
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818911

Juchang Lee, Yong Sik Kwon, Franz Färber, Michael Muehle, Chulwon Lee, Christian
Bensberg, Joo Yeon Lee, Arthur H. Lee, Wolfgang Lehner

SAP HANA distributed in-memory database system: Transaction, session,
and metadata management

Erstveröffentlichung in / First published in:

2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane, 08.-
12.04.2013. IEEE, S. 1165-1173. ISBN 978-1-4673-4908-6.

DOI: http://dx.doi.org/10.1109/ICDE.2013.6544906

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818911
http://dx.doi.org/10.1109/ICDE.2013.6544906

SAP HANA Distributed In-Memory Database
System: Transaction, Session, and Metadata

Management
Juchang Lee#1, Yong Sik Kwon#2, Franz Färber*3, Michael Muehle*4, Chulwon Lee#5,

Christian Bensberg*6, Joo Yeon Lee#7, Arthur H. Lee+#8, Wolfgang Lehner^*9
#SAP Labs, Korea

1juc.lee@sap.com, 2yong.sik.kwon@sap.com, 5ch.lee@sap.com, 7joo.lee@sap.com
*SAP AG, Germany

3franz.faerber@sap.com, 4michael.muehle@sap.com, 6christian.bensberg@sap.com
+Claremont McKenna College, USA

8alee@cmc.edu
^Dresden University of Technology, Germany

9wolfgang.lehner@tu-dresden.de

Abstract— One of the core principles of the SAP HANA database
system is the comprehensive support of distributed query facility.
Supporting scale-out scenarios was one of the major design
principles of the system from the very beginning. Within this
paper, we first give an overview of the overall functionality with
respect to data allocation, metadata caching and query routing.
We then dive into some level of detail for specific topics and
explain features and methods not common in traditional disk-
based database systems. In summary, the paper provides a
comprehensive overview of distributed query processing in SAP
HANA database to achieve scalability to handle large databases
and heterogeneous types of workloads.

I. INTRODUCTION

An efficient and holistic data management infrastructure is
one of the key requirements for making the right decisions at
an operational, tactical, and strategic level. The SAP HANA
database is the core component of SAP’s HANA roadmap
playing the foundation to efficiently support all SAP and non-
SAP business processes from a data management perspective
[1]. In opposite to the traditional architecture of a database
system, the SAP HANA database takes a different approach to
provide support for a wide range of data management tasks.
For example, the system is organized in a main-memory
centric fashion to reflect the shift within the memory
hierarchy [9] and to consistently provide high performance
without any slow disk interactions.

Completely transparent for the application, data is
organized along its life cycle either in column or row format,
providing the best performance for different workload
characteristics [10]. Transactional workloads with a high
update rate and point queries are routed against a row store;
analytical workloads with range scans over large datasets are
supported by column oriented data structures. In addition to a
high scan performance over columns, the column-oriented
representation offers an extremely high potential for

compression making it possible to store even large datasets
within the main memory of the database server. Recent
developments in the hardware sector economically allow
having off-the-shelf servers with 2 TByte of DRAM. The
main-memory centric approach therefore turns the classical
architectural paradigm upside-down: While traditional disk-
centric systems try to guess the hot data to be cached in main
memory, the SAP HANA approach defaults to have
everything in main memory; only “cold” data—usually
determined by complex business rules and not by buffer pool
replacement strategies working without any knowledge of the
application domain and corresponding business objects—can
be staged out onto disk infrastructures. This allows SAP
HANA to support even very large databases in terms of a
large number of tables and data volumes sufficient to serve all
SAP customers with existing and future applications.

In addition to performance, the SAP HANA database also
targets to support business processes from a holistic
perspective. For example, the system may hold text
documents of products within an order together with
structured information of the customer and spatial information
of the current delivery route. As outlined in [2], the SAP
HANA database provides multiple engines exposing special
services. Data entered for example in text format can be
extracted, semantically enriched, and transformed into
structural data for combination with information coming from
an engine optimized for graph-structured analytics.
Combining heterogeneous datasets seamlessly within a single
query processing environment and providing support for the
complete life cycle of data on a business object level are some
of the unique features of SAP HANA.

Finally, SAP HANA is positioned to act as a consolidation
platform for many different use cases, from an application
perspective and from a data management perspective.
Multiple SAP and non-SAP applications may run on top of
one single SAP HANA instance providing the right degree of

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

“isolation”—strict isolation, if required, e.g., from security
perspective, deep integration if different datasets are supposed
to be merged like in typical data-warehouse scenarios. Having
a single SAP HANA landscape reduces operational expenses
and therefore TCO in general. However, scalability is required
to provide such a degree of service. Therefore, from the very
beginning on, the SAP HANA database was designed for
scalability in different directions:
• Scale Up: Due to main memory requirements SAP

HANA was designed to run on “big machines” offering
multiple CPUs and a fairly large number of threads.

• Scale Out: The SAP HANA database runs in a multi-
node environment to balance the need of CPU power and
main memory capacity providing the same level of
transactional guarantees like in a single node scenario.

• Scale In: Scale in typically denotes multi-tenancy
support and therefore ability to host multiple logical
databases within a single physical instance offering a
certain level of schema and data sharing.

Contributions: Within this paper, we focus on some core
concepts of distributed query processing in order to provide a
robust and efficient scale-out solution. We outline the need to
balance the gain of larger main memory capacities and larger
number of computing units against the complexity coming
with a distributed environment. Therefore, we start with an
overview of distributed query processing in SAP HANA
following the life cycle of an individual query pinpointing
specific problems and solutions along the way. Thereafter, we
dive into detail for some selected problems and give insights
into the conceptual solution design. In summary, the paper
provides a comprehensive overview of distributed query
processing in SAP HANA and describes some procedures and
their optimizations in detail.

II. DISTRIBUTED QUERY PROCESSING IN HANA
As already mentioned, scaling database services over

multiple nodes connected via a high-speed network
infrastructure implies a variety of challenges. Every single
component of a database system has to be “distribution-
enabled”, i.e., not only working correctly but also efficiently
in a distributed environment. From that perspective, the fact of
distribution affects functional as well as non-functional
service primitives ranging from distributed (multi-node) query
processing to caching strategies of metadata repositories.

The overall goal of the SAP HANA database approach
consists in scaling over a reasonably large number of nodes
without sacrificing overall system performance and all well-
known transactional guarantees, i.e., ACID properties.

The core database challenges can be classified into four
major categories: distribution of data, distributed transaction
management, distributed metadata management, and
distributed query optimization and execution.

A. Deployment Schemes and Data Distribution
As in all high-end database systems, a single table can be

split into multiple partitions using hash, round-robin, range
partitioning strategies. Individual partitions are then allocated

at different nodes pursuing two different strategies. One the
one hand, specialized reorganization tools exist to provide
advice for the DBA reaching optimal partitioning schemes.
For example, the toolset checks incoming workloads on a
table usage level to come up with a proposal to either spread
out partitions of a table or co-locate different tables in order to
avoid multi-node joins or expensive commit protocols. As of
now, the toolset is optimized to support specific SAP
applications, especially SAP Business Warehouse also
considering CPU and memory usage of all active nodes.
Based on the reference behavior and current system usage, the
reorganization tool makes a proposal of a revised allocation
scheme. Future versions of the toolset will act in an
application-agnostic way supporting any arbitrary SQL-based
workload.

On the other hand, the DBA may directly assign partitions
of a table to individual HANA nodes. This manual task is
especially beneficial to achieve certain performance
characteristics of certain tables. For example, a DBA might
want to avoid distributed transactions with network traffic and
protocol delay to improve query performance. For example, a
single landscape may consist of one very large machine and
multiple smaller nodes as shown in Figure 1. The large
machine node will then host all “transactionally hot” tables or
partition of tables avoiding distributed transactions with
network traffic and protocol delay. More analytically oriented
applications targeting multiple partitions of historical data or
databases coming from external data sources will then hit the
parallel nodes to improve query performance. Since all
datasets are part of one single SAP HANA landscape, the
database system is able to run cross-joins within multi-node
transactions, if the query demands it—the allocation and
deployment scheme just tries to reduce the communication
within the cluster.

Fig. 1. Asymmetric deployment of an SAP HANA landscape

B. Distributed Transaction Management
In opposite to scale-out solutions like Hadoop, SAP HANA

follows the traditional semantics of providing full ACID
support. In order to make good the promise of supporting both
OLTP and OLAP-style query processing within a single
platform, the SAP HANA database relaxes neither any
consistency constraints nor any degree of atomicity or
durability. On the one side, the SAP HANA database applies
traditional locking and logging schemes for distributed

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

scenarios with some very specific optimizations like
optimizing the two-phase commit protocol (subsection III-D)
or providing sophisticated mechanisms for session
management (subsections III-C.1, III-C.2, and III-C.3). As
mentioned the deployment of the system usually reflects the
intended use in order to have a benefit of a large node for
heavy transaction processing and a number of usually smaller
nodes for analytical workloads where the additional overhead
of distributed synchronization reflects a relatively small
portion of the overall query runtime. Since SAP HANA relies
on MVCC as the underlying concurrency control mechanism,
the system provides distributed snapshot isolation and
distributed locking to synchronize multiple writers. Therefore,
the system relies on a distributed locking scheme with a global
deadlock detection mechanism avoiding a centralized lock
server as a potential single point of failure.

C. Distributed Metadata Management
Within an SAP HANA database landscape, a coordinator

node stores and manages all the persistent metadata such as
table/view schema, user information, privileges on DB objects,
etc. To satisfy requirements for consistent metadata access,
the metadata object container provides both MVCC based
access and transactional update (ACID) on its contents. It also
provides index-based fast object lookup.

Fig. 2. Distributed metadata management within an SAP HANA landscape

In order to improve access to metadata at worker nodes, the
concept of metadata caches enables local access to “remote”
metadata in a distributed environment. Figure 2 shows the
metadata object container and cache in the coordinator and
worker nodes. When a component in a worker node requires
access to a metadata object located at the (remote) coordinator,
the metadata manager first tries to locate it in the cache. If
there is no result object in the cache, a corresponding retrieval
request is sent to the coordinator. The result is placed within
the cache and access is granted to the requesting component.
In order to reduce potential round-trips to fetch different
entries of metadata, the system applies group caching of
tightly related metadata, e.g., a cache request for metadata
related for a table also returns metadata about columns,
existing indexes, etc. within a single request. For consistent
query processing, the access to the metadata cache is tightly
coupled with the transaction management.

D. Distributed Query Compilation and Execution
In order to illustrate the key concepts of distributed query

processing within SAP HANA, we will follow a query in
different scenarios. Within a single node setup, the client

connects to a particular server and starts the query compilation
process. Figure 3 shows the different steps.

Fig. 3. Query compilation and execution in a single node scenario

The session layer forwards an incoming query request to
the optimizer (1). After consulting metadata (2) and checking
the plan cache (3), the query will eventually be optimized and
compiled. In opposite to other systems, the optimizer embeds
substantial metadata into the query plan and returns it to the
client. For example, metadata flowing back to the client
contains information about the most optimal node to actually
start and orchestrate the query execution. Within a single node
case, the client sends the query plan to the execution
component (4), puts the plan into the (current) query plan
cache and starts executing the query in a combination of
column- and row-store. In the case of an update, additional log
information will eventually be written to the persistency layer
to ensure atomicity and durability.

The query flow is a bit more complicated in a multi-node
deployment as illustrate in Figure 4. As before, a client may
send a query to a dedicated coordinator node (1). After the
initial query compilation, the returned query plan contains
information about the node where the query should be
executed (4). This recommendation is based on data locality
for the particular query and the current system status. The
client then sends the query to the recommended (worker) node
(5) and re-compiles the query with respect to the node-
specific properties and statistics (6). As before, the
optimization step requires access to metadata, which is either
already available at the current node (7) or requested on-the-
fly from the coordinator (8). After re-compilation, the query is
executed (10) by extracting the plan from the plan cache (11),
passing it to the execution component which again routes the
individual requests to the local storage structures (12) and
potentially local persistency layer (13). Figure 5 illustrates the
benefits of using statement re-routing with a simple single-
table select. The figure shows three cases: (i) single-node case;
(ii) multi-mode case with statement routing turned on; and (iii)
multi-node case with statement routing turned off. As we can
see, cases (i) and (ii) are virtually identical. Case (iii) however
is significantly and consistently slower than the other two
cases. In addition to statement routing, this scenario also

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Fig. 4. Query re-compilation at remote node

exploits the optimization of using a local transaction token to
reduce the communication cost between nodes, effectively
behaving like a single-node scenario.

Fig. 5. Sample scenario showing benefits of client-side statement routing

The most general case of a distributed query execution

spans some of the operators over multiple nodes. While the
initial compilation and client-side routing including re-
compilation, metadata access, etc. are equivalent to the former
case, a multi-node query requires two additional steps (Figure
6). Before starting the execution of the query, the transaction
manager consults the coordinator (1), registering the
transaction and retrieving a global transaction token holding
the visibility information for that particular query (in general
for all queries within a transaction). For execution, the
executor component distributes the query plan over multiple
nodes by shipping sub-query plans with the transaction token
and triggering the individual processing steps (5). The
decision where to run what part of the global query plan and
when to move intermediate data between the nodes is
determined on a cost-based basis during query compilation.
Obviously, the distributed query optimizer is a non-trivial
piece of the SAP HANA database in order to reduce network
traffic and decide which part of a query can be parallelized
over multiple nodes.

Fig. 6. Distributed query spanning multiple nodes

E. Some Experimental Results
Without diving into too much detail at this point, we give

some overall performance numbers showing the potential (e.g.,
read scalability, write behavior, etc.) of the SAP HANA
database system with respect to different workload scenarios.
The reported numbers are based on an SAP HANA landscape
with 31 nodes, each consisting of 0.5 TByte main memory, 20
physical CPU cores, and local disks with 700 MB/s
throughput for local logging. A 10 Gbps network was used for
the interconnect. The numbers are taken from a real customer
SAP Business Warehouse installation on top of SAP HANA
database; the SAP HANA database (after compression)
showed an overall size of 100 GByte.

The first workload consists of typical analytical queries

issued against the warehouse from Business Intelligence tools.
While Table I shows the average execution times over 200
single queries comprising the two different types of workloads,
Figure 7 depicts the speedup with a growing number of nodes:

1) Query 1 is a representative set of queries requiring a full
table scan over the fact table, which can be parallelized
over multiple worker nodes. As we can see,
performance increases with the number of nodes but
drops as the landscape uses a partitioning scheme
stretching the fact table over all 31 nodes implying a
larger number of local joins. The performance drop is
primarily caused by the size of the resulting partitions.
If the partitions are too small, the resulting overhead
and the large number of local join operations with
distribution of the join partner is counterproductive with
respect to the overall query performance.

2) In the opposite, query set 2 touches a small piece of
data located only at a single node. As can be seen, the
scale-out does not significantly affect query
performance, neither in the positive nor in the negative
way; the speedup therefore remains constant
independent of the number of nodes.

1168

Authorized licensed use limited to: SLUB Dresden. Downloaded on April 07,2022 at 09:06:36 UTC from IEEE Xplore. Restrictions apply.

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0

2

4

6

8

10

nodes

sp
ee

du
p

1 3 7 15 31

●

●

●

●

●

query #1

query #2

Fig. 7. Speedup for analytical workload

As outlined in the introduction, the SAP HANA database
system is designed to deliver extremely good performance for
OLAP- and OLTP-style query workloads. We therefore also
consider a typical update-heavy workload in the context of a
real SAP BW scenario. After loading extracted raw data into
the BW system and applying transformations with respect to
data cleansing and harmonization requirements, new data is
eventually “merged” with the existing state of the fact table
implying a mix of insert, delete, and update operations on the
potentially very large fact table. Following this “activation
step”, the system is applying reorganization steps to better
reflect the multidimensional model. Again this “compression
step” within the overall SAP BW loading process is a write-
intensive step which can nicely be parallelized over multiple
nodes.

1) The loading chain type 1 shown in Table I reflects an
activation step. As can be seen in Figure 8, the system
scales very nicely with the number of nodes, despite the
heavy write process.

2) The compression step (loading chain type 2) finally
shows excellent scalability with a speedup of 13.6 for
15 nodes or 25.2 for the 31 node case and therefore
demonstrates the scale-out capability in an optimal
setting with respect to the physical database design.

0

5

10

15

20

25

30

nodes

sp
ee

du
p

1 3 7 15 31

●

●

●

●

●
loading chain #1

loading chain #2

Fig. 8. Speedup for write-intensive workload

Summary
As outlined, distributed query processing in SAP HANA is

based on four fundamental building blocks. First of all, the
SAP HANA system is working in a shared-nothing fashion
with respect to the nodes' main memory within an SAP

HANA landscape. Optimally partitioning and allocating
partitions to nodes within a landscape is therefore of utmost
importance. The SAP HANA database therefore comes with a
variety of tools optimized for SAP applications to support the
administration task. Second, the SAP HANA database
provides full ACID support in the scale-out scenario which is
therefore different to “Big Data”-systems like Hadoop and the
like. Third, the system provides a sophisticated and MVCC-
based metadata caching infrastructure reducing the overall
communication cost in a landscape. Finally, the SAP HANA
database pursues client-side statement routing as the core
principle of load balancing—this paradigm is therefore
orthogonal to traditional parallel database architectures relying
on page caching strategies. While page caching may result in
having the same page in multiple nodes and thus reducing the
net main memory capacity, client-side statement routing
brings the query to the node with the highest data locality thus
reducing network traffic and in cases of transactions against a
small number of “related” tables even the need for two-phase-
commit. This mechanism is especially useful for asymmetric
deployment schemes (Figure 1) by routing transactional
workload queries to the large node of an SAP HANA
landscape.

III. SELECTED OPTIMIZATIONS

In this section we describe in detail some selected
optimization problems in the SAP HANA distributed
landscape and provide insights into the conceptual solution
design for them.

A. Client-Side Statement Routing
In a distributed database environment a query statement

issued by a client may be executed in any one of the available
nodes. The problem is determining the optimal node to run it
on and route it to the node, which in HANA would be any one
of the worker nodes in the system. HANA uses what we call
client-side statement routing to achieve this. Affinity
information between a given compiled query and its accessed
data location is cached transparently at the client library. So,
without changing the existing client programs and also
without requiring any more information on clients, any
arbitrary query given by a client program can be routed to a
desirable server node.

Figure 9 shows a conceptual view of the solution on how a
query is routed by client library and how the affinity
information is maintained at the client side. First, at compile
time the desired server location of a given query can be
decided and it is returned to the client library. On a
subsequent repeated execution of such a compiled query, it is
routed to the associated server node directly by the client
library. Sometimes, by DDL operations such as table
movement or repartitioning, however, the desired location of a
given query can be changed as for Table T2 in Figure 9. In
such a case, on the next query execution following the DDL
operation, such inefficiency is detected automatically by
comparing the metadata timestamp of the client-side cached
information with the server-side latest metadata timestamp

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

value and then the client-cached information is updated with
the latest information.

Fig. 9. Client-side statement routing

How is the optimal target location decided given a client-
side statement then? A server extracts tables and/or views
needed to run the statement (or a stored procedure if that is the
case) and returns the locations (nodes) of the target tables
and/or views. The client then does the following: If the
number of nodes returned is 1, route the query to that node. If
the number is greater than 1, then do the following: If the
table returned is a hash partitioned table or a round-robin
partitioned table, and furthermore the query is an INSERT
query, then evaluate the input value of the partitioning key
and use the result as the target location. Otherwise, route it to
the returned nodes in a round-robin fashion.

The routing decision can be resolved at compile time
(which we call static resolution) in some cases or at run time
(which we call dynamic resolution) in other cases. We now
discuss static resolution optimizations in the rest of this
subsection and dynamic resolution optimizations will be
discussed in the subsection that follows.

Let us consider stored procedures first. How is it decided
at which node a stored procedure is executed? Within a stored
procedure there may be a variety of multiple queries. Usage
pattern of each query in a stored procedure is used in making
the routing decision. For example, if one query executes
multiple times in a procedure, we can be a little smarter.
Suppose there are 10 queries and one of them is in a loop, in
which case a higher priority is given to the query in a loop in
making the decision.

In some cases analyzing a stored procedure at a server
alone may not be sufficient, in which case the server could get
some hints from the client code. Application programs could
pass some domain knowledge into the application code.

With the client-side statement routing mechanism in place
there is no more 1-to-1 mapping between a session and a
physical connection or between a transaction and a physical
connection. This poses a technical challenge though, which
has to do with session context management. A session context
is a property of a session (for example, user name, locale,

transaction isolation mode, etc.). Without client-side
statement routing, there is only 1-to-1 mapping between a
logical session and a client-server physical connection, which
means that the session context information can be stored in the
server-side connection. With client-side statement routing,
however, it should be shared across multiple client-server
physical connections. In HANA, some of the session context
information is also cached at the client library side. The
cached information can then be used when it has to make a
new physical connection to a different server within the same
logical session without having to contact the initial physical
connection of the logical session.

In this subsection, we primarily focused on the cases in
which the desired execution location of a query is decided at
query compilation time. However, there are other types of
queries whose desired location can be decided dynamically at
run time. Such cases are described in the subsection.

B. Dynamic Resolution in Statement Routing
1) Table partitioning: Using the partitioning feature of the

SAP HANA database, a table can be partitioned horizontally
into disjunctive sub-tables or “partitions”, each of which may
be used by each node of a distributed HANA database system.
Problem is how to partition a table optimally so that each
partition is shipped to the optimal worker node. Partitioning
may be done by using one of three strategies: hash, round-
robin, and range. Both hash partitioning and round-robin are
used to equally distribute the partitions to worker nodes.
Range partitioning can be used to create dedicated partitions
for certain values or certain value ranges to be distributed to
worker nodes.

Let us consider hash partitioning in more detail. To decide
a desirable partition of a given query to a partitioned table, we
need to consider the table's partitioning specification (or the
partitioning function) and the execution-time input values of
its partitioning keys. The partitioning specification can be
given to the client library on the query compilation, but the
execution-time input values can be known only during the
query execution time. This input value interpretation logic is
normally done by the server-side query processing layer. For
this optimization though, such logic is also shipped together to
the client library as well.

This partitioning optimization technique is used to support
client-side routing of various statements such as inserts,
selects, updates, and deletes as long as their WHERE clause
includes partitioning key information.

2) Load balancing: Each node in a distributed database
system may be utilizing the key resources, i.e., CPU and
memory, differently with different workloads at any given
time. For example, one node may be busy with CPU-bound
tasks while there may be at least one other node that is not
busy at all at that point in time. With HANA as a main-
memory database system, memory is being used not only for
processing but also for storage, i.e., holding table data. Again
for example, one node may almost be out of memory while
there may be at least one other node with plenty of available
memory. It is a correctness concern as well as performance
concern, i.e., we cannot ever get into a situation where a node

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

fails because it ran out of memory. Therefore, it is important
to balance not only the processing load but also storage load
among different nodes in the system.

In addition to improving affinity between data location and
processing location, we can extend client-side statement
routing to achieve better load balancing across HANA server
nodes. When returning a query result to a client library, a
HANA server can return its memory and CPU resource
consumption status together with the result, i.e., without
making any additional round trip. Alternatively, the client
library can periodically collect the resource status of HANA
server nodes. If the client detects that one of computing nodes
does not have enough CPU or memory resource at that point
in time, the client library tries to temporarily re-route the
current query to other nodes. Furthermore, at query
compilation time the client library can attach its expected
memory consumption to the query plan. If this information is
then cached and attached to the compiled query at the client
side, the client library can perform more efficient re-routing.

C. Distributed Snapshot Isolation (Distributed MVCC)
For distributed snapshot isolation figuring out how to

reduce the overhead of synchronizing transaction ID or
commit timestamp across multiple servers belonging to a
same transaction domain has been a challenging problem [3],
[4], [5]. SAP HANA database focuses on optimization for a
single-node query which is executed without accessing any
other node. If the partitioning and table placement is done
optimally, then most of queries can be processed within a
single node. For long-running analytical queries that have to
be spanned across multiple nodes, the overhead incurred by
communicating such transactional information will be
relatively ignorable compared to the overall execution time of
the query. So, our optimization choice that favors single-node
queries can make sense for many applications.

The question is how is it figured out whether a transactional
snapshot boundary will only touch one node or not in advance?
It is feasible especially under the Read-Committed isolation
mode [6], which is the default isolation mode in many SAP
applications.

In Read-Committed isolation mode the MVCC snapshot
boundary is the lifetime of the query, which means that the
transaction does not need to consider any other query. So, the
isolation boundary for the query can be determined at compile
time, i.e., at that time it can figure out exactly what parts of
which tables to access to execute the query. When the query
finishes, the snapshot finishes its life as well, i.e., the snapshot
is meaningful only on that local node while the query is
executing. The entire transaction context that is needed for a
query to execute is captured in a data structure called
transaction token (described below) and is cached on a local
node. For the “Repeatable Read” or “Serializable” isolation
level, the transaction token can be reused for the queries
belonging to the same transaction, which means that its
communication cost with the coordinator node is less
important.

Whenever a transaction (in a transaction-level snapshot
isolation mode) or a statement (in a statement-level snapshot

isolation mode) starts, it copies the current transaction token
into its context (called snapshot token). And, the transaction
(or statement) decides which versions should be visible to
itself based on the copied ‘snapshot token’.

Now we describe distributed snapshot isolation (or
distributed MVCC). In our transaction protocol every
transaction started at a worker node should access the
transaction coordinator to get its snapshot transaction token.
This could cause (1) a throughput bottleneck at the transaction
coordinator and (2) additional network delay to the worker-
side local transactions. To remedy these situations we use
three techniques: (i) one that enables local read-only
transactions to run without accessing the global coordinator;
(ii) another that enables local read or write transactions to run
without accessing the global coordinator; and (iii) third that
uses “write TID buffering” to enable multi-node write
transactions to run with only a single access to the global
coordinator. We now describe all three techniques in order.

1) Optimization for worker-node local read transactions or
statements: Every update transaction accesses the transaction
coordinator to access and update the global transaction token.
Read-only statements on the other hand just start with its
cached local transaction token. This local transaction token is
refreshed
• by the transaction token of an update transaction when it

commits on the node, or
• by the transaction token of a ‘global statement’ when it

comes in to (or started at) the node.
If the statement did not need to access any other node, it

can just finish with the cached transaction token, i.e., without
any access to the transaction coordinator. If it detects that the
statement should also be executed in another node, however, it
is switched to the 'global statement' type, after which the
current statement is retried with the global transaction token
obtained from the coordinator.

Single-node read-only statements/transactions do not need
to access the transaction coordinator at all. This is significant
to avoid the performance bottleneck at the coordinator and to
reduce performance overhead of single-node statements (or
transactions).

2) Optimization for worker-side local write transactions:
Each node manages its own local transaction token
independently of the global transaction token. Even the
update transaction can just update its own local transaction
token if it is a single-node transaction. The difference is that
each database record has two TID (or Transaction ID)
columns for MVCC version filtering: one for global TID and
another for local TID. (In the existing other schemes, there is
only one TID/Commit ID column.) If it is a local-only
transaction, it reads/updates the local TID. If it is a global
transaction, however, it reads either global or local TID (reads
a global TID if there is a value in its global TID column;
otherwise, reads a local TID) and updates both global and
local TIDs. So, the global transactions carry two snapshot
transaction tokens: one for global transaction token and
another for the current worker node's local transaction token.

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

In the log record both global and local TIDs are also
recorded if it is a global transaction. On recovery a local
transaction's commit can be decided by its own local commit
log record. Only for global transactions it is required to check
the global coordinator. Here again statement type switch
protocol is necessary as it is the case in case 1) above.

3) Optimization for multi-node write transactions: A multi-
node write transaction needs a global write TID as all multi-
node transactions do. The optimization described in case 2)
above would not help. It can however be handled by the write
TID buffering technique which we describe now.

In a HANA scale-out system one of the server nodes
becomes the transaction coordinator which manages the
distributed transaction and controls two phase commit.
Executing a distributed transaction involves multiple network
communications between the coordinator node and worker
nodes. Each write transaction is assigned a globally unique
write transaction ID. A worker-node-first transaction, one that
starts at a worker node first, should be assigned a TID from
the coordinator node as well, which causes an additional
network communication. Such a communication might
significantly affect the performance of distributed transaction
execution. This extra network communication is eliminated to
improve the worker-node-first write transaction performance.

We solve this problem by buffering such global write TIDs
in a worker node. When a request for a TID assignment is
made the very first time, the coordinator node returns a range
of TIDs which gets buffered in the worker node. The next
transaction which needs a TID gets it from the local buffer
thus eliminating the extra network communication with the
coordinator node. A few key challenges are determining
optimal buffer size as a parameter and deciding when to flush
the buffer if they are not being used.

Therefore, by combination of the optimizations described
in this subsection SAP HANA provides transparency of
transaction performance regardless of where it is started and
committed without losing or mitigating any transactional
consistency.

D. Optimizing Two-Phase Commit Protocol
Two-phase commit (2PC) protocol is widely used to ensure

atomicity of distributed multi-node update transactions. A
series of optimization techniques we describe in this
subsection are our attempts to reduce the network and log I/O
delays during a two-phase commit thus increasing throughput.

1) Early commit acknowledgement after the first commit
phase: Our first optimization is to return commit
acknowledgement early after the first commit phase [7], [8],
as shown in Figure 10.

Right after the first commit phase and the commit log is
written to the disk, the commit acknowledgement can be
returned to the client. And then, the second commit phase can
be done asynchronously.

Fig. 10. Returning commit ack early after first commit phase

For this optimization three things are considered.
1) Writing the commit log entries on the worker nodes

can be done asynchronously. During crash recovery
then some committed transactions can be classified as
in-doubt transactions, which will be resolved as
committed finally by checking the transaction's status
in the coordinator.

2) If transaction tokens are cached asynchronously on the
worker nodes, the data is visible by a transaction but
not by the next (local-only) transaction in the same
session. This situation can be detected by storing the
last transaction token information for each session at
the client side. And then, until the second commit
phase of the previous transaction is done, the next
query can be stalled.

3) If transactional locks are released after sending a
commit acknowledgement to the client, a 'false lock
conflict' may arise by the next transaction in the same
session. This situation can however be detected by the
same problem with (2) above. If this is detected, the
transaction can wait for a short time period until the
commit notification arrives to the worker node.

2) Skipping writes of prepare logs: The second optimiza-
tion is to remove additional log I/Os for writing prepare-
commit log entries.

In a typical 2-phase-commit the prepare-commit log entry
is used to ensure that the transaction's previous update logs are
written to disk and to identify in-doubt transactions at the
recovery time.
• Writing the transaction's previous update logs to disk can

be ensured without writing any additional log entry, by
just comparing the transaction-last-LSN (log sequence
number) with the log-disk-last-LSN. If the log-disk-last-
LSN is larger than the transaction-last-LSN, it means
that the transaction's update logs are already flushed to
disk.

• If we do not write the prepare-commit log entry, we can
handle all the uncommitted transactions at recovery time
as in-doubt transactions.

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Their commitance can be decided by checking with the
transaction coordinator. So, the size of in-doubt
transaction list can increase, but with less run-time
overhead.

3) Group two-phase commit protocol: This is a similar idea
to the one described in Subsection III-C.3, but instead of
sending commit requests to the coordinator node individually
(i.e., one for each write transaction), we can group multiple
concurrent commit requests into one and send it to the
coordinator node in one shot.

Also, when the coordinator node multicasts a "prepare-
commit" request to multiple-related worker nodes of a
transaction, we can group multiple "prepare-commit" requests
of multiple concurrent transactions which will go to the same
worker node.

By this optimization we can get better throughput of
concurrent transactions.

Two-phase commit itself cannot be avoided fundamentally
for ensuring global atomicity to multi-node write transactions.
However, by combination of the optimizations described in
this subsection, we can reduce its overhead significantly.

E. Metadata Cache Management
The system-wide metadata catalogue is kept in the

coordinator node. As a worker node processes a query, it
would have to obtain the necessary metadata information from
the coordinator node. To reduce the overhead caused by the
network latency in the communication between the
coordinator node and a worker node, HANA supports a
worker node requesting multiple metadata objects with a
single request when beneficial.

When a worker node needs to obtain metadata information
from the coordinator node because it does not have that
information already cached on it, it will incur IPC. An
example can be seen in Step 8 of Figure 4. Since each single
metadata cache miss will cause IPC via network
communication, it can be a considerable performance penalty
for the cases where there are many metadata cache misses for
a single query execution. Group caching for metadata is
introduced to minimize cache miss penalties of this kind.
Instead of checking cache in an on-demand manner, a worker
node collects the entire required metadata object IDs first and
sends a single request for all the missing objects. This
optimization is particularly good for a query with a complex
query plan which requires accessing multiple metadata objects
of various kinds such as tables, indexes, views, and privileges.

IV. SUMMARY

The SAP HANA database is primarily designed to cover
the three difference scaling principles: scale-in, scale-up, and
scale-out. In this paper we outlined some of the hard problems
in multi-node scenarios, showed the core architectural designs,
and give optimization details for some of the problems.
Specifically, we discuss optimization for query routing in
single and multiple node scenarios, we show optimizations
techniques for client-based statement routing, two-phase-
commit protocol, and finally give some insights into caching
strategies and techniques for metadata catalogue of the SAP
HANA database.

ACKNOWLEDGMENT
We explicitly want to express our Thanks to the SAP

HANA team, especially to all the readers of a preliminary
version of this paper. We also thank Sang K. Cha for
suggesting the idea of writing this paper.

REFERENCES
[1] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,

“SAP HANA database: data management for modern business
applications,” SIGMOD Record, vol. 40, no. 4, pp. 45–51, 2011.

[2] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd,
“Efficient transaction processing in SAP HANA database: the end of a
column store myth,” in SIGMOD Conference, 2012, pp. 731–742.

[3] C. Mohan, H. Pirahesh, and R. Lorie, “Efficient and flexible methods
for transient versioning of records to avoid locking by read-only trans-
actions,” in Proceedings of ACM SIGMOD International Conference
on Management of Data, 1992.

[4] H. V. Jagadish, I. S. Mumick, and M. Rabinovich, “Scalable versioning
in distributed databases with commuting updates,” in Proceedings of
the International Conference on Data Engineering (ICDE), 1997.

[5] H. V. Jagadish, I. S. Mumick, and M. Rabinovich,, “Asynchronous
version advancement in a distributed three version database,” in
Proceedings of the International Conference on Data Engineering
(ICDE), 1998.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P.
O’Neil, “A critique on ansi sql isolation levels,” in Proceedings of
ACM SIGMOD International Conference on Management of Data,
1995.

[7] C. Mohan, B. Lindsay, and R. Obermarck, “Transaction management
in the R* distributed database management system,” ACM
Transactions on Database Systems, vol. 11, no. 4, 1986.

[8] R. Gupta, J. Haritsa, and K. Ramamritham, “Revisiting commit
process- ing in distributed data-base systems,” in Proceedings of ACM
SIGMOD International Conference on Management of Data, 1997.

[9] J. Gray, “Tape is dead, disk is tape, flash is disk. ram locality is king,”
2006.
(http://research.microsoft.com/en-us/um/people/gray/jimgraytalks.htm).

[10] H. Plattner, “A common database approach for OLTP and OLAP using
an in-memory column database,” in Proceedings of ACM SIGMOD
International Conference on Management of Data, 2009.

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 1165-1173, ISBN 978-1-4673-4908-6
https://doi.org/10.1109/ICDE.2013.6544906

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADP7ABC.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Juchang Lee, Yong Sik Kwon, Franz Färber, Michael Muehle, Chulwon Lee, Christian Bensberg, Joo Yeon Lee, Arthur H. Lee, Wolfgang Lehner

