
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) / 

This is a self-archiving document (accepted version):  

Diese Version ist verfügbar / This version is available on:  

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818911 

Juchang Lee, Yong Sik Kwon, Franz Färber, Michael Muehle, Chulwon Lee, Christian 
Bensberg, Joo Yeon Lee, Arthur H. Lee, Wolfgang Lehner 

SAP HANA distributed in-memory database system: Transaction, session, 
and metadata management 

Erstveröffentlichung in / First published in: 

2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane, 08.-
12.04.2013. IEEE, S. 1165-1173. ISBN 978-1-4673-4908-6.  

DOI: http://dx.doi.org/10.1109/ICDE.2013.6544906 

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818911
http://dx.doi.org/10.1109/ICDE.2013.6544906


SAP HANA Distributed In-Memory Database 
System: Transaction, Session, and Metadata 

Management 
Juchang Lee#1, Yong Sik Kwon#2, Franz Färber*3, Michael Muehle*4, Chulwon Lee#5, 

Christian Bensberg*6, Joo Yeon Lee#7, Arthur H. Lee+#8, Wolfgang Lehner^*9 
#SAP Labs, Korea 

1juc.lee@sap.com, 2yong.sik.kwon@sap.com, 5ch.lee@sap.com, 7joo.lee@sap.com 
*SAP AG, Germany

3franz.faerber@sap.com, 4michael.muehle@sap.com, 6christian.bensberg@sap.com 
+Claremont McKenna College, USA

8alee@cmc.edu 
^Dresden University of Technology, Germany 

9wolfgang.lehner@tu-dresden.de 

Abstract— One of the core principles of the SAP HANA database 
system is the comprehensive support of distributed query facility. 
Supporting scale-out scenarios was one of the major design 
principles of the system from the very beginning. Within this 
paper, we first give an overview of the overall functionality with 
respect to data allocation, metadata caching and query routing. 
We then dive into some level of detail for specific topics and 
explain features and methods not common in traditional disk-
based database systems. In summary, the paper provides a 
comprehensive overview of distributed query processing in SAP 
HANA database to achieve scalability to handle large databases 
and heterogeneous types of workloads. 

I. INTRODUCTION

An efficient and holistic data management infrastructure is 
one of the key requirements for making the right decisions at 
an operational, tactical, and strategic level. The SAP HANA 
database is the core component of SAP’s HANA roadmap 
playing the foundation to efficiently support all SAP and non-
SAP business processes from a data management perspective 
[1]. In opposite to the traditional architecture of a database 
system, the SAP HANA database takes a different approach to 
provide support for a wide range of data management tasks. 
For example, the system is organized in a main-memory 
centric fashion to reflect the shift within the memory 
hierarchy [9] and to consistently provide high performance 
without any slow disk interactions. 

Completely transparent for the application, data is 
organized along its life cycle either in column or row format, 
providing the best performance for different workload 
characteristics [10]. Transactional workloads with a high 
update rate and point queries are routed against a row store; 
analytical workloads with range scans over large datasets are 
supported by column oriented data structures. In addition to a 
high scan performance over columns, the column-oriented 
representation offers an extremely high potential for 

compression making it possible to store even large datasets 
within the main memory of the database server. Recent 
developments in the hardware sector economically allow 
having off-the-shelf servers with 2 TByte of DRAM. The 
main-memory centric approach therefore turns the classical 
architectural paradigm upside-down: While traditional disk-
centric systems try to guess the hot data to be cached in main 
memory, the SAP HANA approach defaults to have 
everything in main memory; only “cold” data—usually 
determined by complex business rules and not by buffer pool 
replacement strategies working without any knowledge of the 
application domain and corresponding business objects—can 
be staged out onto disk infrastructures. This allows SAP 
HANA to support even very large databases in terms of a 
large number of tables and data volumes sufficient to serve all 
SAP customers with existing and future applications. 

In addition to performance, the SAP HANA database also 
targets to support business processes from a holistic 
perspective. For example, the system may hold text 
documents of products within an order together with 
structured information of the customer and spatial information 
of the current delivery route. As outlined in [2], the SAP 
HANA database provides multiple engines exposing special 
services. Data entered for example in text format can be 
extracted, semantically enriched, and transformed into 
structural data for combination with information coming from 
an engine optimized for graph-structured analytics. 
Combining heterogeneous datasets seamlessly within a single 
query processing environment and providing support for the 
complete life cycle of data on a business object level are some 
of the unique features of SAP HANA. 

Finally, SAP HANA is positioned to act as a consolidation 
platform for many different use cases, from an application 
perspective and from a data management perspective. 
Multiple SAP and non-SAP applications may run on top of 
one single SAP HANA instance providing the right degree of 
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“isolation”—strict isolation, if required, e.g., from security 
perspective, deep integration if different datasets are supposed 
to be merged like in typical data-warehouse scenarios. Having 
a single SAP HANA landscape reduces operational expenses 
and therefore TCO in general. However, scalability is required 
to provide such a degree of service. Therefore, from the very 
beginning on, the SAP HANA database was designed for 
scalability in different directions: 
• Scale Up: Due to main memory requirements SAP

HANA was designed to run on “big machines” offering
multiple CPUs and a fairly large number of threads.

• Scale Out: The SAP HANA database runs in a multi-
node environment to balance the need of CPU power and
main memory capacity providing the same level of
transactional guarantees like in a single node scenario.

• Scale In: Scale in typically denotes multi-tenancy
support and therefore ability to host multiple logical
databases within a single physical instance offering a
certain level of schema and data sharing.

Contributions: Within this paper, we focus on some core 
concepts of distributed query processing in order to provide a 
robust and efficient scale-out solution. We outline the need to 
balance the gain of larger main memory capacities and larger 
number of computing units against the complexity coming 
with a distributed environment. Therefore, we start with an 
overview of distributed query processing in SAP HANA 
following the life cycle of an individual query pinpointing 
specific problems and solutions along the way. Thereafter, we 
dive into detail for some selected problems and give insights 
into the conceptual solution design. In summary, the paper 
provides a comprehensive overview of distributed query 
processing in SAP HANA and describes some procedures and 
their optimizations in detail. 

II. DISTRIBUTED QUERY PROCESSING IN HANA
As already mentioned, scaling database services over 

multiple nodes connected via a high-speed network 
infrastructure implies a variety of challenges. Every single 
component of a database system has to be “distribution-
enabled”, i.e., not only working correctly but also efficiently 
in a distributed environment. From that perspective, the fact of 
distribution affects functional as well as non-functional 
service primitives ranging from distributed (multi-node) query 
processing to caching strategies of metadata repositories. 

The overall goal of the SAP HANA database approach 
consists in scaling over a reasonably large number of nodes 
without sacrificing overall system performance and all well-
known transactional guarantees, i.e., ACID properties. 

The core database challenges can be classified into four 
major categories: distribution of data, distributed transaction 
management, distributed metadata management, and 
distributed query optimization and execution. 

A. Deployment Schemes and Data Distribution
As in all high-end database systems, a single table can be

split into multiple partitions using hash, round-robin, range 
partitioning strategies. Individual partitions are then allocated 

at different nodes pursuing two different strategies. One the 
one hand, specialized reorganization tools exist to provide 
advice for the DBA reaching optimal partitioning schemes. 
For example, the toolset checks incoming workloads on a 
table usage level to come up with a proposal to either spread 
out partitions of a table or co-locate different tables in order to 
avoid multi-node joins or expensive commit protocols. As of 
now, the toolset is optimized to support specific SAP 
applications, especially SAP Business Warehouse also 
considering CPU and memory usage of all active nodes. 
Based on the reference behavior and current system usage, the 
reorganization tool makes a proposal of a revised allocation 
scheme.  Future versions of the toolset will act in an 
application-agnostic way supporting any arbitrary SQL-based 
workload. 

On the other hand, the DBA may directly assign partitions 
of a table to individual HANA nodes.  This manual task is 
especially beneficial to achieve certain performance 
characteristics of certain tables. For example, a DBA might 
want to avoid distributed transactions with network traffic and 
protocol delay to improve query performance. For example, a 
single landscape may consist of one very large machine and 
multiple smaller nodes as shown in Figure 1. The large 
machine node will then host all “transactionally hot” tables or 
partition of tables avoiding distributed transactions with 
network traffic and protocol delay. More analytically oriented 
applications targeting multiple partitions of historical data or 
databases coming from external data sources will then hit the 
parallel nodes to improve query performance. Since all 
datasets are part of one single SAP HANA landscape, the 
database system is able to run cross-joins within multi-node 
transactions, if the query demands it—the allocation and 
deployment scheme just tries to reduce the communication 
within the cluster. 

Fig. 1.  Asymmetric deployment of an SAP HANA landscape 

B. Distributed Transaction Management
In opposite to scale-out solutions like Hadoop, SAP HANA

follows the traditional semantics of providing full ACID 
support. In order to make good the promise of supporting both 
OLTP and OLAP-style query processing within a single 
platform, the SAP HANA database relaxes neither any 
consistency constraints nor any degree of atomicity or 
durability. On the one side, the SAP HANA database applies 
traditional locking and logging schemes for distributed 
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scenarios with some very specific optimizations like 
optimizing the two-phase commit protocol (subsection III-D) 
or providing sophisticated mechanisms for session 
management (subsections III-C.1, III-C.2, and III-C.3). As 
mentioned the deployment of the system usually reflects the 
intended use in order to have a benefit of a large node for 
heavy transaction processing and a number of usually smaller 
nodes for analytical workloads where the additional overhead 
of distributed synchronization reflects a relatively small 
portion of the overall query runtime. Since SAP HANA relies 
on MVCC as the underlying concurrency control mechanism, 
the system provides distributed snapshot isolation and 
distributed locking to synchronize multiple writers. Therefore, 
the system relies on a distributed locking scheme with a global 
deadlock detection mechanism avoiding a centralized lock 
server as a potential single point of failure. 

C. Distributed Metadata Management
Within an SAP HANA database landscape, a coordinator

node stores and manages all the persistent metadata such as 
table/view schema, user information, privileges on DB objects, 
etc.  To satisfy requirements for consistent metadata access, 
the metadata object container provides both MVCC based 
access and transactional update (ACID) on its contents. It also 
provides index-based fast object lookup. 

Fig. 2. Distributed metadata management within an SAP HANA landscape 

In order to improve access to metadata at worker nodes, the 
concept of metadata caches enables local access to “remote” 
metadata in a distributed environment. Figure 2 shows the 
metadata object container and cache in the coordinator and 
worker nodes. When a component in a worker node requires 
access to a metadata object located at the (remote) coordinator, 
the metadata manager first tries to locate it in the cache. If 
there is no result object in the cache, a corresponding retrieval 
request is sent to the coordinator. The result is placed within 
the cache and access is granted to the requesting component. 
In order to reduce potential round-trips to fetch different 
entries of metadata, the system applies group caching of 
tightly related metadata, e.g., a cache request for metadata 
related for a table also returns metadata about columns, 
existing indexes, etc. within a single request. For consistent 
query processing, the access to the metadata cache is tightly 
coupled with the transaction management.  

D. Distributed Query Compilation and Execution
In order to illustrate the key concepts of distributed query

processing within SAP HANA, we will follow a query in 
different scenarios. Within a single node setup, the client 

connects to a particular server and starts the query compilation 
process. Figure 3 shows the different steps. 

Fig. 3. Query compilation and execution in a single node scenario 

The session layer forwards an incoming query request to 
the optimizer (1). After consulting metadata (2) and checking 
the plan cache (3), the query will eventually be optimized and 
compiled. In opposite to other systems, the optimizer embeds 
substantial metadata into the query plan and returns it to the 
client. For example, metadata flowing back to the client 
contains information about the most optimal node to actually 
start and orchestrate the query execution. Within a single node 
case, the client sends the query plan to the execution 
component (4), puts the plan into the (current) query plan 
cache and starts executing the query in a combination of 
column- and row-store. In the case of an update, additional log 
information will eventually be written to the persistency layer 
to ensure atomicity and durability. 

The query flow is a bit more complicated in a multi-node 
deployment as illustrate in Figure 4. As before, a client may 
send a query to a dedicated coordinator node (1). After the 
initial query compilation, the returned query plan contains 
information about the node where the query should be 
executed (4). This recommendation is based on data locality 
for the particular query and the current system status. The 
client then sends the query to the recommended (worker) node 
(5) and re-compiles the  query  with  respect  to  the  node-
specific  properties  and statistics (6). As before, the
optimization step requires access to metadata, which is either
already available at the current node (7) or requested on-the-
fly from the coordinator (8). After re-compilation, the query is
executed (10) by extracting the plan from the plan cache (11),
passing it to the execution component which again routes the
individual requests to the local storage structures (12) and
potentially local persistency layer (13). Figure 5 illustrates the
benefits of  using  statement re-routing  with  a  simple  single-
table select. The figure shows three cases: (i) single-node case;
(ii) multi-mode case with statement routing turned on; and (iii)
multi-node case with statement routing turned off.  As we can
see, cases (i) and (ii) are virtually identical. Case (iii) however
is significantly and consistently slower than the other two
cases.   In  addition  to  statement  routing,   this  scenario  also

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6 
https://doi.org/10.1109/ICDE.2013.6544906

3 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



 

 
Fig. 4. Query re-compilation at remote node 

exploits the optimization of using a local transaction token to 
reduce the communication cost between nodes, effectively 
behaving like a single-node scenario. 
 

 
 

Fig. 5. Sample scenario showing benefits of client-side statement routing 

 
The most general case of a distributed query execution 

spans some of the operators over multiple nodes. While the 
initial compilation and client-side routing including re-
compilation, metadata access, etc. are equivalent to the former 
case, a multi-node query requires two additional steps (Figure 
6). Before starting the execution of the query, the transaction 
manager consults the coordinator (1), registering the 
transaction and retrieving a global transaction token holding 
the visibility information for that particular query (in general 
for all queries within a transaction). For execution, the 
executor component distributes the query plan over multiple 
nodes by shipping sub-query plans with the transaction token 
and triggering the individual processing steps (5). The 
decision where to run what part of the global query plan and 
when to move intermediate data between the nodes is 
determined on a cost-based basis during query compilation. 
Obviously, the distributed query optimizer is a non-trivial 
piece of the SAP HANA database in order to reduce network 
traffic and decide which part of a query can be parallelized 
over multiple nodes. 

 

 
Fig. 6. Distributed query spanning multiple nodes 

E. Some Experimental Results 
Without diving into too much detail at this point, we give 

some overall performance numbers showing the potential (e.g., 
read scalability, write behavior, etc.) of the SAP HANA 
database system with respect to different workload scenarios. 
The reported numbers are based on an SAP HANA landscape 
with 31 nodes, each consisting of 0.5 TByte main memory, 20 
physical CPU cores, and local disks with 700 MB/s 
throughput for local logging. A 10 Gbps network was used for 
the interconnect. The numbers are taken from a real customer 
SAP Business Warehouse installation on top of SAP HANA 
database; the SAP HANA database (after compression) 
showed an overall size of 100 GByte. 

 

 
 
The first workload consists of typical analytical queries 

issued against the warehouse from Business Intelligence tools. 
While Table I shows the average execution times over 200 
single queries comprising the two different types of workloads, 
Figure 7 depicts the speedup with a growing number of nodes: 

1) Query 1 is a representative set of queries requiring a full 
table scan over the fact table, which can be parallelized 
over multiple worker nodes. As we can see, 
performance increases with the number of nodes but 
drops as the landscape uses a partitioning scheme 
stretching the fact table over all 31 nodes implying a 
larger number of local joins. The performance drop is 
primarily caused by the size of the resulting partitions. 
If the partitions are too small, the resulting overhead 
and the large number of local join operations with 
distribution of the join partner is counterproductive with 
respect to the overall query performance. 

2) In the opposite, query set 2 touches a small piece of 
data located only at a single node. As can be seen, the 
scale-out does not significantly affect query 
performance, neither in the positive nor in the negative 
way; the speedup therefore remains constant 
independent of the number of nodes. 

1168
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Fig. 7. Speedup for analytical workload 

As outlined in the introduction, the SAP HANA database 
system is designed to deliver extremely good performance for 
OLAP- and OLTP-style query workloads. We therefore also 
consider a typical update-heavy workload in the context of a 
real SAP BW scenario. After loading extracted raw data into 
the BW system and applying transformations with respect to 
data cleansing and harmonization requirements, new data is 
eventually “merged” with the existing state of the fact table 
implying a mix of insert, delete, and update operations on the 
potentially very large fact table. Following this “activation 
step”, the system is applying reorganization steps to better 
reflect the multidimensional model. Again this “compression 
step” within the overall SAP BW loading process is a write-
intensive step which can nicely be parallelized over multiple 
nodes. 

1) The loading chain type 1 shown in Table I reflects an
activation step. As can be seen in Figure 8, the system
scales very nicely with the number of nodes, despite the
heavy write process.

2) The compression step (loading chain type 2) finally
shows excellent scalability with a speedup of 13.6 for
15 nodes or 25.2 for the 31 node case and therefore
demonstrates the scale-out capability in an optimal
setting with respect to the physical database design.
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Fig. 8. Speedup for write-intensive workload 

Summary 
As outlined, distributed query processing in SAP HANA is 

based on four fundamental building blocks. First of all, the 
SAP HANA system is working in a shared-nothing fashion 
with respect to the nodes' main memory within an SAP 

HANA landscape. Optimally partitioning and allocating 
partitions to nodes within a landscape is therefore of utmost 
importance. The SAP HANA database therefore comes with a 
variety of tools optimized for SAP applications to support the 
administration task. Second, the SAP HANA database 
provides full ACID support in the scale-out scenario which is 
therefore different to “Big Data”-systems like Hadoop and the 
like. Third, the system provides a sophisticated and MVCC-
based metadata caching infrastructure reducing the overall 
communication cost in a landscape. Finally, the SAP HANA 
database pursues client-side statement routing as the core 
principle of load balancing—this paradigm is therefore 
orthogonal to traditional parallel database architectures relying 
on page caching strategies. While page caching may result in 
having the same page in multiple nodes and thus reducing the 
net main memory capacity, client-side statement routing 
brings the query to the node with the highest data locality thus 
reducing network traffic and in cases of transactions against a 
small number of “related” tables even the need for two-phase-
commit. This mechanism is especially useful for asymmetric 
deployment schemes (Figure 1) by routing transactional 
workload queries to the large node of an SAP HANA 
landscape. 

III. SELECTED OPTIMIZATIONS

In this section we describe in detail some selected 
optimization problems in the SAP HANA distributed 
landscape and provide insights into the conceptual solution 
design for them. 

A. Client-Side Statement Routing
In a distributed database environment a query statement

issued by a client may be executed in any one of the available 
nodes.  The problem is determining the optimal node to run it 
on and route it to the node, which in HANA would be any one 
of the worker nodes in the system. HANA uses what we call 
client-side statement routing to achieve this.  Affinity 
information between a given compiled query and its accessed 
data location is cached transparently at the client library.  So, 
without changing the existing client programs and also 
without requiring any more information on clients, any 
arbitrary query given by a client program can be routed to a 
desirable server node. 

Figure 9 shows a conceptual view of the solution on how a 
query is routed by client library and how the affinity 
information is maintained at the client side.  First, at compile 
time the desired server location of a given query can be 
decided and it is returned to the client library.  On a 
subsequent repeated execution of such a compiled query, it is 
routed to the associated server node directly by the client 
library.  Sometimes, by DDL operations such as table 
movement or repartitioning, however, the desired location of a 
given query can be changed as for Table T2 in Figure 9.  In 
such a case, on the next query execution following the DDL 
operation, such inefficiency is detected automatically by 
comparing the metadata timestamp of the client-side cached 
information with the server-side latest metadata timestamp 
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value and then the client-cached information is updated with 
the latest information. 

Fig. 9. Client-side statement routing 

How is the optimal target location decided given a client-
side statement then?  A server extracts tables and/or views 
needed to run the statement (or a stored procedure if that is the 
case) and returns the locations (nodes) of the target tables 
and/or views.  The client then does the following: If the 
number of nodes returned is 1, route the query to that node.  If 
the number is greater than 1, then do the following: If the 
table returned is a hash partitioned table or a round-robin 
partitioned table, and furthermore the query is an INSERT 
query, then evaluate the input value of the partitioning key 
and use the result as the target location.  Otherwise, route it to 
the returned nodes in a round-robin fashion. 

The routing decision can be resolved at compile time 
(which we call static resolution) in some cases or at run time 
(which we call dynamic resolution) in other cases.  We now 
discuss static resolution optimizations in the rest of this 
subsection and dynamic resolution optimizations will be 
discussed in the subsection that follows. 

Let us consider stored procedures first.  How is it decided 
at which node a stored procedure is executed?  Within a stored 
procedure there may be a variety of multiple queries.  Usage 
pattern of each query in a stored procedure is used in making 
the routing decision. For example, if one query executes 
multiple times in a procedure, we can be a little smarter. 
Suppose there are 10 queries and one of them is in a loop, in 
which case a higher priority is given to the query in a loop in 
making the decision. 

In some cases analyzing a stored procedure at a server 
alone may not be sufficient, in which case the server could get 
some hints from the client code.  Application programs could 
pass some domain knowledge into the application code. 

With the client-side statement routing mechanism in place 
there is no more 1-to-1 mapping between a session and a 
physical connection or between a transaction and a physical 
connection.  This poses a technical challenge though, which 
has to do with session context management.  A session context 
is a property of a session (for example, user name, locale, 

transaction isolation mode, etc.).  Without client-side 
statement routing, there is only 1-to-1 mapping between a 
logical session and a client-server physical connection, which 
means that the session context information can be stored in the 
server-side connection.  With client-side statement routing, 
however, it should be shared across multiple client-server 
physical connections.  In HANA, some of the session context 
information is also cached at the client library side.  The 
cached information can then be used when it has to make a 
new physical connection to a different server within the same 
logical session without having to contact the initial physical 
connection of the logical session. 

In this subsection, we primarily focused on the cases in 
which the desired execution location of a query is decided at 
query compilation time.  However, there are other types of 
queries whose desired location can be decided dynamically at 
run time.  Such cases are described in the subsection. 

B. Dynamic Resolution in Statement Routing
1) Table partitioning: Using the partitioning feature of the

SAP HANA database, a table can be partitioned horizontally 
into disjunctive sub-tables or “partitions”, each of which may 
be used by each node of a distributed HANA database system. 
Problem is how to partition a table optimally so that each 
partition is shipped to the optimal worker node.  Partitioning 
may be done by using one of three strategies: hash, round-
robin, and range.  Both hash partitioning and round-robin are 
used to equally distribute the partitions to worker nodes. 
Range partitioning can be used to create dedicated partitions 
for certain values or certain value ranges to be distributed to 
worker nodes. 

Let us consider hash partitioning in more detail.  To decide 
a desirable partition of a given query to a partitioned table, we 
need to consider the table's partitioning specification (or the 
partitioning function) and the execution-time input values of 
its partitioning keys.  The partitioning specification can be 
given to the client library on the query compilation, but the 
execution-time input values can be known only during the 
query execution time.  This input value interpretation logic is 
normally done by the server-side query processing layer.  For 
this optimization though, such logic is also shipped together to 
the client library as well. 

This partitioning optimization technique is used to support 
client-side routing of various statements such as inserts, 
selects, updates, and deletes as long as their WHERE clause 
includes partitioning key information. 

2) Load balancing: Each node in a distributed database
system may be utilizing the key resources, i.e., CPU and 
memory, differently with different workloads at any given 
time.  For example, one node may be busy with CPU-bound 
tasks while there may be at least one other node that is not 
busy at all at that point in time.  With HANA as a main-
memory database system, memory is being used not only for 
processing but also for storage, i.e., holding table data.  Again 
for example, one node may almost be out of memory while 
there may be at least one other node with plenty of available 
memory.  It is a correctness concern as well as performance 
concern, i.e., we cannot ever get into a situation where a node 
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fails because it ran out of memory.  Therefore, it is important 
to balance not only the processing load but also storage load 
among different nodes in the system. 

In addition to improving affinity between data location and 
processing location, we can extend client-side statement 
routing to achieve better load balancing across HANA server 
nodes.  When returning a query result to a client library, a 
HANA server can return its memory and CPU resource 
consumption status together with the result, i.e., without 
making any additional round trip.  Alternatively, the client 
library can periodically collect the resource status of HANA 
server nodes.  If the client detects that one of computing nodes 
does not have enough CPU or memory resource at that point 
in time, the client library tries to temporarily re-route the 
current query to other nodes.  Furthermore, at query 
compilation time the client library can attach its expected 
memory consumption to the query plan. If this information is 
then cached and attached to the compiled query at the client 
side, the client library can perform more efficient re-routing. 

C. Distributed Snapshot Isolation (Distributed MVCC)
For distributed snapshot isolation figuring out how to

reduce the overhead of synchronizing transaction ID or 
commit timestamp across multiple servers belonging to a 
same transaction domain has been a challenging problem [3], 
[4], [5].  SAP HANA database focuses on optimization for a 
single-node query which is executed without accessing any 
other node. If the partitioning and table placement is done 
optimally, then most of queries can be processed within a 
single node.  For long-running analytical queries that have to 
be spanned across multiple nodes, the overhead incurred by 
communicating such transactional information will be 
relatively ignorable compared to the overall execution time of 
the query.  So, our optimization choice that favors single-node 
queries can make sense for many applications.  

The question is how is it figured out whether a transactional 
snapshot boundary will only touch one node or not in advance? 
It is feasible especially under the Read-Committed isolation 
mode [6], which is the default isolation mode in many SAP 
applications. 

In Read-Committed isolation mode the MVCC snapshot 
boundary is the lifetime of the query, which means that the 
transaction does not need to consider any other query.  So, the 
isolation boundary for the query can be determined at compile 
time, i.e., at that time it can figure out exactly what parts of 
which tables to access to execute the query.  When the query 
finishes, the snapshot finishes its life as well, i.e., the snapshot 
is meaningful only on that local node while the query is 
executing.  The entire transaction context that is needed for a 
query to execute is captured in a data structure called 
transaction token (described below) and is cached on a local 
node. For the “Repeatable Read” or “Serializable” isolation 
level, the transaction token can be reused for the queries 
belonging to the same transaction, which means that its 
communication cost with the coordinator node is less 
important. 

Whenever a transaction (in a transaction-level snapshot 
isolation mode) or a statement (in a statement-level snapshot 

isolation mode) starts, it copies the current transaction token 
into its context (called snapshot token).  And, the transaction 
(or statement) decides which versions should be visible to 
itself based on the copied ‘snapshot token’. 

Now we describe distributed snapshot isolation (or 
distributed MVCC). In our transaction protocol every 
transaction started at a worker node should access the 
transaction coordinator to get its snapshot transaction token. 
This could cause (1) a throughput bottleneck at the transaction 
coordinator and (2) additional network delay to the worker-
side local transactions.  To remedy these situations we use 
three techniques: (i) one that enables local read-only 
transactions to run without accessing the global coordinator; 
(ii) another that enables local read or write transactions to run
without accessing the global coordinator; and (iii) third that
uses “write TID buffering” to enable multi-node write
transactions to run with only a single access to the global
coordinator.  We now describe all three techniques in order.

1) Optimization for worker-node local read transactions or
statements: Every update transaction accesses the transaction 
coordinator to access and update the global transaction token. 
Read-only statements on the other hand just start with its 
cached local transaction token. This local transaction token is 
refreshed 
• by the transaction token of an update transaction when it

commits on the node, or
• by the transaction token of a ‘global statement’ when it

comes in to (or started at) the node.
If the statement did not need to access any other node, it 

can just finish with the cached transaction token, i.e., without 
any access to the transaction coordinator.  If it detects that the 
statement should also be executed in another node, however, it 
is switched to the 'global statement' type, after which the 
current statement is retried with the global transaction token 
obtained from the coordinator. 

Single-node read-only statements/transactions do not need 
to access the transaction coordinator at all. This is significant 
to avoid the performance bottleneck at the coordinator and to 
reduce performance overhead of single-node statements (or 
transactions). 

2) Optimization for worker-side local write transactions:
Each node manages its own local transaction token 
independently of the global transaction token.  Even the 
update transaction can just update its own local transaction 
token if it is a single-node transaction.  The difference is that 
each database record has two TID (or Transaction ID) 
columns for MVCC version filtering: one for global TID and 
another for local TID. (In the existing other schemes, there is 
only one TID/Commit ID column.)  If it is a local-only 
transaction, it reads/updates the local TID. If it is a global 
transaction, however, it reads either global or local TID (reads 
a global TID if there is a value in its global TID column; 
otherwise, reads a local TID) and updates both global and 
local TIDs. So, the global transactions carry two snapshot 
transaction tokens: one for global transaction token and 
another for the current worker node's local transaction token. 
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In the log record both global and local TIDs are also 
recorded if it is a global transaction.  On recovery a local 
transaction's commit can be decided by its own local commit 
log record.  Only for global transactions it is required to check 
the global coordinator.  Here again statement type switch 
protocol is necessary as it is the case in case 1) above. 

3) Optimization for multi-node write transactions: A multi-
node write transaction needs a global write TID as all multi-
node transactions do.  The optimization described in case 2) 
above would not help.  It can however be handled by the write 
TID buffering technique which we describe now. 

In a HANA scale-out system one of the server nodes 
becomes the transaction coordinator which manages the 
distributed transaction and controls two phase commit. 
Executing a distributed transaction involves multiple network 
communications between the coordinator node and worker 
nodes.  Each write transaction is assigned a globally unique 
write transaction ID.  A worker-node-first transaction, one that 
starts at a worker node first, should be assigned a TID from 
the coordinator node as well, which causes an additional 
network communication.  Such a communication might 
significantly affect the performance of distributed transaction 
execution.  This extra network communication is eliminated to 
improve the worker-node-first write transaction performance. 

We solve this problem by buffering such global write TIDs 
in a worker node. When a request for a TID assignment is 
made the very first time, the coordinator node returns a range 
of TIDs which gets buffered in the worker node.  The next 
transaction which needs a TID gets it from the local buffer 
thus eliminating the extra network communication with the 
coordinator node.  A few key challenges are determining 
optimal buffer size as a parameter and deciding when to flush 
the buffer if they are not being used. 

Therefore, by combination of the optimizations described 
in this subsection SAP HANA provides transparency of 
transaction performance regardless of where it is started and 
committed without losing or mitigating any transactional 
consistency. 

D. Optimizing Two-Phase Commit Protocol
Two-phase commit (2PC) protocol is widely used to ensure

atomicity of distributed multi-node update transactions. A 
series of optimization techniques we describe in this 
subsection are our attempts to reduce the network and log I/O 
delays during a two-phase commit thus increasing throughput. 

1) Early commit acknowledgement after the first commit
phase: Our first optimization is to return commit 
acknowledgement early after the first commit phase [7], [8], 
as shown in Figure 10. 

Right after the first commit phase and the commit log is 
written to the disk, the commit acknowledgement can be 
returned to the client. And then, the second commit phase can 
be done asynchronously. 

Fig. 10. Returning commit ack early after first commit phase 

For this optimization three things are considered. 
1) Writing the commit log entries on the worker nodes

can be done asynchronously.  During crash recovery
then some committed transactions can be classified as
in-doubt transactions, which will be resolved as
committed finally by checking the transaction's status
in the coordinator.

2) If transaction tokens are cached asynchronously on the
worker nodes, the data is visible by a transaction but
not by the next (local-only) transaction in the same
session.  This situation can be detected by storing the
last transaction token information for each session at
the client side.  And then, until the second commit
phase of the previous transaction is done, the next
query can be stalled.

3) If transactional locks are released after sending a
commit acknowledgement to the client, a 'false lock
conflict' may arise by the next transaction in the same
session.  This situation can however be detected by the
same problem with (2) above.  If this is detected, the
transaction can wait for a short time period until the
commit notification arrives to the worker node.

2) Skipping writes of prepare logs: The second optimiza-
tion is to remove additional log I/Os for writing prepare-
commit log entries. 

In a typical 2-phase-commit the prepare-commit log entry 
is used to ensure that the transaction's previous update logs are 
written to disk and to identify in-doubt transactions at the 
recovery time. 
• Writing the transaction's previous update logs to disk can

be ensured without writing any additional log entry, by
just comparing the transaction-last-LSN (log sequence
number) with the log-disk-last-LSN.  If the log-disk-last-
LSN is larger than the transaction-last-LSN, it means
that the transaction's update logs are already flushed to
disk.

• If we do not write the prepare-commit log entry, we can
handle all the uncommitted transactions at recovery time
as in-doubt transactions.
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Their commitance can be decided by checking with the 
transaction coordinator.  So, the size of in-doubt 
transaction list can increase, but with less run-time 
overhead. 

3) Group two-phase commit protocol: This is a similar idea
to the one described in Subsection III-C.3, but instead of 
sending commit requests to the coordinator node individually 
(i.e., one for each write transaction), we can group multiple 
concurrent commit requests into one and send it to the 
coordinator node in one shot. 

Also, when the coordinator node multicasts a "prepare-
commit" request to multiple-related worker nodes of a 
transaction, we can group multiple "prepare-commit" requests 
of multiple concurrent transactions which will go to the same 
worker node. 

By this optimization we can get better throughput of 
concurrent transactions. 

Two-phase commit itself cannot be avoided fundamentally 
for ensuring global atomicity to multi-node write transactions. 
However, by combination of the optimizations described in 
this subsection, we can reduce its overhead significantly. 

E. Metadata Cache Management
The system-wide metadata catalogue is kept in the

coordinator node.  As a worker node processes a query, it 
would have to obtain the necessary metadata information from 
the coordinator node.  To reduce the overhead caused by the 
network latency in the communication between the 
coordinator node and a worker node, HANA supports a 
worker node requesting multiple metadata objects with a 
single request when beneficial.  

When a worker node needs to obtain metadata information 
from the coordinator node because it does not have that 
information already cached on it, it will incur IPC.  An 
example can be seen in Step 8 of Figure 4.  Since each single 
metadata cache miss will cause IPC via network 
communication, it can be a considerable performance penalty 
for the cases where there are many metadata cache misses for 
a single query execution.  Group caching for metadata is 
introduced to minimize cache miss penalties of this kind. 
Instead of checking cache in an on-demand manner, a worker 
node collects the entire required metadata object IDs first and 
sends a single request for all the missing objects.  This 
optimization is particularly good for a query with a complex 
query plan which requires accessing multiple metadata objects 
of various kinds such as tables, indexes, views, and privileges. 

IV. SUMMARY

The SAP HANA database is primarily designed to cover 
the three difference scaling principles: scale-in, scale-up, and 
scale-out. In this paper we outlined some of the hard problems 
in multi-node scenarios, showed the core architectural designs, 
and give optimization details for some of the problems. 
Specifically, we discuss optimization for query routing in 
single and multiple node scenarios, we show optimizations 
techniques for client-based statement routing, two-phase-
commit protocol, and finally give some insights into caching 
strategies and techniques for metadata catalogue of the SAP 
HANA database. 
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