figure 7.13, and hence is perpendicular to the polarization of the light
used to irradiate the initial half-spherical colloid. The initial orientation state
is the final orientation state which is represented in Table 7.1 for different τxx,0.
It can be seen that the orientation state is asymmetric around the polarization
direction y. Thus, time dependent components of the orientation tensor are
calculated using the closure approximations, as explained in Section 3.4.2. The
time evolution of the different components of the orientation tensor is shown
exemplary in Figure 3.4. Additionally, the stress tensor is calculated using the
Giesekus equation (3.19). The stress fields are not symmetric around the x axis,
thus all diagonal components of the stress tensor are different.
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Figure 7.12: a) The deformations in y direction and b) length of half spheroid dependence
on the optical period at initial maximal stress τxx,0 = 25 MPa.

τ =

 τxx 0 0
0 τyy 0
0 0 τzz

 (7.8)

The stress tensor components τxx, τyy and τzz are calculated using Equations
(3.53), (3.54), (3.55) and (3.19) with the initial values of orientation tensor
components, which correspond to the orientation of backbone segments at the
end of the homogeneous irradiation, see Table 7.1.
The scalar rate of plastic strain ϵ̇pl is calculated in the ANSYS software using the
Perzyna option (4.5), which contains the equivalent stress τeq as a parameter.
Its value for the diagonal stress tensor, represented by Equation (7.8), can be
written as follows:

τeq =

√
(
3

2
(τ2xx + τ2yy + τ2zz)) (7.9)

The rate of plastic strain tensor is defined as:

ϵ̇pl =
3ϵ̇pl
2τeq

τ (7.10)

The light-induced stresses can be applied with the help of Userthstrain subrou-
tine and the above equation for the true plastic strain, as described in Section
4.2. Similar boundary conditions to those used for the initial half-spherical col-
loid are applied.
Under the SS interference pattern, the elongated colloids develop a modulated
cross-section, which is not anymore symmetric around the axis x, because
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Figure 7.13: The variation of the light intensity with optical period D and light polarized
in y direction for the SS interference pattern is represented by the blue curve.

τzz < τyy. The elongated colloid with asymmetric cross-section is presented
in Figure 7.14 for an optical period of D = 1 µm. Formation of a hill at the
maximum intensity and a well at the minimum intensity of the light interference
pattern can be observed, as shown in Figure 7.14. At x = 0, the z radius of the
half-spheroid decreases with time and the y radius increases with time, as can
be seen in Figure 7.15 (a) and (b). Additionally, the length of the half-spheroid
slightly decreases with the time, see Figure 7.15 (c). This is hindered in the ex-
periments because of the adhesion of the sample to the substrate. The intensity
modulation and the contraction of the half-spheroid along the x and z direction
are favouring the directional deformation in the y direction. Thus, larger plastic
deformations in y direction are observed for higher initially applied stress τxx,0,
see Figure 7.16. Additionally, the directional deformations in the y direction are
compared for two different irradiation times, see Figure 7.17. At intensity min-
ima, the same slight deformations are observed after 5 and 10 s, see Figure 7.17.
At intensity maxima, the plastic deformation after 10 s of irradiation is two and
a half times larger than the deformation after 5 s. Although the rate of plastic
deformation decreases with time, the effect of sample contraction overrules this
rate effect. Further, we study how the optical period affects the deformation in
the half-spheroid for τxx,0 = 25 MPa under the SS interference pattern. As the
length of the optical period D increases from 0.8 to 1.2 µm, the maximum direc-
tional deformations in the y direction noticeably increase, as seen in Figure 7.18.

7.2 Surface relief gratings
Surface relief gratings have been studied and used in different applications by
many groups [41, 49, 50]. Nevertheless, it is a phenomenon which is not ex-
plained well till now. There are mainly two kind of surface relief gratings:
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Figure 7.14: 3D view of wave-like structure developed after 10 s irradiation with the SS
interference pattern at τxx,0 = 25 MPa.

one is formed when azopolymer films are irradiated with intensity interference
patterns, another can be formed with polarization interference patterns. In in-
tensity interference patterns the intensity of light has spatial dependence and
polarization is fixed in one direction but for polarization interference patterns
the intensity is constant and only the polarization varies in space, for more de-
tail see Section 2.3.3. Specially the inscription of surface relief gratings under
polarization interference patterns is hard to explain and most theories do not
consider this case. Recently to understand such inscriptions a special experi-
ment was conducted at the University of Potsdam. First, a thin polymer film
(500 nm) is scratched by the AFM tip to form a micrometer wide gap. Af-
terwards, the film is exposed to irradiation with either RL or LR polarization
interference patterns. It is clearly visible that formation of the surface relief
gratings takes place together with the protrusion of the polymer material into
the gap only at the positions where E vectors converge, as shown in Figure 7.3.

Below, we focus on modeling and interpretation of this particular experiment.
To depict the experimental setup, we choose two coordinate systems in the finite
element software ANSYS, which are the element coordinate system (ECS) and
the global coordinate system (GCS). The ECS can be rotated with respect to
the GCS and thus can be used to implement a spatially dependent polarization
pattern. In particular we apply the following rotation θxy of the ECS with
respect to the GCS:

• a) for the pattern RL: θxy = (X/D + 0.5)π

• b) for the pattern LR: θxy = (−X/D + 0.5)π

Here, X is the position of the element center in the GCS and D is the period of
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Figure 7.15: Time dependence of half-spheroid sizes for different τxx,0 under the SS inter-
ference pattern: a) radius in the z direction, b) radius in the y direction and c) length of the
half-spheroid.
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Figure 7.16: The deformed half-spheroid after 50 seconds of irradiation for initial τxx,0 a) 15
MPa b) 20 MPa c) 25 MPa d) 30 MPa is shown here. e) The final deformations in y direction
depending on initial τxx,0 under the SS interference pattern.
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Figure 7.17: Directional deformation in y direction at 5 s and at 10 s of irradiation, τxx,0 =
25 MPa.

optical grating.

Boundary Conditions

The following boundary conditions are used:

• The sample is "glued" to the substrate in the experiment, to mimic this
effect the bottom surface is restricted to move in all three directions,

• The left and right side surfaces (represented with dark gray color, see
Figure 7.19) of the sample are restricted to move in the normal directions,

• Three other surfaces (represented with light gray color, see Figure 7.19)
are free to move in all directions.

The sample is meshed with 1 µm size mesh. The magnitude of light-induced
stress at the beginning of irradiation is chosen to be 25 MPa in each element.
The light-induced stress is applied in terms of total strain using the Userth-
strain subroutine, as discussed in Chapter 4. Again, the Perzyna option is used
to model the plastic deformation induced in azopolymer sample during 80 s of
irradiation time.
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Figure 7.18: Directional deformation at the initial value of τxx,0 = 25 MPa under the SS
interference pattern for different optical periods D.

Modeling parameters

The viscoplastic modeling predicts exactly the same effect as observed in the
experiment: the azopolymer protrudes into the gap only at the positions where
the red vectors of light polarization converge, compare Figure 7.20 with Figure
7.3. Similar to the experiment, the light-induced deformations are mirrored
when changing from the RL to LR interference pattern, see Figure 7.3. Such
anisotropic effect in the modeling is caused by the fact that during the rotation
of the ECS various elements of the sample stretch in different directions, as
shown on Figure 7.20 by red arrows. These arrows prescribe the direction of
light polarization which defines the main axis of light-induced stress. Therefore,
the azopolymer stretches horizontally, when the red arrows coincide with the
x direction of the GCS. This gives rise to the valleys in azopolymer film. The
material stretches vertically, when the red arrows are perpendicular to the x
direction of the GCS, which gives rise to protrusions. In other words, the con-
stant light-induced stress applied in different directions affects the stretching of
an azopolymer film in different ways. This is a reason for the strong anisotropy
between the RL and LR patterns.

The modeled structures after 80 seconds of irradiation (Figure 7.20) bear a
striking resemblance to the AFM micrographs (Figure 7.3):

• formation of protrusions is observed at the film edge where the electric
field vectors converge,

• only slight modulations are observed at the other edge where the electric
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Figure 7.19: The surfaces represented with the light gray colour are free to move in all three
directions, the two side surfaces represented with dark grey color are restricted to move in the
normal direction and the bottom surface is restricted to move in all three direction.

field vectors diverge,

• surface relief gratings are formed far away from the edges in the film body.

Additionally, the viscoplastic modeling allows to follow in time gradual elonga-
tion of the sample along the y axis together with the growth of surface relief
along the z axis, as shown in Figure 7.21. The deformations weaken upon
decrease of the rotational time λ of backbone segments, see Figure 7.21. This
indicates that azopolymers built from longer rigid segments should exhibit more
pronounced topographical changes.

Conclusion

We can conclude that the photo-induced deformations in stretched oriented
colloids as well as at the edges of the scratch in isotropic polymer films are
reproduced and well explained using viscoplastic modeling of the azopolymer
samples based on the orientation approach. In particular, it can be seen that
formation of beads and wave-like structure is formed when elongated colloid is
illuminated with PP and SS interference patterns. It can be understood that the
deformations in the y direction are larger for the SS interference pattern than the
photodeformations induced under the PP interference pattern due to the con-
traction of the colloid under SS and elongation under PP irradiation. Further,
the photodeformations under RL and LR interference patterns are calculated
and, when compared with the experimental results, they perfectly coincide with
the observed deformations as discussed above. Thus, combined experimental
and modeling study delivers a decisive proof that the orientation mechanism of
polymer backbones is behind inscription of topographical structures in azoben-
zene containing polymer films.
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(a) (b)

Figure 7.20: Plastically deformed azopolymer films at τxx,0 = 25 MPa after 80 s irradiation
with (a) the RL pattern and (b) LR pattern. Insert shows the rotation of ECS along the
period of the optical grating. The light polarization is represented by red arrows.
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Figure 7.21: (a) Under the RL pattern the azopolymer gradually protrudes along the axis y
and builds a surface relief along the axis z; λ = 1000 s (b) The growth of protrusion reduces
with the decrease of rotational time λ of backbone segments; τxx,0 = 25 MPa.
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Chapter 8

Summary and outlook

8.1 Summary
In this thesis, a study is presented for photoinduced deformations in azoben-
zene containing side-chain polymers under different light irradiation patterns.
In particular, the photodeformations are investigated under homogeneous irra-
diation with linearly and circularly polarized light, and under inhomogeneous
irradiation with PP, SS, RL and LR interference patterns. During irradiation
with light of appropriate wavelength the electro-magnetic energy is converted
by isomerizing azobenzene chromophores into mechanical work that causes the
deformations in the photosensitive material. It is proposed to explain these me-
chanical deformations using the orientation approach, which takes into account
the reorientation of the chromophores in the direction perpendicular to the light
polarization. In side-chain azopolymers, this should result in reorientation of
backbone segments along the light polarization. The orientational hypothesis
is tested by modeling the photoinduced deformations: analytically in case of
homogeneous irradiation and using finite element modeling software ANSYS for
complex irradiation patterns.

The effective orientation potential for the circularly polarized light is
derived for the first time based on the angular hole burning effect.
In analogy to the linearly polarized light, to simplify the kinetics of trans-cis
isomerization under circularly polarized light, an effective orientation potential
is introduced. This potential is shown to be minimum along the propagation
direction and maximum in the polarization plane. Therefore, the effective po-
tential for circularly polarized light induces the reorientation of the azobenzene
chromophores along the propagation direction. Due to the rigid attachment of
the chromophores with the main chain, the backbone segments in side-chain
azopolymers should reorient into the polarization plane. The effective orienta-
tion potential acting on azobenzenes is recalculated to the orientation potential
acting on backbone segments by taking the architecture of azopolymers into
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account.

Based on the orientation approach, a new formalism is developed
to describe the time evolution of light-induced stresses. The side-chain
azopolymers are modeled as an ensemble of rigid Kuhn segments in the presence
of an external orientation potential. Average orientation state of the ensemble
of rigid backbone segments is described by the 2nd and 4th order orientation
tensors. The components of 4th order orientation tensor are calculated using
suitable closure approximations, which are developed for uniaxial and biaxial
orientation order. The reorientation of backbone segments is accompanied by
appearance of light-induced stress. It can be expressed as a contraction of the
orientation tensors with the dyadic product of unit vector describing either light
polarization or light propagation direction. Finally, it is shown that the total
stress tensor is directly proportional to the rate of change of 2nd order orienta-
tion tensor.

Viscoplastic modeling is developed in the framework of finite element
software ANSYS to predict the photoinduced deformations. For this
purpose, the viscoplastic Perzyna model is chosen to calculate the photodefor-
mations above the yield stress. Below the yield stress, negligible elastic defor-
mations are predicted due to very large Young’s modulus. The values of yield
stress and Young’s modulus for glassy azopolymers are taken from mechanical
experiments and assumed to be unaltered by the presence of light. Additionally,
a technical tool is developed, together with the firm CADFEM, to implement
spatially and time varying stress fields using an external subroutine Userth-
strain.

The computational time is down-scaled by properly adjusting the
modeling parameters to attain the experimental time scale. A relation
between the viscosity of plastic flow η and the rotational time λ of the rigid seg-
ments is established. The viscosity of the plastic flow in azopolymer materials
is estimated to be of the order of 1 GPa s. In viscoplastic modeling in ANSYS,
the viscosity is represented in terms of the viscosity parameter γ and the yield
stress τyield. Time scale used in the experiments is of the order of hours, which
is computationally expensive in ANSYS. Thus, to scale down the computational
time, the viscosity parameter γ and the rotational time λ are adjusted.

Experimental results under homogeneous light intensity are well ex-
plained using the orientation approach. The plastic deformations are cal-
culated using the viscoplastic modeling and are compared with the experimental
results observed in an epoxy-based side-chain azopolymer [37]. In accordance
with the experiment, the square post deforms vertically and horizontally for the
vertical and horizontal linear polarization, respectively. Under the circularly po-
larized light, the square post deforms radially by contracting in the propagation
direction. The magnitude of light-induced stress, predicted by the orientation
approach for circular polarization is half of stress predicted for linear polar-

90



ization, which explains the more than twice smaller photodeformations in the
presence of circularly polarized light.

Experimentally inscribed shapes under spatially dependent intensity
and polarization patterns are well reproduced using the orientation
approach. In this thesis multiple experiments, in which spatially dependent
light intensity is used, are discussed and explained using the orientation ap-
proach. In one series of experiments, the strongly focused laser beam inscribes
grooves and elongated hills on the azopolymer surface when moved fast in the
direction perpendicular and parallel to light polarization, respectively. The
light-induced stresses, in this case, are assumed to be constant due to the very
short exposure time for one spot on the azopolymer surface. The depth of
grooves and height of hills, predicted by the viscoplastic modeling, are com-
pared with the experimental observations, and a good agreement is established.
In another series of experiments, the deformations in the elongated oriented
colloids under PP and SS intensity interference patterns are modeled and it is
found that the formation of beads and wave-like structures are in accordance
with the experiment. At last, the formation of peculiar structures at the edges
of thin azopolymer film under RL and LR polarization interference patterns
are modeled and exactly reproduced. Hence, the orientation approach correctly
predicts local variations of the main axis of light-induced stress in each interfer-
ence pattern for both initially isotropic and highly oriented materials.

The orientation approach, used in this thesis, is proved to be the most promising
approach and only one which takes the architecture of the side-chain azopoly-
mers explicitly into account. It builds an understanding of the role of light polar-
ization in realignment of the main chain due to reorientation of the azobenzene
chromophores. With this thesis, it is suggested that the orientation approach
implements a self-sufficient and convincing mechanism to describe photoinduced
deformations in azopolymer materials that in principle does not require auxiliary
assumptions, like photosoftening or photofluidization.

8.2 Outlook
Further, viscoplastic material modeling based on the orientation approach can
be used to describe surface deformations induced by complex light interference
patterns. The origin of the spiral surface reliefs and the wavefront sensitivity
of photodeformations, as described in Refs [18] and [57], represents a very chal-
lenging problem for the orientation approach. Here, the orientation potential
for helically phased beams is needed to be calculated using the angular hole
burning effect. Also, it should be checked, whether the stress tensors obtained
in this thesis are able to reproduce the interference term between longitudinal
and lateral components of the electric field responsible for the spiral deforma-
tions [92]. It would be interesting to model light-induced reversible inscription
of photosensitive polymer films, in particular the erasure of surface relief grat-
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ings by illuminating azopolymer films with successive interference patterns [44].
Also, it would be fascinating to investigate the formation of two dimensional
gratings on the surface of azopolymer films, when first irradiated with interfer-
ence pattern and later irradiated with the same interference pattern rotated by
900 [112]. For these two experiments, it is important to develop a procedure in
ANSYS, which can implement light-induced stress fields corresponding to the
time and spatial variation of successive interference patterns.
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Appendix A

Time dependent components
of the stress tensor

A.1 Calculations of stress tensor components
τxx can be calculated with the help of Geisekus equation (3.19):

τxx = 3nkT
∂

∂tλ
⟨u2

x⟩ (A.1)

The x component of the orientation tensor for linearly polarized light in x di-
rection is as follows:

⟨u2
x⟩(t) =

u1 − u2
u0−u1

u0−u1
ea(u1−u2)t

1− u0−u1

u0−u1
ea(u1−u2)t

(A.2)

Here, u0 = ⟨u2
x⟩(0) is the initial value in the absence of light and

u1,2 =
1

2
+

1

2Vr
± 1

2

√
(1 +

1

Vr
)2 − 4

3Vr
(A.3)

The derivative of the orientation tensor component can be written as follows:

∂⟨u2
x⟩(t)
∂tλ

=
Vr(u1 − u2)

2 u0−u1

u0−u1
ea(u1−u2)t

(1− u0−u1

u0−u1
ea(u1−u2)t)2

(A.4)

Using equation (A.1) and (A.4), time evolution of τxx component of the stress
tensor can be expressed as follows:

τxx = 3nkT
Vr(u1 − u2)

2 u0−u1

u0−u1
ea(u1−u2)t

(1− u0−u1

u0−u1
ea(u1−u2)t)2

⟩ (A.5)
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Similarly the time evolution of the stress tensor components can be calculated.
In case of light polarized along x direction, the τyy = τzz = −1/2τxx.

τyy = τzz = −3nkT

2

Vr(u1 − u2)
2 u0−u1

u0−u1
ea(u1−u2)t

(1− u0−u1

u0−u1
ea(u1−u2)t)2

⟩ (A.6)
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Appendix B

APDL commands and
subroutine computational
codes

B.1 Mechanical APDL code for implementation
of homogeneous stress

! l ook ing at the time dependent s o l u t i o n f o r the case when ex t e rna l
! s t r e s s i s app l i ed on one o f the f a c e o f the cube .
/ c l e a r
/PREP7 ! Enter the Preproce s so r
block , 0 , 10 , 0 , 10 , 0 , 10
∗ask , t_ini , i n i t i a l time o f the c a l c u l a t i o n
∗ask , t_inc , time increment in the c a l c u l t a i o n
∗ask , n , no o f time s t ep s f o r which the c l c u l a t i o n w i l l be done .

t_f in=t_inc∗n ! f i n a l time o f the c a l c u l a t i o n s .
/PNUM,AREA,1
ET, 1 , 2 8 5 ! Def ine Plane285 as element #1
mp, ex , 1 , 1 e9
mp,PRXY, 1 , 0 . 4 9
tb , b iso , 1 ! t ab l e c r e a t i on to d e f i n e y i e l d s t r e s s .
tbdata , 1 , 1 e7 , 1 e3 ! data f o r y i e l d s t r e s s , and tangent modulus
tb , rate , 1 , , ,PEIRCE! model
tbdata , 1 , 1 , 0 . 1
! m and gamma ( which i s a func t i on o f v i s c o s i t y o f the mate r i a l . )
ESIZE , 0 . 7
VMESH,ALL
FINISH
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sigma=−5e7
s i gx=2∗sigma /3 ! e f f e c t i v e s t r e s s on the mate r i a l
x0=1/3
k=1.383∗1e−23
Tem=300
n1=2.5∗1 e26
lamda=50
vr=3∗ s i gx /(2∗n1∗k∗tem)
x1=(1/2)+(1/(2∗ vr ))+(1/2)∗ s q r t ( ( ( (1+(1/ vr ))∗(1+(1/ vr ))) −(4/(3∗ vr ) ) ) )
x2=(1/2)+(1/(2∗ vr )) −(1/2)∗ s q r t ( ( ( (1+(1/ vr ))∗(1+(1/ vr ))) −(4/(3∗ vr ) ) ) )
xd=(x0−x1 )/ ( x0−x2 )
xdd=x1−x2
∗DO, t2 , t_ini , t_fin , t_inc ! ∗ do , par , i va l , f va l , inc−−−−− par
! d e f i n e s the parameter to be changed in a l l o f the c a l c u l a t i o n s ,
! i va l − i n i t i a l va lue o f the parameter , f v a l − f i n a l va lue to the parameter ,

i nc g i v e s the increamennt in the paramenter
/SOLU
NLGEOM,ON
y=xd∗exp ( ( vr∗xdd∗ t2 )/ ( lamda ) )
y1=1.5∗3∗n1∗k∗tem∗vr ∗( xdd∗xdd )∗y/((1−y)∗(1−y ) ) ! r e tu rn ing to the
! equ iva l en t s r e s s
SFA, 6 , ,PRES,−y1
! time at the end o f the s tep .
t2=t2+t_inc
nropt , auto
Time , t2
DA, 3 ,SYMM,Uy, 0
DA, 2 ,SYMM,Uz , 0
DA, 5 ,SYMM,UX,0
ANTYPE, s t a t i c
s o l v e
∗Enddo
Fin i sh
/ post26

B.2 Mechanical APDL code used in workbench

/com , ’ De f in t i on o f mate r i a l data ’
! Assignment o f the mater ia l ’ s p r op e r t i e s
Youngs_modulus = arg1
Poisson_rat io = arg2
Yie ld_st r e s s = arg3
Tangent_modulus = arg4
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gamma = arg5
gammain= 1 / gamma !gamma inv e r s e
Shear_modulus = Youngs_modulus / (2 .0∗ (1 .0+ Poisson_rat io ) )
! Clear a l l h i t h e r t o a s s o c i a t ed mate r i a l data

mpdele , a l l , matid
tbde le , a l l , matid

! De f i n i t i o n o f the l i n e a r e l a s t i c p r op e r t i e s

MP,EX, matid , Youngs_modulus
MP,NUXY, matid , Poi sson_rat io

! Act ivat ion o f u s e r t h s t r a i n

tb , cte , matid , , , use r
tbdata , 1 , Shear_modulus , gamma, Y ie ld_st r e s s

! P l a s t i c i t y

tb , b iso , matid
tbdata , 1 , Yie ld_stres s , Tangent_modulus

! i n c l u s i o n o f prezyna model

tb , rate , 1 , , ,PEIRCE! model
tbdata , 1 , 1 , gammain

! m and gamma ( which i s a func t i on o f v i s c o s i t y o f the mate r i a l . )

! Act ivat ion o f s t a t e v a r i a b l e s

tb , s ta te , matid , , 3
Material_ID = matid ! f o r subsequent APDL−sn ippe t s

B.3 Definition of initial state variables

! Commands i n s e r t e d in to t h i s f i l e w i l l be executed j u s t p r i o r
to the ANSYS SOLVE command .
! These commands may supersede command s e t t i n g s s e t by Workbench .

! Act ive UNIT system in Workbench when t h i s ob j e c t was c rea ted :
Metr ic (um, kg , uN, s , V, mA)
! NOTE: Any data that r e qu i r e s un i t s ( such as mass ) i s assumed
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to be in the c on s i s t e n t s o l v e r un i t system .
! See So lv ing Units in the help system f o r more in fo rmat ion .

e s e l , s , mat , , Material_ID ! S e l e c t a l l e lements with mate r i a l ID
i n i s t a t e , set , mat , 0 ! d i s ab l e mater ia l−based d e f i n i t i o n
i n i s t a t e , set , node , 0 ! d i s ab l e node−based d e f i n i t i o n
i n i s t a t e , set , dtyp , svar ! type = s t a t e v a r i a b l e s

! Request element count and f i r s t element ID

∗get , Element_count , elem , 0 , count ! get number o f e lements
∗get , ID , elem , 0 ,num, min ! get ID o f the f i r s t element

! Loop over a l l e lements

∗do , i , 1 , Element_count , 1
dp = 1.17
de l t a = (3 . 1 4 ∗ ( centry ( ID ))/ dp)
fy = ( cos ( de l t a ) ) ∗ ( cos ( d e l t a ) )
va lue =100∗ fy
! va lue i s a s s i gned to a l l IP o f the element
i n i s t a t e , de f ine , ID , a l l , , , 0 , value , 0

ID = ELNEXT(ID) ! r eque s t next id
∗enddo

ALLSEL

B.4 Userthstrain subroutine

∗ State v a r i a b l e s :

∗ ustatev (1 ) = time ( coded v ia the temperature f o r d l l )
∗ ustatev (2 ) = sigma_xx_light
∗ ustatev (3 ) = p l a s t i c s t r a i n
∗ ustatev (4 ) = time dependent s t r e s s

∗ Prope r t i e s :

∗ propv (1 ) = shear modulus
∗ propv (2 ) = time constant f o r the l i gh t −induced con t r i bu t i on
∗ propv (3 ) = y i e l d s t r e s s
∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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subrout ine u s e r t h s t r a i n ( nprop , propv , ncomp , epth )

imp l i c i t none
∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗ Dec la ra t i on o f g l oba l parameters

i n t e g e r nprop , ncomp
double p r e c i s i o n propv ( nprop ) , epth (ncomp)

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗ Dec la ra t i on o f l o c a l parameters

i n t e g e r elemId , matipt , i , nstatev , l d s t ep
double p r e c i s i o n time , us tatev ( 3 ) , dt , cond i t ion , e l a s t i c
double p r e c i s i o n Tem, n1 , lamda , vr , x1 , x2 , xd , xdd
double p r e c i s i o n s igx , x0 , k , n , y , y1 , sigma , y2 , vr1 , y3 , tp , x11 , x22 , vr11
double p r e c i s i o n vr111 , x33 , xd1 , xd2 , s t r e s s

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗ Dec la ra t i on o f ex t e rna l f un c t i on s

ex t e rna l get_ElmInfo , put_ElmData , get_ElmData
∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∗ Request element in fo rmat ion

c a l l get_ElmInfo ( ’ELEMID ’ , elemId )
c a l l get_ElmInfo ( ’MATIPT ’ , matipt )
c a l l get_ElmInfo ( ’NSVAR ’ , ns tatev )
c a l l get_ElmInfo ( ’LDSTEP ’ , l d s t ep )

c a l l get_ElmData ( ’TEMP’ , elemId , matipt , i , time )
c a l l get_ElmData ( ’SVAR’ , elemId , matipt , nstatev , us tatev )

dt = time − ustatev (1 )
sigma=ustatev (2 )
s i gx=1d6∗ ustatev (2 )
x0=0.33d0
k=1.383∗1d−23
tp=300.0d0
n1=2.5∗1d26
lamda=250.0d0
vr=−3∗s i gx /(2∗n1∗k∗ tp )
vr1 =(4/(3∗ vr ) )
vr11=(1+(1/vr ))∗(1+(1/ vr ) )
vr111=vr11−vr1
x11=0.5d0+(1/(2∗ vr ) )
x22=sq r t ( vr111 )
x33=0.5d0∗x22
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x1=x11+x33
x2=x11−x33
xd1=(x0−x1 )
xd2= (x0−x2 )
xd=xd1/xd2
xdd=x1−x2
y=xd∗exp ( ( vr∗xdd∗( us tatev (1)+dt ) ) / ( lamda ) )
y2=y/((1−y)∗(1−y ) )
y3= n1∗k∗ tp∗vr

y1=4.5d0∗y3 ∗( xdd∗xdd )∗ y2

∗ s t r e s s in the un i t s o f Mpa
s t r e s s = y1∗1d−6
cond i t i on = propv (3 )

∗ e l a s t i c and p l s t i c s t r a i n
∗ in the case when s t r e s s i s l e s s then y i e l d s t r e s s the p l a s t i c s t r a i n w i l l
same as the maximum s t r a i n

i f ( s t r e s s . l e . c ond i t i on ) then
ustatev (3 ) = ustatev (3 )
e l s e
us tatev (3 ) = ustatev (3)+dt ∗( s t r e s s /( propv (3)) −1. d0 )

+ / propv (2 )
end i f

∗ ustatev (4 ) = propv ( 3 ) / ( 2 . d0∗propv ( 1 ) )

e l a s t i c = propv ( 3 ) / ( 3 . d0∗propv ( 1 ) )
∗ e l a s t i c = 0 . d0

∗ Dummy output

i f ( l d s t ep . eq .−1) then
wr i t e (∗ ,∗ ) ’Dummy’

end i f

∗ only f o r b i s o

epth (1 ) = −ustatev ( 3 ) / ( 2 . d0 ) − e l a s t i c /2 . d0
epth (2 ) = ustatev ( 3 ) / ( 1 . d0 ) + e l a s t i c
epth (3 ) = −ustatev ( 3 ) / ( 2 . d0 ) − e l a s t i c /2 . d0

∗ Store s t a t e v a r i a b l e s
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∗ l i n e no 127 next l i n e
ustatev (1 ) = time
c a l l put_ElmData ( ’SVAR’ , elemId , matipt , nstatev , us tatev )
wr i t e (∗ ,∗ ) y1 , us tatev (3 )
end

∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Et Tangent modulus

G Shear modulus of the azopolymer

I Light intensity

I0 Total intensity of light

kB Boltzmann constant

l Final edge length of the square post

l0 Initial edge length of the square post

li Initial length of half-spheroid

m Number of azobenzenes in the backbone segment

n Number density of segments

q Shape factor of the azopolymer

T Temperature

t Time

tstop Stopping time

U Effective orientation potential

v Velocity

V0 Strength of the orientation potential

Vr Reduced potential

w Gaussian beam radius

Q Nematic order parameter
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