
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821171

David Kernert, Wolfgang Lehner, Frank Köhler

Topology-aware optimization of big sparse matrices and matrix
multiplications on main-memory systems

Erstveröffentlichung in / First published in:

2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki, 16.-
20.05.2016. IEEE, S. 823-834. ISBN 978-1-5090-2020-1.

DOI: http://dx.doi.org/10.1109/ICDE.2016.7498293

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821171
http://dx.doi.org/10.1109/ICDE.2016.7498293

Topology-Aware Optimization
of Big Sparse Matrices and Matrix Multiplications

on Main-Memory Systems

David Kernert
Technische Universität Dresden

Dresden, Germany
david.kernert@sap.com

Wolfgang Lehner
Technische Universität Dresden

Dresden, Germany
wolfgang.lehner@tu-dresden.de

Frank Köhler
SAP SE

Walldorf, Germany
frank.koehler@sap.com

Abstract—Since data sizes of analytical applications are con-
tinuously growing, many data scientists are switching from
customized micro-solutions to scalable alternatives, such as
statistical and scientific databases. However, many algorithms
in data mining and science are expressed in terms of linear
algebra, which is barely supported by major database vendors
and big data solutions. On the other side, conventional linear
algebra algorithms and legacy matrix representations are often
not suitable for very large matrices. We propose a strategy
for large matrix processing on modern multicore systems that
is based on a novel, adaptive tile matrix representation (AT
MATRIX). Our solution utilizes multiple techniques inspired from
database technology, such as multidimensional data partitioning,
cardinality estimation, indexing, dynamic rewrites, and many
more in order to optimize the execution time. Based thereon
we present a matrix multiplication operator ATMULT, which
outperforms alternative approaches. The aim of our solution is to
overcome the burden for data scientists of selecting appropriate
algorithms and matrix storage representations. We evaluated
AT MATRIX together with ATMULT on several real-world and
synthetic random matrices.

I. INTRODUCTION

In the recent decade, big data matrices have appeared in
many analytical applications of science and business domains.
These include solving linear systems, principal component
analysis [1], clustering and similarity-based applications [2],
such as non-negative matrix factorization in gene clustering [3],
but also algorithms on large graphs, for example multi-source
breadth-first-search [4]. A very common – and often the
most expensive – operation that is involved in all of the
aforementioned applications is matrix multiplication, where
at least one matrix is usually large and sparse. As an example,
consider a similarity query from text mining: a term-document
matrix (A)ij that contains the frequency of terms j for
every document i, is multiplied with its transpose to get
the cosine similarity matrix of documents D = AAT . In
gene clustering [3] the core computation contains iterative
multiplications VHT of the large, sparse gene expression
matrix with a dense matrix.

Such applications used to be custom-coded by data analysts
in solutions on a small scale, at best using math libraries
or numerical frameworks. However, the vast growth of data
volume, and the increasing complexity of modern hardware
architectures has driven scientists to shift from handcrafted

implementations to scalable alternatives, like massively parallel
frameworks and database systems. While in-memory frame-
works like R or MATLAB provide a good language environment
to develop mathematical algorithms, their implementation is
not out-of-the-box scalable. As a consequence, the demand of
data scientists for a scalable system that provides a basic set of
efficient linear algebra primitives attracted the attention of the
database community [5], [6], [7]. Recently emerged systems
like SCIDB [6] or SYSTEMML [7] reacted by providing a
R or R-like interface, and deep integrations of basic linear
algebra operations, such as sparse matrix-matrix and matrix-
vector multiplications. However, with the decrease in random
access memory (RAM) prizes, it has become feasible to store
big analytical data sets in main memory database systems, and
run linear algebra algorithms directly in the database engine [8].

In most math systems, such as R, MATLAB, as well as
BLAS libraries, the user is required to predefine the final
data structure of a matrix. However, the predefinition of
matrix storage types is disadvantageous, since it mostly has
a negative impact on the performance, e.g. as observed for
sparse matrix chain multiplications [9]. However, not only
the physical organization in-between multiple matrix operands
influences performance. Single matrices are commonly stored
as a whole in a static, homogeneous sparse or dense format
(e.g., in SCALAPACK), resulting in poor memory utilization
and processing performance, if the data representation was
not chosen wisely. In fact, additional tuning potential can
be leveraged when matrices are considered as heterogeneous
objects. We observed speedup factors of more than 6x over state-
of-the-art sparse matrix multiplication algorithms by splitting a
single multiplication operation is into multiple optimized sub-
multiplications. In fact, conventional multiplication algorithms
are agnostic of density variations within matrices, whereas at
the same time, there are many efficient routines for either plain
sparse or plain dense matrices. This motivated us to rethink
and redesign data structures, and processing practices for large,
sparse data matrices.

In this paper, we significantly push the envelope towards
a dynamic and adaptive physical organization of matrices and
matrix multiplication. In the environment of a multicore main-
memory platform, our solution stores and multiplies very large
and sparse matrices, by using an optimized data layout based on
the matrix non-zero topology. To accelerate the multiplication
we use optimization techniques that are inspired from relational

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

query processing. In this context, we developed the adaptive
tile matrix (AT MATRIX) data structure, and a shared-memory
parallel matrix multiplication operator ATMULT. In particular,
the contributions of this work are:

1) We propose a hybrid matrix representation AT MATRIX
consisting of adaptive tiles to store large sparse and dense
matrices of any individual non-zero pattern efficiently.

2) We present a time- and space-efficient matrix multipli-
cation operator ATMULT that performs dynamic tile-
granular optimizations based on density estimates and
a sophisticated cost model.

3) Our work utilizes several methods based on database
technologies, such as 2D indexing, cardinality estimation
or just-in-time partial data conversions.

4) We evaluated our implementation using a wide range of
synthetic and real world matrices from various domains.

Section II starts with the description of our adaptive tiled
matrix data type, followed by a description of the partitioning
algorithm that converts a a raw matrix into a AT MATRIX.
In section III we present our matrix multiplication operator
ATMULT, including our tile-granular optimization approach
that uses just-in-time data conversions. Finally, the paper is
completed by an extensive evaluation of ATMULT in section IV,
and a conclusion.

II. ADAPTIVE TILE MATRIX

In this section, we address the problem of selecting an
appropriate data representation for large sparse matrices. Typi-
cally, the matrix representation is chosen in accordance with the
used algorithms, which often have distinct data access patterns.
For this reason, many algorithms are particularly written for
a certain data representation. As a consequence, choosing the
right data structure has a significant impact on the processing
performance. Naturally, the selection of data representation
and algorithm should depend on matrix characteristics, such as
the matrix density, which is the number of non-zero elements
divided by the matrix dimensions ρ = Nnz/(m× n). However,
we observed that the widely used, crude separation between
plain dense and plain sparse matrices does not match the
particularities of real world matrices. Their non-zero patterns
are usually non-uniform and contain distinct regions of higher
and lower densities. Therefore, our adaptive, heterogeneous data
representation (AT MATRIX) is able to accommodate individual
dense or sparse substructures for matrices of any nature.

A. Matrix Representations

To motivate our data structure, we shortly discuss state-
of-the-art matrix representations, which are commonly used
by efficient C++ libraries such as the basic linear algebra
subprograms (BLAS) and its extensions, as well as software
frameworks like R or MATLAB:

1) Dense Matrices: Dense matrices are usually stored in
plain C++ arrays, or blocks of arrays, which does not leave a lot
of room for optimization. Algorithms and in-place updates on
dense matrices are significantly more efficient than on sparse
matrix representations, due to the simple layout and direct
index accessibility in both – column and row dimensions. Thus,
performance-wise it can be promising to spend a bit more
memory and use a dense array instead of a sparse representation.

0 2 0 0

2 0 3 1

0 0 0 0

4 0 0 0

0
1
4
4

0
1
2
3

RowPtr
1
0
2
3
0

0:
1:
2:
3:
4:

Col

Compressed Sparse Row (CSR)Example Matrix

2
2
3
1
4

Val

Fig. 1: The Compressed Sparse Row format.

2) Sparse Matrices: In contrast to dense matrices, there
are dozens of different data representations for sparse matrices.
For a good overview of sparse matrix structures in numeric
linear algebra we refer to the work of Saad et. al. [10]. Many
representations are well designed for distinct non-zero patterns,
such as band or diagonal-dominated matrices, but are poorly
suited for general, rather uniformly populated matrices. Widely
used for storing sparse matrices is the compressed sparse row
format (CSR, aka. CRS – compressed row storage) shown in
Fig. 1. It was first presented together with Gustavson’s sparse
matrix multiplication algorithm [11], and remained the input
format for many algorithms in numeric libraries, such as the
spgemm method of Intel’s MKL [12]. Moreover, CSR-based
algorithms tend to have the best performance for sparse matrix
vector multiplications, as shown by Vuduc et. al. [13].

Although the above mentioned data structures and cor-
responding algorithms are widely used even for very large
matrices, we identified several reasons for why one should
refrain from using them naively. First of all, without a detailed
knowledge about the data and the corresponding non-zero
pattern, it is unlikely that a user will pick the best data structure
for a sparse matrix with respect to algorithm performance.
Moreover, we observed in our experiments that plain CSR-based
matrix multiplication does not scale well on multicore machines.
This can be explained with the decreased cache locality due
to large matrix dimensions. Similar observations were also
made by related work [14]. Finally, large sparse matrices often
have a topology with distinct areas of a significantly higher
density. Using dense subarrays reveals a significant optimization
opportunity by exploiting efficient dense multiplication kernels.

B. Adaptive Tiles

Due to the bad scaling behavior of naive sparse data
representations, and the performance improvements that adhere
when using dense algorithms for dense subparts of matrices, we
made two major design choices for our AT MATRIX structure:
first, for a better cache locality of dense and sparse algorithms,
each matrix is tiled with a variable tile size. Second, tiles with a
high population density are stored as dense array, tiles of a lower
density have a CSR representation, resulting in a heterogeneous
matrix structure. The individual tile representation is chosen
according to a density threshold value that minimizes the
runtime costs of the algorithm under consideration, which
is matrix multiplication in this work.

Note that we distinguish in our notation between matrix tiles
and logical, atomic blocks: tiles define the bounding box of the
physical representation that accommodates the corresponding
part of the matrix. They have variable sizes. In contrast, a
logical block is atomic and only refers to a square area of

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) batomic = 64 (k = 6) (b) batomic = 1024 (k = 10)

(c) Estimated ρ̂C (d) Result C = R3 · R3

Fig. 2: The TSOPF RS b283 matrix (R3) as AT MATRIX
using different granularities (2a, 2b), and its estimated (2c) and
actual self-multiplication result (2d). The grayscale indicates
the population density of sparse tiles, dense tiles are marked
with a diagonal pattern.

the fixed size batomic × batomic. An atomic block is our unit
of granularity. Hence, its internal density is approximated as
uniform, and no heterogenity is resolved below the block size.
Except for corner situations (e.g. at matrix boundaries that are
not aligned to the block grid,) a physical matrix tile is greater or
equal than a logical block, and could potentially span a region
of multiple logical blocks. The tiles are adaptive, thus, the size
is chosen such that an AT MATRIX tile covers the greatest
possible matrix part of either a low or a high population density,
without exceeding the maximum tile size.

1) Maximum Tile Size: For dense tiles, the maximum tile
size τdmax × τdmax is fixed and chosen such that α tiles fit in the
last level cache (LLC) of the underlying system. A parameter
α ≥ 3 should reasonably preserve the cache locality for binary
algorithms like a tiled matrix-matrix multiplication. Regarding
sparse tiles, there are two upper bounds for the size: the first
is variable and thus that a sparse tile with density ρ does not
occupy more memory than 1

α of the LLC size. The other bound
is a bit more subtle: it is dimension-based, i.e. chosen such that
at least β 1D-arrays with the length of one tile-width should
fit in the LLC, which is motivated by the width of accumulator
arrays used in sparse matrix multiplication kernels. Hence, the
system-dependent maximum tile sizes are calculated as:

τdmax =

√
LLC
αSd

(1)

τ sp
max = min

{√
LLC
αρSsp

,
LLC
βSd

}
, (2)

with Sd/sp referring to the size in bytes of a matrix element:
Sd = 8 bytes in the dense array representation and Sd = 16
bytes in the sparse CSR representation due to the additional
storage that is required for the element coordinates. For our
experiments, we chose α = β = 3, which assures that at least
three matrix tiles fit in the LLC at the same time. Naturally,
cache locality also depends on concurrency, as well as on
the data and respective thread distribution on NUMA sockets.
Hence, the ideal tile size and values of α, β might deviate from
our heuristic selection, leaving room for further tuning.

2) Minimum Tile Size: The minimum size of matrix tiles
defines the granularity of the AT MATRIX, and is equal to the
logical block size. The selection of the granularity is generally
trade-off between overhead and optimization opportunity: the
finer grained the tiles are, the higher the administrative cost of
the AT MATRIX, whereas very coarse grained tiles might not
be able to resolve the heterogeneous substructure of a matrix.
However, atomic blocks that are too small do not only result in
a higher overhead of any algorithm dealing with the partitioned
AT MATRIX structure, but also increase the recursion depth
of our initial partitioning algorithm, which we describe in
section II-C. The latter also requires that the dimensions of
atomic blocks are a power of two, i.e. batomic = 2k. Naturally,
k has to be adapted to the system configuration, since the
optimal minimum tile size depends on hardware parameters
such as the cache size. For a system with a last level cache of
24MB1, our multiplication experiments have shown the best
results for k = 10, which yields batomic = 1024, and is equal
to the maximum dense tile size τdmax of Eq. (1).

Fig. 2a-2b shows the AT MATRIX layout for the matrix
R3 (see Tab. I for details) and the two different granularities
k = 6 and k = 10. The heterogeneous tiling yield a significant
performance gain by using different multiplication kernels,
which is exploited by our ATMULT operator that we present in
section III. In fact, the multiplication result matrix in Fig. 2d
shows a substructure with distinct sparse and dense regions,
underlining the motivation for a topology-aware matrix data
type.

Unlike our AT MATRIX approach, a naive matrix tiling with
fixed block size, as it is done in some implementations [15],
[7], often results in adding overhead without any positive
impact on the runtime performance. This holds in particular
for hypersparse matrices, if blocks are badly dimensioned and
barely contain any element. Therefore, our sparse tiles are
adaptive: the tile size depends on the number of non-zero
elements, and grows until the maximum tile size is hit as of
equation (2). As a consequence, sparse, and in particular large,
hypersparse matrices without notable dense subregions are not
splitted, as long as they do not exceed a certain dimension
threshold. Assuming an LLC of size 24 MB and following (2),
a sparse matrix with dimensions of 300, 000× 300, 000 and a

1Comparable with our test environment

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) Raw input matrix A. (b) Z-Curve ordering of A
and logical atomic blocks.

0.75 0.25

0.25 1.00

0.25 0.00

0.00 0.25

0.25 0.00

0.00 0.00

0.75 1.00

0.50 1.00

(c) Density map of A in
the reduced Z-space.

(d) Final representation after quad-
tree recursion.

Fig. 3: Schematic illustration of the quadtree partitioning using a sparse 7× 8 matrix and a 2× 2 block granularity.

homogeneous density of ρ = 10−5 would be stored in a single,
sparse tile. Thus, no additional overhead is added by our AT
MATRIX structure, which adds a tile substructure only if it is
beneficial for later processing.

C. Partitioning Process

We developed a recursive partitioning method that identifies
regions of different density and sizes in the matrix topology,
and creates the corresponding matrix tiles in the AT MATRIX
representation. This process can be divided into the components
loading, reordering, identifying, and materialization, and is
illustrated in Fig. 3 for an exemplary, small sparse matrix.

Algorithm 1 Recursive Quadtree Partitioning

1: function RECQTPART(ZMatrix Src, ZBlockCnts[], AT
MATRICES Tgt, zStart, zEnd)

2: range← zEnd− zStart
3: if range == 0 then
4: if ZBlockCnts[zStart] == −1 then
5: return (OUT OF BOUNDS, 0)
6: else
7: ρ← CALCDENSITY(ZBlockCnts[zStart])
8: return (FORWARD, ρ)
9: else

10: stride← (zEnd− zStart+ 1)/4
11: UL← RECQTPART(Src, ZBlockCnts[], T gt,

zStart, zStart+ stride)
12: UR← RECQTPART(Src, ZBlockCnts[], T gt,

zStart+ stride, zStart+ 2 · stride)
13: LL← RECQTPART(Src, ZBlockCnts[], T gt,

zStart+ 2 · stride, zStart+ 3 · stride)
14: LR← RECQTPART(Src, ZBlockCnts[], T gt,

zStart+ 3 · stride, zStart+ 4 · stride)
15: if UL,UR,LL,LR homogeneous

and range <MAXSIZE then
16: return (FORWARD, AVG(UL,UR,LL,LR))
17: else
18: return (MATERIALIZED,

MATERIALIZETILES(UL,UR,LL,LR, ρR0))

1) Locality-Aware Element Reordering: At first, the matrix
data is loaded into a temporary, unordered staging representa-
tion, which is simply a table of the matrix tuples – containing

the coordinates and values of each matrix element. In order
to identify areas of different densities in the two-dimensional
matrix space, it is crucial to bring the staged raw matrix into
a format that preserves the 2D-locality of matrix elements in
memory. Obviously, locality is not well preserved for the widely
used row-major and column-major layouts: two elements that
are placed in the same column and in neighboring rows of
an n× n row-major matrix have a distance of n · Sd bytes in
memory (and equivalently two adjacent elements in one row in
the memory layout of a column-major matrix). Hence, column
(or row) reads result in a strided memory access throughout the
complete memory segment of the matrix, which is obviously
unfavorable for locality-aware algorithms that process data in
two-dimensional space.

Instead, our algorithm recurses on two-dimensional quad-
trees by using a storage layout that preserves locality in
both dimensions. Therefore, all elements of the matrix are
reordered according to a space-filling curve. This technique
is inspired from indices for spatial or multidimensional data,
such as in Hilbert R-trees [16] or UB-trees [17]. Besides
the Hilbert-curve, there are several space-filling curves that
provide a quadtree ordering, and many are equally suited for
our recursive method. We decided in favor of the Z-curve,
or Morton order [18], since the Z-value can be efficiently
computed with bit interleaving [17]. The locality of two matrix-
elements is effectively preserved within one quadrant, which
is an internal node of the quadtree. This property is recursive,
such that the four child quadrants of any node are always stored
consecutively in memory, as sketched in Fig. 3b-3c. As a matter
of fact, the quadrant dimensions are aligned to a power of two,
since with each recursion the quadrant covers exactly a fourth
of its parent area. In order to compute the minimal square
Z-space that is required to cover the complete matrix with a
Z-curve, both matrix dimensions are logically padded to the
next largest common power of two. This results in a Z-space
size of K = 4max{dlog2me,dlog2 ne}.

2) Identifying Sparse and Dense Submatrices: Alg. 1
sketches our recursive partitioning routine, which takes the
Z-ordered source matrix, the AT MATRIX target, two Z-
coordinates, and the buffer array ZBlockCnts[] as arguments.
The latter stores the number of non-zero elements of each
atomic block batomic × batomic, and is precalculated using a
single pass over the source matrix. As mentioned before, our
atomic block dimensions are aligned to a power of two in

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

order to match the recursive partitioning routine. The resulting
ZBlockCnts array is also Z-ordered, but due to the blocking,
the initial Z-space of size K is reduced by the factor of b2atomic
(Fig. 3c), and the recursion depth by a factor of log2 batomic.

The algorithm recurses on the ZBlockCnts array by using
the Z-coordinates zStart and zEnd. The sub-ranges in-between
zStart and zEnd determine the upper-left (UL), upper-right
(UR), lower-left (LL) and lower-right (LR) subsquare of the
corresponding recursion step in the Z-space (line 11-14). The
anchor is reached when range is zero (line 3), and consequently,
the subsquares have the minimal block size. On the bottom-up
recursion path, it is checked if all four neighboring blocks
are homogenous – i.e., if all of them are of the same type,
and neither of the two maximum block criteria (Eqs. 1&2) is
met. If so, the homogenous blocks are logically melted into a
four times larger block, which is then returned (forwarded) to
the recursion level above. If there are neighboring blocks of
different density types at any recursion level, then each of the
four corresponding blocks is materialized into either a sparse
or a dense matrix tile (line 18). Depending on the matrix shape
and dimension, the padding of the Z-space can result in a few
logical blocks in the ZBlockCnts array that are outside of the
actual matrix bounds, like the lower parts in Fig. 3c. However,
these are ignored in the recursion and do not contribute to the
submatrix materialization. Fig. 3d sketches the resulting AT
MATRIX from Alg. 1 on the sample matrix of Fig. 3a.

In total, the computational complexity of the restruc-
turing algorithm for a matrix A with NA

nz elements is
in O

(
NA
nz +K/b2atomic +NA

nz logN
A
nz

)
. The sort term stems

from both the preceding Z-ordering as well as from the sparse
tile materialization. In contrast, the complexity of a sparse
matrix multiplication C = A ·A is given as O

(
NA
nz

√
NC
nz

)
in related work [19], [20]. We show in our experiments that the
partitioning costs are usually compensated by the performance
gain of a single multiplication, except for situations where NC

nz
is small or K/b2atomic is extremely large (hypersparse matrices).

3) Quality Considerations: Our prior aim of the heteroge-
nous tiling is to optimize the processing performance of
large sparse matrices, with the focus on matrix multiplication.
Unfortunately it is barely possible to judge the quality of the
obtained partitioning for a single matrix under this aspect, since
the performance of a multiplication heavily depends on the
second matrix, which is not known before runtime.

A key aspect of the partitioning algorithm is to decide
if a given matrix tile with density ρ(ij) is treated as sparse
or dense, which is part of the homogenity check of Alg. 1.
In particular, it is checked whether ρ(ij) exceeds the density
read threshold value ρR0 . The latter is chosen according to the
density turnaround point: it is effectively the intersection of the
multiplication cost functions, at which the dense algorithm
starts to be more time-efficient than the sparse algorithm.
Since the cost functions are multidimensional, this point is
not clearly defined, and is only approximated by ρR0 . The eight-
fold multiplication cost model will be explained in more detail
in section III-C.

However, depending on the actual characteristics of second
matrix tile at runtime, the threshold ρR0 might be far off the
real turnaround point of the corresponding cost function. In
this case, the matrix tile might not be present in the optimal

representation. Nevertheless, such a situation is detected by our
runtime multiplication optimizer of ATMULT, which triggers
a tile conversion from a sparse to a dense representation (or
vice versa) at runtime. In the worst case, every matrix tile
is later converted into another representation. We simulated
this situation in our evaluation (section IV, Fig. 9c- 9a) by
multiplying a heterogeneous sparse matrix with a full matrix,
which, however, resulted in a conversion overhead of not more
than 10% of the total runtime. Since the cost model is not only
dependent on the second matrix density, but also on the system
configuration, ρR0 is besides batomic the second adaptable tuning
parameter.

The memory consumption of the AT MATRIX can either be
lower or higher than that of a pure sparse matrix representation,
but is always lower than a plain dense array. The worst case is
present when all tiles have densities slightly above ρR0 . Then,
the matrix would be stored as dense, consuming Sd/(ρR0 Ssp)
as much memory as the sparse representation (maximum 2x in
our configuration).

III. MATRIX MULTIPLICATION

In this section we describe ATMULT, our matrix multiplica-
tion operator for general, large matrices. The ATMULT operator
supports three independent operand types for the following:
left input A, right input B and output matrix C→ C′ of the
equation C′ = C+A ·B. Each matrix type can be one of the
following: a plain matrix structure such as dense arrays or sparse
CSR matrices, as they are commonly used in numerical algebra
libraries, or a heterogeneous AT MATRIX. The latter provides
a performance improvement by a cost-based optimization of
tile-multiplications, and just-in-time transformations.

Algorithm 2 Sequential version of ATMULT

1: function ATMULT(AT MATRICES A, B, C)
2: ρ̂C ← ESTIMATEDENSITY(ρ̂A, ρ̂B)
3: ρWD ← min{ρW0 ,WATERLVLMETHOD(ρ̂C,MEMLIMIT)}

4: for all tile-rows ti in A do
5: for all tile-cols tj in B do
6: Cti,tj ← ((ρ̂C)ti,tj ≥ ρD ? DenseTile :

SparseTile)
7: for all matching tiles k in Ati and Btj do
8: w ← CALCULATEREFWINDOW(Ati,k,Bk,tj)
9: A′ti,k,B

′
k,tj ← OPTIMIZE(Ati,k,Bk,tj,Cti,tj)

10: TILEMULTIPLY(A′ti,k,B
′
k,tj,Cti,tj, w)

The pseudocode for ATMULT is shown in Algorithm 2. For
illustrational purposes, we first sketch the sequential version
of ATMULT, and address the parallelization later separately. In
general, multiplications that involve one or more AT MATRICES
are internally processed as multiple mixed multiplications of
dense or sparse matrix tiles in a block-wise manner, as depicted
in Fig. 4. The resulting matrix tile multiplications are then
processed by the basic multiplication kernels. However, unlike
naive block-wise matrix multiplication, one particularity of our
ATMULT operator is that matrix tiles may have different block
sizes. This entails that some multiplications involve only the
matching subpart of a matrix tile, since a matrix multiplication
is only defined for matrices with a matching contraction (inner)

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

1 2
3

×

A B C
a

b

c

=

χ

Fig. 4: Referenced submatrix multiplication.

dimension k. Fig. 4 sketches a situation, where the matrix tile
C(χ) results from the accumulation of three tile-multiplications
A1Ba, A2Bb and A3Bc. However, for the latter only the upper
half of tile A(3) is multiplied with the left half of tile B(c). We
denote this operation as referenced submatrix multiplication.

A. Multiplication Kernels

The contribution of this paper is the optimal processing of
tiled matrix multiplication rather than the particularities of low-
level algorithms of the multiplication kernels, since sparse and
dense matrix multiplication kernels are continuously improved
and tuned for modern hardware [21], [14], [22], [23], [24]. Our
ATMULT approach acts in the layer above the kernels, which
are merely invoked in form of multiplication tasks (line 10).
The optimization is decoupled from the implementations,
given that the cost functions of all kernels are known to the
optimizer. Hence, the idea is to keep the ability to use existing
high performance libraries as multiplication kernels wherever
possible. Therefore, our architecture uses only common matrix
representations, such as arrays or CSR, so that our approach
benefits from a broad variety of libraries, which provide efficient
implementations for the corresponding kernels. Thus, new
algorithms from the high performance community that are
based on the same basic data structures could just be plugged
in to our system.

Nevertheless, for some of the multiplication kernels many
high performance libraries such as IntelMKL offer no ref-
erence implementation, for example for a dense × sparse
→ dense multiplication. In total, there are 23 = 8 different
kernels for the basic matrix types that are either sparse or
dense. We implemented the sparse and mixed sparse-dense
multiplication kernels ourselves, using shared-memory parallel
implementations based on the sparse accumulator approach. The
latter is inspired from the classical row-based CSR algorithm
of Gustavson [11], but used analogously in many column-
based CSC algorithm implementations, e.g. in MATLAB [25]
or CombBLAS [26], [22]. For space reasons, we will not
discuss each multiplication kernel, and refer to related work
for more details, in particular to [11].

B. Referenced Submatrix Multiplications

The ability of multiplying only certain subparts of matrix
tiles is a basic building block of ATMULT. Arbitrary rectangular
subparts can be referenced via four coordinates, namely the
coordinates of the upper left edge (xul,yul), and the coordinates
of the lower right edge (xlr,ylr), which are both relative to

the upper left end of the matrix tile (0, 0). In algorithm 2 the
referenced coordinates are encoded in the reference window w.

Fortunately, the implementation of referencing in the
multiplication kernels is less intrusive than one might expect, in
particular for dense matrix multiplications: the BLAS function
interface gemm (general matrix multiply) already distinguishes
between the embracing array size that could differ from
the actual matrix dimensions, by providing the additional
parameters lda, ldb, and ldc (leading array dimension in A,
B and C). So the only adaption we made is transforming the
submatrix coordinates into an offset that points to the beginning
of the matrix in the array, and passing the respective lda and
ldb to the gemm kernel.

Regarding sparse kernels, referencing subranges in the
row dimension is equally trivial, since matrix rows in the
CSR representation are indexed. In contrast, matrix elements
are not index-addressable in the column direction, which
complicates the adaption of our sparse multiplication kernels
to process column ranges. We altered the row-based algorithm
to process only the column indices that are contained in
the referenced row range. To avoid undesired column range
scans, we sorted the elements in each row by column id at
creation time to enable binary column id search. Moreover, the
number of non-zero elements in a sparse tile of size τ sp

max is
restricted (Eq. 2), which limits the number of elements in a
column range. In fact, we observed in our experiments that the
overall performance improvement due to dynamic multiplication
optimization overcompensates the remaining overhead due to
referenced submatrix multiplications.

C. Dynamic Multiplication Optimizer

As described in our prior work [9], each of the above
mentioned kernel functions has a different runtime behavior
that is reflected by a comprehensive cost model. The runtime of
each kernel depends on the dimensions m×k of matrix A, k×n
of matrix B, the densities ρA, ρB , ρC of both input matrices, as
well as the estimated result density ρ̂C . A common situation is
that some matrix tile, or even a subpart of a matrix tile, exceeds
a characteristic density threshold of the cost model. Then it
might be beneficial to convert the respective part into a dense
representation prior to the multiplication operation. Hence, the
optimizer dynamically converts the input matrix representations
whenever it leads to a reduction of the multiplication runtime for
the respective part multiplication (line 9 in Alg. 2). In contrast
to a single multiplication operation, the target tile C(χ) (Fig. 4)
is written accumulatively in multiple tile-multiplications (i.e.,
in each multiplication of the corresponding block-row A1Ba,
A2Bb and A3Bc). Hence, the physical representation of a
C(χ) tile is selected according to its final density, which is
taken from the density estimate ρ̂C(χ).

There is a significant difference in the cost model regarding
the density turnaround point between the matrix A,B-tiles
that are read from (as part of the multiplication), and the
C-tiles that are written. In general, writing a sparse tile is
much more expensive than reading it, compared to a dense
tile, which has a smaller read/write asymmetry. This is why
we introduced two density thresholds: one for tiles that are
read ρR0 , and one for tiles that are written ρW0 , whis has
usually a much lower value. The latter also explains the good

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0.1 0.2 0.3

1K

2K

Density

E
st

im
at

ed
#b

lo
ck

s
in

C

0.13 0.2 0.3

8 GB

16 GB

24 GB

Flexible Limit

Density Threshold (ρW0)

To
ta

l
C

m
em

or
y

si
ze

Fig. 5: Left) One-dimensional histogram of logical block
densities. Right) The memory consumption depending on the
density threshold. The water-level method approaches the
intersection of the total memory consumption with the flexible
limit (dashed line) from the right.

results of the spspd gemm kernel in our evaluation compared
to spspsp gemm. However, storing a rather sparse result matrix
in a dense array is an excessive waste of memory that should be
avoided, even when the cost-based optimization might decide
so. In a resource-managed system, such as a DBMS, there are
usually some operational service level agreements (SLAs) to
meet, for example a restriction of the total memory consumption.
Therefore, our ATMULT approach employs a flexible write
density threshold ρWD depending on the desired memory space
limit of the target matrix (line 3). This adaption to runtime-
available resources might sacrifice performance in favor of a
lower memory consumption.

D. Density Estimation

There are several reasons for having a prior estimate of
the block-density structure of the result matrix, and they are
barely different from the motivation of cardinality estimation
for relational join processing: first, the optimizer’s decision
naturally depends on the output density, which is a impactful
parameter in the cost model of sparse multiplication kernels.
Second, knowing the result density is crucial for memory
resource management, which includes memory restrictions that
also effect the choice of data representations in the optimizer,
e.g. in order to avoid out-of-memory situations. However, the
exact non-zero structure can only be found through the actual
execution of the multiplication. Therefore, we make use of the
density estimation procedure based on probability propagation,
which was presented in [9]. In particular, we use the “density
map” estimator to obtain an estimate at negligible runtime cost
compared to the actual multiplication. The estimator takes the
density maps of the input matrices A and B and returns a
density map estimate of the resulting matrix C (e.g. in Fig. 2c).
For more details about the theory background of the estimation
we refer to [9], section 4.3.

E. Memory Resource Flexibility

In order to determine the common local write density
threshold ρWD for target tiles with respect to the flexible memory
consumption limit for the total matrix, we employ a “water
level method” that works on the density map estimate ρ̂C
described above (line 3 in Alg. 2): consider ρ̂C as a two-
dimensional histogram with a density bar ρij for each logical

Socket
#1

Socket
#2

A

Worker
Team #1

At1,*

#1

#2

#1

B

#1

B*,t2

#2

#1

C

#1

#2

Ct1,t2 Worker
Team #1

Worker
Team #2

Worker
Team #2

Fig. 6: Parallel resource distribution and NUMA partitioning
for a ATMULT operation on a two-socket system.

matrix (batomic × batomic) block (ij) – the higher the density
ρij of block (ij), the higher its bar in the histogram. The
idea is to start with a high water level that covers all bars
in the two-dimensional histogram. If the level is lowered,
the blocks with the highest density bars will be visible first
– hence, storing these blocks as dense is most promising
with regard to the potential performance improvement. The
level will be continuously lowered until the accumulated
memory consumption of all dense and sparse blocks hits the
memory limit. The method can easily be transformed from
two-dimensional space into a one-dimensional space, as shown
in Fig. 5: instead of a 2D-histogram, we create a 1D histogram
that displays the absolute number of logical blocks per density
bin ρj . Lowering the water level can be imagined as a sliding
vertical line (Fig. 5 left) from the right to the left histogram side.
All blocks right of the line contribute with dense size BSd to
the memory consumption, whereas all blocks on the left-hand
side only with the size of the sparse representation ρi ·BSsp.
The resulting density threshold equals the intersection of the
accumulated histogram (Fig. 5 right) with the flexible memory
limit.

F. Parallelization

Our implementation of ATMULT (Algorithm 2) is paral-
lelized in two stages: first, pairs (ti,tj) of tile-rows ti of matrix
A and tile-columns tj of matrix B are formed. For instance, in
Fig. 6 the pair (At1,*,B*,t2) is marked. Each pair represents a
set of tile-multiplication tasks that write a target tile Cti,tj
in the result matrix. All tile-multiplications referring to a
particular tile-row-column pair are executed one after another,
and by the same worker team. Nevertheless, multiple worker
teams are running in parallel on different pairs, e.g. team #1
and #2 in Fig. 6. Moreover, all multiplication kernels in our
ATMULT operator are internally shared memory-parallel. As
a result, there are in total two levels of parallelization: the
intra-tile parallelization (number of worker teams) and inter-
tile parallelization (number of threads in a team). Thus, the
parallel resources should be distributed among these levels,
which is generally nontrivial: assigning all threads to the intra-

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

R1 R2 R3 R4 R5 R6 R7 R8
0

50

100

Fr
ac

tio
n

[%
]

Preceding Sort Create ZBlockCnts[] Partitioning (incl. Materialization)

spspsp gemm

Fig. 7: Duration of the components in the partitioning process,
relative to a sparse matrix multiplication (executed once).

tile level might lead to over-parallelization, when blocks are
small and very sparse. In contrast, leaving all threads to the
coarse-grained inter-tile level might have a negative influence
on the last level cache re-usage. If many different tiles are
touched concurrently, this could pollute the cache. To avoid
cache pollution, we spawn as much worker teams as there are
sockets on the system, so that each worker team writes to its
local memory node. The number of threads per team is related
to the number of cores on the socket.

On modern multicore machines, the RAM is distributed
across multiple sockets that contain one or more proces-
sors each, leading to effects of non-uniform memory access
(NUMA). To reduce remote accesses, our matrices are dis-
tributed across the memory nodes as part of the partitioning
process. Since it is generally unknown whether a matrix will
take part as the left or the right operand in a matrix multiplica-
tion, all matrices are in the same way horizontally partitioned.
Consequently, Ati,* and Bti,* tile-rows are distributed round-
robin-wise. The worker thread teams of ATMULT are pinned
to the socket of the respective Ati tile-row. Since the worker
threads dynamically allocate the target tiles in Cti,tj and due
to the Linux first touch policy [27], C effectively inherits the
tile-row memory distribution scheme from matrix A. For our
implementation we used a task scheduling framework [28] that
is used in the SAP HANA database [29], since it offers options
to pin tasks to CPU cores and memory nodes.

IV. EVALUATION

In this section we present measurements of the partitioning
routine and the ATMULT matrix multiplication runtimes using
a variety of real-world matrices. Moreover, we added synthetic
matrices using an RMAT graph generator [30] to systematically
evaluate the influence of data skew.

A. Experiment Setting

We used a four-socket Intel E7-4870 system with 4 × 10
cores (80 physical threads via hyperthreading) @2.40 GHz and
a total of 1 TB RAM. Regarding the tunable parameters, our
system configuration yields batomic = 1024 (k = 10) for the
minimum tile size and ρR0 = 0.25 as tile read density threshold.

Tab. I lists the sparse matrices that we used in the
experiments. All real-world matrices (Ri) except the Hamil-
tonian matrices are taken from the Florida Sparse Matrix
Collection2, which contains matrices of various domains, such

as power networks, genomics or structural problems. The
Hamiltonian matrices were provided by a nuclear physics group
we cooperated with. In general, we tried to select matrices of
different shapes and sizes in order to compare our approach on
a wide scale of data. However, to understand the implications
of matrix size, density, and data skew on our algorithm better,
we added synthetic matrices (Gi). These were generated using
an RMAT [30] recursive graph generator, and are listed in the
lower half of Tab. I. RMAT-generated matrices are configurable
via the parameters: dimension, number of non-zero elements,
and the four values a, b, c, d. The latter control the relative
fractions of non-zero elements that are contained in the upper
left, upper right, lower left and lower right part of the submatrix
at each recursion step.

B. Heterogeneous Partitioning

Fig. 7 shows the relative duration of the following compo-
nents of the partitioning process: the preceding sort to create the
Z-order, the creation of the ZBlockCnts array, and the recursive
partitioning routine itself, including the tile materializations.
The partitioning time is dominated by the materialization,
which includes copying and reordering into CSR, or row-major
array representation. Except for matrix R8, the duration of the
partitioning process is smaller than a single execution of the
traditional multiplication algorithm. Matrix R8 matches a case
we mentioned in section II-C2, where the non-zero size of the
output matrix is relatively small, but the dimensions are large.

C. Performance Comparison

Fig. 8 shows the matrix multiplication performance of our
ATMULT approach relative to the plain sparse × sparse →
sparse multiplication kernel (spspsp gemm). We chose it as
baseline (≡ 1) because it is similar to the algorithm used in
R or MATLAB, which however, only have a sequential sparse
matrix multiplication implementation. In addition, we included
the spspd-, spdd-, and ddd gemm (IntelMKL) kernels in the
measurement.

We observe that ATMULT outperforms the alternative
approaches in most cases. Only for matrices R7-R9 the ATMULT
performance is slightly behind the spspsp gemm performance.
This can be explained by the matrix characteristics: matrices
R7-R9 do not contain any region of a higher density, hence,
offering little optimization potential. As a consequence, the
partitioning overhead just adds to the ATMULT execution
runtime. Obviously, the other approaches that involve plain
dense matrix representations (spspd-, spdd- & ddd gemm) have
an even worse performance for R7-R9. Nevertheless, for most
of the other instances, the spspd gemm kernel (dense target
array) seems to be the better alternative to spspsp gemm, since
the result matrix is often significantly denser than the input
matrices. The advantage of ATMULT over the naive algorithms
is most clearly when there are distinct regions of a significantly
higher local density in the matrix non-zero pattern, as for
example for matrix R3, which is illustrated in Fig. 2. But even
for matrices that have a dense result and a relatively uniform
non-zero pattern (R4, G1, G2), we observe that ATMULT can
outperform the others, particularily the spspd gemm kernel.

2http://www.cise.ufl.edu/research/sparse/matrices/index.html

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

TABLE I: Sparse matrices of different dimensions and population densities. The ρ = Nnz/(n× n) value denotes the population
density of each matrix. All matrices are square (n× n.) The binary size is given for the sparse triple/coordinate format (COO)
consisting of 〈int, int, double〉.

Number Name Matrix Domain Dimensions Nnz ρ [%] Bin. Size Result Size

Real-World Matrices

R1 Hamiltonian1 Nuclear Physics 17040× 17040 42.95 M 14.8 687 MB 4.64 GB
R2 human gene Gene Expr. (BioInf.) 22283× 22283 24.67 M 5.0 395 MB 3.58 GB
R3 TSOPF RS b2383 Power Network (Eng.) 38120× 38120 32.31 M 2.2 517 MB 6.24 GB
R4 mouse gene Gene Expr. (BioInf.) 45101× 45101 28.97 M 1.4 463 MB 7.72 GB
R5 Hamiltonian2 Nuclear Physics 52928× 52928 188.93 M 6.7 3.02 GB 42.1 GB
R6 Hamiltonian3 Nuclear Physics 77205× 77205 319.30 M 5.4 5.11 GB 88.1 GB
R7 barrier2-4 Semicond. Device (Eng.) 113 K× 113 K 2.13 M 0.016 34 MB 993 MB
R8 pkustk14 Structural Problem (Eng.) 152 K× 152 K 11.20 M 0.048 179 MB 907 MB
R9 msdoor Structural Problem (Eng.) 416 K× 416 K 19.17 M 0.011 230 MB 955 MB

Generated Matrices Parameters {a, b, c, d}

G1 RMAT1 {0.25, 0.25, 0.25, 0.25} 100 K× 100 K 20 M 0.2 320 MB 55.5 GB
G2 RMAT2 {0.35, 0.22, 0.22, 0.21} 100 K× 100 K 20 M 0.2 320 MB 60.0 GB
G3 RMAT3 {0.45, 0.18, 0.18, 0.19} 100 K× 100 K 20 M 0.2 320 MB 62.3 GB
G4 RMAT4 {0.55, 0.15, 0.15, 0.15} 100 K× 100 K 20 M 0.2 320 MB 59.2 GB
G5 RMAT5 {0.61, 0.13, 0.13, 0.13} 100 K× 100 K 20 M 0.2 320 MB 55.0 GB
G6 RMAT6 {0.64, 0.12, 0.12, 0.12} 100 K× 100 K 20 M 0.2 320 MB 52.6 GB
G7 RMAT7 {0.67, 0.11, 0.11, 0.11} 100 K× 100 K 20 M 0.2 320 MB 50.3 GB
G8 RMAT8 {0.70, 0.10, 0.10, 0.10} 100 K× 100 K 20 M 0.2 320 MB 47.2 GB
G9 RMAT9 {0.73, 0.09, 0.09, 0.09} 100 K× 100 K 20 M 0.2 320 MB 43.7 GB

in
cr

ea
si

ng
sk

ew

R1 R2 R3 R4 R5 R6 R7 R8 R9
0

2

4

6

Sp
ee

du
p

[X
]

ATMULT spspd gemm spdd gemm ddd gemm (Intel MKL)

G1 G2 G3 G4 G5 G6 G7 G8 G9
0

2

4

6

(a) Sparse-sparse matrix multiplication performance. The speedup is given relative to the spspsp gemm runtime.

R1 R2 R3 R4 R5 R6 R7 R8 R9
0.01
0.1

1
10

Fr
ac

tio
n

[%
]

Density Estimation Dynamic Optimization (Tile Conversions)

G1 G2 G3 G4 G5 G6 G7 G8 G9
0.01
0.1
1
10

(b) Density estimation and optimization (including tile conversions) as part of the absolute ATMULT runtime.

R1 R2 R3 R4 R5 R6 R7 R8 R9

1

10

100

M
em

or
y

si
ze

[G
B

]

AT MATRIX Sparse CSR

Dense Array

G1 G2 G3 G4 G5 G6 G7 G8 G9

20

40

60

80

(c) Memory consumption of C in the AT MATRIX, sparse (CSR) and dense representation.

Fig. 8: Sparse C = A ·B multiplication experiments where A = B, using real-world and synthetic matrices (see Tab. I for
details about matrices).

This is an indication that part of the performance gain results
from an increased cache locality due to the tiling that is caused
by the block size limit of Eq. 2.

Regarding the memory consumption depicted in Fig. 8c,
the AT MATRIX result matrix (C) created by ATMULT tends to
have an equal or lower size than the output size of alternative

approaches, and is even sometimes lower than the sparse CSR
format (matrices R1, R3, R5, and R6). The latter case arrives
when there are dense regions ρ > (Sd/Ssp) that are stored
more efficiently in a dense array.

To confirm our implications in a more systematic manner,
we generated large RMAT matrices G1-G9 with increasing

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

R1 R2 R3 R4 R5 R6 R7 R8
0

5

10

15

Sp
ee

du
p

[X
] ATMULT spspd gemm spdd gemm ddd gemm (Intel MKL)

(a) A sparse (Rn), B full: multiplication runtime performance.
R1 R2 R3 R4 R5 R6 R7 R8

0

2

4

(b) A full, B sparse (Rn): multiplication runtime performance.

R1 R2 R3 R4 R5 R6 R7 R8
0.01
0.1

1
10

Fr
ac

tio
n

[%
]

Density Estimation Dynamic Optimization (Tile Conversions)

(c) A (Rn) sparse, B full: density estimation and tile conversion.
R1 R2 R3 R4 R5 R6 R7 R8

0.01
0.1
1
10

(d) A full, B (Rn) sparse: density estimation and tile conversion.

Fig. 9: Multiplication of a sparse with a dense matrix: Performance speedup of ATMULT and optimization time breakdown.

skew in the matrix non-zero pattern. For equal parameters
a ≡ b ≡ c ≡ d the non-zero element distribution is nearly
uniform. In contrast, the higher the parameter a, the more
non-zero elements are placed in the upper left quarter of each
recursion step, and hence, the higher is the skew of the matrix.
All generated matrices with their parameters are also listed in
Tab. I.

The right-hand side of Fig. 8a illustrates how the skew
affects the runtimes of the sparse-sparse matrix multiplication.
We observe that ATMULT outperforms spspsp gemm by a factor
of 3-5x, and spspd gemm by a factor of about 2-2.5x. With
increasing skew, the internal execution of ATMULT changes,
which can be inferred from the increased optimization efforts
in Fig. 8b. Interestingly, the speedup over spspsp gemm is
slightly shrinking, which is caused by a decreasing runtime of
the latter, which is correlated to the output size (see Fig. 8c).
The skew reduces the number of non-zero elements in the
multiplication result matrix, as more element multiplications
(A)ik(B)kj are falling into the same target coordinates (ij). In
contrast to the naive spspd gemm approach, the memory size
of the ATMULT result reflects this trend, as internally more
result tiles will be stored sparse instead of dense.

Besides sparse-sparse matrix multiplication, which is for
example used in graph algorithms, many applications involve
the multiplication of a sparse with a full, dense (ρ = 1.0) matrix.
Therefore, we included mixed sparse-dense multiplication in
the experiments, and distinguish between: Fig. 9a) {A: sparse,
B: dense}, and 9b) {A: dense, B: sparse}. The dense (full)
matrices are formed such that the number of elements m · k is
in the same order of magnitude as the number of sparse matrix
elements Nnz. Hence, the dense matrix is rectangular, and the
independent dimension is calculated as n = γNA

nz/k for b) and
m = γNB

nz/k for c), respectively (we chose γ = 3).

Similar to the results of the sparse-sparse multiplication,
we observe that ATMULT outperforms the alternatives for all
mixed sparse-dense test instances except for the following:
The relatively dense and small matrix R1 is multiplied most
efficiently with ddd gemm (MKL). Although ATMULT also
uses this kernel internally, our dynamic optimizer has to convert

some initial sparse tiles into dense tiles, adding overhead to
the total execution time. Second, ATMULT is outperformed by
sp(d|sp)d gemm for the light, hypersparse matrix R7. Here,
the overhead results from the implicit slicing of A in the
multiplication, due to referenced submatrix multiplications
caused by the actual partitioning of B. Such situations could
be avoided by a dynamic re-tiling of the left-hand matrix as a
part of a pre-multiplication optimization, which, however, is
left for future work.

D. Runtime Optimizations

Finally, we evaluate how the total runtime of a ATMULT
multiplication operation breaks down into its processing steps:
the density estimation, the dynamic optimization including tile
conversions, and the multiplication runtime itself. We observed
that the actual tile multiplication runtime is by far the most
expensive operation in ATMULT for all test instances, which is
why we only show the relative fraction of ATMULT time that is
spent with density estimation and optimization (tile conversion)
in Figures 8b, 9c, and 9d. First of all, we observe from the
right of Fig. 8b that the dynamic optimization time is almost
zero for nearly uniform matrices, and grows with increasing
skew. It reaches a peak of about 7.5% of the total runtime for
the dense-sparse multiplication with matrix R1 in Fig. 9d. This
peak can be explained by the topology of the AT MATRIX
R1: many tiles have a density slightly below the read density
threshold, thus, they are stored in the sparse representation. In
fact, the optimizer then may decide to convert these tiles into
a dense representation prior to the tile multiplication, adding
conversion time to the optimizer runtime. Nevertheless, in
the vast majority of the cases the overall multiplication time
including the conversion is still less than the sole multiplication
time when using a plain sparse or dense data representation.

The part of the density estimation is for most instances
with less than 0.1% of ATMULT runtime negligible. As a
matter of fact, the runtime of the density estimation procedure
is independent from the number of non-zero elements, but
depends on both matrix dimensions and the logical block size,
which together define the size of density grid. As a consequence,

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

R2 R3 R4 R6 R7
0

2

4

6

Sp
ee

du
p

[X
] 1) spspsp 2) blocked 3) dens est.

4) mix. blocks 5) adaptive 6) ATMULT

Fig. 10: Relative multiplication performance of A and B are
sparse. Impact of optimization steps on performance.

it becomes more significant (5% for matrix R9) for hypersparse
matrices with very high dimensions.

E. Impact of Single Optimization Steps

In our final experiment, we evaluated step-by-step the
influence of adding different optimization components, and how
they improve the multiplication runtime performance. Outgoing
from the regular spspsp gemm multiplication, we incrementally
add the optimization steps that are contained in our ATMULT
approach. They can be separated as follows:

1) Baseline: spspsp gemm on unpartitioned sparse matrices.
2) Fixed-size, sparse-only tiles: The matrix is tiled into a

fixed grid of sparse tiles, and product tiles are also sparse.
3) Fixed-size, sparse-only tiles, and density estimation: Same

as 2), but with target density estimation. Target tiles are
dense if the density exceeds ρW0 .

4) Fixed-size, mixed tiles, and density estimation: Same as 3),
but the matrix blocks exceeding ρW0 are stored as dense.

5) Adaptive, mixed tiles, and density estimation: In contrast to
4), tiles are adaptive, but without dynamic tile conversion

6) Adaptive, mixed tiles, density estimation, and dynamic
tile conversion optimization (ATMULT)

The way how the independent steps affect the performance
significantly depends on the matrix topology. Therefore, we
chose five different instances of the real-world matrices, and
assembled the relative multiplication performance results in
Fig. 10. The first observation is that, if the target tiles are
sparse-only (2), then a naive fixed-size batomic× batomic blocking
of a sparse matrix yields barely in an improvement. However,
a significant performance boost for some matrices (R2, R6) is
achievable by enabling density estimation and dense target
tiles (3). In contrast to (2), dense target tiles are written
more efficiently in an accumulative manner, which is in a
way enabling the fixed-size tiling optimization to reveal its
actual improvement potential. If we further add the storage
type optimization (4), all fixed-size tiles of matrix A that
exceed the density threshold are stored in a dense representation.
Consequently, we see a performance jump for matrices that
have distinct dense substructures, such as R3. For some of the
matrices, e.g. R6, the optimization potential is already fully
exploited by the steps up to (4). Adaptive tiling incurs some
overhead that lowers the performance in these cases, but only by
less than 20%. However, the fixed-block approaches (2-4) bear
an even higher overhead for larger and slightly sparser matrices,
e.g. R4, where the adaptive tile multiplication (5), which is
yet improved by the dynamic tile conversions (6), outperforms
them by 3x. More significantly, for the relatively sparse matrix
R7, the ATMULT runtime is close to the naive spspsp gemm,

since, if at all, a very coarse grained tiling is chosen. In contrast,
all fixed size tiling approaches fail completely, and are orders
of magnitude slower.

V. RELATED WORK

As this work has overlaps with multiple research areas, we
subdivide the discussion into the major subtopics:

A. Sparse Matrix Representations

A lot of effort has been invested in implementing efficient
algorithms and data structures for sparse matrices in recent
decades, starting from early FORTRAN77 implementations
in the 70s. Gustavson [11] proposed the CSR representation
together with a sparse matrix multiplication algorithm, which
remained relevant until today.

Many recent works of the high performance community
present implementations of sparse matrix vector multiplication
kernels either on multicore CPUs [31], [13], GPUs [32], [33]
or CPU+GPU [24]. The data representations used are either
CSR, ELLPACK storage (ELL), the coordinate storage format
(COO), or blocked representations, such as block-ELL [32] or
block-CSR (BCSR). The latter stores small, fixed-size dense
blocks instead of single matrix elements.

Although there are many different sparse matrix representa-
tions for different topologies, such as triangular, band matrices,
diagonal or almost diagonal matrices (a good overview is given
here [10]), Vuduc [13] observed that CSR tends to have best
performance for sparse matrix-vector multiplication (spgemv)
on a wide class of matrices, supporting our decision to chose
CSR as the core representation for sparse matrix tiles.

B. Sparse Matrix-Matrix Multiplication

Common sparse multiplication algorithms, including Gus-
tavson’s and in the one used by MATLAB [25], are based on
the sparse accumulator approach, which processes single rows
(Gustavson) or columns (MATLAB) of the target matrix one
after the other. Both algorithms are single core implementations,
but there have been many works on a scalable equivalent for
parallel processors in the meantime: Buluc et. al [22] present
a distributed multiplication algorithm, where they store the
matrix in tiles of hypersparse blocks. The algorithm, which is
contained in the Combinatorial BLAS library [26], however,
turned out to be comparatively slow on multicore systems,
as observed in [14]. The authors of the latter paper present
their own approach based on a partitioned Gustavson algorithm,
where matrix A is divided in horizontal blocks and B in vertical
blocks. Vertical partitioning of B is also used in the algorithm
of Matam et. al. [21] for a hybrid CPU+GPU system.

From a theoretical perspective, Yuster & Zwick [34] show
that an optimal algorithm can be achieved by separating
the matrix into a dense part and a sparse part, and apply
the respective optimal algorithm for each part. Most vendor-
provided numerical libaries like Intel MKL [12] and cus-
parse [35] only provide an implementation for sparse-dense
matrix multiplication, and are thus often not directly applicable
for large, sparse-sparse matrix multiplications.

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

C. Matrix Tiling

Many of the related papers [23], [7] proposed a fine-grained
matrix-partitioning into small, fixed-size blocks. Vuduc et
al. [23] used a variable block structure for spgemv, which
is an unaligned BCSR, to achieve register-blocking. However,
their maximum block size is 3×3 – hence, their focus is rather
on microscopic tuning than on high-level tile optimizations.
Other work [15] motivate a macroscopic, fixed block size
(2048×2048) by arguing that two matrix tiles should fit entirely
into main memory, in the context of a disk-based system.

VI. CONCLUSION

With the increase in data volume and computation effort in
many analytical applications, efficient processing of large sparse
matrices becomes performance-critical and requires a redesign
that goes beyond simple BLAS libraries and low-level tuning of
sparse algorithms. In this paper we presented AT MATRIX as
an adaptive storage layout for large matrices of any topology.
Moreover, we showed how our matrix multiplication operator
ATMULT accelerates matrix multiplication by utilizing density
estimates, and a cost-based selection of multiplication kernels.
Our approach outperformed common multiplication algorithms,
similar to those that are still used for example in MATLAB
or R, by a factor of up to 6x, while maintaining configurable
memory restrictions. Nevertheless, our optimization approach is
general and orthogonal to the multiplication kernels. At present,
we have not yet made use of several performance tweaks in
our custom kernels, and expect further improvement potential
by implementing them.

To put it in a nutshell, we presented how methods inspired
from database technology can improve linear algebra compu-
tations, and took a step into the direction of relieving data
scientists from the complexity of the connections between
matrix characteristics, algorithmic complexities, optimization
and the hardware parameters of their system.

REFERENCES

[1] C. Constantin, “Principal Component Analysis - A Powerful Tool in
Computing Marketing Information,” Bull. Trans. University Brasov,
vol. 7, no. 2, 2014.

[2] M. Hahmann, D. Habich, and W. Lehner, “Modular Data Clustering -
Algorithm Design beyond MapReduce,” in EDBT Workshops, 2014.

[3] W. Liu, T. Wang, and S. Chen, “Regularized Nonnegative Matrix
Factorization for Clustering Gene Expression Data,” in BIBM, IEEE,
Dec 2013.

[4] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra, ser. Software, Environments, Tools. SIAM, 2011.

[5] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein et al., “MAD Skills:
New Analysis Practices for Big Data,” VLDB, vol. 2, no. 2, Aug. 2009.

[6] P. G. Brown, “Overview of SciDB: Large Scale Array Storage,
Processing and Analysis,” in SIGMOD. ACM, 2010.

[7] M. Boehm, S. Tatikonda, B. Reinwald et al., “Hybrid Parallelization
Strategies for Large-Scale Machine Learning in SystemML,” VLDB,
vol. 7, no. 7, 2014.

[8] D. Kernert, F. Köhler, and W. Lehner, “SLACID - Sparse Linear
Algebra in a Column-oriented In-memory Database System,” in SSDBM.
ACM, 2014.

[9] D. Kernert, F. Köhler, and W. Lehner, “SpMacho - Optimizing Sparse
Linear Algebra Expressions with Probabilistic Density Estimation,” in
EDBT, 2015.

[10] Y. Saad, SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations,
version 2 ed., University of Minnesota Department of Computer Science
and Engineering, Jun. 1994.

[11] F. G. Gustavson, “Two Fast Algorithms for Sparse Matrices:
Multiplication and Permuted Transposition,” ACM Trans. Math. Softw.,
vol. 4, no. 3, Sep. 1978.

[12] MKL, intel Math Kernel Library, http://software.intel.com/en-us/intel-
mkl.

[13] R. W. Vuduc, “Automatic Performance Tuning of Sparse Matrix
Kernels,” Ph.D. dissertation, University of California, Berkeley, CA,
USA, January 2004.

[14] M. A. Patwary, N. R. Satish, N. Sundaram et al., “Parallel Efficient
Sparse Matrix-Matrix Multiplication on Multicore Platforms,” in High
Performance Computing, ser. LNCS. Springer, 2015, vol. 9137.

[15] B. Huang, S. Babu, and J. Yang, “Cumulon: Optimizing Statistical Data
Analysis in the Cloud,” in SIGMOD. ACM, 2013.

[16] I. Kamel and C. Faloutsos, “Hilbert R-tree: An Improved R-tree Using
Fractals,” ser. VLDB. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1994.

[17] V. Markl, MISTRAL: Processing Relational Queries using a Multidi-
mensional Access Technique, ser. DISDBIS. Infix Verlag, St. Augustin,
Germany, 1999, vol. 59.

[18] G. Morton, A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing. IBM, 1966.

[19] R. R. Amossen and R. Pagh, “Faster Join-Projects and Sparse Matrix
Multiplications,” in ICDT. ACM, 2009.

[20] R. Pagh and M. Stöckel, “The Input/Output Complexity of Sparse
Matrix Multiplication,” in Algorithms - ESA 2014, ser. LNCS. Springer,
2014, vol. 8737.

[21] K. Matam, S. Indarapu, and K. Kothapalli, “Sparse Matrix-matrix
Multiplication on Modern Architectures,” in Int. Conf. High Perf. Comp.,
ser. HiPC, Dec 2012.

[22] A. Buluç and J. R. Gilbert, “Parallel Sparse Matrix-Matrix Multiplication
and Indexing: Implementation and Experiments,” SIAM J. Scientific
Computing, vol. 34, no. 4, 2012.

[23] R. W. Vuduc and H.-J. Moon, “Fast Sparse Matrix-vector Multiplication
by Exploiting Variable Block Structure,” ser. HPCC. Springer, 2005.

[24] G. Schubert, G. Hager, H. Fehske, and G. Wellein, “Parallel Sparse
Matrix-Vector Multiplication As a Test Case for Hybrid MPI+OpenMP
Programming,” ser. IPDPSW. IEEE, 2011.

[25] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse Matrices in Matlab:
Design and Implementation,” SIAM J. Matrix Anal. Appl., vol. 13,
no. 1, Jan. 1992.

[26] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: Design,
Implementation, and Applications,” Int. J. High Perform. Comput. Appl.,
vol. 25, no. 4, Nov. 2011.

[27] C. Lameter, “NUMA (non-uniform memory access): An overview,”
vol. 11, no. 7, p. 40.

[28] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki,
“Scaling Up Concurrent Main-Memory Column-Store Scans: Towards
Adaptive NUMA-aware Data and Task Placement,” in VLDB, 2015.

[29] F. Färber, N. May, W. Lehner, P. Groß e, I. Müller, H. Rauhe, and
J. Dees, “The SAP HANA Database – An Architecture Overview.”
IEEE Data Eng. Bull., vol. 35, no. 1, 2012.

[30] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-MAT: A Recursive Model
for Graph Mining, ch. 43, pp. 442–446.

[31] A. N. Yzelman and R. H. Bisseling, “Cache-Oblivious Sparse
Matrix-Vector Multiplication by Using Sparse Matrix Partitioning
Methods,” SIAM J. Scientific Computing, vol. 31, no. 4, Jul. 2009.

[32] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven Autotuning of
Sparse Matrix-vector Multiply on GPUs,” in Proc. 15th ACM SIGPLAN
PPoPP, ser. PPoPP. ACM, 2010.

[33] N. Bell and M. Garland, “Implementing Sparse Matrix-vector
Multiplication on Throughput-oriented Processors,” in Proc. Conf. H.
Perf. Comp. Netw., Stor. An., ser. SC. ACM, 2009, pp. 18:1–18:11.

[34] R. Yuster and U. Zwick, “Fast Sparse Matrix Multiplication,” ACM
Trans. Algorithms, vol. 1, no. 1, Jul. 2005.

[35] CuSparse, nvidia cusparse Library, http://docs.nvidia.com/cuda/cusparse.

Final edited form was published in "2016 IEEE 32nd International Conference on Data Engineering (ICDE). Helsinki 2016", S. 823-834, ISBN 978-1-5090-2020-1
http://dx.doi.org/10.1109/ICDE.2016.7498293

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADP5E5D.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	David Kernert, Wolfgang Lehner, Frank Köhler

