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Abstract—Forecasting time series data is an integral compo-
nent for management, planning and decision making. Following
the Big Data trend, large amounts of time series data are available
from many heterogeneous data sources in more and more
applications domains. The highly dynamic and often fluctuating
character of these domains in combination with the logistic
problems of collecting such data from a variety of sources,
imposes new challenges to forecasting. Traditional approaches
heavily rely on extensive and complete historical data to build
time series models and are thus no longer applicable if time series
are short or, even more important, intermittent. In addition,
large numbers of time series have to be forecasted on different
aggregation levels with preferably low latency, while forecast
accuracy should remain high. This is almost impossible, when
keeping the traditional focus on creating one forecast model
for each individual time series. In this paper we tackle these
challenges by presenting a novel forecasting approach called
cross-sectional forecasting. This method is especially designed
for Big Data sets with a multitude of time series. Our approach
breaks with existing concepts by creating only one model for
a whole set of time series and requiring only a fraction of the
available data to provide accurate forecasts. By utilizing available
data from all time series of a data set, missing values can be
compensated and accurate forecasting results can be calculated
quickly on arbitrary aggregation levels.

I. INTRODUCTION

Nowadays, forecasting of time series data has become an

irreplaceable tool for management, planning and decision

making. Without a solid idea on the future development of

certain measures or parameters it is impossible to efficiently

manage inventories, organize production processes, and allo-

cate resources in advance. Obviously, the foundation of good

forecasts is the availability of sufficient data. Therefore, the

ongoing Big Data trend looks like a natural contributor to

forecasting, allowing more accurate forecasts and widespread

application. While this might be true in some cases, Big Data

also introduces new challenges. Naturally, time series have

increased in volume as their granularity gets finer and recorded

histories become longer. More importantly, the ongoing focus

on data gathering has led to a strong increase of monitored data

sources. This includes the number of types of data sources as

well as the number of instances per type that are monitored.

This variety of heterogeneous data sources causes two major

problems regarding data availability. The first problem are

missing values. While these have always been a problem due

to technical factors, e.g., reliability of certain sensors, Big Data

also introduces logistic missing values. As data sources can be

distributed over different locations, administrated by different

organizations/authorities or use different formats, errors or

delays during data delivery cause missing values. The second

problem is that data is often available in such large volumes

that timely creation of a forecast cannot be guaranteed. In the

following we use two examples to illustrate some of these

problems.

Example 1: We analyzed several data sets from the sales

domain and found that there are always items with stable sales

over time and other items showing very strong fluctuations in

their sales behavior. This leads to irregular time series which

are very hard to forecast due to a lack of reproducible behavior.

Furthermore, these fluctuations can lead to the temporary

exclusion of individual items that are neither sold nor held in

stock, and thus, are not included into an outlet’s periodic data

delivery. This results in missing values and causes incomplete

time series histories, where properties that are essential for the

creation of many forecast models, e.g., trend or seasonality, are

not recognizable any more.

Example 2: Smart Meter Data is collected for electricity,

gas, water and heating. While smart meters were originally

installed for major consumers, they become more and more

common in private households due to several smart grid ini-

tiatives [1], [2], [3]. In this domain, missing values occur due

to different reasons than in the sales domain. We investigated

smart meter data for the energy consumption of households in

Ireland, that was recorded on a 30 minute granularity which

leads to high-volume time series. In this scenario, missing

values occur when the Smart Meter temporarily has no internet

connection or it shows any other kind of technical malfunction.

These two examples illustrate the current trend in Big Data

of extensive data collection with thousands of time series

gathered from a multitude of heterogeneous data sources. Fur-

thermore, they reveal some of the different reasons for missing

values in time series data. These aspects are challenging for

the forecasting process and make it hard or even impossible
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Fig. 1. Forecasting approaches overview.

to apply traditional time series forecasting techniques. Let

us consider the panel data example and assume we want

to forecast the sales of individual items showing different

degrees of sparseness (Figure 1a). Traditional techniques, such

as Exponential Smoothing or ARIMA models [4], capture the

historical behavior of a time series and model the dependency

of future on past time series values. Thus, a forecast model

is created for each time series, i.e., each individual item in

this example. However, such forecast models require complete

historical data without any missing values. For example, to

learn typical seasonal patterns on data recorded with a monthly

granularity, as often present in sales data, the widely used

Triple Exponential Smoothing model [5], requires at least 17

historical time series values [6]. Moreover, to learn meaningful

model parameters and to compensate for randomness, much

more historical data should be available and used for model

training [6].

Of course there already exist several approaches to deal with

missing values. One possible approach to overcome this issue

is to exploit the hierarchical structure of a data set, if there is

one [7]. An aggregation function, e.g., sum, is applied on the

intermittent time series to create a higher aggregation level like

outlet or city on which gaps are filled due to summarization.

In many domains predictions on higher aggregation levels are

desired anyway, market researchers for example are interested

in the market share of a brands whole portfolio, while energy

providers require the total energy production and consumption

in their distribution areas to balance prices on the energy

trade market. However convenient this approach might seem,

it does not solve the problems of traditional forecasting

approaches entirely. Considering all dimensional attributes

and their combinations leads to an exponential number of

possible aggregation levels. Calculation of forecast values

for all these aggregations with traditional forecast models is

almost impossible. Furthermore, even at higher aggregation

levels, it is still possible to suffer from missing values. On top

of that, utilization of coarser aggregation levels prohibits the

computation of forecasts on lower aggregation levels.

Another approach to dealing with missing values is filling

up the gaps using interpolation. Several techniques for such

calculations already exist [8], [9], [10], but the application

of this approaches are domain-specific, i.e., if a non-fitting

interpolation method is chosen, the calculated values will

introduce errors and decrease the accuracy of the forecast.

In addition certain application scenarios do not allow a clear

identification of missing values. In our sales data example a

gap in a time series can either mean that a measured value is

actually missing or that an item was neither sold nor stocked

and thus no value was reported. Obviously, in the first case

the gap should be filled while in the second case it should

be left unchanged. If a clear differentiation of these cases is

impossible, filling up with calculated values always yields the

risk of error introduction.

In conclusion, we can state that traditional forecasting

approaches generally assume one model per time series as well

as historical data that is complete and as extensive as possible.

Big Data offers large numbers of time series, which have

higher volumes of data but no higher degree of completeness.

Thus, forecasting becomes more costly due to a large number

of models etc., but not necessarily more accurate due to

missing values. In this paper we present an approach that

is able to tackle these challenges. For this, we break with

traditional forecasting in two major points: First, we drop

the fixation on large histories and focus on data-economical

forecasting, taking only as much data as necessary in order to

create accurate forecasts instead of whole histories. Second,

we abandon the concept of one model per time series and focus

on modeling whole sets of time series. In doing so, we exploit

the fact that Big Data offers large numbers of time series that

originate from the same domain. Our approach is called cross-

sectional forecasting, whereas the term cross-sectional refers

to a set of related time series, observed at the same point in

time [11].

Figure 1b shows a rough sketch of our concept. Instead of

training a model for every individual time series, we compute

one model over a large set of time series. Thus, our approach

is able to incorporate available information from all time series

of the data set. This makes it resistant to missing values and

also robust against outliers and high randomness of individual

time series. In addition, only small time slices are used for

the model creation instead of the whole available historical

data. As we only pick the necessary parts out of the available

historical data, we do not rely on long and complete time

series histories, which makes our model creation much faster

and easier to apply.

The remainder of this paper is structured as follows: We

begin with a description of the data set characteristics our

approach addresses and detail the current state of the art of

traditional forecasting techniques in Section II. We describe

our cross-sectional forecasting approach as well as possible
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parameters that may be used for its optimization in Section

III. In Section IV we extensively evaluate our approach on

two real world data sets from different domains. We finally

conclude with a summary of our contributions and open topics

we plan to address in the future in Section V.

II. STATE OF THE ART IN TIME SERIES FORECASTING

In this section we shortly describe the structure and char-

acteristics of the data sets used in this work. Afterwards, we

give a brief overview of commonly used existing forecasting

techniques [5] and highlight their drawbacks with respect to

the challenges formulated earlier.

A. Data Characteristics

The data sets of our example scenarios consist of several

time series x1, . . . , xn which are monitored over the same

period of time 1, . . . , t. An arbitrary portion of the time

series lacks a sufficient history of data points, as shown

in Figure 1. Many time series are very short and sparse;

especially for the example from the sales domain there are

just a few items which are sold in every period. Specifically,

only 8.4% of all item-level time series have a complete history

for all 36 months, making them the only time series where

traditional forecasting approaches can be applied without any

adjustments. Additionally, 5.3% of all items are reported in one

single month only, and thus, constitute unpredictable “surprise

items”.

B. Existing Forecasting Techniques

According to a survey of McCarthy et al. [5] judgmental

forecasting, where domain experts derive predictions with the

help of statistical tools, is still widely used. For Big Data sets

with a high number of time series as described in the previous

section this is not feasible anymore. Even in the forecasting of

aggregates where the number of time series may be reduced

due to aggregation there are many different influences that

have to be analyzed to obtain the optimal forecast result.

Therefore, we will review modeling approaches which allow

the automated forecast of a high number of time series.

Univariate Modeling Techniques: The most commonly

used model based forecasting techniques are ARIMA and

smoothing approaches such as HoltWinters’ Triple Exponen-

tial Smoothing [4]. Both model types count to the group of

univariate statistical models, which means they only take one

variable into account: the modeled time series itself. This

type of models describes the dependency of future time series

values on historical values and often follows the subsequent

general equation:

x̂n,t+1 = αt · xn,t + · · ·+ αt−m · xn,t−m. (1)

Hereby, xn,t denotes the time series value of series n in period

t with t ≥ 0 and x̂n,t+1 the forecast value of the future

period t + 1. Hence, the future time series values at time

t+1 result from a linear combination of previous time series

values at time ≤ t, where m+1 corresponds to the number of

past values which are included in the model. The parameters

αt, . . . , αt−m specify the contribution of each past time series

value to the forecast. For example, exponential smoothing

includes all previous values (m = t) with exponentially

decaying weights. Auto-regressive models AR(p) require the

explicit specification of the number of past values (m = p−1).

Both approaches can be extended to cope with trend and

seasonal patterns in time series data.
However, as discussed in the introduction, such traditional

forecasting techniques require sufficient historical, as well as

complete time series data to initialize and optimize the model

parameters αt, . . . , αt−m. Unfortunately, these are prerequi-

sites which are often not met by Big Data sets which consist

of information from a variety of heterogeneous data sources.
Multivariate Modeling Techniques: In contrast to univariate

forecasting models multivariate techniques take several vari-

ables into account. One of the most popular of these techniques

is Vector Autoregression (VAR) [12]. This approach creates

one single model to predict the future values for several time

series. The model is designed such that all time series affect

the predictions of each other and thus, incorporates knowledge

of many time series into the training process. The influencing

dependencies can be modeled using one or more periods of

historical data. The following equation shows for the example

of a VAR(1) model, which takes only one historical value into

account, how the calculation of the forecast values is realized:






x̂1,t+1

...

x̂n,t+1






=







α1,1 · · · αn,1

...
. . .

...

α1,n · · · αn,n






·







x1,t

...

xn,t






. (2)

x̂1,t+1, . . . , x̂n,t+1 are the forecasted values for period t+1 of

the time series x1, . . . , xn. x1,t, . . . , xn,t are the corresponding

time series values in period t. The parameters α1,1, . . . , αn,n

describe the influence of the time series values to the forecast

values. In particular there is one set of parameters for predicted

time series, α1,n, . . . , αn,n, which models the influence of all

available time series values x1,t, . . . , xn,t in period t to the

forecast x̂n,t+1 of time series n. This leads to a set of linear

equations where the parameters have to be optimized to cor-

rectly model the influence of all time series to each other. With

an increasing number of time series this optimization process

needs an increasing number of historical data. Picking up the

example of the sales of consumer electronics devices we have

to handle thousands of product time series in one data set. In a

specific example we may have to predict the future sales values

for 100 brands. In a monthly time resolution reliable data for

8 years and 4 month would be necessary to even calculate the

start parameters for this VAR(1) model without the opportunity

of optimization. On a more fine grained aggregation level this

problem gets even worse. Predicting sales values for 5000

electronic devices, e.g., televisions, would require available

data back to the year 1599 which is clearly not possible. In

addition to this, VAR still requires a complete data history

without missing values, otherwise the influences between the

time series can not be modeled properly.
Modeling Techniques for Incomplete Time Series: The

area of forecasting intermittent time series has already been
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Fig. 2. Cross-sectional forecasting process.

discussed in the forecasting literature. Croston’s method is a

forecasting approach especially designed for time series with

intermittent occurrence [13], [14]. This method models the

time series using two smoothing processes:

Q∗

n,j = (1− α)Q∗

n,j−1 + αQn,j , (3)

x∗

n,j = (1− α)x∗

n,j−1 + αxn,j . (4)

For a time series n, Q∗

n,j denotes the smoothed interval from

the last monitored non-zero time series value xn,j−1 in period

j − 1 to the next non-zero value in period j. Qn,j is the

not smoothed distance between xn,j−1 and xn,j . The value

for j is not fixed, it denotes an arbitrary period with a non-

zero time series value. j − 1 is not the direct predecessor

period to j, but the last non-zero occurrence of a time series

value before period j. x∗

n,j and xn,j denote the corresponding

smoothed respectively not smoothed values of time series n. α
is the smoothing parameter which is used to smooth the non-

zero time series values as well as the intervals between them.

The prediction for the next non-zero time series value is then

determined by x∗

n,j which is used as the forecasted value that

has a distance of Q∗

n,t to the last non-zero time series value

xn,t.

Actually, Croston’s method is also an univarite modeling

technique, since it only uses information derived from the time

series itself. Nevertheless, it is listed in a separate category,

since, to our knowledge, it is the only forecasting model which

is capable of dealing with missing values in the time series

history, which is a very important point in our application

scenario. However, Croston’s method may be able to calculate

forecast values for time series with incomplete histories. But

for complete time series this technique reduces to single

exponential smoothing, which hardly ever is an appropriate

choice to model time series data. Thus, this approach is not

entirely suited to predict the data sets in the focus of our

work, because we aim for accurate forecast values for a mix

of intermittent and complete time series.

III. CROSS-SECTIONAL FORECASTING

This section describes our new forecasting approach which

is capable of working with incomplete time series histories.

It incorporates knowledge from many time series into the

creation of one single model, that is used to predict the

future values of all time series at once. Our approach follows

three simple core steps, which are shown in Figure 2 and are

further detailed in the following paragraphs. In general, cross-

sectional forecasting assumes that relative transitions from one

period to the next remain stable over several seasons. For

example, due to Christmas sales, there is an increase in the

sales from November to December in every year for many

product groups, which is almost stable and therefore, can

support the creation of a robust forecast model.

A. Model Creation

In the first step all necessary information for the model

creation process are extracted from the historical data. Our

model derives its knowledge from all available time series of

a data set. As these have different value ranges it is necessary

to make them comparable. To achieve this, we do not take the

time series values itself into account, but the relative transitions

within the series, i.e., the change from one period to the

next. Coming from the same data set, these are very likely

to be similar, e.g., sales of consumer electronics generally

increase before Christmas. We obtain these transitions by

extracting two-element sub-sequences from the time series that

contains the values recorded for two periods t and t− 1 (e.g.,

November and December 2014) – ➀ in Figure 2. We translate

this dependency into a model function f , that describes the

relation of time series values in period t based on the previous

period t − 1. Moreover, we allow the inclusion of additional

features besides the target measure:

xi,t = f(xi,t−1, e
1
i,t−1, . . . , e

k
i,t−1), (5)

xi,t denotes the the target measure value of time series i
at time t which has to be forecasted. xi,t−1 denotes the

previous target measure value at time t− 1, e1i,t−1, . . . , e
k
i,t−1

are possible external influences which may be taken into

account. For example, to forecast sales units x, we might

also include stock units (e1) and ordered units (e2) at period

t− 1 of the corresponding item n. The relevant features to be

used as external influences depend on the particular use case

and can be determined manually or using standard feature

selection techniques (e.g., correlation-based measures) from

the literature [15].

B. Model Optimization

In the second step, we estimate the parameters of the model

function over a large group of time series – ➁ in Figure 2.

This approach is based on the assumption that related time

series (e.g., items within the same product group) show similar

behavior over time. By exploiting this, our approach becomes

not only resistant to missing values, but also to outliers of

individual time series.

For a more detailed description of the parameter estimation

process, we express the model function (Equation 5) as a

simple linear regression model. There might exist use cases

that require more complex models to express the effect of
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the external influences on the target measure, e.g., having a

multiplicative dependency instead of a linear one. However,

as none of the data sets we used for evaluation shows the

necessity of using such a more complex model we used the

following linear regression model throughout this paper:

~Xt = α1 · ~Xt−1 + α2 · ~E
1
t−1 + · · ·+ αk · ~Ek

t−1 + αk+1. (6)

The vector ~Xt denotes the target forecast measure, e.g., sales

units, of all time series at time t, and ~Xt−1 the corresponding

measure values at the previous point in time t−1. The vectors
~E1
t−1 to ~Ek

t−1 correspond to additional features at time t− 1
that are included as external influences in the model. Sticking

to our example we would model the influence of the stock and

order units to the sales units we want to predict as ~E1 and ~E2.

Other use cases may require another set of external influences

ranging from a pure autoregressive model where only the

target measure is available to dozens of influences, e.g., for

solar energy supply forecasting. Furthermore, each feature

vector only includes those time series of a data set that were

actually recorded in the considered periods t−1 and t and hold

a value for every feature used for modeling. The parameters

α1, . . . , αk specify the influence of each feature vector and

αk+1 is an unobserved error term. Thus, we apply a cross

section over all items for the parameter estimation and train

exactly one parameter value per feature. As a consequence, our

model only requires a small set of parameters and it can easily

be optimized with standard optimization techniques, unlike the

VAR model which requires a very high number of parameters

to be optimized.

C. Model Application

Finally, the trained model is applied to compute the forecast

values – ➂ in Figure 2. The target period is denoted by t+ p
where p is the distance between the period used for modeling

t−1 and the last period recorded t+p−1. In most cases this

will correspond to the length of one season (e.g., 12 months

in the case of monthly data). We tested the data sets used in

the evaluation section and found the natural seasonality to be

the optimal choice. This task may be automated by using the

auto correlation function (acf) which analyzes the correlation

of the time series with itself at an earlier stage. However, if

there is no recognizable seasonality in a data set or there are

many very sparse time series such that no transitions can be

derived for the preferred value of p, a manual adaption is still

possible.

The forecast calculation can be summed up with the fol-

lowing formula:

~̂Xt+p = α1 · ~Xt+p−1+α2 · ~E
1
t+p−1+ · · ·+αk · ~E

k
t+p−1+αk+1

(7)

The forecast values of all time series ~̂Xt+p at time t+p (e.g.,

December 2015) are computed based on the recorded feature

values ~X and ~E1, . . . , ~Ek at time t + p − 1 (e.g., November

2015) and the estimated parameters α1, . . . , αk+1 of the same

transition one season ago: t − 1 → t (e.g., November 2014

→ December 2014). As a precondition, we require only one

TABLE I
DATA SETS USED DURING EVALUATION.

dataset sales electricity
#base time series 2409 1443

history length 36 25730
seasonality (p) 12 48

observation for a particular time series to be able to derive a

forecast value: the recorded value at time t+ p− 1. Take the

last time series on the right side of Figure 2 as an example

and assume it’s first value is recorded in period t + p − 1
(e.g., November 2015). None of the forecasting approaches

mentioned in Section II would be able to derive a forecast

value, since there is no data for the model creation. Our

approach still can compute a forecast value at time t + p by

using the estimated parameters over all available time series

(Equation 6) and applying the model to the first monitored

value of the specific time series.

Now, to be able to forecast all periods within one season, a

model is computed for each transition(e.g., Jan → Feb, Feb →
Mar, . . . , Nov → Dec, Dec → Jan). Thus, for monthly sales

data, we result in a total number of 12 models. Furthermore,

with the whole set of models over all monthly transitions,

we also cover the modeling of seasonal effects. To achieve

a higher data density and increase the robustness to outliers

when there are just a few transitions, our model can be adapted

to use the same transition from several previous seasons of the

available historical data (e.g., Nov 2014 → Dec 2014, Nov

2013 → Dec 2013, Nov 2012 → Dec 2012, . . . ).

By definition, our approach calculates forecast values on

the base/most fine grained aggregation level. This makes it

easy to obtain forecasts on every higher aggregation level, e.g.,

brand or total sales amount for the sales domain, by simply

executing an aggregation step after the forecast calculation.

Thus, our cross-sectional approach is able to forecast every

possible aggregation level with just one model.

IV. EVALUATION

We conduct an experimental study to evaluate the perfor-

mance of our cross-sectional forecasting approach in compar-

ison to the existing forecasting methods described in Section

II-B. We begin by giving an overview of the experimental

setting, including the data sets we used for evaluation. This is

followed by a detailed description of the experiments and the

discussion of their results.

A. Experimental Settings

Our cross-sectional forecasting approach is implemented

in the statistical computing software environment R v3.1.2

[16], which provides efficient built-in functions for model

parameter estimation and commonly used forecasting tech-

niques. We build the core of our forecasting approach (i.e.,

Equation 6) using a multiple linear regression model. The

experiments were executed on a notebook with an Intel Core

i7-3630QM@2.4GHz processor and 8GB of RAM.
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Data Sets: We evaluated our approach on two data sets from

different domains. Table I summarizes the most important

information about the data sets.

Sales The first data set is taken from the sales domain. It is

provided as a private data set by a market research company. It

contains 2409 base-level time series from the field of consumer

electronics sold in Germany recorded in a monthly granularity.

4.6% of all time series have a complete history over the full

36 months. This data set allows us to calculate forecasts on

several aggregation levels. In addition to the top aggregate,

i.e., total sales amount in one period, and the base aggregation

level, we can consider aggregation levels in between, e.g., the

sales for any technical or descriptive attribute of the products

like brand, color or energy consumption. This aggregation

level is denoted as attribute level in the following experiments.

The missing values in this data set may have two different

causes. The most common cause was already mentioned in

Section I, the sales of an item are not reported by outlets

which did neither sell nor stock the specific item. This leads

to missing values in item-level time series when there where

no sales in any outlet at all and can even cause gaps on the

brand-level for very small and exclusive brands. The second

possible cause is that time series values may become missing

when they are not transmitted or received correctly for the

monthly report. Since the most common reason for missing

values is that a product was not sold, the default strategy for

handling gaps is to assume a zero value for every missing

value on any aggregation level.

Electricity The second data set originates from the energy

domain. It is a public data set of Smart Meter data monitored

by the Commission for Energy Regulation (CER) and made

available by the Irish Social Science Data Archive (ISSDA)[3].

The data set consists of 1443 time series, representing the

energy consumption of individual households. Time series are

monitored in half hour granularity and only 0.7% of them have

a complete history of 25730 values, which equals a monitoring

time of one and a half year. Missing values in this data set arise

when a Smart Meter temporarily looses internet connection

or suffers any other kind of technical malfunction. Filling the

gaps in such a data set is not a trivial process, because missing

values can’t just be assumed to be zero values. To enable

the comparison of our cross-sectional approach with other

algorithms on this data set we interpolated the missing values

according to the metering code [10]. It defines a set of rules

prescribed by German authorities to interpolate incomplete

Smart Meter data. Basically it contains two rules: The first rule

states that gaps with a size of up to two hours have to be filled

via linear interpolation. The second rule states that gaps longer

than two hours are filled with substitute value calculation.

To achieve this, values from a preceding week are used and

scaled to fit the values before and after the gap. If this is not

possible because no earlier historical data is available, values

of a similar measuring site should be used. This is not possible

for our example as there is no metadata available to determine

similarity between individual time series. Due to the lack of

an alternative, we used zero values in this case. The only other

option would have been to manually compare intermittent time

series to every other time series in order to find similarities

and derive values for interpolation accordingly. However, we

considered the manual effort for this as unreasonably high.

B. Forecast Accuracy

In the first series of experiments we evaluate the accuracy

of our forecasting approach in comparison to the traditional

forecasting techniques described in Section II, on several

aggregation levels. We begin with the top aggregation level

where all base time series are aggregated to the total sales per

month in the sales data set, respectively, the overall energy

consumption of all households in the electricity data set. We

continue with the attribute aggregation level for the sales data,

where all sales are aggregated to any aggregation level in

between top and base-level and end with the base aggregation

level where every base time series is forecasted and evaluated

individually.

Top Aggregation Level: The first experiment is conducted

on the highest aggregation level, where all time series are

summed up only grouped by the time attribute. For the sales

example we calculated the forecast value with Triple Exponen-

tial Smoothing (TES), the auto.ARIMA (AA) implementation

of R’s forecast package [17], Croston’s method (Cro) and our

cross-sectional forecasting approach. Vector Autoregression

(VAR) was not evaluated because on the top aggregation

level it equals the ARIMA model since there are no other

time series that could be used for modeling. Additionally, the

VAR model is not applicable on lower and more fine grained

aggregation levels since no sufficiently long historical data

is available (see Section II-B). For the electricity example

we only used TES for comparison as the implementations

of auto.ARIMA, Croston’s method and VAR provided by R’s

forecasting package take a very long time for the optimization

of models on long time series histories. We started the corre-

sponding experiments but stopped the calculations after three

days without a result. We considered this to be an unacceptable

long time for these forecasting tasks, which will be underlined

later with the results of our run time experiments in Section

IV-E. Additionally, we provide the results of the naı̈ve forecast,

which assumes that every period will show exactly the same

value as its predecessor. This can be seen as a baseline, should

a forecasting technique perform worse than the naı̈ve forecast,

it is not an appropriate model for the specific data set, as it

does not properly represent its characteristics.

Both data sets were divided into a training and an evaluation

part. For the sales data set we used the last year (12 values)

for evaluation and for the electricity data the last week (336

values). All preceding data was used for the model training.

For TES model training on a monthly granularity a minimum

24 training values was necessary. In both examples we applied

a rolling forecast, where we create a new model for every

value in the evaluation part of the time series and calculate

the corresponding forecast. Then we compare the forecast

values of all approaches to the corresponding real time series
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Fig. 3. Forecast error on the top aggregation level.

values and calculate the forecast error with the SAPE measure

(Symmetric Absolute Percentage Error):

SAPE =
|x− x̂|

(x+ x̂)/2
· 100, (8)

where x is the real time series value and x̂ is the corresponding

forecast value of one of the evaluated techniques. We use the

SAPE measure because it is easier to interpret and compare

than the absolute error, which shows the absolute deviation

of the forecast from the real time series value. Furthermore,

this error measure can be applied even when the real time

series value equals zero, where other relative error measures

are not defined. If the time series value and the corresponding

forecast value both equal to zero and even the SAPE is not

defined anymore we have in a forecast error of zero.

The results for both data sets are shown in Figure 3. The left

diagram (Figure 3a) shows the forecast errors for the sales data

as a Box-Whisker-Plot. The y-axis denotes the SAPE forecast

error. Each box represents one evaluated forecasting technique,

that shows the distribution of the errors over the full evaluation

part. The red cross × denotes the corresponding average error.

The right diagram (3b) shows the results for the electricity

data set. It is clearly visible that our approach achieves the

lowest forecast errors, and therefore the highest accuracy, out

of all evaluated techniques. Since both data sets show a well

recognizable seasonal pattern Triple Exponential Smoothing

also achieves good results. In contrast, auto.ARIMA and

Croston’s method are not capable of modeling seasonal effects

and, hence, achieve the lowest accuracy. The naı̈ve forecast

achieves good results for the electricity data set because this

data set is recorded in a very fine grained time granularity and

therefore shows only minor changes between two successive

time series values.

In a second experiment we demonstrate that the high

accuracy of our approach is not the result of much better

forecastable time series on the base aggregation level, which

is an effect often exploited in hierarchical forecasting [7]. To

obtain the optimal forecast, the aggregation level on which the

forecast values are calculated is chosen by an optimization

process before the forecasting process takes place and then

the forecasts are aggregated or disaggregated to receive the

demanded target aggregation level. In this experiment we

execute TES on the base aggregation level for both data
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Fig. 4. Forecast error for the top aggregation level using hierarchical
forecasting.
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Fig. 5. Forecast error on the attribute aggregation level.

sets and aggregate the results to receive a prediction for

the top aggregation level. The results of this experiment are

shown in Figure 4 next to the results for TES and our cross-

sectional approach from the first experiment. The right box

in both diagrams shows the results of TES applied on the

top aggregation level. The second box shows the results of

TES applied on the base aggregation level with subsequent

aggregation and the third box shows the application of our

cross-sectional approach applied on the base aggregation level

as described in Section III.

The results show that the aggregation of the base forecasts

calculated with TES does not lead to an increased forecast

accuracy. The base time series show much more randomness

in their behavior than the time series on higher aggregation

levels. Therefore, it is much harder to calculate individual

forecasts for every time series based only on its own history.

Our approach on the other hand uses the historical data

of all available base-level time series and can compensate

for unpredictable behavior of individual time series. Other

forecasting techniques may achieve better results than TES,

but the choice of an appropriate modeling technique states

a different optimization problem and it is still questionable

if it will lead to a higher accuracy than our cross-sectional

forecasting approach.

Attribute Aggregation Level: The third experiment focuses

on the attribute aggregation level. Since only the sales data set

features a hierarchical structure with more than top and base

aggregation levels, we only use this data set for evaluation.

The examined aggregation level represents any describing

attribute, e.g., a technical feature, the brand or the color, of the

monitored consumer electronics devices. We conduct the same
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Fig. 6. Forecast error on the base aggregation level.

experiment as on the total aggregation level in the previous

section. First, we calculate a forecast for all distinct attribute

values, then the deviation to the corresponding real time series

value is computed. TES, AA and Cro are applied directly on

the aggregated data and our cross-sectional approach is again

applied on the base aggregation level and the forecasts are

aggregated afterwards.

The obtained results are shown in Figure 5. Again, there is

one box for every evaluated forecasting technique, including

the naı̈ve forecast. As in the previous experiment our approach

reaches the highest accuracy. The naı̈ve forecast achieves the

second best result, because on the attribute aggregation level

there are already some time series which show such a high

degree of randomness that the other three techniques are not

able to identify any systematic behavior in the historical data.

Please note, that the general increase in the average forecast

error is caused by the high number of attribute level time

series which show significantly stronger and less predictable

fluctuations than the top-level aggregate time series.

Base Aggregation Level: Finally, we also evaluate the accu-

racy of our forecasting approach on the base aggregation level.

For this, we calculate forecasts for every single base-level

time series and calculate the forecast error. The results of this

experiment are shown in Figure 6. The first thing to observe

is that the overall forecast error increases in comparison to the

total and attribute aggregation levels, because time series on

the item-level have a less predictable behavior and show higher

randomness than aggregated time series. Our cross-sectional

forecasting approach still reaches the highest accuracy of all

compared approaches for the sales data set. In contrast to the

traditional forecasting techniques TES, AA and Cro, that try

to predict the future values of a time series only based on

it’s own historical values, our approach utilizes information

from other base time series and benefits from it. The base

time series in the electricity data have such a high portion of

unpredictable behavior, that even our approach is not capable

to properly model the data sets characteristics anymore.

C. Influence of Parameter p

In the next experiment we examined the influence of the

parameter p introduced in Section III-C. This parameter de-

notes the time distance between the data values used for model

creation and the forecasted value. We conduct the following

S
M

A
P

E

0
1
0

2
0

3
0

4
0

1 5 10 15

value of p

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

−
1

−
0
.6

−
0
.2

0
.2

0
.6

1

a
c
f

●error acf

(a) Sales

S
M

A
P

E

0
2

4
6

8
1
0

1
2

1 5 10 15 20 25 30 35 40 45 50 55

value of p

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●

●●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●●●

●
●
●

●

●

●

−
1

−
0
.6

−
0
.2

0
.2

0
.6

1

a
c
f

●error acf

(b) Electricity

Fig. 7. Influence of the Parameter p on the forecast error.

experiment to show that 1) setting p to the natural seasonality

of a data set always leads to the best forecasting result and

2) there is a high correlation between the auto correlation

function and the forecast accuracy. For both example data

sets we execute our cross-sectional forecasting approach with

different values for p to receive forecast values for the top

aggregation level. Starting with p = 1 we gradually increase

the value for p and stop a few values after the natural

seasonality of each data set. Additionally, we measured the

result of the auto correlation function (acf), which shifts a

time series by p periods and then calculates the correlation

between the shifted and the original series. The evaluation part

of the time series was the same as in the previous experiments.

Results for this experiment are presented in Figure 7. The x-

axis shows the values of p, the left y-axis denotes the forecast

error and the right y-axis shows the corresponding result of the

acf. The forecast error is measured with the SMAPE measure

which is the mean of all SAPE error values calculated on the

evaluation part of the time series. Thus, the gray bars, which

show the forecast error of our approach, represent the same

error values as the × in the previous diagrams. The black dots

• represent the corresponding results of the acf with a time

shift of p periods.

The first thing to notice is that the highest accuracy is

achieved when p is set to the natural seasonality of the

data sets. These are p = 12 for the monthly sales data and
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p = 48 for the electricity data set with a 30 minute granularity.

Second, in both cases there is a strong negative correlation

between the forecast error and the result of the acf, -0.76 for

the sales data set and -0.96 for the electricity data set. The

higher the value of the acf, the more similar the shifted and the

original time series are. As a consequence our model becomes

more accurate with a high value of the acf, since it assumes

that time series of the same data set show a similar behavior

after p periods.

D. Training Data

In this experiment we show that our approach already

reaches a very high accuracy with a minimum of training data

and is significantly more robust to fluctuations in the time

series data than traditional approaches. We use a similar setup

as in the first series of experiments: calculate forecast values

for the evaluation part of the data sets and compare them to

the corresponding real time series values by evaluating the

SAPE error measure. In this series of experiments we vary

the amount of available training data for the model training

process, starting by one period and doubling the length of

training data with every step. For this evaluation we choose

the electricity data set since its history is long enough to

vary the amount of training data in an appropriate range.

Our cross-sectional approach always uses all time series of

the training data to extract the corresponding time slices

from every available period. TES is used as the comparison

technique and always uses the whole amount of available data

for model training. The results of the experiment is shown

in the diagram in Figure 8. The log-scaled x-axis shows the

number of periods used as training data, the y-axis shows

the corresponding forecast errors to the different number of

periods of training data. The black line shows the results

for our cross-sectional forecasting approach and the blue line

shows the forecast errors for TES.

Our approach again reaches the lowest forecast error re-

gardless of the amount of available training data. We can

observe a small increase in accuracy when moving from one

period of training data to two periods. However, after that

a further increase of the amount of training data does not

lead to a significant change in the forecast accuracy in any

direction. TES on the other hand is massively influenced by

the available amount of training data. One period of training

data is not enough at all for this technique, since it requires

more information to even initialize the model. Furthermore, the

gradually increase in the available training data does not lead

to a systematic increase in the forecast accuracy, as one might

expect. Actually, it leads to strong fluctuations. At 16 periods

of training data the accuracy of TES shortly approaches the

accuracy of our algorithm. While a more fine grained analysis

and selection of the training data for TES could make this

technique competitive again, it would also create a completely

new optimization problem, i.e., identifying the optimal amount

of training data. Solving this problem would require even more

historical data to ensure reliable results. This shows that more

data does not necessarily leads to more accurate forecasts.

The strong fluctuations in the forecast error of TES in the

last three measurements, i.e., 256, 512 and 1024 periods of

training data, may be explained by the high increase of the

available training data. With more available data there is also

a risk of using parts of a time series which have different

characteristics. This has a negative influence on the forecast

accuracy of models like TES which derive forecast values only

based on the history of one single time series, and therefore,

can not compensate the randomness. In summary, compared

to TES our approach is literally data-frugal, achieving high

accuracy even on a minimum amount of training data. In

addition, its pooled parameter estimation makes it very robust

against fluctuations in the time series data.

E. Execution Time

In the last experiment we will show that our approach is also

fast and can calculate forecast values for every aggregation

level in nearly constant time. This is a property most traditional

techniques severely lack, which means they do not scale well

when applied on lower aggregation levels. Using the setup

from the previous experiments, we calculate forecast values for

all three different aggregation levels of the sales data set and

use TES as comparison method. We execute both forecasting

models ten times over the whole evaluation part of the data

set and use the average runtime for evaluation.

TABLE II
COMPARISON OF EXECUTION TIMES.

total attribute base
TES 0.15s 21.87s 564.92s
CS 0.73s 0.73s 0.69s

The results are shown in Table II. The first column shows

the run time for the total aggregation level for TES (upper

row) and our cross-sectional approach (lower row). On this

aggregation level TES is four to five times faster than our

approach. However, both techniques have a run time of under

one second and therefore the measured difference is negligible.

The results on the attribute aggregation level (column two)

show that, even if the creation of a single model is faster,
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it takes TES 30 times more time to create all the models

and calculate the forecasts than it takes for our cross-sectional

approach. On the base-level (column three) TES has to create

and optimize more than 2400 models for every period in

the evaluation part of each time series and, hence, needs

significantly more time than our approach. Cross-sectional

forecasting even gets slightly faster on the base-level than

on higher aggregation levels, because it already calculates the

forecasts on the lowest aggregation level and, therefore, can

omit the aggregation step.

V. CONCLUSIONS

In this paper, we introduced a new forecasting approach that

addresses the challenges of data incompleteness and volume,

brought forth by Big Data. For this, we break with some

of the main principles of traditional forecasting techniques:

create one model for each time series and the more historical

data the higher the forecast accuracy. Our cross-sectional

forecasting focuses on sets of time series, for which it creates

and optimizes one single model to calculate forecast values

for every time series. Instead of using complete sequences

of historical values for model construction, our approach only

uses small time slices, that represent the transition between two

consecutive time periods. As these time slices are taken from

all time series of a data set in a cross section, our approach

can handle missing values without additional processing and

also becomes robust against random fluctuations of individual

time series. Our experimental evaluation shows, that our cross-

sectional forecasting approach achieves a higher accuracy on

any aggregation level than traditional forecasting approaches,

while only requiring a minimum of training data and a much

shorter runtime.

With our cross-sectional forecasting we proposed an ap-

proach that is clean, simple and lightweight at its core. Besides

high accuracy and fast runtime, it can natively handle missing

values and allows the inclusion of additional external factors

into the forecasting process. This is why we see a lot of

potential and many interesting future research directions for

our approach. Some of them are described in the following.

Feature Selection: Currently, we have to select the features

(e.g., sales units and order units for the sales data set) of

the cross-sectional forecasting approach manually. We plan to

investigate and expand our approach with an automatic feature

selection mechanism, that will identify and include the most

useful features into the forecasting process, in order to further

improve the accuracy.

Long Range Forecasting: In this work we focused on the

calculation and evaluation of one-step ahead forecasts. How-

ever, there are many application scenarios, where forecasts

for more than only one period ahead are necessary to properly

plan for future developments. This is why the extension of our

cross-sectional forecasting approach to long range forecasting

will be a major goal of our future research.

Advanced Model Creation: Currently our model creation is

pretty straight forward and utilizes a simple cross- section of

all transitions from one preceding season. In the future, we

aim to introduce more functionality in order to increase the

accuracy. This involves mechanisms for training data selection,

e.g., inclusion of additional cross sections if the current one

is too sparse, as well as methods for model calculation, e.g.,

weighting the transitions of a cross-section.
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