
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-822777

Matthias Boehm, Dirk Habich, Steffen Preissler, Wolfgang Lehner, Uwe Wloka

Vectorizing Instance-Based Integration Processes

Erstveröffentlichung in / First published in:

Enterprise Information Systems. 11th International Conference. Milan, 06.-10.05.2009.
Springer, S. 40-52. ISBN 978-3-642-01347-8.

DOI: https://doi.org/10.1007/978-3-642-01347-8 4

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-822777
https://doi.org/10.1007/978-3-642-01347-8_4

Vectorizing Instance-Based Integration Processes

Matthias Boehm1, Dirk Habich2, Steffen Preissler2,
Wolfgang Lehner2, and Uwe Wloka1

1 Dresden University of Applied Sciences, Database Group
mboehm@informatik.htw-dresden.de,
wloka@informatik.htw-dresden.de

2 Dresden University of Technology, Database Technology Group
dirk.habich@tu-dresden.de,

steffen.preissler@tu-dresden.de,
wolfgang.lehner@tu-dresden.de

Abstract. The inefficiency of integration processes—as an abstraction of work-
flow-based integration tasks—is often reasoned by low resource utilization and
significant waiting times for external systems. Due to the increasing use of inte-
gration processes within IT infrastructures, the throughput optimization has high
influence on the overall performance of such an infrastructure. In the area of com-
putational engineering, low resource utilization is addressed with vectorization
techniques. In this paper, we introduce the concept of vectorization in the context
of integration processes in order to achieve a higher degree of parallelism. Here,
transactional behavior and serialized execution must be ensured. In conclusion of
our evaluation, the message throughput can be significantly increased.

Keywords: Vectorization, Integration processes, Throughput optimization, Pipes
and filters, Instance-based.

1 Introduction

Integration processes—as an abstraction of workflow-based integration tasks—are typ-
ically executed with the instance-based execution model. This implies that incoming
messages are serialized in incoming order, and this order is then used to execute single-
threaded instances of process plans. Example system categories for that execution model
are EAI (Enterprise Application Integration) servers, WfMS (Workflow Management
Systems) and WSMS (Web Service Management Systems). Workflow-based integration
platforms usually do not reach high resource utilization because of (1) the existence of
single-threaded process instances in parallel processor architectures, (2) significant wait-
ing times for external systems, and (3) IO bottlenecks (message persistence for recovery
processing). Hence, the throughput—in the sense of processed integration process plan
instances per time period—is not optimal and can be significantly optimized using a
higher degree of parallelism. The opposite to the instance-based execution model is the
pipes and filters execution model. Here, each operator is conceptually a single thread,
and each edge between two operators contains a message queue. Hence, a high degree
of parallelism is reached. This is typical for DSMS (Data Stream Management Systems)
and ETL (Extraction Transformation Loading) tools.

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Our approach is to introduce the vectorization of integration processes as an internal
optimization concept in order to increase the throughput of integration platforms. We
use the term vectorization in the sense of a transformation from the instance-based to the
pipes-and-filters execution model. Note that this is an analogy to computational engi-
neering, where vectorization is classified (according to Flynn) as SIMD (single instruc-
tion, multiple data) or in special cases as MIMD (multiple instruction, multiple data).
We use this analogy because in the pipes-and-filters execution model, sequences (vec-
tors) of messages are executed by a single operator. Here, specific constraints like the
serialization of external behavior and the transactional behavior (recoverability) must
be ensured. Finally, there is the need for execution model transparency. Thus, the user
should think of an instance-based execution model as the used logical model.

In order to overcome the problem of low message throughput (caused by low re-
source utilization), we make the following contributions:

– In Section 2, we explain requirements for integration processes and we formally
define the integration process vectorization problem.

– Subsequently, in Section 3, we introduce our novel approach for process plan
rewriting in order to apply the vectorization of process instances.

– Based on those details, we present selected results of our exhaustive experimental
evaluation in Section 4.

Finally, we analyze related work in Section 5 and conclude in Section 6.

2 Problem Description

In this section, we emphasize the assumptions and requirements that lead to our idea of
throughput optimization. Here, we formally define the integration process vectorization
problem, survey possible application areas, and finally give a solution overview.

2.1 Assumptions and Requirements

Figure 1 illustrates a generalized integration platform architecture for instance-based
integration processes. Here, the key characteristics are a set of inbound adapters (pas-
sive listeners), several message queues, a central process engine, and a set of outbound
adapters (active services). The message queues are used as logical serialization ele-
ments within the asynchronous execution model. However, the synchronous as well as
the asynchronous execution of process plans is supported. Further, the process engine

External
System

Scheduler

Outbound
Adapter 1

...

Outbound
Adapter k

Process Engine

External
System

External
System

External
System

Operational Datastore (ODS)

Inbound
Adapter 1

...External
System

Inbound
Adapter n

External
System

... External
System

Fig. 1. Integration Platform Architecture

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

is instance-based, which means that for each subsequent message in a queue, a new
instance (one thread) of the specified process plan is created and executed serially.

In the context of integration processes, the throughput maximization rather than the
execution time minimization is the major optimization objective. Further, we assume
that integration platforms typically do not have a 100-percent resource utilization. This
is mainly caused by (1) significant waiting times for external system invocations, (2)
the trend towards multi-processor architectures, and (3) the IO bottleneck due to the
need for message persistence for recoverability issues. Hence, by increasing the degree
of parallelism, the message throughput can be significantly improved.

Due to the need for logical serialization of process plan instances, simple multi-
threading of single instances is not applicable. As presented in [1], we must ensure that
messages do not outrun other messages; for this purpose, we use logical serialization
concepts such as message queues.

Example 1. Message Outrun Anomaly: Assume two message types: orders, MO, and
customer, MC . Messages of those different types are executed by different integration
processes PO and PC with MO → PO and MC → PC . Both process types comprise
the receipt of a message, the schema mapping and the invocation of an external system
s1. Further, assume that the customer master data must be propagated to the external
system s1 before the customer’s first order can be processed. In addition to that, the
inventory is maintained during order processing. In the serialized case, messages of
both types are serialized. Hence, they cannot outrun each other. In the non-serialized
case, an order message can outrun the corresponding customer information. This might
result in a referential integrity conflict within the target system s1.

However, the serialized execution of process instances is not always required. We
can weaken this to serialized external behavior of process plan instances.

2.2 Optimization Problem

Now, we formally define the integration process vectorization problem. Figure 2(a)
illustrates the temporal aspects of a typical instance-based integration process. Here,
a message is received from a message queue (Receive), then a schema mapping
(Translation) is processed and finally, the message is sent to an external system
(Invoke). In this case, different instances of this process plan are executed in serial-
ized order. In contrast to this, Figure 2(b) shows the temporal aspects of a vectorized
integration process. Here, only the external behavior (according to the start time T0 and
the end time T1 of instances) must be serialized. The problem is defined as follows:

Definition 1. Integration Process Vectorization Problem (IPVP): Let P denote a pro-
cess plan and pi with pi = (p1, p2, . . . , pn) denotes the process plan instances with

Receive Translation Invoke

Receive Trans ation Invoke

p

p2

P > p , p2, … pn

T0(p) T (p2) T0(p2)T (p)

time t

(a) Instance-Based Process Plan P

Receive Translat on Invoke

Receive Trans ation Invoke

p

p2

T0(p)

P > p , p2, … pn

T (p)T0(p2) T (p2)

improvement due
to vectorization time t

(b) Fully Vectorized Process Plan P ′

Fig. 2. Vectorization of Integration Processes

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

P ⇒ pi. Further, let each process plan P comprise a graph of operators oi = (o1, o2,
. . . , om). Due to serialization, the process plan instances are executed with T1(pi) ≤
T0(pi+1). Then the integration process vectorization problem describes the search for
the derived process plan P ′ that exhibits the highest degree of parallelism for the pro-
cess plan instances p′i such that the constraint conditions (T1(p′i, oi) ≤ T0(p′i, oi+1))∧
(T1(p′i, oi) ≤ T0(p′i+1, oi)) hold and the semantic correctness is ensured.

Based on the IPVP, we investigate the static cost analysis, where in general, cost denotes
the execution time. If we assume an operator sequence o with constant operator costs
C(oi) = 1, we get

C(P) = n · m // instance-based

C(P ′) = n + m − 1 // fully vectorized

Δ(C(P) − C(P ′)) = (n − 1) · (m − 1)

where n denotes the number of process plan instances and m denotes the number
of operators. Clearly, this is an idealized model, while typically lower improvements
are reachable. Those depend on the most time-consuming operator o′k with C(o′k) =
maxm

i=1 C(o′i) of a vectorized process plan P ′, where we get

C(P) = n ·
m∑

i=1

C(oi)

C(P ′) = (n + m − 1) · C(o′k)

Δ(C(P) − C(P ′)) = n

m∑

i=1∧i�=k

C(oi) − (n + m − 1) · C(o′k) .

Obviously, Δ(C(P)−C(P ′)) can be negative in case of a very small n. However, with
an increasing n, the performance improvement grows linearly.

2.3 Solution Overview

Here, we want to give a solution overview of our process plan vectorization approach.
According to the generalized integration platform architecture, this exclusively ad-
dresses the process engine, while all other components can be reused without changes.

The core idea is to rewrite the instance-based process plan—where each instance is
executed as a thread—to a vectorized process plan, where each operator is executed as a
single execution bucket and hence, as a single thread. Thus, we model a standing process
plan. Due to different execution times of the single operators, inter-bucket queues (with
max constraints) are required for each data flow edge. Figure 3 illustrates those two
execution models. Although significant performance improvement is possible, major
challenges arise when rewriting P to P ′.

Here, the main goal when rewriting a process plan P is the transparency of the used
execution model. Hence, a user should only recognize the instance-based execution
model, while internally (and transparent in the sense of being hidden to the user), the
vectorized execution model is used. This aim poses several research challenges. This

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Process plan instance P1

Receive Translation Invoke Outbound
Adapter 1

Message
Queue

Process context
ctx_P msg1 msg2

(a) Instance-Based Process Plan P

Standing process plan P’

Receive Translation Invoke Outbound
Adapter 1

Message
Queue

 execution bucket bi (thread)
 inter-bucket message queue

(b) Fully Vectorized Process Plan P ′

Fig. 3. Different Execution Models

includes (1) ensuring semantical correctness of P ′, (2) preserving the external behav-
ior, (3) ensuring transactional behavior and recoverability, and (4) realizing both the
synchronous (simulated for P ′) as well as the asynchronous execution models. Finally,
we must (5) handle the rewriting of different data flow concepts (from instance-based
process plans, which use a variable-based data flow, to vectorized process plans that ex-
hibit an explicit data flow (pipelining)). In order to overcome Problems 1-3, we present
specific rewriting rules. Problem 4 is tackled with an extended message model. Finally,
we propose operator-aware rewriting techniques in order to overcome Problem 5.

In the rest of the paper, we provide the details on how to rewrite an instance-based
process plan into a vectorized process plan. Further, in Section 4, we present selected
results of an exhaustive evaluation.

3 Rewriting Process Plans

In this section, we explain in detail how to rewrite instance-based process plans to fully
vectorized process plans.

3.1 Message Model and Process Model

As formal foundation, we use the instance-based Message Transformation Model
(MTM). Hence, we have to define extensions in order to make it applicable also in the
context of vectorized integration processes (then we refer to it as VMTM). Both consist
of a message model and a process model.

We model a message m of a message type M as a quadruple with m = (M, S, A, D),
where M denotes the message type, S denotes the runtime state, and A denotes a map
of atomic name-value attribute pairs with ai = (n, v). Further, D denotes a map of
message parts, where a single message part is defined with di = (n, t). Here, n denotes
the part name and t denotes a tree of named data elements. In the VMTM, we extend it
to a quintuple with m = (M, C, S, A, D), where the context information C denotes an
additional map of atomic name-value attribute pairs with ci = (n, v). This extension is
necessary due to parallel message execution within one process plan.

A process plan P is defined with P = (o, c, s) as a 3-tuple representation of a
directed graph. Let o with o = (o1, . . . , om) denote a sequence of operators, let c de-
note the context of P as a set of message variables msgi, and let s denote a set of
services s = (s1, . . . , sl). Then, an instance pi of a process plan P , with P ⇒ pi,
executes the sequence of operators once. Each operator oi has a specific type as well
as an identifier NID (unique within the process plan) and is either of an atomic or
of a complex type. Complex operators recursively contain sequences of operators with

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

oi = (oi,1, . . . , oi,m). Further, an operator can have multiple input variables msgi ∈ c,
but only one output variable msgj ∈ c. Each service si contains a type, a configura-
tion and a set of operations. Further, we define a set of interaction-oriented operators
iop (Invoke, Receive and Reply), control-flow-oriented operators cop (Switch,
Fork, Iteration, Delay and Signal) and data-flow-oriented operators dop (As-
sign, Translation, Selection, Projection, Join, Setoperation, Sp-
lit, Orderby, Groupby, Window, Validate, Savepoint and Action).
Furthermore, in the VMTM, the flow relations between operators oi do not specify the
control flow but the explicit data flow in the form of message streams. Additionally,
the Fork operator is removed due to redundancy. Finally, we introduce the additional
operators AND and XOR (for synchronizing the serialized external behavior) as well as
the COPY operator (for supporting the changed data flow).

3.2 Rewriting Algorithm

Now, let us focus on the realization of such process plan rewriting; even without con-
sidering transactional behavior and cost analysis, it is already very complex.

Algorithm 1. Process Plan Vectorization.
Require: operator sequence o
1: B ← �, D ← �, Q← �
2: for i = 1 to |o| do
3: // ∀ operators
4: for j = i to |o| do
5: // ∀ following operators

6: if ∃oi
δ→ oj then

7: Q← Q ∪ q with q ← create queue
8: D← D ∪ d < oi, q, oj > with d < oi, q, oj >← create dependency
9: end if

10: end for
11: if oi ∈ Switch, Iteration,Fork, Savepoint, Invoke∗ then
12: // see Subsubsections 3.2.2 and 3.2.3
13: else
14: bi(oi)← create bucket over oi

15: for k = 1 to |D| do
16: // f oreach dependency
17: d < ox, q, oy >← dk

18: if oi ≡ ox then
19: connect bi(oi)→ q
20: else if oi ≡ oy then
21: connect q → bi(oi)
22: end if
23: end for
24: B ← B ∪ bi(oi)
25: end if
26: end for
27: return B

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Receive

Assign

Invoke

Assign

Invoke

Invoke

Join

 out msg0

 in msg0
 out msg1

 in msg1
 out msg2

 in msg0
 out msg3

 in msg3
 out msg4

 in msg2, msg4
 out msg5

 in msg5

(a) Plan P

Copy

Assign Assign

Invoke Invoke

Invoke

Join

(b) Plan P ′

Receive

Switch

Invoke

 out msg0

 in msg0

 in msg2

Assign

Assign

Translation

 in msg0
 out msg1

 in msg1
 out msg2

 in msg0
 out msg2

(c) Plan P

Switch

Assign

Assign

Invoke

XOR

Translation

(d) Plan P ′

Receive

Translation

Invoke

Assign

 out msg0

 in msg0
 out msg1

 in msg1
 out msg2

 in msg2

 in msg0
 out msg3

 in msg3

Assign

Invoke

(e) Plan P

Copy

Translation Assign

Invoke

Invoke

Assign

AND

(f) Plan P ′

Fig. 4. Rewriting Examples (core concept, context-specific and serialized external behavior)

Rewriting Unary and Binary Operators. When rewriting instance-based process
plans to vectorized process plans, we distinguish between unary operators (one input
message: Invoke, Assign, Translation, Selection, Projection, Split,
Orderby, Groupby, Window, Action, and Delay) and binary operators (multi-
ple input messages: Join, Setoperation, and Assign). Both unary and binary
operators can be rewritten with the same core concept (see Algorithm 1) that contains
the following four steps. First, we create a queue instance for each data dependency
between two operators (the output message of operator oi is the input message of op-
erator oj with j > i). Second, we create an execution bucket for each operator. Third,
we connect each operator with the referenced input queue. Clearly, each queue is refer-
enced by exactly one operator, but each operator can reference multiple queues. Fourth,
we connect each operator with the referenced output queues. If one operator must be
connected to n output queues with n ≥ 2 (its results are used by multiple following op-
erators), we insert a Copy operator (gets a message from one input queue, then copies
it n − 1 times and puts those messages into the n output queues). In order to make the
rewriting concept more understandable, we illustrate it using the following example.

Example 2. Vectorization of Unary and Binary Operators: Assume a process plan P
that receives a message, prepares two queries, loads data from two external sources,
joins the results, and sends the final message to a third system (Figure 4(a)). If we
vectorize this to P ′ (Figure 4(b)), we can apply the standard vectorization concept. The
Receive operator has been removed because all operators directly read from queues.
Further, the Copy operator has been inserted because both Assign operators have
the same input. Additionally, there is the binary Join operator that reads messages
from two concurrent input queues.

Due to dependency checking, the process plan vectorization algorithm has a cubic
worst-case complexity of O(m3) = O(m3 + m2).

Rewriting Context-Sensitive Operators. Now, we consider the context-specific oper-
atorsSwitch,Iteration,Fork,Validate,Signal,Savepoint, andReply.

Rewriting Switch operators. When rewritingSwitch operators, we must be aware
of their ordered if-elseif-else semantics. Here, message sequences are routed along dif-
ferent switch-paths, which will eventually be merged. Assume a message sequence of

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

msg1 and msg2, where msg1 is routed to path A, while msg2 is routed to path B. If
C(A) ≥ C(B) + C(SwitchB), msg2 arrives earlier at the merging point than msg1

does. Hence, a message outrun has taken place. Therefore, we have introduced the XOR
operator that is inserted just before the single switch paths are merged. It reads from all
queues (including a dummy queue for synchronization), compares the timestamps of
read messages and forwards the oldest.

Example 3. Rewriting Switch Operators. Assume a process plan P (Figure 4(c)). If
we vectorize it to P ′ (Figure 4(d)), we apply the Switch-specific rewriting technique,
where we create two pipeline branches (one for each switch-path). In order to avoid
message outrun, we additionally inserted the XOR operator and a dummy queue.

Rewriting Iteration operators. Also, when rewriting Iteration operators, the
main problem is the message outrun. Here, we must ensure that all iteration loops (for
a message) have been processed before the next message enters. Basically, a for each
Iteration is rewritten to a sequence of (1) Split operator, (2) operators of the
Iteration body and (3) Setoperation (union all) operator. In contrast to this,
iterations with while semantics are not vectorized (one single execution bucket).

Rewriting Validate and Signal operators. One of the major differences be-
tween the instance-based process model and the vectorized process model is the main-
tenance of the process context (variables). Especially when dealing with validation,
signals and error handling, this becomes crucial. Therefore, we extended the message
model by context C (see Subsection 3.1). In case of an error (invalidity or explicit sig-
nal), we store the specific information in correlation to the current message that caused
the signal. Then we can apply recovery processing.

In summary, when rewriting context-specific operators, we want to assure the se-
mantic correctness during the rewriting of instance-based integration processes to the
vectorized process model. This is a part of the general rewriting algorithm (Algorithm 1,
lines 13-14). There are additional rewriting rules for Fork, Savepoint and Reply
operators, which we omitted here because they are straight-forward.

Serialization and Recoverability. In order to realize the serialization of external be-
havior (precondition for transparency of the used execution model), we must ensure that
explicitly modeled sequences of Invoke operators are serialized. Hence, we use the
AND operator for synchronization purposes. If an Invoke operator has a temporal de-
pendency, we insert an AND operator right before it as well as a dummy queue between
the source of the temporal dependency and the AND operator. The AND operator reads
from the dependency and the original queue and synchronizes the external behavior.

Example 4. Serialization of external behavior: Assume a process plan P (Figure 4(e)).
If we vectorize this process plan to P ′ (Figure 4(f)) with two pipeline branches, we
need to ensure the serialized external behavior. Here, we insert an AND operator, where
the left Invoke sends dummy messages to this operator. Only in the case that the right
Assign as well as the left Invoke have been processed successfully, the real message
of the right pipeline branch is forwarded to the second Invoke.

With regard to recoverability of single integration processes, we might need to execute
recovery processing with loaded queues. In general, we use the stopped flag of a

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

queue in order to stop it in case of a failure at operator oi. In fact, we need to stop the
input queue of this operator, while all other operators can continue working. Hence, the
max queue constraint will be reached and clients are blocked.

Cost Analysis. In Subsection 2.2, we illustrated the theoretical performance of a simple
sequence of operators, where each operator oi has a single data dependency with the
previous operator oi−1. Now, we investigate the performance with regard to specific
rewriting results (the idealized cost model is reused).

Parallel data flow branches. Here, different messages are processed by |r| concurrent
pipelines (branches) within P ′. Examples for this are simply overlapping data depen-
dencies and the Switch operator. Assume an operator sequence o of length m. In
the instance-based model, the costs of n instances are C(P) = n · m. In case the op-
erator sequence contains a single branch with |r| = 1, we can improve the costs by
(n− 1) · (m− 1) to n + m− 1 using process plan vectorization. In the case of multiple
branches with |r| ≥ 2, the possible improvement is given by

C(P ′) = n +
|r|

max
i=1

(|ri|) − 1

Δ(C(P) − C(P ′)) = n · (m − 1) − |r|
max
i=1

(|ri|) + 1.

Clearly, in the case of |r| = 1 and |r1| = m, the general cost analysis stays true. In the

best case, max|r|i=1(|ri|) is equal to m
|r| ∈ N. The improvement is caused by the higher

degree of parallelism. However, parallel data-flow branches may also cause overhead
for splitting (Copy) and merging (AND or XOR).

Rolled-out Iteration. When rewriting Iteration operators with for each se-
mantics, we split messages according to the for each condition and process the
iteration body as inner pipeline without cyclic dependencies. Finally, the processed sub-
messages are merged using the Setoperation operator (union all). In the instance-
based case, C(o) = r ·m is true, where r denotes the number of iteration loops (number
of sub-messages) and m denotes the number of operators in the iteration body. Due to
the sub-pipelining, we can reduce the processing time to C(o′) = r + m − 1 + 2.

3.3 Cost-Based Vectorization

The two major weaknesses of our approach are (1) that the theoretical performance of
a vectorized integration process mainly depends on the performance of the most cost-
intensive operator, and (2) that the practical performance also strongly depends on the
number of available threads. Thus, the optimality of vectorization strongly depends on
dynamic workload characteristics. Hence, future work should investigate the general-
ized problem description, where we search for the optimal k execution buckets (each
containing a number of operators) in a cost-based manner.

4 Experimental Evaluation

In this section, we provide selected experimental results. Basically, we can state that the
vectorization of integration processes leads to a significant performance improvement
for different scale factors.

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

4.1 Experimental Setup

We implemented the introduced approaches within the so-called WFPE (workflow pro-
cess engine) using Java 1.6 as the programming language. This implementation is avail-
able upon request. In general, the WFPE uses compiled process plans (a java class is
generated for each integration process type). Furthermore, it follows an instance-based
execution model. Now, we integrated components for the static vectorization of inte-
gration processes (we call this VWFPE). For that, new deployment functionalities were
introduced (those processes are executed in an interpreted fashion) as well as several
changes in the runtime environment were realized.

We ran our experiments on a standard blade (OS Suse Linux) with two processors
(each of them a Dual Core AMD Opteron Processor 270 at 1,994 MHz) and 8.9 GB
RAM. Further, we executed all experiments on synthetically generated XML data (us-
ing the DIPBench toolsuite [2]). In general, we used the following five aspects as scale
factors: data size d of a message, the number of operators m of a process plan, the
time interval t between two messages, the number of process instances n and the maxi-
mal number of messages q in a queue. Here, we measured the performance of different
combinations of those. For statistical correctness, we repeated all experiments 20 times.

As base integration process for our experiments, we used a sequence of six operators.
Here, a message is received (Receive) and then an interaction is prepared (Assign)
and executed with the file adapter (Invoke). After that, the resulting message (contains
orders and orderlines) is translated using an XML transformation (Translation)
and finally sent to a specific directory (Assign, Invoke). We refer to this as m = 5
because the Receive is removed during vectorization. When scaling m up to m = 35,
we copy and reconfigure those operators.

4.2 Performance and Throughput

Here we ran a series of experiments based on the already introduced scale factors. The
results of these experiments are shown in Figure 5.

In Figure 5(a) we scaled the data size d of the input messages from 100kb to 700kb
XML messages and measured the processing time for 250 process instances (n = 250)
needed by the three different runtimes. There, we fixed m = 5, t = 0, n = 250 and
q = 50. We can observe that both runtimes exhibit a linear scaling according to the
data size and that significant improvements can be reached using vectorization. There,
the absolute improvement increases with increasing data size. Further, in Figure 5(b),
we illustrated the variance of this sub-experiment. The variance of the instance-based
execution is minimal, while the variance of the vectorized runtime is worse because of
the operator scheduling. Now, we fixed d = 100 (lowest absolute improvement in 5(a)),
t = 0, n = 250 and q = 50 in order to investigate the influence of m. We varied
m from 5 to 35 operators. Interestingly, not only the absolute but also the relative im-
provement of vectorization increases with increasing number of operators. Figure 5(d)
shows the impact of the time interval t between the initiation of two process instances.
For that, we fixed d = 100, m = 5, n = 250, q = 50 and varied t from 10ms to
70ms. The absolute improvement between instance-based and vectorized approaches
decreases slightly with increasing t. As an explanation, the time-interval has no impact
on the instance-based execution. In contrast to that, the vectorized approach depends on

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) Scalability over d (b) Variance over d (c) Scalability over m

(d) Scalability over t (e) Scalability over n (f) Scalability over q

Fig. 5. Evaluation Results for Experimental Performance

t due to the resource scheduling whenever not all of the execution buckets need CPU
time. Further, we analyze the influence of the number of instances n as illustrated in
Figure 5(e). Here, we fixed d = 100, m = 5, t = 0, q = 50 and varied n from 100 to
700. Basically, we can observe that the relative improvement between instance-based
and vectorized execution increases with increasing n, due to parallelism of process in-
stances. Figure 5(f) illustrates the influence of the maximal queue size q, which we
varied from 10 to 70. Here, we fixed d = 100, m = 5, t = 0 and n = 250. In fact,
q slightly affects the overall performance for a small number of concurrent instances
n. However, at n = 250, we cannot observe any significant influence according to the
performance for both approaches.

5 Related Work

Database Management Systems. In the context of DBMS, throughput optimization
has been addressed with different techniques. One significant approach is data sharing
across common subexpressions of query instances [3,4]. However, in [5] it was shown
that sharing can also hurt performance. Another inspiring approach is given by staged
DBMS [6]. Here, in the QPipe Project [7], each relational operator was executed as a
micro-engine (one operator, many queries). Additional approaches exist in the context
of distributed query processing [8,9].

Data Stream Management Systems. Further, in data stream management systems
(DSMS) and ETL tools, the pipes and filters execution model is widely used. Exam-
ples for those systems are QStream [10], Demaq [11] and Borealis [12]. However, in
DSMS, scheduling is not realized with multiple processes or threads but with central
control strategies and thus, the problems addressed in this paper are not present.

Streaming Service and Process Execution. In service-oriented environments, throu-
ghput optimization has been addressed on different levels. Performance and resource

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

issues, when processing large volumes of XML documents, lead to message chunk-
ing on the service-invocation level. There, request documents are divided into chunks,
and services are called for every single chunk [13]. An automatic chunk-size computa-
tion using the extremum-control approach was addressed in [14]. On the process level,
pipeline scheduling was incorporated in [15] into a general workflow model to show
the valuable benefit of pipelining in business processes. Further, [16] add pipeline se-
mantics to classic step-by-step workflows.

Integration Process Optimization. This has not yet been explored sufficiently. There
are platform-specific optimization approaches for the pipes and filters execution model,
like the optimization of ETL processes [17]; there are also numerous optimization ap-
proaches for instance-based processes like the optimization of data-intensive decision
flows [18], the static optimization of the control flow using critical path approaches [19]
and SQL-supporting BPEL activities and their optimization [20]. Further, the execution
time minimization of integration processes [21] was already investigated.

6 Conclusions

In order to optimize the throughput of integration platforms, in this paper, we introduced
the concept of automatic vectorization of integration processes. We showed how inte-
gration processes can be rewritten in a transparent manner, where the internal execution
model is hidden from the user in order to reach a higher degree of parallelism while
ensuring the transactional behavior and external behavior similar to instance-based in-
tegration processes. Based on our experimental evaluation, we can state that significant
throughput improvement is possible and the concept of process vectorization is appli-
cable in practice. Future work should address the cost-based vectorization.

References

1. Boehm, M., Habich, D., Lehner, W., Wloka, U.: An advanced transaction model for recovery
processing of integration processes. In: ADBIS (2008)

2. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Dipbench toolsuite: A framework for bench-
marking integration systems. In: ICDE (2008)

3. Dalvi, N.N., Sanghai, S.K., Roy, P., Sudarshan, S.: Pipelining in multi-query optimization.
In: PODS (2001)

4. Roy, P., Seshadri, S., Sudarshan, S., Bhobe, S.: Efficient and extensible algorithms for multi
query optimization. In: SIGMOD (2000)

5. Johnson, R., Hardavellas, N., Pandis, I., Mancheril, N., Harizopoulos, S., Sabirli, K., Aila-
maki, A., Falsafi, B.: To share or not to share? In: VLDB (2007)

6. Harizopoulos, S., Ailamaki, A.: A case for staged database systems. In: CIDR (2003)
7. Harizopoulos, S., Shkapenyuk, V., Ailamaki, A.: Qpipe: A simultaneously pipelined rela-

tional query engine. In: SIGMOD (2005)
8. Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive query execution

system for data integration. In: SIGMOD (1999)
9. Lee, R., Zhou, M., Liao, H.: Request window: an approach to improve throughput of rdbms-

based data integration system by utilizing data sharing across concurrent distributed queries.
In: VLDB (2007)

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

10. Schmidt, S., Berthold, H., Lehner, W.: Qstream: Deterministic querying of data streams. In:
VLDB (2004)

11. Boehm, A., Marth, E., Kanne, C.C.: The demaq system: declarative development of dis-
tributed applications. In: SIGMOD (2008)

12. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lind-
ner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design
of the borealis stream processing engine. In: CIDR (2005)

13. Srivastava, U., Munagala, K., Widom, J., Motwani, R.: Query optimization over web ser-
vices. In: VLDB (2006)

14. Gounaris, A., Yfoulis, C., Sakellariou, R., Dikaiakos, M.D.: Robust runtime optimization of
data transfer in queries over web services. In: ICDE (2008)

15. Lemos, M., Casanova, M.A., Furtado, A.L.: Process pipeline scheduling. J. Syst. Softw. 81(3)
(2008)

16. Biornstad, B., Pautasso, C., Alonso, G.: Control the flow: How to safely compose streaming
services into business processes. In: IEEE SCC (2006)

17. Simitsis, A., Vassiliadis, P., Sellis, T.: Optimizing etl processes in data warehouses. In: ICDE
(2005)

18. Hull, R., Llirbat, F., Kumar, B., Zhou, G., Dong, G., Su, J.: Optimization techniques for
data-intensive decision flows. In: ICDE (2000)

19. Li, H., Zhan, D.: Workflow timed critical path optimization. Nature and Science 3(2) (2005)
20. Vrhovnik, M., Schwarz, H., Suhre, O., Mitschang, B., Markl, V., Maier, A., Kraft, T.: An

approach to optimize data processing in business processes. In: VLDB (2007)
21. Boehm, M., Habich, D., Lehner, W., Wloka, U.: Workload-based optimization of integration

processes. In: CIKM (2008)

Final edited form was published in "Enterprise Information Systems. 11th International Conference. Milan 2009",
S. 40-52, ISBN 978-3-642-01347-8

https://doi.org/10.1007/978-3-642-01347-8_4

13

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	Vectorizing Instance-Based Integration Processes
	Introduction
	Problem Description
	Assumptions and Requirements
	Optimization Problem
	Solution Overview

	Rewriting Process Plans
	Message Model and Process Model
	Rewriting Algorithm
	Cost-Based Vectorization

	Experimental Evaluation
	Experimental Setup
	Performance and Throughput

	Related Work
	Conclusions
	References

	ADP6671.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Matthias Boehm, Dirk Habich, Steffen Preissler, Wolfgang Lehner, Uwe Wloka

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

