
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818929

Sebastian Götz, Thomas Ilsche, Jorge Cardoso, Josef Spillner, Thomas Kissinger, Uwe
Aßmann, Wolfgang Lehner, Wolfgang E. Nagel, Alexander Schill

Energy-Efficient Databases Using Sweet Spot Frequencies

Erstveröffentlichung in / First published in:

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. London, 08.-
11.12.2014. IEEE, S. 871-876. ISBN 978-1-4799-7881-6.

DOI: http://dx.doi.org/10.1109/UCC.2014.142

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818929
http://dx.doi.org/10.1109/UCC.2014.142

Energy-Efficient Databases using Sweet Spot
Frequencies

Sebastian Götz∗, Thomas Ilsche†, Jorge Cardoso∗‡, Josef Spillner∗, Thomas Kissinger∗,
Uwe Aßmann∗, Wolfgang Lehner∗, Wolfgang E. Nagel∗†, Alexander Schill∗

∗ Technische Universität Dresden, Faculty of Computer Science, Germany

Email: sebastian.goetz@acm.org, {firstname.surname}@tu-dresden.de
† Technische Universität Dresden, Center for Information Services and High Performance Computing, Germany

Email: thomas.ilsche@tu-dresden.de
‡ University of Coimbra, Department of Informatics Engineering, Portugal

Email: jcardoso@dei.uc.pt

Abstract—Database management systems (DBMS) are typi-
cally tuned for high performance and scalability. Nevertheless,
carbon footprint and energy efficiency are also becoming in-
creasing concerns. Unfortunately, existing studies mainly present
theoretical contributions but fall short on proposing practical
techniques. These could be used by administrators or query
optimizers to increase the energy efficiency of the DBMS. Thus,
this paper explores the effect of so-called sweet spots, which
are energy-efficient CPU frequencies, on the energy required
to execute queries. From our findings, we derive the Sweet
Spot Technique, which relies on identifying energy-efficient sweet
spots and the optimal number of threads that minimizes energy
consumption for a query or an entire database workload. The
technique is simple and has a practical implementation leading
to energy savings of up to 50% compared to using the nominal
frequency and maximum number of threads.

I. INTRODUCTION

A large amount of research done in the field of database

management systems (DBMS) has been looking into how

new methods and techniques could improve the performance,

throughput, and scalability of systems [1], [2], [3], [4], [5].

Nonetheless, increasing concerns about energy costs and in-

creasingly large data sets that need to be processed are calling

for the development of energy-efficient DBMS. The energy

consumption caused by running analytical queries over large

data sets – especially in the era of Big Data – is not negligible

when compared to the overall consumption of data centers

despite an increase of the number of transactions per Watt [6].

In 2010, the electricity used in global data centers accounted

for between 1.1% and 1.5% of total electricity use. Data

center traffic is expected to quadruple by 2016. This calls for

the development of new energy-efficient approaches to reduce

their consumption [7].

Existing studies on the energy efficiency of DBMS suffer

from three restrictions: they are limited, occasionally contra-

dictory, and fall short on providing techniques which can be

easily applied to most existing DBMS. For example, the study

described in [8] indicates that power savings in the range of

11%–22% can be achieved by equipping DBMS with a query

optimizer that selects query plans based on both estimated

processing time and power requirements. In [9], the authors

describe a scenario where the use of uncompressed tables

results in a more energy-efficient query execution. On the

other hand, Tsirogiannis et al. [10] have found no concluding

evidence that these techniques can indeed lead to a more

energy-efficient DBMS. Their observation is that computing

energy efficiency without taking into consideration the power

of peripheral components and the idle power of the CPU may

lead to a reduced energy consumption of one component (e.g.,

the CPU), but does not contribute to the energy reduction of

the overall system. The final conclusion is that the highest

CPU frequency is the most energy-efficient one.

In this paper, we revisit the critiques by Tsirogiannis et

al. [10] and Xu et al. [8] to investigate the effect of frequency

scaling on the energy efficiency of a DBMS. In particular,

we take a closer look at the query-level energy efficiency in

relational database systems. Read-only queries (i.e., SELECT

and FETCH) account for the bulk of database operations,

around 97% according to IBM’s REDWAR analysis [11]. Our

aim is to reproduce the results of previous work and, at the

same time, to consider the impact of additional configuration

options: multi-threading, turbo mode, and the use of a column-

oriented database. We measured the energy consumption of

the SELECT queries that are part of the TPC-H benchmark

against the columnar database system MonetDB.

Our findings reveal two important aspects to consider when

developing an energy-efficient DBMS. Energy-efficiency can

be improved by running queries in a specific configuration.

This is confirmed with AC measurements that include the

static and dynamic power consumption of the whole system.

The energy efficiency of a query can be maximized in sweet

spots with high performance-power consumption ratios due

to the non-linear nature of processor power curves. Based

on these findings, we propose the Sweet Spot Technique,
which can guide database administrators or query optimizers

to benchmark DBMS following the same steps we carried

out in our experiment to identify the most energy-efficient

configuration for their workload.

This paper is structured as follows. Sect. II identifies the

research questions to be answered by this study. Sect. III

describes the context (hardware, software, and configurations)

Final edited form was published in "2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. London 2014", S. 871-876, ISBN 978-1-4799-7881-6
http://dx.doi.org/10.1109/UCC.2014.142

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

of the experiments. We discuss the results in Sect. IV and

describe, in Sect. V, a technique that developers can use to

improve the energy efficiency of their database applications.

Finally, Sect. VI and VII present related work and our con-

clusions, respectively.

II. RESEARCH QUESTIONS

The work presented in this paper is motivated by our

previous work (see [12]), which showed that combinations of

algorithms and processors have so-called sweet spots, CPU

frequencies, at which the execution of a computational task is

more energy-efficient. Our objective is to discover to which

extent the existence of sweet spots is usable to design more

energy-efficient database systems.

Our research questions (RQ) are the following:

• RQ1 (Measurement Setup). How to instrument a system

to obtain per-query energy measurements?

• RQ2 (Sweet spots). Can sweet spot frequencies be iden-

tified when running queries against a database?

• RQ3 (Threads). What is the influence of the number of

threads used to run a query on sweet spot frequencies?

To answer these questions, we follow an experimental and

empirical approach to study the energy impact of running

queries against a DBMS by varying database parameters and

CPU settings (configurations).

III. EXPERIMENT DESCRIPTION

For each configuration, we measure the time and energy

consumed by analytical queries and store these results as

comma-separated values in files. The following sections out-

line the hardware and software used in our experiments.

Additionally, the configurations used are precisely described

to encourage replications and extensions of our experiments

on different systems.

A. Hardware Setup

The system under test is equipped with two Intel Xeon E5-

2690 (Sandy Bridge) processors. Each processor has 8 physical

cores and supports Hyper-Threading. The core frequencies can

be set from 1.2 to 2.9GHz and turbo mode with up to 3.8GHz.

All cores of one socket use the same frequency and voltage

configuration. The server is equipped with an internal SSD

(Intel 520 series, 120 GB).

The total real power consumption of the machine is mea-

sured with a calibrated ZES Zimmer LMG450 power analyzer

at the AC input of the power supply unit (PSU). A dedicated

separate measurement system reads 20 values per second

from the power analyzer to avoid any perturbation of the

system under test. Furthermore, all DC outputs of the PSU

are instrumented with custom-built, shunt-based sensors at

the respective Molex adapters. These measurements separately

capture the two 12V connectors to the sockets, the different

ATX voltages, the SATA/SSD power and all the fans in the

system. In addition to these, one of the DDR3 DIMMs is

measured at a DIMM-riser.

CPU 27W

CPU 354W

memory 2W

memory 52W
SSD 0.8W

SSD 2.8W

board 14W

board 15W
fans 14W

fans 14W

PSU loss 13W

PSU loss 34W

0 50 100 150 200 250 300 350 400 450 500

idle

full
load

power consumption [W]

CPU memory SSD board fans PSU loss

Fig. 1: Breakdown of the component power consumption. The

full load configuration was measured at sustained turbo mode

with FIRESTARTER [13] and “cp” for the SSD.

As done in related work [10], we first characterize the power

consumption of the machine. For this, we use the DC in-

strumentation of the system. The memory power consumption

for all 8 DIMMs is estimated from the measurements of one

DIMM and translated to the 12V consumption assuming a

voltage regulator efficiency of 85% [14]. To estimate the CPU

power consumption, which is not instrumented directly, the

memory power is substracted from the 12V input to each

socket. The PSU losses are computed from the difference

between the AC measurement and the sum of all DC mea-

surements. They are load dependant but also include a base

consumption and a fan within the PSU.

The breakdown of power consumption in Figure 1 shows

that the CPU power consumption is the dominating factor,

especially under high load. This confirms the ability to pre-

serve energy by adapting the CPU frequencies. Nevertheless,

the constant power consumption of the fans1 and mainboard

should not be neglected when considering reductions of the

power consumption that increase the overall runtime. We

therefore use the total real power measured by the LMG450

for all further energy efficiency considerations.

B. Software Setup

On the test system, which runs Linux, the MonetDB

column-oriented DBMS is installed. MonetDB is a well-

known open source software to be used primarily for online

analytical processing tasks2. As input for the database, the

industry standard benchmark TPC-H designed by the Trans-

action Processing Performance Council3 was used. TPC-H

includes a set of 22 SQL SELECT queries to be used to

evaluate relational DBMS. TPC-H was configured with a scale

factor of 50 to have long-running queries for more accurate

measurement, but the database should still fit into memory. We

initiate the queries from the system under test and run only

one query at the same time. The latter is necessary to correlate

the energy consumption caused by individual queries.

During the initial experiments, we found out about

MonetDB’s result caching causing a lot of write operations to

disk even when operating on a read-only database. Therefore,

we patched MonetDB to forcibly disable this caching. Results

with unpatched versions may differ considerably.

1The fans were configured to run at constant speed.
2MonetDB website: https://www.monetdb.org/,Version11.17.13
3TPC-H benchmark website: http://www.tpc.org/tpch/,Version2.17.0

Final edited form was published in "2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. London 2014", S. 871-876, ISBN 978-1-4799-7881-6
http://dx.doi.org/10.1109/UCC.2014.142

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

C. Configurations
We measured energy consumption for various database and

hardware configurations. Each configuration was characterized

by 3 variables:

1) TPC −Hquery#: {1, . . . , 14, 16, . . . , 22}.4

2) CPUthread#: {1, 2, 4, 8, 16, 32}

3) CPUfrequency: {1.2, 1.3, 1.4, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2,

2.3, 2.4, 2.5, 2.7, 2.8, 2.9, and turbo mode}.

To account for variance, each query was repeated 8 times,

but the first repetition was excluded from analysis to allow the

database to warm up. The result of the queries is not cached for

successive executions. Among the various TPC-H benchmarks,

we selected a subset of queries with a small time and energy

variance over repetitions to allow a significant comparison.

Good candidates are those which scan large amounts of data.

We tested all queries but then focused our investigation to

queries 9, 16 and 21.

IV. RESULTS OF THE EXPERIMENTS

Figures 2 and 3 show the results (energy and runtime) for

the three selected queries. As expected, the runtime is shortest

with turbo mode for the three queries5. Query 9 is fastest

with 8 threads, while query 16 and 21 do benefit from Hyper-

Threading. Figure 3b exposes another interesting effect: Going

from a single thread to two threads increases the runtime

due to parallelization overhead, but further threads actually

improve the runtime even up to Hyper-Threading. However,

as seen in Figure 2b, the energy consumption is optimal at

only one thread as a result of the low parallel efficiency and

increased power requirements for more active cores. With only

one thread being active for query 16, turbo mode actually

results in the lowest energy consumption. In our case with only

one query being executed at the same time, the other cores of

the system are in sleep states and therefore largely unaffected

by the frequency setting. Consequently, race-to-idle is a good

strategy for this query. Results for query 9 and 21 indicate

a lower thread count and frequency as energy-optimal setting

(compared to the fastest setting). Their energy consumption

does not benefit from Hyper-Threading. The results show that

there is not one optimal frequency - it really depends on the

specific workload characteristics that are being executed, i.e.

memory requirements, thread synchronization bottlenecks, etc.
A total overview for all queries is displayed in Fig-

ures 4a, 4b and 4c, and shows the sweet spots with respect to

energy, time and the energy delay product (EDP). The EDP,

computed as the product of energy and time, is a metric to

summarize the compromise between performance and energy

and was discussed by Laros et al. in [15]. Similarly to time,

the EDP is optimal at the turbo frequency setting, but does

not benefit from utilizing all available cores.
Table I summarizes the results for all queries by showing the

respective energy-optimal settings and the energy savings as

4Query 15 is not used because it does not operate in read-only mode.
5For queries 1, 6 and 11, these results indicate a shortest execution for

a frequency other than turbo mode. However, these queries show a high
variance, thus, this observation is not statistically significant.

Query Frequency Threads Energy Savings [%]
[MHz] Time Savings [%]

1 1900 32

2 2400 16

3 2800 16

4 2700 16

5 2700 16

6 2400 16

7 2200 32

8 turbo 16

9 2800 4

10 2800 32

11 2500 32

12 2000 16

13 2700 16

14 2500 8

16 turbo 1

17 2900 8

18 2400 32

19 2300 32

20 turbo 8

21 2400 16

22 2700 8

-30 -15 0 15 30

TABLE I: Energy savings and time savings for all investigated

queries using sweet spots and a varying number of threads.

well as performance penalty. As a baseline, we use 32 threads

(all logical threads used) and 2.9GHz (nominal frequency),

which is a common default setting. In addition, when using

an optimal configuration per query the overall energy and time

savings are 16.8% and 3.4%, respectively. For the queries 9

and 17, the energy saving is >50% - they are parallelized

inefficiently and benefit with respect to energy and time from

using less threads. Using a single optimal configuration for all

queries results in 12% energy and 29.7% time savings.

The answers to our research questions were the following:

RQ1 (Measurement Setup). To analyze the energy efficiency

of an complete system, the total AC power consumption

should be taken into account. However, the real AC power

consumption can only be measured at relatively low update

intervals, in our case one value every 50ms. Xu et al. [8]

even use only one value per second. Therefore, the runtime

of the measured task (e.g., one query execution) should be

significantly longer than the update interval.

RQ2 (Sweet spots). When using a low number of threads,

all queries show the optimal energy consumption is either at

nominal maximum frequency or turbo mode. Due to the high

relative impact of the constant base power consumption, the

energy in these cases is almost proportional with time. This

results in an efficient race-to-idle strategy. Interestingly, with

an increasing number of threads, varying the CPU frequency

has less impact on energy consumption. Notably, the data for

eight and more threads show sweet spots at different frequen-

cies ranging from 1900 MHz to turbo mode. Therefore, we

argue that processor- and application-specific configurations

exist, which improve energy efficiency.

Final edited form was published in "2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. London 2014", S. 871-876, ISBN 978-1-4799-7881-6
http://dx.doi.org/10.1109/UCC.2014.142

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

5000

6000

7000

8000

9000

10000

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

5000

6000

7000

8000

9000

10000

(a) Query 9

Number of threads
Fr

eq
ue

nc
y

[M
H

z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

Number of threads
Fr

eq
ue

nc
y

[M
H

z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

(b) Query 16

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

800

900

1000

1100

1200

1300

1400

1500

1600

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

800

900

1000

1100

1200

1300

1400

1500

1600

(c) Query 21

Fig. 2: AC energy consumption of different queries based on CPU frequency and the number of threads. Three different

selected TPC-H queries are shown. The lowest energy value is marked with a star (�), all energy values more than twice the

optimal value are shown in black. Each value represents the average energy consumption of 7 repetitions.

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

30

35

40

45

50

55

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

30

35

40

45

50

55

(a) Query 9

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

12

14

16

18

20

22

24

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

12

14

16

18

20

22

24

(b) Query 16

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

(c) Query 21

Fig. 3: Runtime of different queries based on CPU frequency and the number of threads. Three different selected TPC-H

queries are shown. The shortest time is marked with a star (�), all times larger than twice the shortest time are shown in black.

Each value represents the average runtime of 7 repetitions.

RQ3 (Threads). Another interesting observation is the energy

consumption in relation to the number of worker threads and

the use of Hyper-Threading. Primarily, the number of threads

influences the runtime and, therefore, the energy. In several

cases more threads actually result in a slowdown - which

as a consequence also worsens the energy consumption. An

example is query 9: the fastest execution is with eight threads.

Whenever the runtime scales very well (inversely proportional

to the number of threads), it is also clear that a large number

of threads is beneficial for energy consumption. The most

interesting cases are when increasing parallelism does improve

runtime, but not to the extent that energy consumption is

increased. This is why it is important to take parallelism into

account when considering the trade-off between performance

and energy.

V. SWEET SPOT TECHNIQUE

Based on the experiments we conducted, we propose the

following 3-step technique for database administrators to op-

timize the energy efficiency of database systems:

1) Workload Recording. Record a representative workload

of the production DBMS and calculate the probability

of occurrence of each query (type or class).

Final edited form was published in "2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. London 2014", S. 871-876, ISBN 978-1-4799-7881-6
http://dx.doi.org/10.1109/UCC.2014.142

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

25000

30000

35000

40000

45000

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

25000

30000

35000

40000

45000

(a) Energy [J]

Number of threads
Fr

eq
ue

nc
y

[M
H

z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

120

140

160

180

200

220

240

Number of threads
Fr

eq
ue

nc
y

[M
H

z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

120

140

160

180

200

220

240

(b) Time [s]

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

350000

400000

450000

500000

550000

600000

650000

700000

750000

Number of threads

Fr
eq

ue
nc

y
[M

H
z]

1200

1300

1400

1600

1700

1800

1900

2000

2200

2300

2400

2500

2700

2800

2900

turbo

1 2 4 8 16 32

350000

400000

450000

500000

550000

600000

650000

700000

750000

(c) EDP [Js]

Fig. 4: Average AC energy consumption, runtime and EDP over all queries based on CPU frequency and the number of threads.

The lowest consumption, runtime and EDP are marked with a star (�), all values larger than twice the lowest value are shown

in black. Each value represents the average of 7 repetitions.

2) Query Benchmarking. Benchmark all queries to collect

their run time and energy consumption in correlation to

the number of threads and frequency used.

3) Query Aggregation. Select the optimal configuration

among all queries using weighted benchmark results.

Today’s database systems are usually faced with a specific

workload that changes over time. This workload consists of

a set of application-specific precompiled queries and ad-hoc

queries. Thus, the first step of our technique is to record

the workload of the running DBMS. Based on the recorded

workload, we are able to compute probabilities of occurrence

for each query that is part of the workload.

In the next step, all queries are benchmarked for all com-

binations of CPU frequencies and threads, and the execution

time as well as energy consumption for each configuration

is stored in a matrix. Since – especially for long-running

queries – this is the most time consuming part of the process,

experimental design methods can be applied to limit the

configuration space and queries can be executed on a data

sample.

These measurement results will then be aggregated to reflect

the overall effect of each configuration option on runtime

and energy consumption. The aggregation is a weighted sum,

where the probability of each query to be executed in the

production system (relatively to the other queries) is the

weight. This results in two matrices (ME and Mt) with a size

of F×T , where F denotes the number of available frequencies

and T the number of threads to be used. The values of the two

matrices are the total runtime and total energy consumption,

respectively.

To identify the optimal configuration, the two matrices can

be normalized by dividing them with the optimal value respec-

tively. We denote these matrices as M1
E and M1

t . The EDP

being the product of both matrices (i.e., M = M1
E ·M1

t), then

forms an additional basis to select the optimal configuration,

which is the lowest value of M . At this point it can be decided

to optimize for EDP, energy or time.

Finally, either the database administrator or an automated

system has to deploy this configuration to the running system.

Since the workload is a “moving target” and physical data

structures of the DBMS are also subject to change, which

affects the energy-performance profile of queries. The entire

process should be periodically repeated preferably at times of

a low database load.

VI. RELATED WORK

Tsirogiannis et al. [10] found that unlike previous studies

had suggested, the highest performing configuration is the

most energy-efficient. In the few cases where this did not hold,

the improvements in energy efficiency were less than 10%.

This result is mainly due to the large, up-front power costs of

their investigated systems. Our work shows that these findings

do not hold for current state-of-the-art systems. The ratio of

maximum system power vs idle system power was less than

two for the system they tested. In our experiments, which used

a more recent system, it is more than six. Naturally, race-to-
idle is a much less efficient strategy for modern systems.

Lang and Patel [16] have explored Processor Voltage/Fre-

quency Control (PVC) to explicitly reduce the processor

voltage and frequency parameters when the processor is idle,

or underutilized, or current system settings require a lower

performance level. They have shown that PVC can reduce the

processor energy consumption of an (unnamed) commercial

BDMS by 49% while increasing the response time by 3%. On

MySQL, the approach reduces energy consumption by 20%

with a response time penalty of 6%. The limitation of this

work is that only TPC-H Q5 has been tested. Nonetheless,

Final edited form was published in "2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. London 2014", S. 871-876, ISBN 978-1-4799-7881-6
http://dx.doi.org/10.1109/UCC.2014.142

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

the TPC-H contain 22 queries (Q1-Q22). They also explore

workload management by delaying the execution of queries

to find sets of queries with common components.
The work of Rodriguez-Martinez et al. [17] developed a cost

model to estimate the cost of database queries. The approach

used multiple-linear regression on data describing SQL queries

(TPC-H data sets), the characteristics of the tables, columns,

cardinalities, the number of DBMS servers (PostgreSQL on

Ubuntu), and energy measurements to derive a mathematical

estimation function. The cost models are derived from internal

sensors, or power meters.
Harizopoulos et al. [9] argue for focusing on database

management software as a primary target for reducing energy

consumption in data centers. They offer two experiments,

with TPC-H and relational scans, but do not analyze queries,

threads or sweet spots in detail. Their work is not concerned

with user choices over the trade-off between energy efficiency

and performance.
The more recent work of Xu et al. [8] gives quantitative

results for a setup with PostgreSQL similar to the work of

Rodriguez-Martinez et al. [17]. Their encouraging results of

11-22% power savings are surpassed by our detailed analysis

which yields up to 50% savings when optimizing the config-

uration for specific queries.
Livingston et al. [18] discuss energy savings at runtime

with a novel hybrid hardware-software approach called REST

which uses profiling and dynamic CPU/memory usage pattern

driven frequency scaling. They show that sweet spots can

be found for almost any algorithm under test. Our approach

currently considers static frequencies per query instead. Their

work is based on older hardware on which memory bandwidth

does not depend on CPU frequency.
While most researchers use TPC-H and we followed this

approach for easier comparison, alternative approaches for

determining database energy efficiency are now becoming

feasible. JouleSort [19]6 is an external sort benchmark for

evaluating the energy efficiency of a wide range of computer

systems. SPECpower is another benchmark which produces a

server-side Java operations per Watt (ssj_ops/W) metric.

VII. CONCLUSION AND FUTURE WORK

Database queries can be tuned to address energy efficiency

requirements by using appropriate hardware and software con-

figurations and using sweet spot frequencies (i.e., frequency

scaling). Our experiments have confirmed the presence of

sweet spot frequencies. Furthermore, we have also shown

how to determine the optimal number of threads for the

MonetDB system and that multithreading up to the number

of physical cores yields decreasing but always worthwhile

efficiency gains. Both results enabled to tailor the Sweet Spot

Technique, to be used by developers to reduce the energy

consumption of their DBMS.
In the future, we plan to extend the investigation by dividing

queries into individual operators and determining the operator-

level energy efficiency to optimize arbitrary query plans.

6See also: http://sortbenchmark.org/

ACKNOWLEDGEMENTS

This work has been partially funded by the German Re-

search Foundation (DFG) under project agreements SFB 912/1

2011 and SCHI 402/11-1.

REFERENCES

[1] R. Tudoran, O. Nano, I. Santos, A. Costan, H. Soncu, L. Bougé, and
G. Antoniu, “JetStream: Enabling High Performance Event Streaming
across Cloud Data-Centers,” in Proceedings of the 8th ACM Interna-
tional Conference on Distributed Event-Based Systems (DEBS), Mum-
bai, India, May 2013, pp. 23–34.

[2] Y. Li and J. M. Patel, “BitWeaving: Fast Scans for Main Memory Data
Processing,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD), New York City, New
York, USA, June 2013, pp. 289–300.

[3] G. Liu, A. Suchitra, and L. Wong, “A Performance Study of Three
Disk-based Structures for Indexing and Querying Frequent Itemsets,”
Proceedings of the VLDB Endowment, vol. 6, no. 7, pp. 505–516, 2013.

[4] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the Memory
Wall in MonetDB,” Commun. ACM, vol. 51, no. 12, pp. 77–85, 2008.

[5] V. Leis, P. A. Boncz, A. Kemper, and T. Neumann, “Morsel-Driven
Parallelism: A NUMA-Aware Query Evaluation Framework for the
Many-Core Age,” in SIGMOD Conference, 2014, pp. 743–754.

[6] M. Poess and R. O. Nambiar, “Energy Cost, The Key Challenge
of Today’s Data Centers: A Power Consumption Analysis of TPC-C
Results,” Proceedings of the VLDB Endowment, vol. 1, no. 2, pp. 1229–
1240, 2008.

[7] J. Koomey., “Growth in Data center electricity use 2005 to 2010,”
Analytics Press, 2011. [Online]. Available: http://www.analyticspress.
com/datacenters.html

[8] Z. Xu, Y.-C. Tu, and X. Wang, “Exploring power-performance tradeoffs
in database systems,” in Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, March 2010, pp. 485–496.

[9] S. Harizopoulos, M. A. Shah, J. Meza, and P. Ranganathan, “Energy Effi-
ciency: The New Holy Grail of Data Management Systems Research,” in
4th Biennial Conference on Innovative Data Systems Research (CIDR),
Asilomar, California, USA, January 2009, pp. 1–8.

[10] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the
energy efficiency of a database server,” in Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 231–242.

[11] P. S. Yu, M.-S. Chen, H.-U. Heiss, and S. Lee, “On Workload Charac-
terization of Relational Database Environments,” IEEE Transactions on
Software Engineering, vol. 18, no. 4, pp. 347–355, April 1992.

[12] S. Götz, T. Ilsche, J. Cardoso, J. Spillner, U. Aßmann, W. E. Nagel, and
A. Schill, “Energy-efficient data processing at sweet spot frequencies,”
in 4th Intl. Symposium on Cloud Computing, Trusted Computing and
Secure Virtual Infrastructures (CTC14), 2014, accepted for publication.

[13] D. Hackenberg, R. Oldenburg, D. Molka, and R. Schöne, “Introducing
FIRESTARTER: A processor stress test utility,” in Green Computing
Conference (IGCC), 2013 International, 2013, pp. 1–9.

[14] W. Kim, M. S. Gupta, G. yeon Wei, and D. Brooks, “System level
analysis of fast, per-core DVFS using on-chip switching regulators,” in in
International Symposium on High-Performance Computer Architecture,
2008.

[15] J. Laros III, K. Pedretti, S. Kelly, W. Shu, K. Ferreira, J. Vandyke, and
C. Vaughan, “Energy delay product,” in Energy-Efficient High Perfor-
mance Computing, ser. SpringerBriefs in Computer Science. Springer
London, 2013, pp. 51–55.

[16] W. Lang and J. M. Patel, “Towards Eco-friendly Database Management
Systems,” in 4th Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, California, USA, January 2009, pp. 1–8.

[17] M. Rodriguez-Martinez, H. Valdivia, J. Seguel, and M. Greer, “Estimat-
ing power/energy consumption in database servers,” Procedia Computer
Science, vol. 6, no. 0, pp. 112 – 117, 2011, complex adaptive sysytems.

[18] K. Livingston, N. Triquenaux, T. Fighiera, J. Beyler, and W. Jalby,
“Computer using too much power? give it a rest (runtime energy saving
technology),” Computer Science - Research and Development, 2012.

[19] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, “Joulesort:
A balanced energy-efficiency benchmark,” in Proceedings of the ACM
SIGMOD Intl. Conference on Management of Data (SIGMOD), 2007,
pp. 365–376.

Final edited form was published in "2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing. London 2014", S. 871-876, ISBN 978-1-4799-7881-6
http://dx.doi.org/10.1109/UCC.2014.142

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPF632.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Sebastian Götz, Thomas Ilsche, Jorge Cardoso, Josef Spillner, Thomas Kissinger, Uwe Aßmann, Wolfgang Lehner, Wolfgang E. Nagel, Alexander Schill

