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Abstract—In recent years, researchers have recognized rela-
tional tables on the Web as an important source of information.
To assist this research we developed the Dresden Web Tables
Corpus (DWTC), a collection of about 125 million data tables
extracted from the Common Crawl (CC) which contains 3.6
billion web pages and is 266TB in size. As the vast majority of
HTML tables are used for layout purposes and only a small
share contains genuine tables with different surface forms,
accurate table detection is essential for building a large-scale
Web table corpus. Furthermore, correctly recognizing the table
structure (e.g. horizontal listings, matrices) is important in
order to understand the role of each table cell, distinguishing
between label and data cells. In this paper, we present an
extensive table layout classification that enables us to identify
the main layout categories of Web tables with very high
precision. We therefore identify and develop a plethora of
table features, different feature selection techniques and several
classification algorithms. We evaluate the effectiveness of the
selected features and compare the performance of various
state-of-the-art classification algorithms. Finally, the winning
approach is employed to classify millions of tables resulting in
the Dresden Web Table Corpus (DWTC).

Keywords-Data preprocessing, Web mining, Machine learn-
ing

I. INTRODUCTION

The Web has developed into a comprehensive resource

not only for unstructured or semi-structured data, but also

for relational data. Millions of relational tables embedded in

HTML pages or published in the course of Open Data/Open

Government initiatives provide extensive information on

entities and their relationships from almost every domain.

Researchers have recognized these Web tables as an important

source of information for applications such as factual search

[1], entity augmentation [2], [3], [4] and ontology enrichment

[5].

Whereas in the past only big search engine companies

where able to crawl and make use of these large volume data,

the situation changed with the advent of the Common Crawl

Foundation, a non-profit foundation that crawls the Web

and regularly publishes the resulting Web corpora for public

usage [6]. The data is hosted on Amazon S3, and could thus

be easily processed using EC2 instances for example. We

exploit this new opportunities and develop the Dresden Web

Table Corpus [7] (DWTC) a large corpus consisting of 125

million unique tables extracted from the WARC files of the

July 2014 version1 of the Common Crawl (CC). While the

implementation of the Web table extractor2 can be understood

by checking out the code we provide on GitHub, this paper

focuses on the conceptional challenges of table detection and

classification.

Accurate table detection is essential for the extraction

of table data from the Web, as the vast majority of table

structures in HTML pages are used for layout purposes, and

only a small share contains genuine tables. These tables,

however, are not uniformly structured. Instead, different

layout types such as vertical lists or matrices are used to

represent the data, depending on the content and purpose of

the table. Layout classification allows us to identify the main

layout categories of Web tables. Based on these categories,

we can then make more accurate assumptions about table

characteristics, such as the location of the header, and,

ultimately, the meaning of the table. However, in the literature,

table layout classification has received only little attention,

whereas Web table detection has been studied in greater detail.

Instead of distinguishing between different layout types, many

table analysis and interpretation techniques simply assume

a uniform layout across all tables. In many cases, a simple

layout similar to the layout commonly used for database

tables, with attribute labels at the top of each column and

no designated stub, is expected. It is clear that assuming a

single uniform layout either excludes a substantial number

of tables from the extraction process or leads to inaccurate

results.

Therefore, this paper focuses on incorporating layout

classification in the Web table extraction process. In particular,

we study two alternative approaches. The first, which has been

proposed in the literature, combines layout classification with

table detection into a single classification task. The second

treats both problems as separate consecutive classification

tasks. We conduct a comparative evaluation on real-world

data to establish, which approach is more effective. In detail,

we address the following aspects:

• Classification Scheme: Incorporating lessons learned

from related work, we propose a classification scheme

for genuine Web tables, that distinguishes three main

1http://blog.commoncrawl.org/2014/08/july-2014-crawl-data-available/
2https://github.com/JulianEberius/dwtc-extractor
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layout types: vertical listings, horizontal listings, and

matrix tables.

• Feature Selection: We consolidate and extend a wide

range of features proposed in the literature for each of

the classification tasks. Using correlation-based feature

selection, we evaluated the relevance of each feature

with respect to the classification problems.

• Experimental Evaluation: We conduct an experimen-

tal evaluation on a corpus of Web tables extracted

from the Common Crawl. We evaluated our different

approaches, comparing various classification algorithms.

This paper is organized as follows: In Section II we review

related work in the field of table detection as well as table

layout classification for Web tables. We then formally define

the classification problems in Section III. In Section IV

we consolidate the various table features proposed in the

literature and extend them and for Web tables to facilitate

an accurate classification. In an experimental evaluation

((Section V)) on real-world data, we evaluate the effectiveness

of the selected features and compare the performance of

various state-of-the-art classification algorithms. Finally, we

apply the best classification approach to build our DWTC

and conclude with a summary of our findings (Section VI).

II. RELATED WORK

Identifying genuine tables and discriminating between

different table layouts are the key for building a high-quality

Web table corpus. Both tasks can be regarded as classification

tasks, yet each with a very different objective. In this section

we collect and consolidate various table features proposed in

the literature and evaluate different classification algorithms

in order to come to a reliable solution.

A. Genuine Table Detection

A number of table detection and analysis approaches have

been proposed that specifically target tables on the Web. [8]

address the detection of HTML tables by proposing a set of

heuristic rules and cell similarity measures that distinguish

relational tables from tables used for layout purposes. These

simple rules eliminate tables with less than two cells as well

as tables that contain a significant amount of hyperlinks,

forms or figures. A set of cell similarity measures are used to

filter out any remaining layout tables. An overall F-measure

of 86.5% is reported.

Similar heuristic rules are implemented by [9] for the

detection of genuine Web tables. A table is regarded as

genuine, if it is a leaf table (i.e. it does not contain another

table in a cell), contains multiple rows and columns, and the

size of each table entry is below a predefined threshold.

Furthermore, genuine tables do not contain lists, forms,

images or other non-text formatting tags. This detection

approach achieves an F-measure of 88.01%. The authors

also point out that syntactic and semantic coherency within

the rows or columns of a table are important characteristics

to identify genuine tables. However, no specific measures

for coherency are proposed and these characteristics are not

included in the detection algorithm.

[10] are the first to apply machine learning techniques to

the detection of genuine Web tables. Decision trees as well

as support vector machines (SVM) are considered for the

task. A large set of features, including structural features

and content type features, are utilized. In addition, a word
group feature is proposed that treats tables as text documents

and genuine table detection as a document categorization

problem. An overall evaluation reports a maximal F-measure

of 95.88% for decision trees and 95.89% for support vector

machines with an RBF kernel. With an F-measure of 95.73%
achieved using only structural and content type features we

can conclude that the complex word group feature are only

of minor relevance.

The authors in [11] combine simple rules and statistical

classifiers to detect relational tables in a huge corpus of 14.1
billion HTML tables extracted from a Web crawl. The amount

of genuine tables is estimated to be only 1.1% of the entire

corpus, however attribute/value tables are not included, as

they are not regarded as relational tables. Similar to previous

techniques, the majority of obviously non-relational tables

(89.4%) is eliminated using a set of simple heuristic rules.

The remaining tables are classified using rule-based classifiers

trained on 7 simple features inspired by the work of [10].

Tuning their classifier to maximize recall at the prospect of

loss of precision, [11] report an average precision of 69% and

an average recall of 84% for a subset of the corpus, consisting

of several thousand tables. The rules and features utilized in

this approach do not present novel contributions. However,

[11] are the first to apply a table detection algorithm to a

corpus at Web scale.

A significantly different classification approach is proposed

by [12], who utilize the structural information provided by

the DOM tree of a Web page to detect genuine Web tables.

The DOM tree of the table as well as the DOM tree of

the surrounding document are directly used as features in

the classification tasks. A specialized parse tree kernel is

proposed for SVM-based classification. Additionally, the

content type features proposed by [10] are used to incorporate

content coherency. On a test corpus of several thousand

tables, [12] report an F-measure of 98.58% for an SVM-

based classification combining structural and content type

features. This approach outperforms any previous technique

by incorporating the structural characteristics of the DOM

trees. While previously proposed features were mostly

applicable to tables independent of the file format, the features

proposed here are specific to HTML tables.

B. Table Layout Classification

In addition to distinguishing between genuine and non-

genuine tables, more fine-grained classification schemes for

Web tables have been proposed, which take the layout and
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structure of the tables into account.

The first classification scheme has been proposed by [13].

At the highest level, Web tables are categorized as either

relational knowledge or layout tables. Relational tables are

further divided into seven categories: listings (vertical and

horizontal), attribute/value tables, matrix tables, calendars,

enumerations (i.e. lists), and forms. Layout tables are divided

into two categories: navigational tables and formatting tables.

A wide range of features characterizing the structure and cell

content are used to classify the tables. Before classifying

the tables, [13] apply a simple rule-based filter to eliminate

tables that are obviously not relational. The applied rules

are similar to those proposed by [9], and filter out tables

with less than two rows or columns, and cells with more

than 100 characters. The authors report a reduction by more

than 80%, with 93% of the eliminated tables identified as

layout tables. Remaining tables are classified using a gradient
boosted decision tree model achieving an overall accuracy

of 75.2%.

The work presented by [13] has been further extended

by [14], who consider two layers of classification. The

first layer is similar to the classification scheme proposed

before, classifying tables into one of five categories: vertical,

horizontal, matrix, formatting and navigational. Again, the

classification scheme includes genuine and layout tables, but

does not consider lists or forms. A secondary classification

scheme further classifies genuine tables based on structural

characteristics, such as the occurrence of merged cells or

nested tables. The authors consider a set of 25 features, with

20 features adopted from [13] and 5 features added to address

multivalued tables. A neural network is used to classify the

Web tables. The authors note an increase in classification

performance for all categories, except for matrix tables.

Both table layout classification approaches are very similar

and incorporate the detection of genuine relational tables

into the classification of table layouts. The classifiers achieve

good results for both classification aspects. However, no

comparison to a two-stage classification approach that

performs each task separately is provided.

III. CLASSIFICATION PROBLEM

After reviewing previous work related to Web table

detection and layout classification, we now take a closer

look at the specific classification approaches we wish to

compare. First, we recall the tasks we want to carry out as

part of the classification process: (1) the detection of genuine

tables, and (2) the identification of the layout type of these

tables.

A. Genuine Tables and Table Layout

The objective of table detection is to identify tables

that represent actual genuine tables. These tables frequently

contain simple strings or numeric values in the table cells.

Moreover, they feature syntactic similarities between values

belonging to the same attribute domain, reflected by coherent

rows or columns. In the detection process, candidate tables are

classified as either genuine or non-genuine. Consequently,

table detection can be regarded as a binary classification

problem. In the context of Web pages, non-relational-like

tables are mostly HTML tables used for layout purposes or

to represent menu structures.

The objective of layout type identification is the analysis of

a table’s logical structure. Although table structures on the

Web are very heterogeneous, several prominent structures can

be identified, representing the main layout types. Specifically,

we consider three main layout types: horizontal listings,

vertical listings and matrix tables. Most genuine tables can

be assigned to one of these layout types. The layout types we

consider are based on the alignment of values of the same

attribute within a table. Consequently, characteristic features

to identify each type are the location of attribute labels and

the coherence of values per row or column.

B. Classification Methodology
To carry out both of these tasks, we consider two different

classification approaches, a single-layer and a double-layer
approach. The single-layer approach combines both classi-

fication problems in a single classification task. Therefore,

non-genuine or layout tables are regarded as one class in the

classification scheme, similar to the layout classes Vertical,
Horizontal and Matrix. An additional class Other is included

for all tables that do not fit into any of the previous classes.

The same features, classifier and training data are used

to classify all Web tables in this approach. Consequently,

selected features must be suitable for table detection as well

as layout identification.

In contrast, a double-layer approach performs two separate

classification tasks consecutively, using the output of the table

detection task as the basis for table layout identification. As

only the layout type of genuine tables is of interest, non-

genuine tables are discarded after the first classification step.

As both tasks are performed independently, different features,

classifiers and training data can be applied. In Section V-C3

we compare both approaches regarding their accuracy.

IV. FEATURE SPECIFICATION

We consider features at two different levels of granularity:

global features and local features taking into account struc-

tural as well as content features, utilizing the presence of

HTML markup if applicable. The features address different

aspects of table detection, layout classification or both. We

do not specifically distinguish between features suitable for

table detection and layout classification, respectively, as one

of the approaches we intent to evaluate incorporates both

tasks into a single classification problem.

A. Global Features
Global features describe the table as a whole and, thus,

are computed once per table. As global features, we take into
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account the general table structure of rows and columns, the

overall consistency of cell entries, the distribution of different

data types, as well as the occurrence of designated header tags.

These features incorporate and extend the features proposed

by [13] as well as [10].

1) Table Structure: Table structure features describe the

size and orientation of a table. They take into account the

extent of rows, column and cells. As global features, we

consider the maximal extent as well as the average extent

across the table:

• MAX_ROWS: Maximal number of cells per row, which

are not created by a <SPAN> tag.

• MAX_COLS: Maximal number of cells per column,

which are not created by a <SPAN> tag.

• MAX_CELL_LENGTH: Maximal number of characters

per cell.

• AVG_ROWS: Number of cells per row, averaged across

all rows.

• AVG_COLS: Number of cells per column, averaged

across all columns.

• AVG_CELL_LENGTH: Average number of characters

per cell.

These features provide a first indication whether a candidate

table has the regular structure that is common for genuine

tables. Furthermore, they detect very small tables that are

unlikely to represent relational content.

2) Consistency and Variation: In addition to the previous

features, which describe the general extent of a table, we also

consider the variation encountered in the extent of different

table segments. From this variation, we can derive a more

precise measure of the regularity of the table structure. In

particular, we consider the standard deviation of the size of

rows, columns and cells:

• STD_DEV_ROWS: Standard deviation of the number of

cells per row.

• STD_DEV_COLS: Standard deviation of the number of

cells per column.

• STD_DEV_CELL_LENGTH: Standard deviation of the

number of characters per cell.

In addition to the variance in the table structure, we consider

the consistency of the table entries with respect to their size.

For each cell c, we take the size s as the number of characters

and compute the cumulative length consistency (CLC) per

row or column as follows, where savgi is the average cell

size of table segment (i.e. column or row) i:

CTCi =
∑
c

0.5− xi, where xi = min

( |sc − savgi |
savgi

, 1

)
(1)

These consistency scores are averaged across all rows

(CLCR) and columns (CLCC ) and the maximum is returned

as the global length consistency feature.

3) Content Ratio: The content ratio features identify what

kind of content or data type is predominant in a table.

Layout tables often contain many images or hyperlinks,

while relational tables rather contain simple data types such

as character strings or numeric values. We consider five

different content types: images, forms, hyperlinks, alphabetic

characters and numeric characters. In addition, we look

for empty cells. An additional category Other is added to

account for cell entries that do not match any of the previous

categories. The following list shows all content ratio features

we are considering:

• RATIO_IMG: Cells containing <IMG> tag.

• RATIO_FORM: Cells containing <FORM> tag.

• RATIO_HYPERLINK: Cells containing <A> tag.

• RATIO_ALPHABETIC: Cells with predominantly al-

phabetic characters.

• RATIO_DIGIT: Cells with predominantly numeric

characters.

• RATIO_EMPTY: Empty cells.

• RATIO_OTHER: Cells not matching above categories.

The ratio of cells containing content of a specific type t
is then defined as follows, where n is the number of cells in

a table and ti is the content type of cell i.

RATIO =
1

n

n∑
i=1

xi, where xi =

{
1, if ti = t

0, else
(2)

In addition to the content ratio, we also consider the general

content type consistency. The consistency is first analyzed

per row or column and then averaged across the table. For

each table segment, i.e. row or column, we compute the

cumulative type consistency (CTC) as follows, where dti is

the dominant content type in segment Si:

CTCi =
∑
c∈Si

xc, where xc =

{
1, if tc = dti

−1, else
(3)

The consistency scores are then averaged across all rows

(CTCR) and columns (CTCC). As the global content

consistency feature, we take the maximum of these scores.

4) Header: In HTML tables, the designated <TH> tag

can be used to define header cells Layout tables generally

do not contain a header. Therefore, the presence of markup

for header cells is a good indicator for genuine tables.The

corresponding feature is defined as follows:

HAS HEADER =

{
1, if table contains header markup

0, else
(4)

B. Local Features

In addition to global features, we consider a number of

local features, which are computed for subsets of the table.

We follow the approach proposed by [13] and consider only
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Figure 1. Local features are computed for the first two rows and columns
as well as the last row and column of a table.

the first two rows, the first two columns, the last row and

the last column of a table as segments for local features

(see Figure 1). The first row and the first column of a

table are potential locations for the label cells. Computing

features for these segments and comparing them to their

neighboring segments enables recognizing the orientation of

headers in the tables, which is an important indicator for

the layout type. Furthermore, considering the cell content

at the beginning and end of each column or row provides

an estimate of the coherence of the content as well as the

orientation of the table. As local features, we again consider

structural features as well as the content ratio.

1) Structural Features: As structural features of a table

segment Si, we take into account the average and variance

of the size s of cells in the segment. Each of these features

is computed once for each of the selected segments.

LOCAL LENGTH AVG =
1

|Si|
∑
c∈Si

sc (5)

LOCAL LENGTH VARIANCE =
1

|Si|
∑
c∈Si

(sc − savgi)
2

(6)

Additionally, we consider the distribution of virtual cells

in the segments. Virtual cells are created within a table cell

via <SPAN> tags. A single table cell can contain multiple

<SPAN> tags. We compute the local span ratio as another

feature for each table segment, considering all physical and

virtual cells c in a segment.

LOCAL SPAN RATIO =
1

|Si|
∑
c∈Si

xc

, where xc =

{
1, if c is created by a <SPAN> tag

0, else

(7)

2) Content Ratio: Similar to the global content ratio

features, we also consider the content type of cells in each

local segment. We consider a wide range of content types,

based on the presence of special tags or characters. The ratio

is computed as before. However, in contrast to the global

features, the content types considered here are not mutually

exclusive. Multiple types can be assigned to the content of

a single cell. The following list describes the content types

and corresponding features:

• LOCAL_RATIO_HEADER: Cells containing <TH> tag.

• LOCAL_RATIO_ANCHOR: Cells containing <A> tag.

• LOCAL_RATIO_IMAGE: Cells containing <IMG> tag.

• LOCAL_RATIO_INPUT: Cells containing <INPUT>
tag.

• LOCAL_RATIO_SELECT: Cells containing

<SELECT> tag.

• LOCAL_RATIO_FONT: Cells containing <B>, <I>,

<U> or <FONT> tags.

• LOCAL_RATIO_BR: Cells containing <BR> tag.

• LOCAL_RATIO_COLON: Cells containing colons.

• LOCAL_RATIO_CONTAINS_NUMBER: Cells contain-

ing numeric characters.

• LOCAL_RATIO_IS_NUMBER: Cells containing only
numeric characters.

• LOCAL_RATIO_NON_EMPTY: Cells that are not

empty.

• LOCAL_RATIO_UNORDERED_LIST: Cells contain-

ing <UL> tag.

• LOCAL_RATIO_ORDERED_LIST: Cells containing

<OL> tag.

• LOCAL_RATIO_COMMA: Cells containing commas.

• LOCAL_RATIO_BRACKET: Cells containing brackets

“(” or “)”.

Images, hyperlinks or forms are not frequently found in

genuine relational Web tables and, consequently, indicate

that a table is used for layout purposes. Lists, commas or

line breaks suggest that the content of a cell is not atomic. Yet,

well-formed relational tables predominantly contain atomic

values. Other tags, such as text formatting tags, can be used

to estimate the coherence and orientation of a table, as

attribute values from the same domain generally feature

similar formats.

C. Pre-Selection Filters

Similar to previous Web table detection approaches, we

can eliminate candidate tables, where it is obvious that they

do not represent genuine tables, using a set of simple rules

(see Section II). Similar to the rules proposed by [9], we

expect genuine tables to feature at least two rows and two

columns. Otherwise, the table resembles a list or single cell,

which we do not consider a genuine table. Additionally,

we remove tables that are invalid, i.e. the table structure

does not form a valid HTML segment, as well as tables

that cannot be displayed correctly, which indicates a low

Final edited form was published in "2015 IEEE/ACM 2nd International Symposium on Big Data Computing (BDC). Limassol 2015", S. 41-50, ISBN 978-0-7695-5696-3 
http://dx.doi.org/10.1109/BDC.2015.30 

5 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



Table II
DISTRIBUTION OF TABLE AND LAYOUT CLASSES IN THE CC.

Class # of Tables

Layout 54.0%
Genuine 45.0%

Vertical Listings 34.0%
Horizontal Listings 46.7%
Matrix 3.7%
Others 15.6%

quality of the table in general. Surprisingly, the majority of

HTML tables on the Web does not pass these simple filters,

which amplifies the importance of accurate table detection

algorithms to identify relevant, high quality tables amongst

all these potential candidates.

V. EXPERIMENTAL EVALUATION

In order to establish, which of the two classification

approaches we described in Section III achieves a higher

overall accuracy for Web table detection and layout classifi-

cation, we evaluate both approaches on a corpus of tables

extracted from the CC. Therefore, in Section V-B we consider

feature selection to initially reduce the dimensionality of the

problem and ensure that we only use effective features for

each classification task. The feature selection also provides

insights into the different characteristics of table detection

and layout identification. Finally, in Section V-C we compare

the results of different classification algorithms to ensure that

any difference in performance between the two approaches

is not simply due to the suitability of the selected algorithm.

A. Gold Standard Definition

For the test corpus, we utilize the Common Crawl pub-

lished in October 2014. From a subset of the crawl, we

randomly extracted 26, 654 HTML tables. From these tables,

we identified 24, 623 tables as obviously non-relational using

the simple filter rules described in Section IV-C. After this

initial filter step, 2, 022 tables remained in the corpus, which

were manually labeled and used for evaluation. Table II

shows the frequency with which each table class occurs in

the corpus. In total, layout tables make up about 96% of

all tables that we extracted from the Web. This percentage

initially seems very high, but matches the estimate of 98.9%
reported by [11]. Since matrix tables are significantly less

frequent on the Web than tables with other layouts, our

test set contains only a few instances of matrix tables. The

small sample size for this class can potentially impact the

performance of any classification algorithm. A similar issue

has been reported by [14].

B. Feature Selection

In Section IV, we specified a large set of features for

our classification problems, leading to a high-dimensional

feature space. In total, we consider 127 features per table.

Depending on the classification algorithm used, a large

number of features often requires more training data to

achieve good prediction results and the separation of classes

can be more challenging in high-dimensional spaces. To

reduce the dimensionality and to ensure that no redundant

features are considered, we first perform feature selection.

We employ correlation based feature selection (CFS),
developed by [15], which is a filter approach that is

independent of any specific classification algorithm. CFS

recursively selects features that increase the so-called

merit of the feature set, until no additional feature adds

any benefit. To specify the merit of the feature set, CFS

uses Pearson’s correlation coefficient, which is biased

towards features that are highly correlated with a class

variable, but uncorrelated with other features in the set.

As a result, irrelevant and redundant features are removed

from the original feature set without loss of classification

accuracy [15]. We use the implementation of CFS available

in the WEKA machine learning toolkit [16] and apply it to

each classification problem individually, i.e. table detection

and layout classification, as well as to the consolidated

classification task. The selection will indicate if any features

are only relevant for one of the tasks.

From the initial set of 127 features, the CFS algorithm

reduced the number of features to 29 for the table

detection problem, to 23 for the layout identification

problem and to 31 for the combined classification task.

This means a significant reduction in dimensionality

for each of the classification problems. Table I shows

the features selected for each task, with content ratio

features combined. Four features, namely MAX_ROWS,

MAX_CELL_LENGTH, STD_DEV_CELL_LENGTH and

CUMULATIVE_LENGTH_CONSISTENCY are not selected

for any of the classification problems, most likely because

they are correlated with other features. There are apparent

differences in the feature sets selected for each problem.

While, for instance, the presence of a header or <span>
tags is useful to detect genuine tables, the average cell size

as well as column and row sizes are more relevant for the

identification of a table’s layout. Similarly, content ratio

features selected for each classification problem differ, as

well. While the ratio of cells containing images or forms

is relevant for table detection, it is not relevant for layout

identification. Instead, the local ratio of header cells and

cells containing colons, which also indicates label cells

in some tables, are selected. The reduced feature sets

clearly reflect the different objectives of the classification

problems. Consequently, the features selected for the

combined classification task appear to be a combination

of features selected for the individual tasks. The different

feature sets selected by CFS suggest that a double-layer

classification approach has the potential to outperform

a single-layer approach, by tailoring each classification
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Table I
FEATURES SELECTED FOR EACH CLASSIFICATION TASK.

Feature Table Detection Layout Identification Combined

MAX_COLS × ×
AVG_COLS × ×
AVG_ROWS ×
AVG_CELL_LENGTH ×
STD_DEV_COLS ×
STD_DEV_ROWS ×
RATIO_X × × ×
CUMULATIVE_CONTENT_CONSISTENCY × × ×
HAS_HEADER ×
LOCAL_LENGTH_AVG × × ×
LOCAL_LENGTH_VARIANCE × × ×
LOCAL_SPAN_RATIO × ×
LOCAL_RATIO_X × × ×

step to the characteristics of the classification problem at

hand. In the next section, we evaluate each approach using

different classification algorithms to see if we can confirm

this hypothesis.

C. Classifiers

To provide a comprehensive comparison and evaluation

of the different processing approaches for table detection

and layout classification, we conduct a range of experiments.

We evaluate the classification performance using repeated

random sub-sampling. We randomly split the dataset, using

90% of the data for training and 10% for validation. All

results are averaged over 100 iterations. A common metric

for classification performance is accuracy, which measures

the number of correct predictions divided by the number of

all predictions. However, especially for unbalanced datasets,

were one category is predominant, the accuracy metric is

often not sufficient to evaluate the prediction quality of

a model. As our goal is to achieve a high classification

performance for the less frequently represented classes

Vertical Listing, Horizontal Listing and Matrix, we require

more suitable metrics. Therefore, we use Precision, Recall

and F-Measure to evaluate classification performance.

In our evaluation, we consider various classification al-

gorithms, most of which have been successfully applied

to similar tasks in the literature. As the first class of

classification algorithms, we consider decision trees, which

have been successfully applied to similar tasks by [10] as well

as [13]. Specifically, we consider CART [17] (SimpleCART in

WEKA), C4.5 [18] (J48 in WEKA) and Random Forest [19].

As a second class of classifiers, we consider support vector

machines (SVM) [20] that have been used before by [10]

as well as [12] to detect relational HTML tables. In our

experiments, we use an implementation of support vector

machines provided in WEKA named SMO, which uses

the sequential minimal optimization algorithm developed

by [21]to train the classifier. We consider both a polynomial

kernel and an RBF kernel.
1) Classification Algorithms: In the first set of experi-

ments, we study the suitability of different classification

algorithms with respect to the individual classification prob-

lems. Therefore, we evaluate the table detection and layout

identification tasks individually as well as combined in a

single classification task. For each classification problem, we

use the full set of features and measure precision, recall and

F1 per class. Additionally, we measure the weighted average

for each metric, using the class frequencies as weights to

account for the unbalanced distribution of classes in the

corpus.

First, we evaluate the table detection task, where we

distinguish between layout tables and genuine tables. The

performance measures are presented in Table III. Overall,

the results show a very similar performance for all tested

classification algorithms, with the Random Forest classifier

performing best with respect to F1. For all classifiers, the

prediction quality for layout tables is much better regarding

precision and recall than for genuine tables, which is a

very heterogeneous class due to the different layout types.

However, with 87.3% we achieve a significantly higher

precision for genuine tables compared to 41% precision

achieved by the approach proposed by [22], which is

frequently used by other researchers.

Next, we study the quality of the layout identification using a

Random Forest classifier. All layout tables are removed from

the corpus, and we only consider classes Vertical Listing,

Horizontal Listing, Matrix and Other. The results are shown

in Table IV and confirm that layout classification is more

challenging compared to table detection. Overall, we observe

significantly more variation between the different classes. We

achieve good results for vertical and horizontal listings, yet

achieve only low precision and recall for matrix tables. This

issue, which has also been reported by [14], is mainly due
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Table III
EVALUATION OF THE TABLE DETECTION TASK: ALL MEASURES ARE

REPORTED FOR THE FOLLOWING CLASSES: LAYOUT (L) AND GENUINE

TABLES(G).

Classifier Metric L G Weight. Avg.

J48 Precision 95.11 82.64 89.38
Recall 94.94 83.17 89.53
F1 95.02 82.82 89.41

SimpleCART Precision 95.17 81.61 88.93
Recall 94.55 83.38 89.41
F1 94.85 82.39 89.12

Random Forest Precision 94.92 87.30 91.42
Recall 96.53 82.12 89.90
F1 95.71 84.55 90.58

SMO (Poly) Precision 94.74 81.99 88.87
Recall 94.79 81.81 88.82
F1 94.75 81.81 88.80

SMO (RBF) Precision 95.43 83.58 89.98
Recall 95.19 84.23 90.15
F1 95.30 83.81 90.02

to low number of matrix tables in the dataset. As a result,

there are not enough training samples for this class to build

a reliable model and make accurate predictions. That means

a larger training set is necessary to improve the prediction

performance for matrix tables.

Finally, we measure the performance of the combined

classification task including the Layout class (see Table V).

The prediction quality per class is similar to the results

reported by [14]. The prediction of layout tables is very

accurate, while we observe a lower precision and recall for

horizontal and vertical listings. Again, we experience issues

with matrix tables, due to their low frequency in the dataset.

So far we have utilized the complete set of features for all

classification problems. In the next set of experiments, we

evaluate the impact of feature selection for each task.

2) Impact of Feature Selection: As detailed in Section V-B,

we applied correlation-based feature selection (CFS) to

identify the most relevant features for each classification

problem and reduce the dimensionality by removing irrelevant

or redundant features. We repeated all previous experiments

for all classifiers, using only the selected features. In Table VI,

we compare the weighted average F1 measures for each

experiment to evaluate the impact of the feature selection.

In most cases, the performance measures achieved with

only the selected features are very similar to the values

achieved with all features. This confirms that the selection

algorithm is successful in removing irrelevant and redundant

features. We attribute these changes mainly to the selection

of kernel parameters. Due to the reduced dimensionality,

the optimal kernel parameters most likely differ from the

previous settings, and a more comprehensive parameter

Table IV
EVALUATION OF THE LAYOUT IDENTIFICATION TASK: ALL MEASURES

ARE REPORTED FOR THE FOLLOWING CLASSES: VERTICAL LISTINGS (V),
HORIZONTAL LISTINGS (H), MATRIX (M) AND OTHER (O).

Metric V H M O Weight. Avg.

Precision 71.22 90.02 35.70 80.98 80.18
Recall 86.87 89.24 17.93 56.90 80.71
F1 77.98 89.50 21.69 65.87 79.35

optimization is required to achieve the best results. Apart

from this, the dimensionality reduction has only little impact

on the prediction performance. However, feature selection

also reduces the computational costs for the classification

tasks, which is especially relevant for the processing of huge

Web corpora.

3) Single-Layer vs. Double-Layer Classification: After

evaluating all individual classification tasks as well as the

impact of feature selection, we now compare the single-layer

and the double-layer classification approaches The single-

layer approach corresponds to the combined classification

task in the previous experiments. For the double-layer

approach, we perform table detection and layout identification

consecutively, using the tables classified as genuine in the

first step as input for the second step. We use the same

training set to train both classifiers. We then evaluate the test

set and measure the overall prediction quality.

As the previous results indicated that Random Forest algo-

rithms performs best we only use this classifier in the next

experiments. Additionally, for each task, we only use the

features selected by the CFS algorithm.

The results of this experiment are presented in Table VII. In

general, we can observe that both approaches achieve very

similar results, which means that there is no clear winner. For

both approaches, we observe the best prediction performance

for layout tables and slightly lower measures for vertical

and horizontal listings. Also, both approach show a weak

performance for matrix tables. In general, the results do not

confirm the initial assumption that a double-layer approach

achieves more accurate results. Comparing the results to

the performance measures achieved by layout identification

separately, we can see that errors from the table detection

task propagate through the classification process and impact

the precision in the layout identification step.

Although the single-layer and double-layer approaches

achieve a very similar prediction quality overall, if we look

at the individual measures in detail, we can identify some

differences in their respective performances. While the single-

layer approach achieves a higher precision for genuine tables,

the double-layer approach achieves a higher recall for most

of the classes. Depending on the target application of the

extracted tables, we may favor one over the other. The authors

in [22], for instance, explicitly favor recall for the extraction
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Table V
EVALUATION OF COMBINED CLASSIFICATION PROBLEM. ALL MEASURES ARE REPORTED FOR THE FOLLOWING CLASSES: LAYOUT (L), VERTICAL

LISTINGS (V), HORIZONTAL LISTINGS (H), MATRIX (M) AND OTHER (O).

Metric L V H M O Weight. Avg.

Precision 93.12 67.51 84.78 35.83 76.39 85.13
Recall 97.34 67.28 71.03 14.65 48.50 82.06
F1 95.17 67.09 77.09 19.31 58.40 82.95

Table VI
WEIGHTED F1-MEASURE ACHIEVED USING ALL FEATURES COMPARED TO FEATURES SELECTED BY CFS ALGORITHM.

Classifier Table Detection Layout Identification Combined
All CFS All CFS All CFS

J48 89.41 89.22 77.54 78.46 80.67 80.69
SimpleCART 89.12 89.56 79.43 77.92 80.30 80.16
Random Forest 90.58 90.52 79.35 80.56 82.95 82.93
SMO (Poly) 88.80 89.08 75.86 73.42 81.28 80.79
SMO (RBF) 90.02 88.63 77.43 72.86 81.88 79.44

Table VII
COMPARISON OF THE SINGLE-LAYER AND DOUBLE-LAYER APPROACHES, USING RANDOM FOREST AS THE CLASSIFICATION ALGORITHM AND THE

FEATURES SELECTED BY CFS.

Approach Metric L V H M O Weight. Avg.

Single-layer Precision 93.57 66.27 81.32 39.91 76.65 84.45
Recall 96.60 69.60 71.95 17.83 50.83 82.44
F1 95.06 67.50 76.10 22.67 60.14 82.93

Double-layer Precision 95.29 64.35 78.51 26.63 68.15 83.72
Recall 96.16 73.26 73.93 15.86 53.38 83.35
F1 95.72 68.52 76.15 19.88 59.87 83.38

of genuine tables, as the precision can be further improved

in subsequent processing steps.

In addition, there are further characteristics that need to be

taken into account when selecting one of the classification

approaches. On the one hand, a single-layer approach is

less computationally expensive, as it involves only a single

classification step. On the other hand, the double-layer

approach is more flexible, providing opportunities for the

training data, feature and classifier selection to be adjusted

to the task at hand.

VI. CONCLUSION & BUILDING DWTC

Our comprehensive experiments show that layout types

observed in Web tables are not equally frequent on the Web.

Especially matrix tables are relatively rare. Consequently,

a large sample size is required, when the training data is

randomly sampled from the Web, in order to include a

sufficient number of matrix tables to build the classification

model. Additionally, layout tables represent the vast majority

of tables on the Web. Thus, the accuracy with which these

tables are identified and filtered, has a significant impact

on the precision of detecting genuine tables with different

layout types.

Overall, we achieve good results for the detection of genuine

Web tables and the identification of their main layout types.

As a result, the double-layer classification approach we

proposed, has been employed to classify millions of tables for

the Dresden Web Table Corpus. For processing the Common

Crawl corpora on Amazon S3 we used 100 Amazon EC2

c3.2xlarge machines with 8 vCPUs and 15 GB main memory

each. The total compute time for the whole corpus was

10.238 hours which took more than 4 days using the 100

EC2 instances. From a monetary point of view, extracting the

Web table corpus from the July 2014 Common Crawl required

a total machine rental fee of $102.38 using Amazon spot

instances. The DWTC is provided by 500 GZip compressed

text files3, each line of text containing one JSON document

representing one extracted table and its metadata. For more

statistics on our Web table corpus as well as additional details

on the extractor we refer the reader to [7].

3http://wwwdb.inf.tu-dresden.de/misc/dwtc/data feb15/dwtc-XXX.json.
gz
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