
 
 
 
 

 

Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) / 

This is a self-archiving document (published version):  
 
 
 
 
 
 
 

 

 

Diese Version ist verfügbar / This version is available on:  

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-721148  

 
 
 
 
 
 
 
 

„Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFGgeförderten) Allianz- bzw. 
Nationallizenz frei zugänglich.“ 

 
This publication is openly accessible with the permission of the copyright owner. The permission is granted 
within a nationwide license, supported by the German Research Foundation (abbr. in German DFG). 
www.nationallizenzen.de/ 

 

  

 

Andreas B Gevaert, Volker Adams, Martin Bahls, T Scott Bowen, Veronique 
Cornelissen, Marcus Dörr, Dominique Hansen, Hareld MC Kemps, Paul Leeson, 
Emeline M Van Craenenbroeck, Nicolle Kränkel 

Towards a personalised approach in exercise-based cardiovascular 
rehabilitation 

Erstveröffentlichung in / First published in: 
 

European Journal of Preventive Cardiology. 2020, 27(13), S. 1369–1385 [Zugriff am: 
29.08.2020]. Sage Publications. ISSN 2047-4881.  

 

DOI: https://doi.org/10.1177/2047487319877716  

   

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-721148
http://www.nationallizenzen.de/
https://doi.org/10.1177/2047487319877716


Position paper

Towards a personalised approach
in exercise-based cardiovascular
rehabilitation: How can translational
research help? A ‘call to action’ from
the Section on Secondary Prevention and
Cardiac Rehabilitation of the European
Association of Preventive Cardiology

Andreas B Gevaert1,2,3, Volker Adams4, Martin Bahls5,6,

T Scott Bowen7, Veronique Cornelissen8, Marcus Dörr5,6,
Dominique Hansen3,9, Hareld MC Kemps10, Paul Leeson11,
Emeline M Van Craenenbroeck1,2 and Nicolle Kränkel12,13

Abstract

The benefit of regular physical activity and exercise training for the prevention of cardiovascular and metabolic diseases is

undisputed. Many molecular mechanisms mediating exercise effects have been deciphered. Personalised exercise pre-

scription can help patients in achieving their individual greatest benefit from an exercise-based cardiovascular rehabili-

tation programme. Yet, we still struggle to provide truly personalised exercise prescriptions to our patients. In this

position paper, we address novel basic and translational research concepts that can help us understand the principles

underlying the inter-individual differences in the response to exercise, and identify early on who would most likely benefit

from which exercise intervention. This includes hereditary, non-hereditary and sex-specific concepts. Recent insights

have helped us to take on a more holistic view, integrating exercise-mediated molecular mechanisms with those

influenced by metabolism and immunity. Unfortunately, while the outline is recognisable, many details are still lacking

to turn the understanding of a concept into a roadmap ready to be used in clinical routine. This position paper therefore

also investigates perspectives on how the advent of ‘big data’ and the use of animal models could help unravel inter-

individual responses to exercise parameters and thus influence hypothesis-building for translational research in exercise-

based cardiovascular rehabilitation.
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Medical Centre, The Netherlands
11Oxford Cardiovascular Clinical Research Facility, University of Oxford,

UK
12Department of Cardiology, Charité Universitätsmedizin, Germany
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Introduction

Epidemiological and interventional studies have
demonstrated a benefit of regular physical activity
and exercise for the prevention of cardiovascular and
metabolic diseases.1–6 Exercise acts in a pleiotropic
manner, addressing cardiac contractile and diastolic
properties, muscle anabolic and catabolic pathways,
substrate metabolism and regulatory processes govern-
ing tissue perfusion and energy storage.7,8

While physiological research of the past decades
has allowed us to understand these principal inter-
actions, crucial questions remain on how to effectively
implement exercise interventions in clinical therapy.
Access and compliance to cardiovascular rehabilitation
(CR) programmes remains a critical factor in the
success of an exercise intervention, which requires a
highly motivated multi-disciplinary team.9 But basic
and translational research can also help, addressing
questions regarding the personalization of exercise
prescription, in order to improve efficacy of exercise
interventions throughout the cardio/vascular/meta-
bolic continuum. Why do some patients not respond
to exercise-based CR, and how can we identify them
early on? What drives the difference in response to
CR in men and women? How is the response to exercise
influenced by metabolism, immunity and their
interaction?

In addition to this, research methodology is rapidly
advancing, bringing different views on translation of bio-
chemical findings into the clinics. How will the advent of
‘big data’ influence hypothesis-building for translational
research in CR? What is the sense and nonsense of using
animal models in modern CR research?

In this position paper, we aim to address these future
challenges for basic and translational research in exer-
cise-based CR. We critically review recent studies deal-
ing with the most important yet unanswered questions
in the field, both in preclinical and clinical research.
Finally, we pinpoint gaps in current evidence that
deserve intensified attention in future research.

Future targets and open questions in
translational CR research

While exercise-based intervention programmes are rec-
ommended in cardiovascular prevention,10,11 exercise
parameters – type, intensity, duration, frequency – may
differentially affect cardio-vascular and metabolic end-
points.12 In addition, inter-individual differences in the
response to different types or intensities exist and may
explain why some studies describe comparable effects
achieved with different exercise modalities.13,14 Thus, in
addition to improving implementation, the personaliza-
tion of exercise interventions is an important focus of
current and future research.

Personalization of therapy includes taking account
of patient-specific parameters with potential impact on
the mechanism of disease and therapy effect, including
age, gender and co-morbidities. In addition, personal-
ization also means that target parameters need to be
chosen according to the clinical needs of the patient,
based on their underlying morbidities and risk profile.

Which factors contribute to the large variability
in individual response to CR?

The improvement in maximal aerobic capacity (peak
oxygen uptake (VO2peak)) following exercise-based
CR is related to survival in a wide range of cardiovas-
cular diseases, independent of other important risk fac-
tors.15–17 Even small increments in VO2peak result in a
substantially lower risk for all-cause and cause-specific
mortality.3 Although trials that investigated the effects
of exercise-based CR on exercise capacity have consist-
ently shown favourable and clinically significant
changes,18,19 a large variability is seen in the individual
training response (relative change in VO2peak follow-
ing training (DVO2peak)). This variability exists both in
healthy subjects and in patients with established cardio-
vascular disease, when exposed to similar exercise pro-
grammes.17,20,21 Recent studies have shown that up to
33% of patients fail to demonstrate a meaningful
increase in VO2peak in response to CR, despite ade-
quate compliance with training. These ‘non-responders’
show a decrease in VO2peak, or an increase within the
test-retest variability of VO2peak measurement (gener-
ally accepted to be �6%).21–23 The mechanisms driving
this variability in DVO2peak are not well understood,
nor do we have good predictors for the response to
exercise intervention. Possible contributing factors are
summarised in Figure 1. We introduce some of the
most important contributing factors below. Interested
readers are referred to existing reviews for in-depth
discussion of mechanisms of non-response.24–26

Among the factors influencing the individual
response to CR, exercise parameters have been studied
intensely recently. Williams et al. combined data from
different laboratories that had compared training vol-
umes ranging between high and moderate intensities, in
populations of both healthy subjects and patients with
established cardiovascular disease.27 When exercise was
performed with great amounts and high intensities, the
likelihood of subjects increasing their exercise capacity
was significantly greater. Similarly, Montero et al.
showed that healthy non-responders to an exercise
training intervention did increase their VO2peak when
subjected to greater training volumes.28 Yet, the evi-
dence regarding the additional beneficial effects of
higher exercise intensities is still conflicting.29 Total
energy expenditure may be more relevant for
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improvements in exercise capacity than exercise intensity
in these subjects. More comparative exercise intervention
studies are needed to determine the inter-individual vari-
ability in exercise capacity caused by different variables
of exercise programmes (Figure 2).

It still remains to be elucidated which phenotypic and
genotypic characteristics predict the response of a
patient to these specific exercise interventions.26

Previous studies have already suggested that in addition
to exercise training characteristics (e.g. intensity,
volume, type), common personal characteristics like
age, sex, body mass index and baseline physical fitness
predict between 15–21% of variability in
DVO2peak.

18,20,22,27 Moreover, an additional physio-
logical factor that may influence DVO2peak in patients
with chronic heart failure (HF) is the circulatory
response to acute exercise.30,31 Considering the rela-
tively low predictability of these factors, other more
important factors that affect DVO2peak likely still
need to be discovered.

Heritability explains more than 50% of the inter-
individual differences in cross-sectionally measured
VO2peak.

32,33 In addition, the Heritage Family study
demonstrated that the change in VO2peak to exercise
training intervention is also largely (47%) determined
by heritable factors (i.e. genetic, epigenetic or familial
environmental factors).34 Heritability of training-
induced changes in haemodynamic response and skel-
etal muscle characteristics are also relatively high.35,36

Most importantly, the heritability of DVO2peak was
independent of baseline VO2peak.

37 This implies that
even subjects with a low aerobic capacity may still sub-
stantially benefit from exercise training during CR.

Single gene diagnostics can help to improve our
understanding of the genetics underlying the variability
in VO2peak and DVO2peak. ‘The human gene map for
performance and health-related fitness phenotypes’ has
identified more than 200 autosomal gene variants and
quantitative trait loci.38 However, as data was mainly
derived from underpowered sample sizes, this study did
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not provide compelling evidence that DNA sequence
variants in a given gene are associated with human vari-
ation in fitness and performance traits.38 Interaction
between gene variants and disease modifying factors
add to the complexity. For example, a single nucleotide
polymorphism (SNP) in the FTO gene is associated
with higher risk for adiposity, but this interaction
term was weaker in physically active people.39

A means to overcome the focus on a single gene or
locus could be transcriptome wide RNA expression
profiling studies. Timmons et al. identified 11 SNPs in
skeletal muscle, which were responsible for nearly 50%
of the heritability of DVO2peak in healthy subjects.40

Genome-wide association studies could also provide
unbiased insight into the genetics underlying baseline
VO2peak as well as DVO2peak. Bouchard et al. dis-
covered a total of 39 SNPs significantly associated
with DVO2peak.

41 Unfortunately, there was no overlap
between the genes identified by Timmons et al. and
those reported by Bouchard et al.42 Another large
genome-wide association study compared SNPs in
1520 elite athletes with SNPs in 2760 non-athletes,
and identified only a single SNP (in the GALNTL6
gene) that was more common in athletes.43 Hence,
while previous studies have started to use hypothesis-
free methods to improve our understanding of the

genetics underlying VO2peak and DVO2peak, there is
still a long way to go.

Epigenetic regulation may also influence protein
function. This includes DNA methylation, histone
modification, and post-translational modifications by
non-coding RNAs, and each of these mechanisms has
been described to contribute to the response to exercise
training.

Both, acute bouts of exercise and repeated training
influence promoter DNA methylation.44–46 Acute exer-
cise-induced expression of key signalling pathways,
including adenosine monophosphate (AMP)-dependent
kinase (AMPK)/ Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PGC-1a), was
paired with a hypomethylation of the respective pro-
moter sequence.45 Importantly, the magnitude of the
effect on DNA methylation was dependent on exercise
dose, suggesting a role of DNA methylation in the indi-
vidual response to training.45

Deacetylation of histones and other proteins by sir-
tuins, is known to mediate adaptation to repeated exer-
cise.47 Lehmann et al. demonstrated that histone
deacetylase 4 may be responsible for enabling or pre-
venting heart failure depending on which metabolic
pathway is switched on when the heart is put under
stress.48 In addition, histone deacetylase 3 plays a
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major role in skeletal muscle by regulating fuel metab-
olism.49 These findings are especially interesting with
regards to insulin resistance in patients with metabolic
syndrome. Whether or not pharmaceutical interven-
tions targeting histone deacetylases add an additive
effect to exercise-based CR alone, remains to
be determined.

Finally, microRNAs are released into the circulation
after acute exercise, and exercise training induces long-
term changes in their expression.50,51 In a rat model of
HF, Souza et al. identified a set of 14 cardiac
microRNAs of which expression was influenced by
exercise training.52 Other studies have identified add-
itional exercise-responsive microRNAs in animal
models of different cardiovascular diseases.51 To date,
only two small studies have assessed the effect of exer-
cise training on microRNA expression in human
patients with established cardiovascular disease.53,54

Taurino et al. showed that miR-92a and miR-92b
were upregulated after exercise-based CR in patients
with coronary artery disease, coinciding with a down-
regulation of their gene targets.53 Xu et al. identified
three microRNA dysregulated by acute exercise in
HF patients, but a clear correlation with VO2peak
was not found.54

None of these epigenetic mechanisms has yet been
linked to DVO2peak. Exercise epigenetics is a highly
active research area, and more extensive studies, includ-
ing larger numbers of patients, are still needed before
reliable conclusions can be drawn.

For most studies, improvement of VO2peak is the
main target parameter of an exercise intervention.
Yet, depending on the clinical need of the patient and
based on their underlying morbidities and risk profile,
other parameters such as improved submaximal exer-
cise parameters, increased cardiac function, better glu-
cose handling, reduced inflammation or improved
vascular stiffness should be considered.5,55–58 Of note,
target parameters of the exercise intervention might
even change over time in each patient.

. To summarise, the change in VO2peak to exercise
training shows large inter-individual variability.
Understanding how such inter-individual differences
emerge is important, as a lower response is linked to
poorer outcomes.15–17 DVO2peak seems to be regu-
lated by the interaction between heritable factors
and lifestyle – including exercise parameters, SNPs
and non-coding RNAs – but individual targets have
yet to be confirmed. We need controlled randomised
studies using multi-omics techniques (transcrip-
tomics, genomics, proteomics and metabolomics)
to identify potential pathways in a ‘systems biology’
approach. The complex interaction between lifestyle
and heritable factors likely explains a large part of

the individual response to exercise training, and
future studies should aim to improve our under-
standing of this interaction.

The potential role of sex differences in
response to CR

In general, VO2peak is �15% lower in women com-
pared to men.59 Intriguingly, however, women seem
to experience better clinical outcomes following exercise
training, despite similar improvements in exercise cap-
acity.60,61 While sex-specific effects thus likely play a
key role in the clinical benefits associated with exercise
interventions, the mechanisms responsible for these
benefits are not completely understood.

Cardiovascular physiology as well as pathophysi-
ology are markedly different between men and
women, as has recently been reviewed in depth.62–64

Sex-specific hormones may explain part of these dif-
ferences. In pre vs postmenopausal women of similar
age, blood pressure is lower and left ventricular end-
systolic volume, ejection fraction and filling rate are
larger.65 The vasodilating properties of oestrogen may
play a role.66 Also, RNA sequencing in cardiomyocytes
revealed more than 600 genes with sexually dimorphic
expression patterns.67 This adds to genetic differences
due to male specific Y-chromosomal gene expression
and differences in epigenetics (histone and DNA modi-
fications, non-coding RNA expression).63

Thus, in addition to the obvious endocrine differ-
ences between men and women, a variety of anatom-
ical, genetic and molecular differences exist within
the heart. These may influence not just cardiovascular
disease progression, but also affect secondary preven-
tion strategies.64

While central haemodynamic differences likely
explain some of the sex-specific effects in response to
CR,64 other factors are also involved. It is well estab-
lished that cardiovascular disorders induce secondary
impairments to the periphery, including endothelial
and skeletal muscle dysfunction, which are closely
linked to symptoms of exercise intolerance and progno-
sis.68 Surprisingly, it is still largely unclear how sex
modulates the crosstalk of mechanisms governing the
loss of endothelial, skeletal and cardiac function. A few
studies have revealed that in patients with HF, mito-
chondrial enzymes in skeletal muscle show either no
major changes or more pronounced deficits in men
compared to women, with a greater shift towards glyco-
lytic enzymes and type IIX fatigable fibres in men.69,70

In response to an aerobic endurance training interven-
tion, evidence has revealed minor differences in terms of
skeletal muscle biochemistry, with reports suggesting
men with HF can increase the content of the slow
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myosin heavy chain isoform towards similar levels to
that observed at baseline in women.71 Thus, women
may experience a greater preservation of muscle oxida-
tive function compared to men with HF, which could
help to explain why women demonstrate greater clinical
benefits after CR.60 The mechanisms underpinning the
sex-specific differences in muscle physiology and effects
of exercise intervention remain unclear. Hormonal
effects of oestrogen regulation on mitochondrial dynam-
ics and/or a preferential shift towards fatty acid oxida-
tion in women may play a role, 72,73 but more extensive
measures of muscle function and physiology and higher
sample sizes are still required to confirm this.

In addition to skeletal muscle alterations, endothelial
dysfunction also develops in HF patients, both in men and
women.74 Yet, little data is available to clearly demon-
strate whether any sex-specific alterations are present fol-
lowing CR in patients.64 Recent evidence from animal
models of HF have shown that high-intensity interval
training can attenuate endothelial dysfunction in both
female and male rats, which seems to act via mechanisms
specifically lowering oxidative stress in males and increas-
ing endothelial nitric oxide synthase expression in
females.75,76 Whether these molecular benefits are paral-
leled in male and female patients with HF remains unclear.
Furthermore, sex-specific substrate utilization could play a
key role in the exercise response in women and may fill the
above-mentioned gap in the literature with regards to the
effectiveness of exercise-based CR. One example is that
women rely on carbohydrates to a lesser extent but have
a higher content of intramyocellular lipids.77

While CR programmes clearly reduce the risk of
all-cause and cardiac-related mortality and improve
quality of life, directly extrapolating these findings
from men to women remains fraught with complexities
since women have consistently been under-represented
in previous trials.78 In large meta-analyses and rando-
mised controlled trials, the amount of women recruited
was 11–28%.64 Given that women are also �40 % less
likely to enrol in CR and have a significantly lower
adherence to the interventions compared to men,79,80

the need to better understand sex-specific mechanisms
in response to exercise training will initially require
rapid improvement in CR recruitment and adherence
of women. Identification of sex-specific targets is likely
to substantially improve outcomes following CR pro-
grammes by optimising training regimes.

Nonetheless, women seem to benefit at least as much
from exercise-based CR as men.60,81,82 The most recent
Cochrane reviews which assessed the benefits of exer-
cise-based CR concluded that exercise improves cardio-
vascular mortality and hospitalization (in patients with
coronary artery disease) and improves health-related
quality of life (in patients with coronary artery disease
or HF).83,84 The authors also clearly state that evidence

for benefits of exercise-based CR in women is currently
insufficient. Given the above mentioned physiological
and pathophysiological differences between men and
women, we cannot assume that exercise regimes
which worked for men will also be effective for women.

. To summarise, important differences exist in the
response to CR in men and women. Besides obvious
differences in cardiovascular and skeletal muscle
structure, function and physiology, the underlying
hormonal and molecular mechanisms are still under-
studied. Identification of sex-specific targets might
further improve outcomes after CR. Further, in
order to put the physiological differences between
men and women into a larger perspective, novel
‘omics’ techniques, which enable a systems biology
approach, should be used to determine which differ-
ences contribute to the response to exercise-based CR.

Immune-metabolism interactions and inflammation

Both enhanced activation and impaired resolution
of inflammation are major underlying principles of car-
diovascular and metabolic pathologies.85 Regular exer-
cise training has been shown to lower systemic and
vascular inflammatory load within a few weeks.58

This has been partly attributed to active secretion of
anti-inflammatory myokines from skeletal muscle.86

While biochemical interactions of some myokines
have been deciphered, it remains a major task to
chart the network of biochemical interactions between
energy demand by skeletal muscle contractile activity
(affected by exercise parameters, such as duration, type
and frequency) and the fine-tuning of inflammatory
mechanisms. The recent years have brought a refine-
ment in our understanding of inflammation in athero-
sclerosis, including the appreciation of resolution of
inflammation as an active process, distinct from inhib-
ition of inflammation, as well as the tight interactions
between immune cell activation and their energy metab-
olism. Those initial in vitro data have not yet been trans-
lated into therapeutic strategies. Unanswered questions
include to what extent immuno-metabolic observations
made in mouse macrophages can be translated to the
human, and to what extent in vitro differentiated macro-
phage phenotypes resemble in vivo macrophages,
regarding both immunologic function and energy meta-
bolic profile.

Resolution of inflammation versus anti-inflammation. The
termination of an acute inflammatory response is
normally governed by two mechanisms: the decay of
pro-inflammatory signals and the active production
of pro-resolving factors.87 The inability to resolve an
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ongoing inflammatory process is a hallmark of inflam-
matory degenerative diseases, including atheroscler-
osis.88 On the one hand, innate immune-activating
signals – ligands of pattern-recognition receptors,
such as modified lipids – do not disappear in athero-
sclerosis, as would happen in a ‘normal’ injury. On the
other hand, the production of pro-resolving mediators
appears to be dysregulated. Anti-inflammatory thera-
pies have been employed more or less successfully in
secondary cardiovascular prevention.89,90 However,
therapeutic success appears to depend on the inflamma-
tory signalling mechanism targeted, likely interleukin-
1b and interleukin-6 signalling, and may be flawed by
increased incidence of lethal infections.89,90 In addition,
blocking inflammation also appears to block resolving
mechanisms, the removal of apoptotic particles and cell
debris as well as the induction of regenerative
processes.88

A number of studies support the ability of exercise –
ranging from a single session of high-intensity interval
exercise to a three-month multicomponent exercise
programme – to reduce cellular responsiveness to toll-
like receptor-mediated signalling, induced by damage-
associated molecular patterns.91–93

Dietary interventions targeting synthesis of specia-
lised resolving mediators (SPMs) have been tested for
some time now and it becomes evident that both the
dosage and the formulation might be relevant to their
success in cardiovascular prevention.94 In contrast,
only few studies have systematically addressed the
effects of exercise intervention on the release of SPMs
– resolvins, lipoxins, protectins and maresins – but the
existing literature indicates an increase in SPM release
by regular exercise.95–97 This might be attributed to
acute and chronic effects: strain and acute release of
pro-inflammatory mediators are associated with SPM
release in acute high-intensity exertion, while chronic
effects of exercise intervention might be connected to
the exercise-mediated shift in macrophage polarization
towards the M2-like phenotype.95,97,98 M2-like macro-
phages are better suited to perform efferocytosis than
the M1-like phenotype and it is during efferocytosis
that SPMs are released.99 Thus, we know that regular
exercise is associated with a shift towards the more pro-
resolving macrophage spectrum, as well as higher levels
of pro-resolving mediators, but we do not know which
exercise parameters (e.g. intensity, volume, type) could
be used to boost this effect, nor whether a combination
with dietary approaches to supplement SPMs could
potentiate the effects of exercise intervention on cardio-
vascular inflammation (Figure 3).

Energy metabolism and inflammation. From tumour biol-
ogy, we know that increased glycolysis and glutamino-
lysis provide energy flexibility to the cell and generate

intermediates that feed into anabolic processes –
probably the reason why glycolysis is preferred over
oxidative phosphorylation by proliferating tumour
cells.100–102 In a similar manner, glycolysis is preferred
by activated and proliferating myeloid and lymphoid
cells103 and stimulating glycolysis can activate macro-
phages.104 In addition, M1-type macrophages feature a
‘broken’ Krebs cycle, with increased output of inter-
mediates that serve as substrates in the synthesis of
pro-inflammatory mediators, or are pro-inflammatory
mediators in themselves.105–107 In contrast, ‘alternative’
M2-like macrophages favour oxidative phosphoryl-
ation and fatty acid oxidation.108,109 Indeed, oxidative
phosphorylation is a prerequisite of M2-type pheno-
typic macrophage polarization.109

In addition to the ‘re-purposing’ of the Krebs cycle
to deliver inflammatory intermediates, mitochondrial
integrity and biogenesis respond to both, inflammation
and exercise. The leakage of reactive oxygen species –
potentially indicative of mitochondrial damage – upre-
gulates anti-inflammatory and mitochondrial repair
programmes leading to increased mitochondrial mass
in inflammation.110 Similarly, reactive oxygen species
have been shown to be crucial signalling mediators in
exercise training, including exercise-induced activation
of AMPK/PGC-1a signalling, inducing anabolic path-
ways as well as mitochondrial biogenesis.111,112

Essential signalling pathways, including the mitogen-
activated protein kinases (MAPKs), the nuclear
factor-kB and the protein kinase B are employed in
inflammation as well as in exercise. Similar to the sever-
ity of inflammation, exercise intensity appears to modu-
late activation of individual MAPK signalling
pathways.110,113,114

Of note, the complex spectrum of M2-like macro-
phage phenotypes recognised with their diverse roles
in atherosclerosis, have not been charted in detail for
their inflammation-resolving and energy metabolism
phenotype yet, nor for the effect of exercise in their
polarization. Similarly, natural killer cells and various
T lymphocyte populations react to acute and chronic
exercise and contribute to both polarization of innate
immune cells and functionality of various tissues and
organs, including distinct fat depots (perivascular, sub-
cutaneous, visceral).115

Both the amount and type of energy substrates pro-
vided and physical exercise can affect the phenotype of
monocytes and macrophages.104,116–119 Energy sensors,
such as AMP-dependent kinase, can be targeted by
both diet and exercise. On the way to personalised life-
style-based therapies, we need to learn more about the
integration of exercise parameters (e.g. type, intensity,
frequency, volume) with diet (e.g. macronutrient com-
position, amount and timing of eating/fasting) and
pharmacological means to modulate energy metabolism
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and (thereby) the activation state of inflammatory cells in
various tissues.120–124 Of note, activation of the relevant
mechanisms might shift between individuals, being influ-
enced by a number of factors such as hormonal status/
sex, age, pharmacotherapy and co-morbidities as well as
genetic background.125–127

. To summarise, macrophage phenotype shift, leading
to reduced release of pro-inflammatory mediators and
an increased release of pro-resolving mediators, might
well be a nexus of exercise-mediated anti-
inflammatory and metabolic cardio-protective effects.
The available seminal data, however, requires better
resolution: continuously improved techniques of
single-cell immuno-phenotyping128 and assessment
of cellular metabolism129 allow for the fine-mapping
of immune-inflammatory interactions and can be
used to develop diagnostic tools, assessing individual
response to exercise and personalising exercise

parameters. In addition, better understanding of the
cellular and molecular nodes of the immuno-meta-
bolic network might help to optimise exercise param-
eters on an individual level to improve cardiovascular
and metabolic benefit, potentially in combination
with pharmacological and diet-based approaches.

Challenges and opportunities in
translational CR research methodology

The advent of high-throughput molecular techniques,
single-cell diagnostics and organs-on-a-chip have
opened countless opportunities in exercise research,
but some important challenges have surfaced simultan-
eously.130,131 How can we successfully pinpoint import-
ant findings within these vast datasets? And if
computers can handle increasingly complex tasks,
what is the use of animal models in the future?
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Impact of ‘big data’ and artificial intelligence on
translational research in CR

As analytical techniques evolve, new challenges arise
with regards to handling the enormous amount of
data they generate. This is especially true in the area
of genomics, epigenomics, proteomics and metabolo-
mics, but also applies to datasets obtained from large
clinical trials or registries, and epidemiological
research.131 These datasets cannot be readily viewed
on any computer, which complicates human pattern
recognition. Moreover, the analysis of ‘big data’
requires additional statistical precautions, taking into
account the increased ‘noise’ of high-throughput tech-
niques.130 Novel ‘data mining’ techniques have been
developed to derive relationships and statistical infer-
ence from these datasets, often relying on some form of
artificial intelligence. These techniques, grouped under
the term ‘machine learning’, can be either supervised
(the user determines the relation between subjects)
such as traditional regression analysis, or unsupervised
(the computer determines the relation between subjects)
such as clustering analysis.132,133

Some of these novel techniques have already been
applied to translational exercise research. In 2009,
Goud et al. set up a cluster-randomised trial in 21 CR
centres, comparing effects of a computerised decision
support system to standard care.134 In centres imple-
menting the decision support system, concordance
with CR guideline recommendations were modestly
increased, reducing both over- and under-treatment.
Further efforts have been made with regard to artificial
intelligence-based exercise prescription.135–139 Most of
these studies describe a framework to automate exercise
prescription based on patient demographics, comorbid-
ities, test results and reason for referral. Randomised
clinical trials evaluating fully computerised exercise
prescription are still lacking.

Finally, the vast amount of data obtained from
wearable devices opens up possibilities for data-driven
personalization strategies. For example, one study
succeeded in predicting active energy expenditure (a pre-
dictor of DVO2peak) from photo-plethysmographic
heart rate measurements, even in patients under beta-
blocker therapy.140

But many more possibilities of ‘big data’ and
machine learning exist in the field of CR, which we
will demonstrate by means of two examples from
other areas within cardiovascular research: imaging
and phenotyping.

Imaging is especially suited for the application of
machine learning because images contain a rich
amount of data both within the image itself and through
the extraction of quantitative features.132 Furthermore,
powerful computational approaches to handle image

data have undergone extensive development within aca-
demic clinical research and non-medical fields such as
facial recognition and image searching. 141 Combined
with the recent availability of large imaging datasets,142

this has meant that artificial intelligence approaches to
identify images, automatically quantify image features
and predict disease from the patterns in the image
have developed rapidly within cardiology and radi-
ology.132 As a result, automated quantification is now
entering clinical use, but broader diagnostic application
will require robust clinical validation before adoption.143

Of particular interest in CR will be understanding
whether imaging after cardiovascular events (e.g. echo-
cardiography) contains information of value for predic-
tion of outcome, risk of HF and likelihood of response
to exercise interventions.

Another approach of unsupervised machine learning
is to find clusters of similar data items: subjects in the
same cluster are similar to each other, and dissimilar to
subjects in other clusters. This can aid in discovering
subtypes of patients with a certain disease. For exam-
ple, machine learning has been able to identify clusters
of patients with HF based on their baseline character-
istics and test results (including cardiopulmonary exer-
cise tests).144–147 Phenotyping through machine
learning has predicted the prognosis of HF patients,
and performed better compared to traditional pre-
dictors such as ejection fraction.146

A major concern of artificial intelligence is the ‘black
box’ phenomenon. More complex machine learning
processes, such as neural networks, build layer upon
layer of automated decisions up to a point where it is
impossible to retrace the individual steps.148 Thus,
while some neural networks have been proven to out-
perform humans (for example in image recognition149),
it is often hard to assess how the computer reached its
decision or classification. One technique to overcome
the ‘black box’ is to ask the computer to simultaneously
create a simpler ‘surrogate’ model to gain insight in the
reasoning process.150

Also, while the decision process can be fully auto-
mated and intelligent, large datasets still need to be
imputed to train machine learning models.
Availability of enough training data is currently still
an issue, but the increased promotion of open science
and data sharing will hopefully provide an answer to
this problem soon.151 For example, several platforms
have been set up to share anonymised cardiac imaging
data with the goal of promoting its use in machine
learning applications.152

Finally, a major challenge will be to convert artificial
intelligence-derived predictions and recommendations
into effective action. Better phenotyping and improved
risk stratification do not automatically lead to improved
health. To truly achieve a healthcare transformation,
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behavioural changes are needed at both patient and
physician level.153 For example, artificial intelligence
may improve exercise prescription, but a patient’s
health will only improve if his or her physician imple-
ments this improved prescription in practice, and the
patient adheres to the prescribed training.

. To summarise, early applications in CR research and
advanced examples from imaging and phenotyping
studies show that the advent of ‘big data’ and
machine learning will likely change current practice.
Major challenges include picking up useful signals
between increased noise in big datasets, the ‘black
box’ phenomenon, and implementing behavioural
changes based on computerised recommendations.
We suggest some approaches in Figure 2.

Sense and nonsense of animal models

Appropriate animal models are important to unravel
the molecular mechanisms of how exercise-based CR
mediates its beneficial effects. Small rodents in particu-
lar are attractive models for cardiovascular research,
possessing unique properties such as easy handling,
short gestation time and low costs. Perhaps most
important is the availability of transgenic mice and
rats, which allow the possibility of studying the involve-
ment of specific molecules in transmitting the positive
effect of exercise training, which otherwise would not be
possible in humans. Nevertheless, a certain scepticism is
warranted based on whether animal models appropri-
ately translate to humans, which has resulted (and
rightly so) in the value of such research being
questioned.154–156

An ideal disease model should mimic the human
condition genetically, experimentally and physiologic-
ally. Therefore, using inbred mouse strains may not
reflect the response generated in a genetically poly-
morphic human population, which may be one reason
for the failure of many promising preclinical drugs
when translated into human clinical trials. In support,
a recently published comment stated that >80% of
potential therapeutics fail when tested in humans,
even after animal studies have provided evidence that
the treatment is safe and effective.157 One future avenue
to circumvent such translational problems may reside
in humanised models, whereby mice expressing human
transgenes or engrafted human cells/tissue are used in
preclinical research.158 Obviously, generating diseased
animal models due to genetic defects is much easier
than trying to mimic a more complex disease pattern,
where several comorbidities contribute to the final clin-
ical phenotype. One contemporary example of such a
complex disease is heart failure with preserved ejection

fraction (HFpEF). Since the development of HFpEF is
driven by several comorbidities, which include hyper-
tension, diabetes, obesity and ageing,159–161 it remains
difficult to define an animal model that appropriately
mimics the HFpEF phenotype. As of yet, the animal
models used to probe molecular changes occurring in
HFpEF and in response to exercise training have been
predominantly based on a single risk factor such as
aging or hypertension.75,162,163 More recently this line
of research included a more clinically relevant animal
model, in the way that HFpEF develops due to the
onset of multiple comorbidities that mirror a metabolic
syndrome.76,164–166 Another problem with appropriate
animal models may be that most models develop over a
short time period, whereas in humans several years or
decades sometimes pass before a clear phenotype is
established.

Animals used for cardiovascular exercise studies
most commonly range from small rodents (e.g. mice,
rats) to large animals (e.g. rabbits, canine, goats,
sheep, pigs, horses).167–172 In these animal models exer-
cise can either be voluntary (e.g. animal cage is
equipped with a running wheel) or forced (e.g. animal
is placed onto a treadmill for a specific period). Many
exercise training studies have been employed using a
variety of animal models of diseases that include
HF,164,173,174 diabetes175,176 and neurodegenerative dis-
eases.177 Beside the classical animal models (mouse and
rat) used to analyse the effect of exercise training on
molecular and physiological parameters, other species
have been used more recently such as drosophila and
zebrafish.178–181 Exercise training in drosophila results
in improvements of physiological and molecular meas-
ures, which include enhanced climbing speed, flight per-
formance, aconitase levels and cardiac contractility.
Clearly, while the main advantage of using flies as an
animal model is that you can train several thousand
flies simultaneously, the question of whether and to
what extent these findings translate to humans looms
large. We also have to keep in mind that it is even more
difficult in animal models to control for activity levels.
In human studies most of the patients recruited into an
exercise study exhibit a very low exercise level, which is
difficult to control for in animals.

. To summarise, the ‘sense’ in the use of animal
models to investigate the benefits associated with
exercise in disease is difficult to refute: animal studies
have often provided the initial clues to help elucidate
how exercise exerts its benefits for treating disease.
However, animal research can also provide much
‘nonsense’ when translated to humans. Future stu-
dies should therefore continue focusing on develop-
ing more complex and robust animal models of
disease that closely reflect the human condition.
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Conclusion and outlook

Exercise-based CR has consistently shown positive
effects on the course of cardiovascular disease.
However, recent studies showed that there is a large
variation in training effects at the individual level,
with up to one-third of patients failing to demonstrate
a significant increase in exercise capacity despite ade-
quate compliance. Therefore, in order to improve
the effects of exercise-based CR it is crucial to (a)
gain more in-depth knowledge on the determinants
and mechanisms governing the response to exercise in
the organs – beyond the skeletal muscle, heart and vas-
cular system – and (b) to acknowledge their interaction
at a systemic level.

Heritable and non-heritable factors each determine
approximately 50% of inter-individual heterogeneity in
DVO2peak. High-throughput technologies in combin-
ation with improved bio-informatics and bio-statistical
approaches can help identify major regulatory nodes
among large datasets that cannot be readily interpreted
otherwise.

Sex-specific differences in the response to exercise
in cardiovascular therapy are severely understudied.
Although endocrine, anatomical and molecular dif-
ferences between men and women are assumed to
play a role, the exact mechanisms remain largely
unknown. Future research therefore needs to include
sufficient numbers of female patients to address
these issues.

Based on these studies, a concise, easy-to-use panel
of markers that could help personalise exercise param-
eters could be developed. This panel could include regu-
latory nodes identified in clusters of patients through
their classical risk profile, but also inflammatory and
metabolic status, and genetic traits identified through
advanced bio-statistics. Finally, while animal models
have inherent limitations complicating translation to
humans, complex and robust animal models closely
reflecting human cardiovascular diseases will be
needed to test the hypotheses mentioned and to gain
further insight in the complex physiology of exercise-
based CR.
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