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Abstract. Due to the changing scope of data management towards the man-
agement of heterogeneous and distributed systems and applications, integration
processes gain in importance. This is particularly true for those processes used
as abstractions of workflow-based integration tasks; these are widely applied
in practice. In such scenarios, a typical IT infrastructure comprises multiple
integration systems with overlapping functionalities. The major problems in this
area are high development effort, low portability and inefficiency. Therefore,
in this paper, we introduce the vision of invisible deployment that addresses
the virtualization of multiple, heterogeneous, physical integration systems into
a single logical integration system. This vision comprises several challenging
issues in the fields of deployment aspects as well as runtime aspects. Here,
we describe those challenges, discuss possible solutions and present a detailed
system architecture for that approach. As a result, the development effort can
be reduced and the portability as well as the performance can be improved
significantly.

Keywords: Invisible deployment, Integration processes, Virtualization, Deploy-
ment, Optimality decision, Heterogeneous integration platforms.

1 Introduction

Integration processes—as an abstraction for workflow-based integration tasks—gain in 
importance because data management continuously changes towards the management 
of distributed and heterogeneous systems and applications. There, the performance of 
complete IT infrastructures depends on the central integration platforms. In this context, 
different integration system types are used. Examples for those types are Federated 
DBMS, EAI (Enterprise Application Integration) servers, ETL (Extraction Transfor-
mation Loading) tools, and WfMS (Workflow Management Systems). However, the 
boundaries between these different classes of systems begin to blur due to overlapping 
functionalities of concrete products. Major problems in this context are posed by the 
high development effort for integration task specification, the low degree of portabil-
ity between those integration systems, and the possible inefficiency. The inefficiency 
problem (optimization potential) is caused by system-inherent assumptions about the 
primary application context. If the actual workload characteristics (process types, data
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size) differ from those assumptions, the execution performance can be significantly im-
proved by changing the used integration system.

Our main hypotheses are (1) that a typical IT infrastructure comprises multiple
integration systems with overlapping functionalities, and (2) that we can generate
platform-specific integration task specifications from platform-independent models.
The opportunities arising from these hypotheses led us to our idea of invisible deploy-
ment. Here, a user models an integration process in a platform-independent way and
deploys it using a central deployment interface. Now, there is the general possibility to
decide on the optimal integration platform to execute the specified integration process.
This decision should consider workload execution statistics in order to be based on ob-
jective online statistics with regard to changing workload characteristics. Clearly, this
general idea can overcome the problems of high development effort and low portability
(generation of process descriptions) as well as inefficiency (optimality decision, load
balancing), but it comes with several inherent challenges.

In order to overcome the described problems and to convey the core idea of invisible
deployment, in this paper, we make the following contributions.

– In Section 2, we introduce the vision of invisible deployment and describe the major
challenges that arise when realizing that vision.

– Subsequently, in Section 3, we describe our approach for the deployment of in-
tegration processes. Here, we focus on the selected aspects of integration process
generation and functional candidate set determination.

– Furthermore, in Section 4, we discuss a possible runtime approach, where we in-
vestigate cost modeling and cost normalization, optimality decisions and the het-
erogeneous load balancing.

– Based on the proposed solution, in Section 5, we present a system architecture for
the realization of invisible deployment in the context of integration platforms.

Finally, we survey related work in Section 6 and conclude the paper in Section 7.

2 Vision Overview

Based on the described problems, in this section, we pose our main hypotheses and
present the resulting conceptual architecture for the vision of invisible deployment. Ad-
ditionally, we point out the major challenges that arise here.

2.1 Assumptions and Hypotheses

In fact, our vision is based on empirically evaluated assumptions. Here, we conclude
the following two hypotheses.

Hypothesis 1. Model-Driven Generation: Integration processes can be modeled in
a platform-independent way. Based on those models, we can generate proprietary
(platform-specific) integration task specifications for concrete integration platforms.

Hypothesis 2. Optimality Decision: A typical IT infrastructure comprises multiple in-
tegration systems with overlapping functionalities. Hence, there is the possibility to
decide on the optimal integration system based on functional and non-functional prop-
erties according to given integration processes.
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Fig. 1. Vision of Invisible Deployment

Here, the model-driven generation of integration processes is the precondition for
the invisible deployment. It has been shown in several projects (GCIP project [1,2], Or-
chid project [3], and ETL process management [4]) that process generation can be done
using concepts from the model-driven software development. Furthermore, a typical IT
infrastructure comprises multiple integration systems with overlapping functionalities
[5] such as specific operators, supported external systems, possibilities to react to exter-
nal events or transactional functionalities. Hence, an integration processes can be exe-
cuted using different integration systems, without changing the external behavior. Thus,
the decision on the optimal integration system can be made based on non-functional
properties such as efficiency, scalability and resource consumption.

2.2 Conceptual Architecture

If there are multiple integration systems with overlapping functionalities, we can de-
cide on the optimal system for given integration processes. Usually, this decision is
made based on subjective experience and certain workload assumptions. Hence, there
is the need for a conceptual architecture that allows for the objective optimality deci-
sion as well as for transparency (hiding) of the used integration system. Clearly, this is a
virtualization approach. In contrast to typical virtualization, where multiple logical sys-
tems are mapped to one physical system, the invisible deployment addresses the inverse
problem, where one logical system has to be mapped to multiple physical systems. In
fact, this is similar to shared-nothing architectures, where only meta data (about the
distribution) has to be centrally maintained.

Figure 1 shows the conceptual architecture for our vision of invisible deployment.
Here, we have to distinguish three strata: the stratum of source systems, the stratum of
integration systems and the stratum of target systems. Clearly, a source system can be
a target system at the same time. Furthermore, we have two major types of integration
processes that are deployed into and executed by the integration systems. First, there are
data-driven integration processes where instances are initiated by messages sent from
the source systems to the integration systems (synchronous as well as asynchronous
execution model). Second, there are scheduled integration processes that are initiated
by an internal time-based scheduler of the integration system.

The vision of invisible deployment describes the transparent deployment of integra-
tion processes into a logical integration system that consists of a set of heterogeneous
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physical integration systems. In order to realize this kind of transparency, we need to
focus on deploytime and runtime challenges. Assume that the designer has modeled
integration processes in a platform-independent way (PIM); then we need to determine
the subset of integration systems that can realize the modeled integration process. Fur-
ther, we need to generate platform-specific integration tasks based on the platform-
independent model. Those aspects are realized by the deployment interface. In order
to allow for transparency, we now focus on the runtime requirements. Here, we must
provide a runtime interface for the source systems. Thus, we do not specify the physi-
cal integration systems as target systems for message propagations but we specify the
single logical integration system. Furthermore, the transparency for external target sys-
tems is pretty simple because here, we only need to distribute the configurations to all
used physical integration systems. This runtime interface and a central scheduler for
all physical integration systems allow for the optimality decision on used integration
systems. Therefore, we need to monitor execution statistics, normalize those costs into
a platform-independent cost model and allow for cost estimation over heterogeneous
physical integration systems. In fact, this opens the opportunity for optimization ap-
proaches such as dynamic optimality decisions and heterogeneous load balancing.

2.3 Problems and Challenges

After having introduced the conceptual architecture, we now want to focus on the major
challenges that arise with regard to process deployment and runtime scheduling.

Deployment Challenges. The deployment challenges address the generation of
platform-specific integration tasks and the deployment into the integration systems.

Challenge 1. Generation of Integration Processes: The precondition for the invisible
deployment is the platform-independent modeling of integration processes and the gen-
eration of platform-specific integration tasks. Especially, the bi-directional model trans-
formation without information loss poses a fundamental challenge.

Challenge 2. Functional Candidate Set Determination: Based on Challenge 1, there is
the need to evaluate whether or not a given integration process can be executed with
a specific integration system. Here, we need to derive functional requirements from the
integration process and match those with feature sets of the specific integration systems.

Challenge 3. Configuration Management: Due to the virtualization of multiple het-
erogeneous physical integration systems (each with its own configuration), also the
platform-independent configuration management is a tough challenge. Here, the specifi-
cation of transactional behavior and the adapter/wrapper configurations are important.
In particular, this is required for the application in practice.

Challenge 4. Reliability: On top of candidate set determination and configuration
management, there is the need to ensure functional (semantical) correctness. Hence,
model checking techniques must be investigated in order to prove the conformance of
certain integration system configurations with the semantics of specified integration
processes.
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Runtime Challenges. In addition to the deployment challenges, we further see the
following runtime challenges. In particular, the platform-independent cost modeling as
well as the serialization and transactional behavior are important.

Challenge 5. Cost Modeling and Cost Normalization: In order to adapt to changing
workload characteristics and allow for comparison over heterogeneous integration
systems, we need to monitor execution statistics. There is a need for a platform-
independent cost model and cost normalization approaches to allow for comparability.

Challenge 6. Optimality Decision: Based on the comparability of integration systems,
we will be able to decide on the optimal integration system for a given integration pro-
cess. Here, a periodical re-decision seems to be advantageous. In fact, such a decision
can be made for one given process, for a set of k given processes or for arbitrary sub-
graphs of processes. Clearly, this is a challenging combinatoric problem.

Challenge 7. Heterogeneous Load Balancing: The heterogeneous load balancing ex-
tends the challenge of the optimality decision with the aim of an optimal utilization of
all physical integration systems rather than only finding the optimal integration system.
Here, different optimization objectives are present.

Challenge 8. Serialization and Transactional Behavior: Although the heterogeneous
load balancing has high optimization potential, it poses a problem of serialization and
transactional behavior. If a sequence of two messages is forwarded to different physical
integration systems, we need to serialize those process executions in order to prevent
the message outrun (avoid changing external behavior).

In order to be concise, we try to highlight core ideas of possible solutions for a selected
subset of those challenges in the following two sections.

3 Deployment

In this section, we want to explain possible solutions for selected deployment chal-
lenges. In fact, the generation of integration processes and the functional candidate set
determination are the most important deployment aspects.

3.1 Integration Process Generation

The generation of integration processes has been investigated intensively. The GCIP
project (Generation of Complex Integration Processes) [1,2] and the correlated GCIP
Framework allow for the platform-independent modeling of integration processes as
well as the generation and optimization of platform-specific integration tasks for con-
crete integration systems. Figure 2 illustrates the general GCIP approach as well as
its current project state. In general, the generation framework comprises the four lay-
ers of certain platform-independent models (PIM), a central abstract platform-specific
model (A-PSM), platform-specific models (PSM) and the declarative process descrip-
tions (DPD). Currently, the framework supports five concrete integration systems (for
the types FDBMS, ETL and EAI) as target of our generation.
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Fig. 2. Overview of GCIP Generation Approach

On a platform-independent level, integration processes can be modeled with dif-
ferent languages, such as UML (Unified Modeling Language) activity diagrams or
BPMN (Business Process Modeling Notation) process specifications. In fact, those
specifications are directed graphs that can be annotated in order to provide details and
other parameters. Finally, those models can be imported and transformed to an abstract
platform-specific model. In the case of UML, XMI documents are imported, while in
the case of BPMN, we can use XPDL as well as WSBPEL specifications, respectively.

In contrast to typical model-driven approaches, a central abstract platform-specific
model has been introduced, where the Message Transformation Model [6] and its de-
fined operators are used. This central model is independent from any integration system
type and reduces the transformation complexity between m PIMs and n PSMs from
m · n to m + n; additionally, it provides the possibility to apply platform-independent
optimization techniques.

Based on the A-PSM, platform-specific models can be generated. Those models are
specific to the integration system type but not specific to the concrete integration sys-
tems. Currently, the groups of FDBMS, EAI and ETL are supported. Here, XML rep-
resentations are used for those internal models.

Finally, declarative process descriptions are generated from the single platform-
specific models. In the model-driven architecture, this is called the code layer.
However, we explicitly separate this from the internal code layer of the integration
systems. Hence, we use the name DPD. As an example, we can generate stored proce-
dures (scheduled integration processes) or triggers (data propagations) of different SQL
dialects. Further, also EAI processes (message flows) and ETL jobs can be generated.

In conclusion, integration tasks for concrete integration systems can be generated
based on platform-independent specifications. For invisible deployment, this is the foun-
dation for all other subsequent challenges. In fact, it has been shown that this is realiz-
able for fully different types of integration systems.

3.2 Candidate Set Determination

Based on the generation of integration processes, we need to determine a candidate set
in the sense of a subset of integration systems that are able to realize a given integration
process P (Challenge 2). Hence, we determine candidates for the optimal integration
system. Therefore, a two-phase approach is meaningful. In the first phase, the functional
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requirements are derived from the given integration process (e.g., the ability to receive
messages). Based on this feature set F (P ) and the defined feature sets of all supported
integration systems F (S), in the second phase, a matching between the single feature
sets is computed in order to determine the logical candidate set C of integration systems
that can be used to execute P .

Algorithm 1 illustrates the details of the system candidate set determination. First, for
each operator oi with oi ∈ P , the functional requirements are derived and added to the
feature set F (P ) (lines 3-5). Then, deployment policies D(P )—such as the choice of
execution model (synchronous/asynchronous) or certain transactional requirements—
are also added to the feature set (lines 6-8). After this first algorithm phase, the second
phase realizes the matching of feature sets. Therefore, we iterate over all systems si

and the single feature sets F (si) in order to compare those features with the feature set
F (P ). If we determine two equal features, we set fflag to true (line 16). Further, if
we have determined that there are no equal features, sflag is set to false (line 21) and
the current system si is not included into the candidate set C. Finally, C contains all

Algorithm 1. Candidate Set Determination.
Require: process plan P , deployment policy D(P ), feature sets F (S), system set S
1: C ← �, F (P )← �
2: // part 1: derive functional properties of P
3: for i = 1 to |P | do // foreach operator oi

4: F (P )← F (P ) ∪ f(oi)
5: end for
6: for i = 1 to |D(P )| do // foreach policy dpi

7: F (P )← F (P ) ∪ f(dpi)
8: end for
9: // part 2: match feature sets

10: for i = 1 to |S| do // foreach system si

11: for j = 1 to |F (si)| do // foreach system feature fj

12: sflag ← true
13: fflag ← false
14: for k = 1 to |F (P )| do // foreach plan feature fk

15: if fj = fk then
16: fflag = true
17: break 14
18: end if
19: end for
20: if NOT fflag then
21: sflag = false
22: break 11
23: end if
24: end for
25: if sflag then
26: C ← C ∪ si

27: end if
28: end for
29: return C
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systems that fully conform to the required functionalities. Clearly, this algorithm has a
worst-case (in the case of C = S) complexity of O(

∑|S|
i=1 (|F (si)| · |F (P )|)), where

|F (P )| = m + |D(P )| and m denotes the number of operators.

4 Runtime

Aside from the deployment aspects, there are also runtime challenges, and we want
to use this section to explain possible solutions for them. Here, we discuss the cost
modeling as well as static and dynamic optimality decisions.

4.1 Platform-Independent Cost Model and Cost Normalization

In fact, if we have multiple physical candidate integration systems and if we want to
decide on the optimal integration system, there is a need for a platform-independent
cost model as well as algorithms for the cost normalization of monitored statistics into
that model. We can only normalize statistics from platform-specific models into the
platform-independent model but not vice versa because there is an infinite number of
denormalized forms of one normalized form. Actually, our cost model contains two
types of costs: the abstract cost C(P ) that is defined by cardinality formulas as well as
the weighted cost C′(P ) that is computed by C′(P ) = te(P )

C(P ) as the ratio of execution
time te(P ) and abstract cost C(P ). Hence, we can overcome the problem of possible
different hardware and disjoint process instances in the sense of computing tuple rates.
In fact, we only need to monitor and normalize cardinality and execution time statistics
at the operator granularity.

Statistic 
Annotation

Statistic
Annotation

Statistic
Annotation

Statistic extraction using proprietary Statistic-APIs

<<A-PSM>>
MTM

<<PSM>>
ETL

<<PSM>>
EAI

<<PSM>>
FDBMS

<<DPD>>
Sybase 
ASE 15 

<<DPD>>
IBM WebSphere 

Federation Server 9.1

<<DPD>>
SQL GmbH 

TransConnect 1.3.6
<<DPD>>

IBM Message 
Broker 6.1 

Cost Normalization

Platform-
independent 
cost model

A Base Normalization 
Algorithm

B Semantic Transformation 
Algorithm

C Statistical Correction 
Algorithm

E

NC

NC’

NC’’

<<DPD>>
Pentaho Data 
Integration 3.0

Fig. 3. Cost Normalization Overview

Figure 3 illustrates the general concept of statistic extraction and its normalization
into the described platform-independent model. Execution statistics (cardinalities and
execution times) are extracted using the system-specific statistic APIs of the physical
integration systems. Those statistics are annotated at PSM level and finally mapped to
the platform-independent cost model. This mapping comprises the cost normalization.
Here, we use three algorithms in order to overcome the sub-challenges of cost nor-
malization. The base normalization algorithm overcomes the problems of parallelism
of process instances, different resource utilization and different execution models by
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computing normalized part times (execution time, number of parallel instances, effec-
tive and maximal resource allocation). Further, the semantic transformation algorithm
overcomes the problem of different semantics of extracted statistics. Here, we need to
be aware of 1:1, 1:N, N:1 and N:M mappings between platform-specific and platform-
independent operators. Obviously, for 1:N mappings and N:M mappings, we cannot
aggregate the measured statistics and hence, the result is missing statistics for parts of
the process. Finally, there is the statistical correction algorithm. It overcomes the prob-
lems of inconsistent statistics and missing statistics by checking operator sequences as
well as computing missing statistics by linear extrapolation.

Finally, we can use the platform-independent cost model as well as the normalized
statistics in order to decide on the optimal integration system in a cost-based fashion
(aware of workload characteristics).

4.2 Optimality Decision

The optimality decision addresses the static decision on the optimal integration system,
similar to an advisor decision. In conclusion of such a decision, a given integration
process should be executed with this integration system.

In order to do so, we need to deploy the integration process P into all candidate
integration systems si with si ∈ C. Then, we require several reference runs of P on
each of those systems in order to gather statistics. Subsequently, we can normalize the
statistics as described and finally, we decide on the optimal integration system. In order
to adapt to changing workload characteristics, we need to execute those reference runs
periodically. In fact, the application areas for such a decision are mainly scheduled
integration processes or static decisions for data propagations.

The most obvious problem in that context is the optimality decision on exactly one
integration process P . If we generalize this problem, we need to decide on a set of in-
tegration processes k · P . Clearly, here we can choose one integration system for all
k integration processes (trade-off between different processes) or use the simple deci-
sion problem for each of those processes. Furthermore, we can also consider different
combinations of subgraphs of all integration processes. Clearly, we get an exponential
number of alternative distributions to decide on.

Obviously, the major problem of this static optimality decision is that we do not
utilize all resources (hardware in the case of physically separated systems). In fact, we
always use the optimal integration system (which may change over time), but we do not
use multiple systems at the same time.

4.3 Heterogeneous Load Balancing

In order to overcome the previously mentioned problem of suboptimal resource utiliza-
tion, we introduce the concept of heterogeneous load balancing over multiple hetero-
geneous physical integration systems. Hence, this results in a dynamic and continuous
optimality decision. Here, we preferably use the optimal integration system but the other
candidate systems si with si ∈ C may be used as well. Therefore, the optimality de-
cision is changed from a deployment approach (periodically re-executed) to a dynamic
runtime approach where the optimality decision must be made continuously.
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In this context, the major problem is the assurance of serialization and transactional
behavior with respect to the serialization according to the incoming message order and
the observable external behavior. Assume, for instance, a process type P (with pro-
cess instances pi) that executes messages in sequential order; thus, we have to en-
sure the serialized order of end(pi) ≤ start(Pi+1). If we distribute those messages
to two different integration systems that use the asynchronous execution model, the
anomaly problem of message outrun [7] can occur. If the integration systems use the
synchronous execution model, the serialization of process instances is simple but in-
efficient because—due to scheduling overhead—the resource utilization of the overall
architecture is even worse than for the static optimality decision.

Our general solution for this heterogeneous load balancing problem is the distribution
of fully disjoint message sequences according to their correlated integration processes
across multiple physical integration systems. Therefore, we need to predict the costs in
a platform-independent manner once more but now, we also need to predict the future
workload and we must solve the balancing problem. This problem comprises the search
for the optimal distribution of k integration process types across |C| integration systems
si such that the globally optimal solution is used (with regard to the optimization objec-
tives (1) throughput maximization, (2) latency minimization or (3) load balance max-
imization). Clearly, we can extend this to a more fine-grained decision model, where
subgraphs (similar to the challenge of optimality decision) are distributed across the in-
tegration systems.

If the workload changes over time, we need to exchange the execution context be-
tween integration systems. Hence, our optimality decision must be aware of the costs
that are necessary for switching integration systems (due to synchronization efforts).

5 System Architecture

Figure 4 illustrates an architecture realizing the vision of invisible deployment. Ba-
sically, the message propagation is supported by an execution interface. Further, the
integration task specifications PDi(x) (process types, configurations) are also possi-
ble using a deployment interface. For deployment purposes, process transformers as
well as process deployers are required to generate platform-specific models and to de-
ploy those into the different integration systems used. Furthermore, an Optimizer
component for rewriting is needed. Deployed processes are registered within a cen-
tral Repository. Here, all types of systems, except for client systems, as well as
the time schedules are managed. Concerning the execution of the integration tasks, the
synchronous events are directly forwarded to the Runtime Environment, while
asynchronous events are appended to a specific Request Queue. Independent from
this, the Scheduler also invokes the Runtime Environment directly, based only
on the defined time schedules. Within the Core Execution Service, the inte-
gration task is split into subtasks. Here, the transactional behavior is ensured as well.
The Dispatcher decides about the optimal integration system for each integration
task and invokes the registered integration systems via IS Gateways. These deci-
sions are based on functional as well as non-functional properties, including monitored
workload characteristics. Finally, such an environment provides a central deployment
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of integration tasks, using a distributed system infrastructure (of integration systems)
during execution. This is the core requirement of a service-oriented architecture (SOA).
Finally, this type of gateway integration system can realize the invisible deployment in
a transparent manner.

6 Related Work

In fact, the invisible deployment is a novel vision and no comparable work exists. Here,
we want to survey application areas as well as correlated virtualization approaches.

6.1 Application Areas

In the context of the generation and deployment of integration processes, we need to
emphasize three projects and approaches, respectively.

The Orchid project [3] addresses the generation of ETL jobs based on declarative
mapping specifications. There, a so-called Operator Hub Model (OHM) is used in or-
der to transform the execution semantics of ETL jobs into a platform-independent form.
The Orchid project is restricted to the generation of ETL processes for IBM ETL tools.
In general, an extension to vendor-independent semantics seems to be possible with-
out conceptual problems. While Orchid addresses only the generation of ETL jobs,
the approach presented in [4] focuses on the combination of ETL process generation
and model management. There, the authors presented platform-independent operators
for the deployment of ETL processes. In contrast to those two approaches, the GCIP
(Generation of Complex Integration Processes) Framework focuses on the modeling of
platform-independent integration processes [1], the generation for numerous different
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integration system types (such as FDBMS, EAI servers and ETL tools) as well as the
application of optimization techniques [2,8] during model-driven generation.

The major similarity of those three projects is the possibility of deciding on the
optimal target integration system to use (target of the generation). Hence, the vision of
invisible deployment can be applied to all of those approaches.

6.2 Virtualization Approaches

Clearly, the invisible deployment is a virtualization approach. In the context of software
as a service, in particular, the database virtualization seems advantageous. Here, several
approaches exist for the realization of multi-tenant databases [9,10] where multiple log-
ical databases are maintained within one physical database. Obviously, there are more
general approaches for multi-tenant software [11] as well as for IT service provision
[12]. By now, the famous term cloud computing [13] has been established for a super-
set of those virtualization approaches. Even more, there is an approach [14] on how
to provide EAI as a service. Those approaches virtualize multiple logical systems into
one single physical system. In contrast to this, according to the scalability terminology
[15], we virtualize one logical integration system into a farm of heterogeneous, physical
integration systems.

7 Summary

To summarize, in this paper, we introduced our novel vision of invisible deployment
that is applicable in many different areas and that exhibits a high optimization potential
as well as numerous challenging research aspects. In general, the invisible deployment
is based on the hypothesis that a typical IT infrastructure comprises multiple integration
systems with overlapping functionalities. Hence, the core idea is to virtualize a number
of heterogeneous physical integration systems by one logical integration system.

Here, we identified the main challenges and explained the conceptual overall archi-
tecture. Subsequently, we provided details on specific aspects of that vision and we
described a system architecture to realize our vision. However, there are lots of open
research aspects and huge optimization potential; hence, further detailed investigation
is absolutely required. In conclusion, the major problems in the area of integration pro-
cesses (the high development effort, the low degree of portability, and the inefficiency)
can be overcome by the general concept of invisible deployment.

References

1. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Model-driven development of complex and
data-intensive integration processes. In: MBSDI (2008)

2. Boehm, M., Wloka, U., Habich, D., Lehner, W.: Model-driven generation and optimization
of complex integration processes. In: ICEIS (1) (2008)

3. Dessloch, S., Hernández, M.A., Wisnesky, R., Radwan, A., Zhou, J.: Orchid: Integrating
schema mapping and etl. In: ICDE (2008)

4. Albrecht, A., Naumann, F.: Managing etl processes. In: NTII (2008)
5. Stonebraker, M.: Too much middleware. In: SIGMOD Record 31(1) (2002)

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009", 
S.53-65, ISBN 978-3-642-01347-8 

https://doi.org/10.1007/978-3-642-01347-8_5 

12 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



6. Boehm, M., Habich, D., Wloka, U., Bittner, J., Lehner, W.: Towards self-optimization of
message transformation processes. In: ADBIS (2007)

7. Boehm, M., Habich, D., Lehner, W., Wloka, U.: An advanced transaction model for recovery
processing of integration processes. In: ADBIS (2008)

8. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Workload-based optimization of integration
processes. In: CIKM (2008)

9. Aulbach, S., Grust, T., Jacobs, D., Kemper, A., Rittinger, J.: Multi-tenant databases for soft-
ware as a service: schema-mapping techniques. In: SIGMOD (2008)

10. Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases. In: BTW (2007)
11. Tsai, C.H., Ruan, Y., Sahu, S., Shaikh, A., Shin, K.G.: Virtualization-based techniques for

enabling multi-tenant management tools. In: Clemm, A., Granville, L.Z., Stadler, R. (eds.)
DSOM 2007. LNCS, vol. 4785, pp. 171–182. Springer, Heidelberg (2007)

12. Shwartz, L., Ayachitula, N., Buco, M.J., Grabarnik, G., Surendra, M., Ward, C., Weinberger,
S.: It service provider’s multi-customer and multi-tenant environments. In: CEC/EEE (2007)

13. Ramakrishnan, R.: Cloud computing - was thomas watson right after all? In: ICDE (2008)
14. Scheibler, T., Mietzner, R., Leymann, F.: EAI as a Service - Combining the Power of Exe-

cutable EAI Patterns and SaaS. In: EDOC (2008)
15. Devlin, B., Gray, J., Laing, B., Spix, G.: Scalability terminology: Farms, clones, partitions,

packs, racs and raps. CoRR cs.AR/9912010 (1999)

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009", 
S.53-65, ISBN 978-3-642-01347-8 

https://doi.org/10.1007/978-3-642-01347-8_5 

13 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden


	Invisible Deployment of Integration Processes
	Introduction
	Vision Overview
	Assumptions and Hypotheses
	Conceptual Architecture
	Problems and Challenges

	Deployment
	Integration Process Generation
	Candidate Set Determination

	Runtime
	Platform-Independent Cost Model and Cost Normalization
	Optimality Decision
	Heterogeneous Load Balancing

	System Architecture
	Related Work
	Application Areas
	Virtualization Approaches

	Summary
	References

	ADP6910.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Matthias Boehm, Dirk Habich, Wolfgang Lehner, Uwe Wloka



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




