
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-828917

J. Albrecht, H. Günzel, W. Lehner

Set-Derivability of Multidimensional Aggregates

Erstveröffentlichung in / First published in:

Data Warehousing and Knowledge Discovery: First International Conference. Kohala
Coast, 30.08. - 01.09.1999. Springer, S. 133-142. ISBN 978-3-540-48298-7.

DOI: https://doi.org/10.1007/3-540-48298-9_15

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821228
https://doi.org/10.1007/3-540-48298-9_15

Set-Derivability of Multidimensional Aggregates

J. Albrecht, H. Günzel, W. Lehner1

Department of Database Systems, University of Erlangen-Nuremberg

Martensstr. 3, 91058 Erlangen, Germany

{jalbrecht, guenzel, lehner}@informatik.uni-erlangen.de

Abstract. A common optimization technique in data warehouse environments is
the use of materialized aggregates. Aggregate processing becomes complex, if
partitions of aggregates or queries are materialized and reused later. Most prob-
lematic are the implication problems regarding the restriction predicates. We
show that in the presence of hierarchies in a multidimensional environment an
efficient algorithm can be given to construct - or to derive - an aggregate from one
or more overlapping materialized aggregate partitions (set-derivability).

1 Introduction

In the last few years data warehousing has emerged from a mere buzzword to a funda-
mental database technology. Today, almost every major company is deploying an inte-
grated, historic database, the data warehouse, as a basis for multidimensional decision
support queries. The purpose is to provide business analysts and managers with online
analytical processing (OLAP). Besides the use of big parallel database servers, a com-
mon optimization technique is to precompute aggregates, i.e. to use summary tables or
materialized views (e.g. [3], [8], [9], [15]). Most of the presented algorithms base on the
assumption that during the data warehousing loading process a pre-determined set of
aggregates is materialized and used during the analysis phase. But there is also a great
performance potential in the dynamic reutilization of cached query results ([1], [5]).

However, today the transparent reuse of aggregates is based on limited cases of query
containment, i.e. the query must be contained in one certain aggregate. Since the impli-
cation problem for query restrictions containing the six comparison operators as well as
disjunctions and conjunctions is solvable NP-hard [13], algorithms like [9] as well as
commercial products (e.g. [3]) are based on aggregate views defined without restric-
tions to circumvent this problem. Using this approach, the definition and reuse of aggre-
gate partitions for hot spots, like the current month or the most important product
group, and the reuse of queries are impossible.

In many cases this is too restrictive.
Consider the query “Give me the total
sales for the video product families by
region in Germany” and the tabular
result illustrated in figure 1. The mate-
rialized query represents a partition of

1 Current address: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, U.S.A.

Fig. 1. A partition of an aggregated data cube.

Sum(Sales) Camcorder HomeVCR

G-East 12 37

G-West 22 32

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

an aggregated data cube. If there were two redundant aggregates in the database, one
containing the sales for camcorders and the other one containing the sales for home
VCRs, then the query could be computed by the union of these aggregates. The goal of
this article is to provide a constructive solution for this problem.

In the presence of a set of materialized aggregate
partitions, a multidimensional query optimizer has
to determine under which circumstances and how a
query can be computed from these aggregates
(figure 2). The basis of our approach are multidi-
mensional objects which were initially presented in
[10]. Multidimensional objects provide the infor-
mation to a multidimensional query optimizer for
the transparent reuse of materialized aggregate par-
titions. Their definition includes semantic informa-
tion about it genesis, i.e. the applied aggregation
and the selection predicates. Thus, a certain class of
aggregation queries can be directly translated into
multidimensional objects. Queries involving com-
posite aggregations can at least utilize multidimen-
sional objects based on the component aggregates.

Structure of the Paper. The next section covers related work. Basis for the determina-
tion of derivability are the dimensional data structures presented in section 3. Section 4
introduces multidimensional objects and some basic operators. The derivability of mul-
tidimensional objects with a focus on the solution to implication problems in the pres-
ence of hierarchies is covered in section 5. The article closes with a short summary.

2 Related Work

The general idea of precomputing summary data appeared already in [4]. In the last few
years it became very popular with the emergence of data warehousing and OLAP and
the resulting need for an efficient and mostly read-only access to aggregates in a multi-
dimensional context. Several articles deal with the selection and use of materialized
views (e.g. [5], [8],[9]; see overview in [15]). In contrast to our approach, these articles
are not able to construct a new query from a set of materialized queries but are limited
to certain cases of query containment.

Summarizability and derivability are terms describing under which circumstances sum-
mary data can be derived from other summary data. [4] investigates conditions under
which already aggregated cells might be further aggregated. Aggregation functions are
classified as additive and computed. These notions correlate to the distinction of distrib-
utive and algebraic functions in [7]. The question under which circumstance a query is
derivable from one or more other queries has been studied for a long time ([6], [13]).
For summary data, disjointness and completeness are fundamental [4]. Another seman-
tic condition, type compatibility, was identified by [11].

Fig. 2. Derivability problem:
Can the query be computed from the
set of multidimensional objects?

Query

?

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

3 Dimensional Data Structures

The notion of a dimension provides a lot of semantic information especially about the
hierarchical relationships between its elements like product groups or geographic
regions. This information is heavily used for both aggregate queries and selections, and
it provides the basis for the definition of multidimensional objects.

Definition 1: A dimensional schema is a partially ordered set of dimensional attributes
(D∪{TotalD};→) where D={D1,...,Dn}. TotalD is a generic element which is maximal
with respect to “→”, i.e. Di→TotalD for each Di∈D.
An attribute Dj is called a direct parent of Di, denoted as Di→̊Dj, if Di→Dj and there
is no Dk with Di→Dk→Dj.

Figure 3 shows examples for dimensional schemas illustrated as directed acyclic graphs
according to the partial order ”→” which denotes a functional dependency, i.e. a 1:n
relationship. TotalD is generic in the sense that it is not modeled explicitly.

Definition 2: The instances c∈dom(Di) of some dimensional attribute Di∈D are called
classification objects or classes of Di. Di is called the level of c.
Moreover, dom(TotalD) := {‘ALL’}.
An instance of a dimension D is the set of all classes c ∈ ∪i dom(Di).

A hierarchy can be specified by a categorization, i.e. a path to Total in a dimension. By
defining dom(Total):={‘ALL’} it is guaranteed that all classification hierarchies are trees
having “ALL” as the single root node. A sample classification hierarchy for the categori-
zation Article→Family→Group→Area→Total is shown in figure 4. The edges in such a
tree can also be seen as a mapping from the descendents to the ancestors.

Definition 3: Let Di, Dj∈D such that Di→Dj. A class a∈dom(Dj) is called ancestor of class
b∈dom(Di), denoted as ancestor(a,b), if and only if a maps to b according to the func-
tional dependency Di→Dj. In this case b is called a descendant of a, i.e. descen-
dant(b,a)⇔ancestor(a,b).
The domain of a class a with respect to the dimensional attribute Di is defined as the
set of it descendents, i.e. dom(a | Di) = {b∈dom(Di): descendant(b,a)}.

Country

State

Shop

City

Region

Manager

Branch

Group

Article

Family
Brand

Fig. 3. Illustration the of dimensional schemas for the product, location and time dimension as
directed acyclic graphs.

Product Location

TotalTotal

ProdCountry

Year

Quarter

Month Week

Total

Time

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

4 Multidimensional Data Structures

The following definition of multidimensional objects is an extension of the work pre-
sented in [10]. In contrast to other multidimensional data structures (see [12]), multidi-
mensional objects contain additional information besides the measures and aggregation
level (granularity) which is necessary to check the derivability. One thing is that instead
of treating measures as simple attributes the information about the aggregation opera-
tion which was applied to the measure is made part of their definition.

Definition 4: Let Ω be a set of additive aggregation functions. A measure is tuple M =
(N, O), where N is a name for the corresponding fact and O ∈ Ω ∪ {NONE, COMPOS-
ITE} is the operation type applied to that specific fact.

We assume that a measure M has a numerical domain dom(M)∈{IR, IN, |Q, /Z} and Ω =
{SUM, COUNT, MIN, MAX}. Only additive operations (in the sense of [4]) are explicitly
represented. Other operations are subsumed by the operation type COMPOSITE, i.e.
those measures can not be used for the automatic derivation of higher aggregates. How-
ever, for many composite operations, like AVG, one can extend our concept by implicitly
storing SUM and COUNT. The value NONE states that a measure is not aggregated.

Definition 5: A multidimensional object over the dimensions D1,...,Dd is a triple
M = [M, G, S] where
• M = (M1,...,Mm) = ((N1,O1), ..., (Nm,Om)) is a set of measures2

• G = (G1,...,Gn) is the granularity specification consisting of a set of dimensional
attributes, i.e. Gi∈D1∪...∪Dd such that for each Gi, Gj: Gi→/ Gj

• S is logical predicate denoting the scope.

The scope is a restriction predicate describing which data cells have been aggregated in
this particular (sub-) cube. It may include any propositional logic expression involving
the granularity attributes of M and any dimensional attribute that is functionally depen-
dent on some Gi∈G. For example, the multidimensional object in figure 4 is3

[(Sales, SUM),(P.Family, L.City, T.Month),(P.Area=‘Brown Goods’^L.Country=‘Germany’)]

2 The definition of M and G as tuples is only for the sake of simplicity; the order of the elements
does not matter. Therefore, we will also apply the set operators like ∈, ∪, ∩, = to M and G.

3 In the following examples we will abbreviate the dimension names Product, Location and Time
with P, L and T, respectively.

...

...

SUM(Sales)

ALL

White Goods

HomeVCR Camcorder

AudioVideo

Brown Goods

Computers

Location
Total

Area

Group

Family

Article

Fig. 4. A classification hierarchy for the product dimension and a multidimensional object.

Products

‘A
LL

”

Month

‘BrownGoods’Product

Family

‘Germany’

City

Time

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

In the literature on multidimensional data models several operators were defined on
multidimensional data cubes [12]. Most important are selections and aggregations. The
goal of this section is to define the influence of these operators on multidimensional
objects, especially on the measures and the scope. Since the definition of operators is
not the topic of this article, we will only shortly mention some operators.

Fundamental are the metric projection of the attributes M’=(M1’,...,Mk’)⊆M, written as
πM’(M) = [M’, G, S], and the restriction by a predicate P, defined as σP(M) = [M, G, S^P].
On set-compatible multidimensional objects M and M’ (i.e. M=M’ and G=G’) one can
define the common set-operations M ∪ M’ = [M, G, S ∨ S’], M ∩ M’ = [M, G, S ∧ S’], and
M \ M’ = [M, G, S ∧ ¬S’]. However, the most important operations on multidimensional
objects are aggregations, which are defined first on the measures alone and then on mul-
tidimensional objects.

Definition 6: The application of an aggregation function F to a measure M = (N,O)
results in a measure F(M)=(N,O’) where
• O’ = F if O=NONE or if F=O and O∈{SUM,MIN,MAX},
• O’ = COUNT if O=COUNT and F=SUM
• O’ = COMPOSITE otherwise.

A granularity specification G=(G1,...,Gn) is finer than or equal to a granularity specifica-
tion G’=(G1’,...,Gk’), denoted as G≤G’, if and only if for each Gj'∈G’ there is a Gi∈G such
that Gi→Gj’. For example (P.Article, L.City)≤(P.Group, L.Region)≤(P.Area).

Definition 7: The aggregation of a multidimensional object M by a family of aggregate
functions Φ=(F1,...,Fm) to the granularity G’≥G is defined as:

Φ(G’, M) = [(F1(M1),...,Fm(Mm)), G’, S]

For example, if M = [(Sales, SUM),(P.Family),(P.Group = ‘Video’)] then
(SUM) ((P.Group), M) = [(Sales, SUM),(P.Group),(P.Group = ‘Video’)] and
(AVG) ((), M) =[(Sales, COMPOSITE),(P.Group),(P.Group = ‘Video’)].

5 Derivability in the Presence of Hierarchies

Based on the definitions of the last section, we will now define under which conditions
and how a multidimensional object can be computed from a set of materialized MOs. A
necessary prerequisite to derive a multidimensional object is that the aggregation level
of the original MOs is finer than the granularity of the derived MO. This condition
directly corresponds to the relationship of the aggregates in an aggregation lattice [9].
Two further conditions, measure compatibility and reconstructibility, are necessary to
define the derivability of multidimensional objects.

Definition 8: A multidimensional object M = (M, G, S) is derivable from a multidimen-
sional object M’ = (M’,G’,S’) if and only if
• for each measure Mi∈M there is Mj’∈M’ such that Ni = Nj’ and O = O’ or O’ = NONE
• the granularity specification of M’ is finer than M, i.e. G’ ≤ G
• S is contained in S’, i.e. S⊆S’ (or S→S’) and S is reconstructible from S’.

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Measure compatibility simply means that for example total sales are derivable from
total sales. Most problematic is the third condition, one is that S is contained by S’ (con-
sidering S and S’ as sets of dimensional elements). How to check this condition and the
notion of reconstructibility is explained in the next section.

5.1 Scope Normalization

In [13] it is shown that the problem to determine that some predicate S is implied by
another predicate S’ is NP-complete if the predicates may contain disjunctions and in-
equalities besides simple comparison operators. In this section we will give an efficient
polynomial time algorithm, which solves implication problems in the presence of hier-
archies on finite domains even for negations and disjunctions. The algorithm is based
on compact scopes for which the determination of scope containment is very simple.

Definition 9: A scope S is compact if S is a conjunction of positive terms and there are
no two different terms Di.Dj=c and Di.Dk=c’ with ancestor(c, c’).

Thus, the scope ((P.Family=’Camcorder’∨P.Family=’HomeVCR’)^L.Country=’Germany’) is
not compact, but (P.Group=’Video’^L.Country=’Germany’) is.

A compact scope S is contained in a scope S’ (denoted as S→S’ or S⊆S’) if and only if
for each term Di.Dk=c’ in S’ there exists a term Di.Dj=c in S such that ancestor(c’, c). For
example, (P.Family=’HomeVCR’) /⊆(P.Group=’Video’^L.Country=’Germany’) but (P.Fam-
ily=’HomeVCR’ ^L.Country=’Germany’)⊆(P.Group=’Video’).

Not only scope containment, but also all problems of finding the intersections or differ-
ences of two compact scopes can be solved simply by determining ancestor/descendant
relationships of classes appearing in the conjunctive clauses. Both operations are based
on the one-dimensional intersection and the difference of two classes. For the intersec-
tion of two classes c∈dom(Di) and c’∈dom(Dj) holds c∩c’=c if ancestor(c’,c) and c∩c’=∅
otherwise. For example in figure 5 M∩B=B and M∩E=∅. Intersections of classes in par-
allel hierarchies like P.Family=’HomeVCR’^P.Brand=’Sony’ are not resolved but treated as
if it were separate dimensions. The difference of two classes can be computed by the
algorithm ClassDifference as illustrated in figure 5 (see [2] for the complete algorithm).

Each scope can be transformed into a “minimal” disjunction of mutually disjoint com-
pact scopes, the disjunctive scope normal form (DSNF). Based on the DSNF and the
scope difference the scope implication problems for non-compact scopes can be solved
in a constructive way. To explain the construction of the DSNF consider the following
multidimensional object:

A B

I

C D

J

M

R

E F

K

G H

L

N

Naive difference “R” - ”A”

D3

D2

D1

D4

D1=”B”∨D1=”C”∨D1=”D”∨D1=”E”∨

Smart difference for “R” - ”A”
D1=”B”∨D2=”J”∨D3=”N”

Fig. 5. Illustration of the algorithm ClassDifference.

D1=”F”∨D1=”G”∨D1=”H”

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

[(Sales, SUM),
(P.Group, L.Region),
(P.Group = ‘Video’ ^ L.Region = ‘G-East’) ∨
((L.Region = ‘G-West’ ∨ L.Region = ‘G-East’) ^
P.Group = ‘Video’ ^ P.Family ≠ ‘Camcorder’)]

Intuitively, the scope definition is not minimal, because the terms L.Region=‘G-
East’ ∨ L.Region=‘G-West’ can be reduced to L.Country=‘Germany’. In order to find all
such terms, it is necessary to translate the predicate into conjunctive normal form where
such terms appear in a single disjunctive clause and can be discovered easily. This kind
of reduction together with the replacement of negative terms is realized by algorithm 1
(see [2] for details), which constructs the conjunctive scope normal form (CSNF), i.e. a
minimal expression of the scope in CNF. The resulting scope for the example above is

(P.Group = ‘Video’ ∨ L.Country = ‘Germany’) ∧ (P.Group = ‘Video’) ∧
(L.Country = ‘Germany’) ∧ (L.Region = ‘G-East’ ∨ P.Family = ‘HomeVCR’)

The translation from CSNF into DSNF is analogous to translating CNF into DNF. This
implies that all positive terms remain positive. The example yields the following DNF:

(P.Group = ‘Video’ ∧ L.Country = ‘Germany’ ∧ L.Region = ‘G-East’) ∨
(P.Group = ‘Video’ ∧ P.Family = ‘HomeVCR’ ∧ L.Country = ‘Germany’)

To make the clauses compact, for each class it must now be checked if an ancestor is
also in the same clause. If so, the ancestor is removed. This leads to

(P.Group = ‘Video’ ^ L.Region = ‘G-East’) ∨ (P.Family = ‘HomeVCR’ ^ L.Country = ‘Germany’)

Sum(Sales) Camcorder HomeVCR

G-East 12 37

G-West 32

Algorithm: PatchWork

Input: A compact scope SC and
a scope in DSNF S = SC1∪...∪SCn

Output: TRUE if S→SC, FALSE otherwise
1 Begin
2 remainder = {SC};
3 solution = ∅;
4
5 While remainder ≠ ∅ Do
6 Foreach R ∈ remainder
7 found = false;
8 For i = 1 To n
9 // check if this part of the remainder is
10 // intersected by a compact scope in S
11 If Intersection(R, SCi)≠∅ Then
12 remainder = remainder \ {R} ∪
13 ScopeDifference(R, SCi);
14 solution = solution∪Intersection(R,SCi);
15 found = TRUE;
16 Break;
17 End If
18 End For
19 If (Not found)
20 Return ∅;
21 End Foreach
22 End While
23 Return solution;
24End

Algorithm: ConjunctiveScopeNormalization

Input: Scope of a MO over dimensions D1,...,Dn
in conjunctive normal form S = S1^...^Sk

Output: Scope S in conjunctive scope normal form
1 Begin
2 Foreach Si
3 replace all negative terms Dj.Dk≠c by
4 ClassDifference(Dj.Total=”ALL”, Dj.Dk≠c);
5
6 Foreach term Dj.Dk=c
7 If (c’ with Ancestor(c’, c) is also contained)
8 remove Dj.Dk≠c
9
10 Foreach term Dj.Dk=c
11 let Dp represent a direct parent level,
12 i.e. Dj.Dk→̊ Dp;
13 p = GetAncestor(child | Dp);
14 If (all elements of dom(p | Dk) c are in Si)
15 replace c and all siblings by p;
16
17 End Foreach
18
19 Return S = S1^ ... ^Sn;
20End

Algorithm 1: ConjunctiveScopeNormalization

transforms a scope from conjunctive normal
form to conjunctive scope normal form.

Algorithm 2: PatchWork constructs a solution in
DSNF how to compute the compact scope SC
from SC1,...,SCn.

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

By using the ScopeDifference it is now possible to make the clauses mutually disjoint.
Therefore, a DSNF representation of the scope is

(P.Group = ‘Video’ ^ L.Region = ‘G-East’) ∨ (P.Family = ‘HomeVCR’ ^ L.Region = ‘G-West’)

Based on the DSNF, the problem if a scope S1=SC11∨...∨SC1n is contained in a scope
S2=SC21∨...∨SC2m can be solved constructively by algorithm 2. For each conjunctive
term SC1i the following steps are executed. The remainder is a set of “patches”, i.e.
“compact” fragments which still must be covered. For each remaining patch R it must
be checked if R∩SC2i≠∅ for some i (line 11). If so, the intersection is removed from the
remainder and added to the solution (lines 12-14). If for some remaining patch no inter-
secting clause from S2 is found, then S1 /⊆ S2. Thus, the solution itself is a set of mutu-
ally disjoint compact scopes (patches) and can be seen as an instruction how to compute
SC11 from SC2.

However, this construction does not work in all cases because a multidimensional object
still may not be reconstructible from the other one. Consider the query: “Give me the
total sales of all video and audio products per region” expressed by the multidimen-
sional object

M = [(Sales, SUM), (L.Region), (P.Group=’Video’∨P.Group=’Audio’)].

If there was an aggregate with no restrictions (equivalent to Total=”ALL” in all dimen-
sions)

M’ = [(Sales, SUM), (P.Area, L.Region), ()],

then question is, if M is derivable from M’. It turns out that, although G≤G’ and S⊆S’,
M’ is not reconstructible from M because the two patches with P.Group=’Video’ and
P.Group=’Audio’ can not be addressed in M’. The reason is that M’ has already a higher
granularity (P.Area) than the attributes in the patch clauses (P.Group). This must also be
checked (see definition 8). However, in case S=S’ it would work anyway.

5.2 Set-Derivability

A set of multidimensional objects { [M, G, SC1],...,[M, G, SCn] } can also be seen as a MO
M=[M, G, SC1∨...∨SCn] and the other way around. Since it is easy to aggregate MOs at
a finer granularity G’≤G (definitions and 8) to G, one can easily extend algorithm 2 to
construct one multidimensional object MQ from a set of multidimensional objects
M1,...,Mn at granularities G’≤G (figure 6). Thus, MQ is set-derivable from M1,...,Mn if
algorithm 3 yields a non-empty solution. Set-derivability in conjunction with a cost-
based selection can serve as a basis to compute one query from a set of previously mate-
rialized queries. For an illustration consider the following multidimensional objects in
DSNF:

M1 = [(Sales, SUM), (P.Family, L.Region), (P.Group = ‘Video’ ^ L.Country=’Germany’)]
M2 = [(Sales, SUM), (P.Group, L.City), ((P.Area = ‘Brown Goods’ ^ L.Region=’G-West’)]
M3 = [(Sales, SUM), (P.Article, L.City), ((P.Group = ‘Audio’ ^ L.Country = ‘Germany’) ∨

(P.Group = ‘Video’ ^ L.Region=’G-West’)]

The use of algorithm 2 in the context of set-derivability can be used to derive the query

MQ = [(Sales, SUM), (P.Goup, L.Region), ((P.Area = ‘Brown Goods’ ^ L.Country=’Germany’)]

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

from M1, M2 and M3 by the query execution plan depicted in figure 6. Such an approach
overcomes the limitations of query containment for the reuse of cached aggregates and
bears a high performance potential [1].

6 Summary and Future Work

The determination of the derivability of multidimensional aggregates is an essential task
for a multidimensional query optimizer. In this article we presented multidimensional
objects as an enriched data structure which helps to accomplish this task. We have
shown that the inclusion of the semantics of aggregations on the measures in an
extended multidimensional algebra allows much more flexibility for the selection of
aggregates by the query optimizer than is possible today. For the derivability of multi-
dimensional objects three conditions have to be checked: measure and granularity com-
patibility as well as scope containment. An efficient algorithm was given which solves
the scope implication problem in the presence of hierarchies in a constructive way. The
potential of the approach has already been proved for a certain class of multidimen-
sional objects. Experimental results are given in [1].

Future research aims at an extension of the presented concept on a more complete mul-
tidimensional algebra, including other aggregation functions and also binary opera-
tions. Another idea is to include comparisons on the aggregated measure attributes in
the scope restriction, a problem that has already been investigated in [14]. Our strategic
goal is to supply the query optimizer with sufficient knowledge to solve problems of the
following kind: “Given a formula Turnover=Sales*Price and an aggregated sales data
cube, under which circumstances is it possible to use this aggregated sales cube to
derive an aggregated turnover cube?” There are many possibilities under which the
information about computed measures can be used to utilize materialized multidimen-
sional objects for the actual computation. In several relevant cases binary operations do
not change the operation type of the resulting measure, for example,
(Stock,SUM)=(StockReceipt,SUM)-(Sales, SUM). In such cases the total Stock can be com-
puted from the total StockReceipt minus the total Sales.

Fig. 6. Patch-working. The requested MO MQ can be constructed from M1, M2 and M3.

M1

M2

MQ M3

M1

SUM(P.Group, L.Region)

SUM(P.Group, L.Region)

SUM(P.Group, L.Region)

π(Sales)

M2 M3

σ(P.Group=’Audio’^
L.Region=’G-East’)

σ(P.Group=’Audio’^
L.Region=’G-West’)

∪
∪

MQ

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

References

1. Albrecht, J.; Bauer, A.; Deyerling, O.; Günzel, H.; Hümmer, W.; Lehner, W.; Schlesinger, L.:
Management of multidimensional Aggregates for efficient Online Analytical Processing, in:
International Database Engineering and Applications Symposium (IDEAS’99, Montreal,
Canada, August 1-3), 1999

2. Albrecht, J.; Günzel, H.; Lehner, W.: Set-Derivability of Multidimensional Aggregates (long
version), Technical Report, University of Erlangen, 1999 (http://www6.informatik.uni-erlangen.de/
publications)

3. Bello, R.; Dias, K.; Downing, A.;Feenan, J.; Norcott, W.; Sun, H.; Witkowski, A.;Ziauddin,
M.: Materialized Views in Oracle, in: Proceedings of 24th International Conference on Very
Large Data Bases (VLDB’98, New York, USA, August 24-27), 1998,

4. Chen, M. C.; McNamee, L.; Melkanoff, M.: A Model of Summary Data and its Applications
in Statistical Databases, in: Proceedings of the 4th International Working Conference on
Statistical and Scientific Database Management (4SSDBM, Rome, Italy, June 21-23), 1988

5. Deshpande, P.M.; Ramasamy, K.; Shukla, A.; Naughton, J.F.: Caching Multidimensional
Queries Using Chunks, in: Proceedings of the 27th International Conference on Management
of Data (SIGMOD’98, Seattle (WA), USA, June 2-4), 1998

6. Finkelstein, S.: Common Subexpression Analysis in Database Applications, in: Proceedings
of the 11th International Conference on Management of Data (SIGMOD’82, Orlando (FL),
June 2-4), 1982

7. Gray, J.; Bosworth, A.; Layman, A.; Pirahesh, H.: Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Total, in: Proceedings of the 12th
International Conference on Data Engineering (ICDE’96, New Orleans (LA), USA, Feb. 26-
March 1), 1996

8. Gupta, A.; Harinarayan, V.; Quass, D.: Aggregate-Query Processing in Data Warehousing
Environments, in: Proceedings of the 21th International Conference on Very Large Data
Bases (VLDB’95, Zurich, Schwitzerland, Sept. 11-15), 1995, pp. 358-369

9. Harinarayan, V.; Rajaraman, A.; Ullman, J.D.: Implementing Data Cubes Efficiently, in:
Proceedings of the 25th International Conference on Management of Data, (SIGMOD’96,
Montreal, Quebec, Canada, June 4-6), 1996

10. Lehner, W.: Modeling Large Scale OLAP Scenarios, in: 6th International Conference on
Extending Database Technology (EDBT’98, Valencia, Spain, March 23-27), 1998

11. Lenz, H; Shoshani, A.: Summarizability in OLAP and Statistical Databases, in: 9th
International Conferenc on Statistical and Scientfic Databases, (SSDB’97, Olympia,
Washington, Aug. 11-13), 1997

12. Sapia, C.; Blaschka, M.; Höfling, G.; Dinter, B.: Finding Your Way through
Multidimensional Data Models, in: 9th International Workshop on Database and Expert
Systems Applications (DEXA’98 Workshop, Vienna, Austria, August 24-28), 1998

13. Sun, X.-H.; Kamel, N.; Ni, L.M.: Solving Implication Problems in Database Applications, in:
Proceedings of the 18th International Conference on Management of Data (SIGMOD’89,
Portland (OR), USA, May 31-June 2), 1989

14. Ross, K.; Srivastava, D.; Stuckey, P.; Sudarshan, S.: Foundations of Aggregation Constraints,
in: Theoretical Computer Science, Volume 193, Numbers 1-2, Feb. 28, 1998

15. Theodoratos, D.; Sellis, T.: Data Warehouse Configuration, in: Proceedings of the 23rd
International Conference on Very Large Data Bases (VLDB’97, Athens, Greece, Aug.
25-29), 1997

Final edited form was published in "Data Warehousing and Knowledge Discovery: First International Conference.
Kohala Coast 1999", S. 133-142, ISBN 978-3-540-48298-7

https://doi.org/10.1007/3-540-48298-9_15

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	1 Introduction
	2 Related Work
	3 Dimensional Data Structures
	4 Multidimensional Data Structures
	5 Derivability in the Presence of Hierarchies
	5.1 Scope Normalization
	5.2 Set-Derivability

	6 Summary and Future Work
	References
	ADP90E5.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	J. Albrecht, H. Günzel, W. Lehner

