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Abstract. Schema design is one of the fundamentals in database theory and prac-
tice as well. In this paper, we discuss the problem of locally valid dimensional
attributes in a classification hierarchy of a typical OLAP scenario. In a first step,
we show that the traditional star and snowflake schema approach is not feasible
in this very natural case of a hierarchy. Therefore, we sketch two alternative mod-
eling approaches resulting in practical solutions and a seamless extension of the
traditional star and snowflake schema approach: In a pure relational approach, we
replace each dimension table of a star / snowflake schema by a set of views
directly reflecting the classification hierarchy. The second approach takes advan-
tage of the object-relational extensions. Using object-relational techniques in the
context for the relational representation of a multidimensional OLAP scenario is
a novel approach and promises a clean and smooth schema design.

1 Introduction

In the last few years, “Online Analytical Processing” (OLAP, [CoCS93]) has become
a major research area in the database community (special data models: [VaSe99]; SQL
extensions: [GBLP96], [SQL99]). One consequence of the OLAP fever is the rejuvena-
tion of the multidimensional data model. The ROLAP approach (“Relational OLAP”)
simulates the multidimensionality and performs data access on top of a relational data-
base engine, thus using sophisticated relational base technology to handle, i.e. store and
analyze the typical large data volumes of the underlying data warehouses. This
approach however needs an adequate relational representation, which is typically a vari-
ation of a star / snowflake schema.

Based on the experiences from an industrial project, we have seen that the traditional
modeling techniques for the relational based solution, star and snowflake schema, are
not always adequate ([ALTK97]). Even considering multiple variations with regard to
slowly changing dimensions, factless fact tables, etc. ([Inmo96]), we demonstrate a
modeling problem which is not addressed adequately in literature. This paper reviews
our schema design problems with the traditional techniques and proposes two more
general and therefore alternative modeling approaches.

The key idea of the multidimensional model is that each dimension of a multidimen-
sional data cube, e.g. products, shops, or time, can be seen as part of the primary key,
defining the cartesian product with the elements of dimensions. Consequently, any com-
bination of the composite primary key identifies exactly a single cell within the cube.
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Each cell may hold a numerical fact value
(measure) or a NULL value if no such
entry exists. As illustrated in figure 1,
based on the dimensional elements, e.g.
single articles in the product dimension,
classifications can be defined to identify
different classes C like product families,
groups, or product areas. Each classifica-
tion node at a specific classification level
can be seen as an instance of a corre-
sponding classification attribute (CAi).

Additionally, dimensional attributes (DAk)
like brand, color, shoptype etc. can be
used to enrich the multidimensional anal-
ysis process. As depicted in figure 2, these
attributes, characterizing single dimen-
sional elements, are standing orthogonal
with regard to the classification hierarchy,
classifying dimensional elements.

Thus, a typical question according to a multidimensional scenario could be as follows:
Give me the total sales of consumer electronics goods for Europe and the first quarter
of 1997 by different brands and different shop types.

It is worth mentioning here that such a structure with special (better: locally valid)
dimensional attributes for different classes within the classification hierarchy reflects
the basic idea of classification. What else should be the reason for classification? Clas-
sifications are generally used to hide specialities of subclasses and perform an abstrac-
tion process when going from subclasses to super-classes. We think that this idea should
be adequately reflected in the relational schema design of a multidimensional scenario.

2 The Traditional Relational OLAP Approach

To illustrate the failure of the traditional ROLAP approach and to motivate our alterna-
tive approach, we refer to a sample scenario, stemming from a joint research project
with a worldwide operating retail research company. In their business, facts like sales,
stock, or turnover values of single articles in single shops at a specific period of time are
monitored and collected to form the raw database. For example:

Generally, this raw database is commonly called a fact table and consists of two main
components: A set of dimensions, we denote as ‘primary attributes’ PAi (1≤i≤n) forming
the composite primary key of the table and a set of measures {f1, ..., fk} denoting the
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figures being analyzed. The number of primary attributes n determines the dimension-
ality of the problem:

Facts(PA1,...1,PAn, f1,..., fk)

In a further step of the retail research evaluation phase, the raw database is analyzed in
two ways: On the one hand, the data is aggregated along a predefined classification hier-
archy (like the one in figure 1). On the other hand, the data is split into characteristic
features of the single articles or shops. For example, each shop holds country specific
information about its purchase class or its shop type (“cash&carry”, “retail”, “hyper-
market”). In the product dimension, each article of the 250.000 monitored products
belongs to one of 400 product families. Furthermore, each article is characterized by
five attributes valid for all products (‘brand’, ‘package type’, ...) and about 15 attributes
which are valid only in the product family or product group to which the article belongs
to (‘video system’ only for the product group Video equipment, ‘water’ usage only for
the product family Washers).

2.1 Star Schema

The simplest traditional way to model this qualifying information skeleton used during
the analysis process is to use a single dimension table Di (1≤i≤n) for each dimension to
resolve high-level terms according to the classification hierarchy and to represent
dimensional attributes. Since each dimension is connected to the corresponding primary
key of the fact table, the whole scenario looks like a ‘Star’. Figure 3 illustrates the star
schema for the ongoing example. Formally, the schema of the dimension table for the
dimension i consists of the primary attribute PAi, all classification attributes CAj (1≤j≤p)
and the complete set of dimensional attributes DAk (1≤k≤m).

Di(PAi, DA1, ...,DAm, CA1,...,CAp)

It is worth to note that (mainly for performance
reasons) the classification hierarchy is modeled
as a set of functionally dependent attributes
(CAj → CAj+1 (1≤j<p)). Furthermore, the distinc-
tion of dimensional elements organized in hierar-
chies and dimensional attributes further charac-
terizing the elements explicitly prescribed in the
multidimensional model gets totally lost.
Figure 4 shows the product dimension table for
the market research example.

Fig. 3. Sample Star Schema

ArticleID
ShopID
Period

SALES
STOCK
TURNOVER

ShopID

Region

ShopType
Country

Purchase
Class

. . .

Period

Quarter
Year

. . .

ArticleID

Family
Group

. . .

Area
Brand
VSys
BLT
RC

Load
Water
Temp

fact table

Articles(ArticleID, Brand, VSys, BLT, RC, ... Load, Water, Temp, Family, Group, Area)
TR-75 Sony HI8 2h NULL ... NULL NULL NULL Camcorder Video ConsElectr
TS-78 Sony HI8 2h NULL ... NULL NULL NULL Camcorder Video ConsElectr
A200 JVC N8 3h NULL ... NULL NULL NULL Camcorder Video ConsElectr
V-201 JVC VHS NULL Yes ... NULL NULL NULL HomeVCR Video ConsElectr
ClassicI Grundig VHS-C NULL No ... NULL NULL NULL HomeVCR Video ConsElectr
....
AB1043 Ariston NULL NULL NULL ... 5kg 45l NULL Washer HomeAppl WhiteGoods
Princess Miele NULL NULL NULL ... 5kg 41l NULL Washer HomeAppl WhiteGoods
SuperII Hoover NULL NULL NULL ... 4kg 54l NULL Washer HomeAppl WhiteGoods
Duett Miele NULL NULL NULL ... 6kg NULL 37°C Dryer HomeAppl WhiteGoods
Lavamat AEG NULL NULL NULL ... 6kg NULL 39°C Dryer HomeAppl WhiteGoods
....

Fig. 4. Sample star schema dimension table for the product dimension

PA DA1 DA2 DAm CA1 CA2 CA3. . .
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2.2 Snowflake Schema

Elimination of the functional dependencies in the single dimension tables, i.e. normal-
izing the star schema, leads to small satellite tables representing the dimensional hier-
archy. Therefore, the set of dimension tables for a single dimension is modeled in the
following manner:

Again, PAi (1≤i≤n) denotes the primary attribute for the i-th dimension for joining the
fact table. The classification attribute CAj forming the hierarchy acts as a foreign key in
classification level j-1 and as a primary key in level j. Furthermore, all dimensional
attributes DAk at level j are fully dependent on CAj. To adopt the dimension table for the
ongoing example, the classification attributes ‘Group’ and ‘Area’ are shifted into two
new relations. The relational schema for the product dimension of the current example
is depicted in figure 5:

2.3 Summary and Conclusion

The star / snowflake schema approach allows modeling a wide range of simple multidi-
mensional scenarios. From a performance point of view the star schema avoids a lot of
lookup joins with the satellite tables but it is reprehensible from a schema design point
of view.

Both traditional approaches however fail from an implementation and schema design
point of view, if the existence of dimensional attributes depends on values of the dimen-
sional elements in the classification hierarchy. As we have seen in the market research
scenario, this problem becomes even worse, e.g. dimensional attributes ‘Water’ and
‘Load’ are only applicable for washers and not for video equipment.The Alternative
Relational OLAP Approach

(PAi, DA1,..., , CA1)D
i

DA
n1

(CA1, ,..., , CA2)D
1
i

DA
n1 1+

DA
n2

(CAp-1, ,...,DAm, CAp)D
p 1–
i

DA
np 1– 1+

...

Articles(ArticleID, Brand, VSys, BLT, RC, ... Load, Water, Temp, Family)
TR-75 Sony HI8 2h NULL ... NULL NULL NULL Camcorder
TS-78 Sony HI8 2h NULL ... NULL NULL NULL Camcorder
A200 JVC N8 3h NULL ... NULL NULL NULL Camcorder
V-201 JVC VHS NULL Yes ... NULL NULL NULL HomeVCR
ClassicI Grundig VHS-C NULL No ... NULL NULL NULL HomeVCR
....
AB1043 Ariston NULL NULL NULL ... 5kg 45l NULL Washer
Princess Miele NULL NULL NULL ... 5kg 41l NULL Washer
SuperII Hoover NULL NULL NULL ... 4kg 54l NULL Washer
Duett Miele NULL NULL NULL ... 6kg NULL 37°C Dryer
Lavamat AEG NULL NULL NULL ... 6kg NULL 39°C Dryer
....

Families(Family, Group)
Camcorder Video
HomeVCR Video
....
Washer HomeAppl
Dryer HomeAppl

Groups(Group, Area)
Video ConsElectr
....

HomeAppl WhiteGoods

Fig. 5. Sample snowflake schema dimension tables for the product dimension
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With our solution, we adopt the idea of [SmSm77] introducing a special class of
attributes, called discriminating attributes. This kind of attributes holds relation names
as their attribute values, which allows a real hierarchical representation of the problem
of mapping a pyramid of concepts [Lore87], i.e. the classification hierarchy, to the rela-
tional data model.

In a first step, we can model each product group, i.e. leaf node of the classification tree,
in a separate relation with all the node specific dimensional attributes. For example, the
four sample product families from figure 1 are modeled in the following way:

More formally, the schema of a classification node C at the lowest, i.e. first classification
level with the classification attribute CA1 is denoted by:

C(PA, DA1, ..., DAm)

As usual, PA is the primary attribute for the join with the fact table and the set of DAk
(1≤k≤m) denotes the dimensional attributes which are applicable to the classification
node C.

The construction of the classification hierarchy is made in a bottom-up fashion, i.e. sets
of classification nodes are grouped into a new high-level term, i.e. a new classification
node. Suppose, in the j-th step, the classification nodes { , ..., } with the set of
locally valid dimensional attributes { , ..., } for each Ci corresponding to the
classification attribute CAj-1 are subsumed by the higher level node C corresponding to
the classification attribute CAj. The set of valid dimensional attributes is achieved by
intersecting all attribute sets of the subsumed nodes.

{ , ..., } :=

For example, Camcorders and HomeVCR are classified into the class Video. Washers
and Dryers are subsumed by the new higher level classification node Home Appliances.
Furthermore, only those dimensional attributes are propagated to the new parent node,
which are still valid there. Hence, the specific dimensional attributes ‘BLT’ (for Cam-
corder) and ‘RC’ (for HomeVCR) are lost, whereas the attributes ‘VSys’ and ‘Brand’ are
propagated to the video class.

Generally, the schema of a new classification node C for the classification attribute CAj
(1<j≤p) is algorithmically determined by:

The key point of this technique is that each classification node Ci is added as a constant
value for the new classification attribute CAj of the new classification node C.

In building the higher level classes, we intensively use the view mechanism of the rela-
tional database system at the implementation side. Below, the view definitions of the

Washer(ArticleID, Brand, Load, Water)
AB1043 Ariston 5kg 45l
Princess Miele 5kg 41l
SuperII Hoover 4kg 54l

Dryer (ArticleID, Brand, Load, Temp)
Duett Miele 6kg 37°C
Lavamat AEG 6kg 39°C

Camcorder(ArticleID, Brand, VSys, BLT)
TR-75 Sony HI8 2h
TS-78 Sony HI8 2h
A200 JVC N8 3h

HomeVCR (ArticleID, Brand, VSys, RC)
V-201 JVC VHS Yes
ClassicI Grundig VHS-C No

C1 Cq

DA1
i DAmi

i

DA1 DAm DA1
i … DAmi

i, ,
 
 
 

i 1=

q

∩

C PA DA1 … DAm CA1 … CAj 1– CAj, , , , , , ,( ) π
PA DA1 … DAm CA1 … CAj 1– ′Ci ′, , , , , , ,( )

Ci

i 1=

q

∪=
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product groups Video and Home Appliances are illustrated. In analogy to the formal
description, each relation name appears as a constant value in the new view:

Each view holds the primary attribute, the applicable dimensional attributes and (in
analogy to the star schema) all classification attributes. Furthermore, each view builds
the basis for defining higher level classification nodes. This recursivly definition is
shown below for the classification hierarchy depicted in figure 1.

In comparison to the tradi-
tional modeling approach
(figure 4), only those
attributes are available in
the dimension table which
are applicable for all
dimensional elements. To
address specific features,
the corresponding dimen-
sional sub-tables have to
be used, whose names are specified as instances of the classification attributes. Figure 6
summarizes the modeling of the classification hierarchy using the proceeding, illus-
trated in this section. In analogy to figure 5 (snowflake schema), our approach can be
straightforwardly normalized, too.

To put it into a nutshell, in the case of the traditional approach, the (senseless) query
asking for total sales of Home Appliances by ‘video system’ would result in a table scan
of the dimension table, resulting in an empty join partner for the fact table and at last in
a numerical zero. In our alternative approach, the query would be rejected, since Home
Appliances does not contain a dimensional attribute ‘video system’.

create view Video
(ArticleID, Brand, VSys, Family) as

select ArticleID, Brand, VSys, ‘Camcorder’
from Camcorder
union
select ArticleID, Brand, VSys, ‘HomeVCR’
from HomeVCR

create view HomeAppl
(ArticleID, Brand, Load, Family) as

select ArticleID, Brand, Load, ‘Washer’
from Washer
union
select ArticleID, Brand, Load, ‘Dryer’
from Dryer

HomeAppl(ArticleID, Brand, Load, Family)
AB1043 Ariston 5kg Washer
Princess Miele 5kg Washer
SuperII Hoover 4kg Washer
Duett Miele 6kg Dryer
Lavamat AEG 6kg Dryer

Video(ArticleID, Brand, VSys, Family)
TR-75 Sony HI8 Camcorder
TS-78 Sony HI8 Camcorder
A200 JVC N8 Camcorder
V-201 JVC VHS HomeVCR
ClassicI Grundig VHS-C HomeVCR

create view ConsElectr
(ArticleID, Brand, Family, Group) as

select ArticleID, Brand, Family, ‘Video’
from Video
union ....

create view Articles
(ArticleID, Brand, Family, Group, Area) as

select ArticleID, Brand, Family, ‘ConsElectr’
from ConsElectr
union
....
union
select ArticleID, Brand, Family, Group, ‘WhiteGoods’
from WhiteGoods

create view WhiteGoods
(ArticleID, Brand, Family, Group) as

select
ArticleID, Brand, Family, ‘HomeAppl’
from HomeAppl
union ....

Articles(ArticleID, Brand, Family, Group, Area)
TR-75 Sony Camcorder Video ConsElectr
TS-78 Sony Camcorder Video ConsElectr
A200 JVC Camcorder Video ConsElectr
V-201 JVC HomeVCR Video ConsElectr
ClassicI Grundig HomeVCR Video ConsElectr
...
AB1043 Ariston Washer HomeAppl WhiteGoods
Princess Miele Washer HomeAppl WhiteGoods
SuperII Hoover Washer HomeAppl WhiteGoods
Duett Miele Dryer HomeAppl WhiteGoods
Lavamat AEG Dryer HomeAppl WhiteGoods

Fig. 6. Sample dimension table for the product dimension
(alternative approach)
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3 Object-Relational Design

Another alternative and novel approach to overcome the limitations of the traditional
star-/snowflake schema pattern is to use object-relational techniques. Since object-rela-
tional concepts are supported only to a certain degree and implemented in a very sys-
tem-specific manner, we propose an object-relational schema design based on the capa-
bilities of the IBM DB2/UDB V6.1 database system.

The design of an object-relational schema in DB2 is divided into two phases. In a first
step, we have to define the type hierarchy and references based on types. Referring to
these types, we are then able to ’instantiate’ regular tables (also called: typed tables).
Moreover, in opposite to the approach shown in the previous section, we have to pro-
ceed top-down when defining the object-relational schema of the dimensional struc-
tures.

3.1 Type Definitions

The super-type of a dimension holds only the most generic dimensional attributes and
all possible classification attributes. For the ongoing example of the product dimension,
the following DDL statement introduces the generic type of Articles_T, where the single
articles are identified by the ArticleID attribute.

create type Articles_T as (brandvarchar(30),
area varchar(30),
group varchar(30),
family varchar(30) );

Analogous to the classical concept of inheritance, special classes of products are
derived from the more general classes of products and specific dimensional attributes
are added to the derived type. Below are the SQL statements to define the necessary sub-
types of the product classification hierarchy. For each sub-type, the keyword UNDER
denotes the corresponding super-type.

create type ConsElectr_T under Articles_T as ( ... );
create type WhiteGoods_T under Articles_T as ( ... );
create type Video_T under ConsElectr_T as(vidsysvarchar(30) );
create type HomeAppl_T under WhiteGoods_T as(loadvarchar(30) );
create type HomeVCR_T under Video_T as (RC char(1) );
create type Camcorder_T  under Video_T as (BLT varchar(5) );
create type Washer_T under HomeAppl_T as (Water varchar(5) );
create type Dryer_T under HomeAppl_T as (Temp short) ;

Once we have defined the types of the dimensional structures, e.g. for the Products
dimension and the Shops dimension, we are able to create a type for the fact table.
Although this is not a mandatory step to design the schema of the fact table using OR
technology, we are able to achieve some advantage when querying the database later.
Therefore, the type of a fact table consists of two references to the super-types of the
participating dimensions.

create type Facts_T as (
ArticleID REF(Articles_T),
ShopID REF(Shops_T),
Period date,
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Sales integer,
Stock integer,
Price integer);

It is worth mentioning here that this construction yields the following advantage: Con-
sider the situation where we have to setup a data mart for a specific product group, e.g.
video equipment. We are now able to create a type of a customized fact table allowing
only references to the articles belonging to the video class. Therefore, we would substi-
tute the reference to the generic articles type by a reference to the more specific type of
Video_T (... ArticleID REF(Video_T), ...). This design ensures already at the schema
level (!!) that the fact table for this specific data mart will never contain a product other
than a video article.

3.2 Typed Table Definitions

Once we have defined the type hierarchy for the classification schema, we are now in
the position to ’instantiate’ these types resulting in so-called ’typed tables’. Analogous
to the type definition, we proceed top-down. For instantiation of the super-type, we need
to introduce a object identifier attribute. For the ongoing example, we use the ArticleID
as reference attribute (or primary key attribute in relational terminology), which content
is given as user generated (in opposite to system generated). All dependent sub-tables
are instantiated according to their type and referring to their direct super-type.

create table Articles of Articles_T (REF IS ArticleID user generated);
create table ConsElectr of ConsElectr_T under Articles inherit select privileges;
create table WhiteGoods of WhiteGoods_T under Articles inherit select privileges;
create table Video of Video_T under ConsElectr inherit select privileges;
create table HomeAppl of HomeAppl_T under WhiteGoods inherit select privileges;
create table HomeVCR of HomeVCRF_T under Video inherit select privileges;
create table Camcorder of Camcorder_T under Video inherit select privileges;
create table Washer of Washer_T under HomeAppl inherit select privileges;
create table Dryer of Dryer_T under HomeAppl inherit select privileges;

Again it is worth mentioning that this construction provides a huge advantage when
dealing with changing dimensions. Consider again the product dimension. New articles
may be added, some articles may be re-classified, and other articles may be deleted
because they are no longer sold or their sales are no longer monitored. Since, however,
all articles are of the same type, we can simply instantiate a specific type multiple times.
Each resulting table reflects then a valid state of the classification hierarchy an can be
used to analyze the fact data under certain valid time perspectives.

After creating the dimensional hierarchies, we can instantiate the fact table from the
type Facts_T. Two aspects have to be considered explicitly. First of all, each fact gets a
system generated object identifier FactID. More important is the instantiation of the ref-
erences defined in the type specification. Each reference is pointing to an appropriate
table, e.g. ArticleID is referencing the Articles table, not longer the Articles_T type.

create table Facts of Facts_T (ref is FactID system generated,
ArticleID with options scope Articles,
ShopID with options scope Shops);
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3.3 Data Manipulation

The object-relational design of a data warehouse database has also some impact on data
manipulation. Consider a simple insert statement for the product dimension. The only
difference to a ’pure relational’ insert is the casting of the article identification to the
specific object identifier. Below is an example for a camcorder and a Dryer article.

insert into Camcorders ( ArticleID, brand, vidsys, blt, family, group, area) values
(Camcorders_T(’TR-75’), ’Sony’, ’HI8’, ’2h’, ’Camcorder’, ’Video’, ’ConsElectr’);

insert into Dryers ( ArticleID, brand, load, temp, family, group, area) values
(Dryers_T(’Duett’), ’Miele’, ’6kg’, ’37oC’, ’Dryer’, ’HomeAppl’, ’WhiteGoods’);

To keep the consistency of references, we are now able to insert facts into the fact table.
Again, we have to cast the values of the references to their corresponding type of the
dimension tables, i.e. article identifiers are casted to Articles_T, shop names are casted
to Shops_T.

insert into Facts (FactID, ArticleID, ShopID, Period, Sales, Stock, Price) values
(Facts_T(’1’), Article_T(’TR-75’), Shops_T(’TeVi’), ’1999-12-02’, 45, 22, 998);

When querying the database we can take advantage of the references which may be
visualized as predefined join paths. For example, grouping fact data by region (from the
Shops table) and Products groups (from the Articles table) may be specified using the
’->’ operator without any explicit join.

select f.ShopID->region, f.ArticleID->group, SUM(sales)
from Facts f
group by f.ShopID->region, f.ArticleID->group

However, we can not retrieve specific attributes using this construction. The grouping
by Video Systems for all video equipment would be expressed with the ’Video’ as the
correct dimension table as follows:

select f.ShopID->region, a.vidsys, SUM(sales)
from Facts f, Articles a
where f.ArticleID = a.ArticleID
group by f.ShopID->region, a.vidsys

In summary, object-relational technology provides a powerful tool for schema design in
data warehouse environments. Especially, the design of a real classification hierarchy
with classification and dimensional attributes finds an adequately representation using
inheritance mechanisms on types and typed tables. Extending the object-relational rep-
resentation to the fact table enables the designer to define some kind of structural con-
straints already at the schema level.

4 Summary and Conclusion

This paper addresses the problem of locally valid dimensional attributes within a clas-
sification hierarchy in the context of a multidimensional schema design. We show that
the traditional way of a relational representation is not feasible and give two practicable
solutions to this problem. The basic idea of the first proposed mechanism is based on
the article of [SmSm77]. Building a pyramid of concepts in a bottom up manner using
regular relational views may be seen as a seamless extension of the traditional star /
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snowflake schema approach. The second top-down approach is based on object-rela-
tional techniques. We demonstrate how we can take advantage of object-relational con-
cepts like types, typed subtables, inheritance on types and tables, and references. Again
this method results in a flexible schema design.
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