
Dieses Dokument ist eine Zweitveröffentlichung (Postprint) / This

is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818908

Ulrike Fischer, Christopher Schildt, Claudio Hartmann, Wolfgang Lehner

Forecasting the data cube. A model configuration advisor for multi-
dimensional data sets

Erstveröffentlichung in / First published in:

2013 IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, 08.04.-
12.04.2013. IEEE, S. 853-864. ISBN 978-1-4673-4908-6.

DOI: http://dx.doi.org/10.1109/ICDE.2013.6544880

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-818908
http://dx.doi.org/10.1109/ICDE.2013.6544880

Forecasting the Data Cube: A Model Configuration
Advisor for Multi-Dimensional Data Sets

Ulrike Fischer, Christopher Schildt, Claudio Hartmann, Wolfgang Lehner

Database Technology Group
Dresden University of Technology

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de

Abstract— Forecasting time series data is crucial in a number
of domains such as supply chain management and display
advertisement. In these areas, the time series data to forecast is
typically organized along multiple dimensions leading to a high
number of time series that need to be forecasted. Most current
approaches focus only on selection and optimizing a forecast
model for a single time series. In this paper, we explore how
we can utilize time series at different dimensions to increase
forecast accuracy and, optionally, reduce model maintenance
overhead. Solving this problem is challenging due to the large
space of possibilities and possible high model creation costs.
We propose a model configuration advisor that automatically
determines the best set of models, a model configuration, for
a given multi-dimensional data set. Our approach is based on
a general process that iteratively examines more and more
models and simultaneously controls the search space depending
on the data set, model type and available hardware. The final
model configuration is integrated into F2DB, an extension of
PostgreSQL, that processes forecast queries and maintains the
configuration as new data arrives. We comprehensively evaluated
our approach on real and synthetic data sets. The evaluation
shows that our approach significantly increases forecast query
accuracy while ensuring low model costs.

I. INTRODUCTION

Currently, a rising trend to integrate advanced analytics
into database management systems can be observed [1]. One
important and widely used analytical task involves time series
forecasting, which is required in many domains, e.g.:
• Sales forecasting: Sales forecasts are an essential input

to logistics and supply chain management [2], where
forecasts are often analyzed and visualized on multiple
dimensions involving multiple hierarchies for short-, mid-
and long-term planning [3].

• Smart grid systems: Smart grid systems, which pro-
vide a stable energy supply while accommodating larger
amounts of renewable energy, require accurate and real-
time forecasts of energy production and consumption over
the whole hierarchically organized energy market [1], [4].

• Display advertisement: In guaranteed display adver-
tising, where advertisers can buy target user visits on
web pages, it is imperative for a publisher to retrieve
reliable forecasts of user visits characterized by hundreds
of attributes (age, gender, location, etc.) [5], [6].

For all three application areas, the time series data to forecast
is typically organized along multiple dimensions and usually

city

C1

C2

C3

C4

time
P1 P2

product

region

R1

R2

P4P3

SELECT time, sales
FROM facts
WHERE product ‘P4‘
AND city ‘C4‘
AS OF now() + ‘1 day‘

Query 1 (shaded area)

Query 2 (shaded + dotted area)
SELECT time, SUM(sales)
FROM facts
WHERE product ‘P4‘
AND region ‘R2‘
GROUP BY time
AS OF now() + ‘1 day‘

Fig. 1. Forecast Queries in Multi-Dimensional Data Sets

stored in data warehouse environments. Along with classical
multi-dimensional data cubes, the dimensions provide cate-
gorical data, which determine the context of the time series.
The time dimension requires special considerations as we are
querying and forecasting time series data.

Consider the example of forecasting sales data with sales
quantity as measure and time, product, city and region as
dimensional attributes (Figure 1). The dimension time together
with the measure forms time series for different products and
locations. On this data, arbitrary OLAP queries, including
forecast queries [7], can be submitted. For example, Forecast
Query 1 in Figure 1 demands the future of the time series
representing the shaded area, i.e., sales forecasts of product
P4 in city C4 over the next day. Forecast Query 2 (shaded
and dotted area) requests forecasts of product P4 in region
R2 (containing cities C3 and C4) and, thus, is an example of
forecasting an aggregated time series. Further forecast queries
are possible, including interactive navigation of forecast results
via drill-down or roll-up operations [3].

Most current approaches on processing forecast queries
focus on selecting and optimizing a forecast model for a
single (!) given time series (e.g., [7], [8]). However, additional
opportunities arise in the context of multi-dimensional data. To
answer Forecast Query 2 of Figure 1, for example, we may
exploit various approaches. Most current state of the art would
create a forecast model over the aggregated time series (shaded
and dotted area). However, alternatively, we might create two
forecast models, one over city C3 (dotted area) and one over
city C4 (shaded area), and calculate the forecast of Query 2

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

by aggregating the individual forecasts. We might even use
all three models and calculate the forecasts of Query 2 by an
arbitrary linear combination of those models. Which approach
leads to the highest accuracy?

The best approach strongly depends on the characteristics of
the time series data. If data is quite noisy higher aggregation
levels will probably lead to higher accuracy [9]. Additionally,
we cannot create, store, and maintain a model for each single
time series in larger data sets [5], as stored in typical data
warehouse scenarios. We need to develop techniques to reuse
models for multiple time series while ensuring high accuracy.

Selecting the best set of time series models in multi-
dimensional data is challenging. First, we are facing a combi-
natorial challenge as the number of time series (one for each
combination of dimensional attribute values) to forecast might
be very high. Second, to judge the benefit and accuracy of a
model, we need to build the concerning model [10]. Training
time series models is time consuming as parameter estimation
of many sophisticated models involves numerical optimization
methods that iterate several times over the data [11].

In this paper, we propose an offline model configuration
advisor that proposes a configuration of forecast models
for forecasting time series in multi-dimensional data cubes.
Specifically, we make the following contributions:
• The model configuration advisor is based on an iterative

process that adds more and more models to a configura-
tion, allowing the user to retrieve a valid configuration at
any time, trading forecast accuracy and model costs.

• We introduce so-called indicators that heuristically de-
scribe the expected benefit of a model for a time series.
Based on these indicators candidate time series are se-
lected, for which a model should be build and examined.

• We developed a control component that regulates the
search space in each iteration, based on the data set,
model type and hardware platform.

• We introduce F2DB (flash-forward database system) [12]
that extends PostgreSQL to natively support and process
forecast queries on the final model configuration. F2DB
also incrementally maintains models in the configuration
as new data arrives.

• We evaluate our approach on real and synthetic data sets
showing significantly increased forecast accuracy while
ensuring low model costs.

The remainder of this paper is organized as follows: We
start by detailing our data model, the type of models we use,
the calculation of forecast values as well as the evaluation
of a configuration in Section II. An overview of the advisor
is given in Section III, followed by a detailed description in
Section IV. Then, in Section V, we discuss the integration and
management of model configurations in F2DB . We evaluate
our approach in Section VI and review related work in Section
VII. Finally, we draw conclusions in Section VIII.

II. PRELIMINARIES

We first describe our data model before detailing the
forecast models and the calculation of forecast values. We

conclude this section by discussing how a configuration of
models can be evaluated.

A. Data Model

The data set consists of a set of points in a multi-
dimensional space. One of the dimensions is the time attribute,
one dimension is the measure attribute and the remaining
dimensions are categorical attributes. An ordered sequence
of measure values according to the time dimension that have
identically values in all categorical dimensions form a base
time series (e.g., Query 1 in Figure 1). Arbitrary aggregations
over categorical dimensions are possible and lead to aggre-
gated time series (e.g., Query 2 in Figure 1). There might
exist functional dependencies between some of the categorical
attributes, e.g., city and region. In the remainder of this paper,
we only consider SUM as aggregation function, which is most
common in our use case scenarios. However, our approach can
be easily extended to support other aggregation functions.

Conceptually, we can organize the aggregation possibilities
of categorical attributes as a directed time series hyper graph,
where a node v represents a time series and an edge assigns
multiple time series to an aggregated time series (making it
a hyper graph). In contrast to the aggregation lattice of the
classical data cube [13], this representation focuses on the
instance level of the data. Consider again the data set in
Figure 1, i.e., a data set with three categorical dimensions—
city(C), region(R), and product(P)—with a functional depen-
dency between city and region. Figure 2 shows the graph
representation of this data. For the sake of simplicity, we
reduced the number of products to two (P3 and P4); thus,
the graph represents the right half of the cube of Figure
1. The nodes in the lowest level represent base time series,
while higher level node stand for aggregated time series.
We denoted the aggregated values with a star (∗). The top
node incorporates the aggregation over all time series data
and thus represents the total sum over all measures. Note
that our data model exhibits a logical model and might be
represented differently in an actual implementation. The hyper
graph contains three important properties: (1) it is complete in
the sense that it contains all aggregation possibilities according
to the values of the categorical dimensions, (2) one time
series can contribute to several aggregated time series, e.g., the
leftmost node C1R1P3 can be either aggregated to the node
C1R1∗ or to the node ∗R1P3 and (3) it explicitly encodes
functional dependencies, e.g., C1*P3 is not an aggregation
possibility of the previous example.

A query describes one or several nodes in the hyper graph.
For example, Query 1 in Figure 1 references node C4R2P4,
while the node ∗R2P4 is described by Query 2.

B. Forecast Models

Each node v in the hyper graph may potentially be asso-
ciated with a forecast model. A forecast model captures the
dependency of future on past data and is created over the time
series (either base or aggregated data) of the corresponding
node. The forecast method that is used to create the model

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

C1R1P3 C1R1P4 C2R1P3 C2R1P4 C3R2P3 C3R2P4 C4R2P3 C4R2P4

C1R1∗ C2R1∗ C3R2∗ C4R2∗∗R1P3 ∗R1P4 ∗R2P3 ∗R2P4

∗R1∗ ∗R2∗∗ ∗ P3 ∗ ∗ P4

∗ ∗ ∗

Fig. 2. Graph Representation of Multi-Dimensional Time Series Data

is independent of our approach. However, without conceptual
restrictions, we usually employ exponential smoothing and
ARIMA models. Both are thoroughly examined (e.g., in [14]),
have shown empirically to be able to model a wide range of
real world time series [15], and are usually computationally
more efficient than elaborate machine learning approaches.

C. Calculation of Forecast Values

A node can utilize any models that exist in the hyper graph
(including its own node) to calculate its forecast values. In
detail, forecasts of a target node t can be derived from any
number of sources nodes S:

S
k→ t, (1)

where k presents the derivation weight. The forecasts of node
t are calculated by the sum over the forecast values of S
multiplied with the derivation weight k, which is based on
the history of source and target time series values.

Let hss be the sum over the whole time series history of a
node s, the derivation weight ks→t for deriving t from s can
be calculated [16] by

ks→t =
hst
hss

. (2)

If we have multiple source nodes S k→ t, we sum over the
history of all source nodes:

kS→t =
hst∑
i hs

i
s

, (3)

where hsis represents the time series sum of the i-th node in
the vector S.

This weight calculation is based on the assumption that
the historical share in the past holds for the future as well.
Our calculation approach is built upon the research of Gross
and Sohl [16] that empirically analyzed the effect of several
approaches on the forecast accuracy.

Examples: Figure 3 shows some intuitive examples of
derivation schemes and corresponding derivation weights. First

s/t 1 t

s s s

∑
= 1

s

t

< 1

(a) Direct (b) Aggregation (c) Disaggregation

Fig. 3. Calculation of Forecast Values

of all, a node might utilize the model at its own node (Figure
3 (a)). In this case the derivation weight equals one. This
corresponds to most of the state of the art (see Section VII).
Second, a node might utilize models at child nodes and
retrieve its forecast by aggregation of child forecasts, which
corresponds to the classical aggregation operation (Figure 3
(b)). Hereby, the sum over all single node weights equals
one. Third, a node might exploit the model of its parent
node and apply disaggregation [16] to calculate its forecast
(Figure 3 (c)). Hereby, the weight represents the ratio of the
child node on the parent node to scale down the forecast of
the (aggregated) parent node. Consider our running example
to calculate the forecasts of Query 2, we might utilize node
∗R2P4 (direct), nodes C3R2P4 and C4R2P4 (aggregation) as
well as node ∗R2∗ or ∗ ∗ ∗ (disaggregation).

Each derivation scheme influences the accuracy of the
resulting forecast values. Studies have shown that aggrega-
tion can improve the accuracy over a direct approach [10].
Disaggregation is beneficial if base data is quite noisy [9].
The combination of forecasts can further improve the accuracy
[17]. In the following, we call an assignment of models and
derivation schemes to nodes a model configuration.

D. Configuration Evaluation

The quality of a model configuration can be judged by two
measures: forecast error and model costs.

Forecast error: Our main goal is the minimization of the
forecast error of all nodes in the time series graph. First of

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

all, this requires an accuracy measure to calculate the error of
a single node. Many measures of forecast accuracy have been
proposed in the past [18]. We decided to use the symmetric
mean absolute percentage error (SMAPE), which is a scale-
independent accuracy measure and takes values between 0 and
1, making it easily comparable. It is defined as

SMAPE =
|xt − x̂t|
xt + x̂t

, (4)

where xt describes the real value of a time series at time t
and x̂t the corresponding forecast value. Calculating a node’s
error requires the division of the time series into a training
part, over which the model is created, and a testing part for
the error calculation itself.

The errors of single nodes are combined into one quality
measure representing the overall error err of the configuration.

Model costs: Although we create models offline, we need
to spend time online to maintain them, which we refer to as
model costs. Model maintenance is required if time proceeds
and new actual values arrive at the nodes in the time series
graph. Maintenance involves updating the model to the current
state of the time series as well as optional parameter re-
estimation. Especially in application domains that require real-
time answers (e.g., display advertisement [5]) maintaining a
model for each single node might not be possible. Thus,
we might be willing to tolerate a configuration with higher
forecast error if it implies lower model costs. The maintenance
costs of a node depend on the time series characteristics (how
strongly fluctuates the time series) as well as the maintenance
strategy (when and how often are model parameters required to
be reestimated). We therefore utilize the total model creation
time over all models in the configuration as worst case ap-
proximation if parameters have to be re-estimated after every
new value added to the time series.

Based on these two evaluation measures, our model config-
uration advisor tries to find a model configuration that exhibits
a low forecast error while ensuring low model costs.

III. MODEL CONFIGURATION ADVISOR OVERVIEW

We start by giving an overview of our solution and by
describing our core concept, so called indicators, that describe
the expected benefit of a model in a configuration.

A. Overview

The model configuration advisor receives a time series
graph as input and iteratively outputs a model configuration
as well as associated forecast error and model costs (Figure
5). Ideally no further parameterization input should be needed
when running the advisor. The execution of the advisor is
based on an iterative process that in each iteration adds new
models to the configuration and, optionally, removes models.
In detail, the advisor consists of the following four phases:
• In the first phase, the candidate selection phase, the

advisor utilizes several heuristics, so called indicators, to
determine and rank a set of models that might be added
or deleted from the configuration.

Time
Series
Graph

Forecast
Error

Model
Config

Model
Costs

Candidate Selection

Evaluation

Control

OutputIndicator

Acceptance
Criteria

Stop
Criteria

Fig. 5. Configuration Model Advisor Overview

• In the evaluation phase, the benefit of adding or deleting
candidate models is evaluated and a decision is made
utilizing several acceptance criteria. In this phase, models
for candidates are explicitly created and evaluated.

• In the control phase, internal variables are updated as
well as parameters are adjusted to optimize further itera-
tions. Parameters are regulated taking data characteristics,
model creation time and hardware platform (e.g., number
of processors) into account.

• Finally, in the output phase, one or several stop criteria
are evaluated. Hereby, the advisor either continues (and
optionally outputs an intermediate configuration) or ter-
minates outputting the final configuration.

This iterative process ensures that the advisor can be can-
celed at any time, if either (1) the forecast error is acceptable
or only shows slight improvements with more models or (2)
the maximum acceptable model costs are reached.

B. Indicators

To find model candidates, we use indicators that heuris-
tically indicate the expected benefit of a model without
removing or, more importantly, building it. The calculation
of these indicators should be efficient (in comparison to
model creation) and accurate (to correctly reflect the benefit).
Obviously, as our indicators are supposed to judge the benefit
of a possible model, we can not use any information about
the model itself. We can only use heuristics that are based
on the available historical time series data. Such heuristics
might either focus on a single time series or on the relationship
of time series. Especially for large data sets, the accuracy of
derivation schemes is very important as we can not build a
model for each single time series. To allow such scalability,
our indicators are based on the accuracy of derivation schemes,
i.e., on time series relationships.

Historical Error: First, analogue to other approaches in this
area [17], [19], we can use the time series history to evaluate
the historical error of a scheme s k→ t. As we do not know a
model for node s, we can only assume perfect accuracy and
use the real historical values of s as forecast values. Those

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

1

C1 C2 C3

R1

R1 C1 C2 C3

VA VR

C1 C2 C3

R1

R1 C1 C2 C3

VA

1 2

C1 C2 C3

R1

R1 C1 C2 C3

0 5 2 3

C1 C2 C3

R1

R1 C1 C2 C3

C1 C2 C3

R1

C1 C2 C3

R1

R1 C1 C2 C3

error: 0 4
costs: 1

error (new): 0 3
costs (new): 2

0 5 2 3 0 5 2 3 0 5 2 3

0 0 1 3 1 0 1 3

(a) Initialization (b) Preselection (c) Ranking

(d) Model Creation (e) Acceptance (f) Deletion

global indicator

local
indicator

min 0 0 1 3 0 4 2 0

1 0 1 3 1 4 4 0

VA VR

error: 0 32
costs: 1

error: 0 3
costs: 2

0 0 1 3

error: 0 4
costs: 1

VR

error: 0 4
costs: 1

error: 0 4
costs: 1

VA

1

local

global

Fig. 4. Example Iteration of the Configuration Advisor

values together with the derivation weight ks→t compute the
forecast values of t, which are compared with the real values
of t. In this paper, this error is calculated over the entire history
as the time series from our real-world data sets are quite short,
but a different history length might also be used.

Similarity: A second important factor in the accuracy of
derivation schemes is the similarity of time series [9]. Obvi-
ously, a scheme will be quite accurate if the corresponding
time series are very similar. However, as as the number of
possible derivation schemes might be very high, we need an
efficient measure to capture this similarity. One possibility is
the analysis of the derivation weights ks→t. Constant weights
indicate a high similarity and consistent relationship between
nodes s and t. In contrast, if weights strongly fluctuate over
time, the corresponding scheme is quite unstable and leads
to low accuracy. This stability is captured by computing the
variance of the weights over the entire time series history.

Other indicators are possible, but within our experimental
evaluation we show that these indicators have a strong cor-
relation with the real forecast error. However, the concrete
indicator type is independent from our framework and new
indicators can easily be added.

These indicators are combined into a single accuracy mea-
sure, where a low indicator value (i.e., low historical error
and low variance of weights) corresponds to a high derivation
accuracy. A local indicator array for a source node s can
be created, where each entry indicates the derivation error of
target node t from source node s in the scheme s k→ t (see
Figure 4 (a)). The indicator value of a node with itself is zero.

A global indicator is retrieved by computing the minimum
over all currently existing local indicators. Analogue, the

global indicator contains an entry for each node in the graph
indicating the minimum error over all derivation schemes.

IV. MODEL CONFIGURATION ADVISOR DETAILS

We now detail each of the four phases of the advisor. We
illustrate each step with an example using a smaller version
of the time series graph from Figure 2. It contains four nodes
(see Figure 4) – the top node represents aggregated sales in
region R1, while each leave node covers individual sales of a
certain city (C1, C2, C3).

A. Candidate Selection Phase

In the candidate selection phase, we utilize the indicators
to choose a set of positive nodes VA that might benefit from
a model as well as a set of negative nodes VR where a model
should be removed (preselection). We then examine these can-
didates more closely by creating new local indicators and rank
them according to their expected benefit in a configuration.

1) Preselection: In the preselection step, we examine the
current status of the configuration, for which we store a local
indicator array for all nodes s that currently contain a forecast
model. A global indicator is created as described in Subsection
III-B, which indicates the current status of the configuration.

Example: In our running example, we start with a config-
uration, where only one model exists for the top node R1

(Figure 4 (a)). A local indicator is initialized for this node. The
global indicator equals exactly the local indicator in the given
example, as there are no other local indicators. The values in
the top right corner of Figure 4 (a) show the real configuration
error and configuration costs (see Subsection II-D).

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Nodes with high values in the global indicator I probably
have a high error and should be chosen as positive candidates
VA. In contrast, nodes with low values should be chosen as
negative candidates VR:

VA = {v|v ∈ V, Iv > E(I) + γ · σ(I)} and (5)

VR = {v|v ∈ V, Iv = 0} . (6)

We therefore add all nodes above the average of the global
indicator E(I) to the set of positive candidates VA. The
parameter γ together with the standard deviation σ(I) of the
global indicator is used to regulate the number of positive
candidates and set in the control phase. In our current indicator
approach, the indicator value of a node with a forecast model
is always zero. We, therefore, add all nodes with an indicator
value of zero to the set of negative candidates VR.

Example: Assume the parameter γ is set to zero. In Figure
4 (b), the two nodes C1 and C3 are higher than the average
indicator value (E(I) = 2.5) and are added to the positive
candidates VA, while the node R1 with an indicator value of
zero is added to the negative candidates VR.

2) Ranking: Within the ranking step, we examine all posi-
tive candidates VA more closely by creating a local indicator
(if not already present) for each candidate node. A new
global indicator is created and stored including the respective
node. We then rank the set VA by those global indicators in
decreasing order, arranging nodes with the highest benefit first.

Example: Figure 4 (c) visualizes the ranking step. A local
indicator was created for the nodes C1 and C3 and subse-
quently for each node a new (temporary) global indicator was
computed, which constitutes the minimum over the current
global indicator and the local indicator of the corresponding
node. The global indicator of node C1 shows on average lower
indicator values than node C3 and therefore takes first place
in the ranked queue of candidate nodes.

Similar, we examine all negative candidates by removing
the local node indicator from the current global indicator. We
rank the nodes in the set VR based on these indicators in
ascending orders, arranging nodes which lowest benefit to the
current configuration first.

B. Evaluation Phase

In the evaluation phase, we evaluate the nodes in the set VA
and VR to decide whether they should be added to or deleted
from the configuration. Hereby, we explicitly create forecast
models for positive candidates VA. We then evaluate the real
forecast error and benefit of a model in the configuration
and decide whether a new model should be accepted to the
configuration as well as if a model should be deleted.

1) Model Creation: From the ranked set of positive candi-
dates VA, the top n nodes are chosen, for which a model is
created. The number of nodes n is restricted by the number of
available processors. For creation itself, the time series history
is divided into a training part, over which the model is created
as well as an evaluation part, over which forecast values are
calculated. Creating a forecast model requires estimating its

parameters using standard local (e.g., Hill-Climbing) or global
(e.g., Simulated Annealing) optimization algorithms (for more
details see [11]). Note that a model is always created over a
single time series of a node s. The forecast values are then
utilized to calculate the effect of this model on the multi-
dimensional data cube by computing the accuracy of the model
at its own node as well as in derivation schemes. Hereby,
each node in the current configuration knows its current best
forecast error and associated derivation scheme. If the new
model improves the forecast error of a node, it replaces the
old error and derivation scheme, leading to a new overall
configuration error errnew.

Example: In Figure 4 (d), we choose to build a model for the
first node in the ranked set VA. After creating this model, we
can compute the new error and costs of the configuration. The
model costs have increased as there are now two models in
the configuration. In contrast, the forecast error has decreased.

2) Acceptance: To decide whether a model should be
accepted to the configuration, we need to compare the new
configuration error errnew with the previous configuration
error errold. A simple acceptance criteria might just compare
both errors and, if the error is better, the model gets accepted:

errnew < errold. (7)

Additionally, we allow to reject models that achieve only a
small error improvement in favor of more beneficial models.
A generalized acceptance criteria sets the error improvement
in relationship with the overall configuration costs:

α errnew+(1−α) costnew < α errold+(1−α) costold, (8)

where α ∈ [0, 1] regulates the influence of the model costs. If
α = 1 the acceptance criteria equals the error-based criteria.
The proposed acceptance criteria requires a normalization so
that error and costs are comparable.

If a model gets accepted, it is added to the current config-
uration, the configuration error and costs are updated as well
as the global indicator values. If a model is rejected according
to the acceptance criteria and additionally does not improve
the forecast error, it is marked so that it will not get selected
again as positive candidate.

Example: As the new model decreases the configuration
error, it is accepted according to the criteria in Equation 7.
Subsequently, we update the global indicator value, configu-
ration error and configuration costs (Figure 4 (e)).

Deletion is handled similarly by examining the effect of
deleting the top node in the sorted list VR. A node is
deleted if this improves the configuration according the defined
acceptance criteria (Equation 8). This approach removes nodes
that have been added too greedy to the configuration but do
not contribute significantly to the overall accuracy.

Example: In Figure 4 (f) the model at node R1 has been
deleted. While the configurations costs have decreased by one,
the configuration error has slightly increased. However, this
slightly higher configuration error might be acceptable due to
the lower costs. Finally, the global indicator has been updated
and includes now just the local indicator array of node C1.

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

C. Control Phase

The control phase has two main functionalities. First, it
regulates the search space and search time by setting the
advisor parameters. Secondly, it utilizes the available hardware
to search for additional derivation schemes in the background.

1) Parameter Settings: Our advisor utilizes three important
parameters, the size of the indicator arrays |I|, the number
of positive candidates, regulated by γ, and the acceptance
threshold α.

Setting |I|: Searching the whole space of derivation
schemes is time- and memory-consuming and not possible
for larger data sets. A smaller indicator size |I| requires less
memory and less computing time in the candidate selection
phase, but might also reduce the forecast accuracy as less
derivation possibilities are considered. Our current strategy
considers memory space and restricts the indicator size |I| so
that indicators for all nodes fit in memory. The local indicator
of a node s is then constructed by including those nodes which
are closest to s in the time series graph.

Setting γ: The parameter γ regulates the number of
candidates that are chosen in the preselection step. The more
candidates are selected, the higher the runtime of the candidate
selection step as each candidate requires the creation of a local
indicator in the ranking step. However, selecting more candi-
dates might also increase the accuracy of the configuration as
we analyze more nodes. Nevertheless, the candidate selection
phase should not be more expensive than the evaluation phase,
otherwise we could just invest the time to directly create
forecast models, which is always the most accurate approach.
Based on theses considerations, our strategy to regulate γ takes
the indicator creation time as well as the model creation time
into account. In detail, we assume a normal distribution of
the indicator value and set γ initially so that the number of
candidates roughly equals the number of processors on the
machine. In each iteration, we compare the time spent in the
candidate selection phase with the time spent in the evaluation
phase and either increase or decrease γ.

Setting α: The parameter α determines the error improve-
ment a model has to achieve in order to be accepted to the
configuration and sets it in relationship with the costs of the
model. If α is quite small only models that achieve a high error
improvement are accepted, while the higher the parameter α
the more models get accepted. With α = 1 all models are
accepted that lead to an improvement of the configuration,
independently of the model costs. Initially, α is set to a low
value (usually 0.1) and then continuously increased (until
α = 1). The parameter α is increased if either (1) a certain
number of rejects has occurred, (2) the maximum number of
iterations is reached or (3) the error improvement is too small.
This approach allows a reasonable runtime of the advisor even
for larger data sets as the user can stop the advisor at any point
in time, knowing that the most beneficial models are included
in the current configuration.

2) Optimizations: The introduced indicators consider only
derivation schemes from single source nodes. Although initial

Forecast
Query

Processor

Maintenance
Processor

Forecast Query
SELECT …
AS OF now() 1 day

Configuration Storage

Time Series Updates

Model
Configuration

Advisor
Load

F2DB

Fig. 6. Integrating Forecasting inside the DBMS

experiments have shown that these schemes are most impor-
tant and have the highest impact on the configuration error,
derivation schemes from multiple source nodes might further
increase the forecast accuracy. We therefore integrated an
additional asynchronous component that addresses this task.
It iteratively selects a target node and a random number of
source nodes from the time series graph, where the possibility
of selecting a source node decreases with increasing distance
from the target node. The derivation accuracy of the selected
nodes is then evaluated and applied to the configuration if the
configuration accuracy is improved.

D. Output Phase

The model configuration advisor continuously outputs the
forecast error as well as the model costs of the current
best configuration. Thus, a user can interrupt the advisor at
any point in time if the forecast error is acceptable, shows
only slight improvements with more models or the maximum
acceptable model costs are reached. Additionally, the user can
set predefined stop criteria to trigger automatic termination
of the advisor. Again, these can be error-based, either by
giving an absolute error or relative error with respect to
the initial configuration, or cost-based, either by absolute or
relative costs. If no stop criteria are given, the advisor will
continuously increase the parameter α and stop when α > 1
(see Subsection IV-C.1).

Example: After finishing one iteration of the advisor, we
retrieve the configuration in Figure 4 (f). We can now continue
with a new iteration or we can output this configuration along
with its error and costs.

V. MANAGEMENT OF MODEL CONFIGURATIONS

Our initial goal was the optimization of forecast queries
in multi-dimensional data sets. Thus, once we have found a
model configuration, we need to store, manage, and update it
for efficient and accurate query processing. In previous work,
we already introduced F2DB, an extension of PostgreSQL,
that natively supports and processes forecast queries [12].
Within this section, we shortly discuss the main extensions
and implementation issues relevant for this paper. Besides the
implementation of the model configuration advisor itself, we
need to store the final configuration in the DBMS and use it
for the processing of forecast queries and updates to the time
series data (Figure 6).

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Configuration Advisor: We implemented the advisor as a
stand alone component—outside of PostgreSQL. It is respon-
sible for building the time series graph, selecting a model
configuration as described in the previous two sections, and
finally loading the result in the database. The time series graph
might be automatically derived from the data (e.g., by foreign
key relationships). During execution the advisor utilizes the
forecasting capabilities of F2DB to build models for certain
nodes in the evaluation phase and retrieve their accuracy.

Configuration Storage: To store a model configuration we
utilize the standard relational tables and index structures of
PostgreSQL. In detail, we added two tables: the first one
stores the time series graph and model configuration (including
model assignments, derivation schemes and corresponding
weights), and the second table stores the forecast models itself
including state and parameter values.

Forecast Query Processor: A forecast query is rewritten to
access relevant nodes in the time series graph. It, thus, finds the
nodes, loads the necessary models and calculates the forecasts.
The processing of a forecast query is very fast as there is no
need to access the base tables containing the time series data.

Maintenance Processor: As time proceeds, new time series
values are inserted into the database system, requiring mainte-
nance of the models in the model configuration. Maintenance
involves updating the state of the models and derivation
weights to the current point in time as well as optional
parameter reestimation of forecast models. Maintenance of
nodes of aggregated time series requires that new time series
values for all child nodes are available. To address this issue,
we currently batch inserts until a new value is available for
each base time series for the next time stamp. We then advance
time in the whole time series graph by processing all inserts
at once and by updating the state of the models and derivation
weights, which can be done incrementally. Optionally, we
mark models as invalid if parameter re-estimation is necessary
(e.g., based on a time- or threshold-based strategy, see [12] for
details). If a query references an invalid model, we trigger
immediate parameter reestimation. With this approach we
reduce maintenance overhead by delaying parameter reesti-
mation until the model is actually referenced by a query.

VI. EXPERIMENTAL EVALUATION

We conducted an experimental study on several real-world
and synthetic data sets to evaluate (1) the performance of the
advisor with respect to forecast accuracy and model costs
and compared to other approaches, (2) the influence of the
advisor’s parameters as well as (3) the runtime behavior of
the advisor and the runtime of forecast queries in F2DB.

A. Experimental Setting

To evaluate our approach, we consider several real-world
data sets from different domains as well as synthetic data sets:

Tourism: The Tourism data set was already used in several
papers in the forecasting literature [17], [20] and contains
quarterly observations on the number of visitors for the

Australian domestic tourism indicating the tourism activity
in Australia. The sample contains 32 base time series from
2004 to 2011 according to two dimensions — purpose of visit
(holiday, business, visiting friends and relatives, other) and
state [21].

Sales: We obtained an excerpt of sales data from a market
research company. The excerpt contains 27 base time series
according to different products and countries in a monthly
resolution from 2004 to 2009.

Energy: The third real data set originates from the energy
domain and was obtained by EnBW during the Meregio
project [22]. It contains energy demand of 86 customers, from
November 2009 to June 2010, in an hourly resolution.

GenX: Finally, we generated synthetic time series data
for a certain number of base time series X . These are
then summed to obtain the aggregated data for the levels
above. To create the time series graph, we use three levels
if X < 1, 000, four levels for 1, 000 ≤ X < 10, 000,
five levels for 10, 000 ≤ X < 100, 000 and six levels for
X ≥ 100, 000. The time series data itself was generated
by a SARIMA process [11] using the statistical computing
software environment R.

All data sets where loaded into the F2DB Postgres database.
The creation of models for nodes in the time series graph
representing aggregated time series requires aggregation of
the data in the database. To avoid repeatedly scanning the
same data, we initially created all aggregated time series for
the whole time series graph. We analyzed different forecast
models for all four data sets and found that triple exponential
smoothing worked best in most cases, where we set the
seasonality according to the granularity of the data. For each
time series, we used about 80% of the data to train the forecast
models and the remaining data to find and evaluate the best
configuration. The following experiments were executed on an
AMD Opteron System with 12 cores and 32 GB RAM.

B. Accuracy Analysis

In a first series of experiments, we compare the performance
of our approach to several alternatives.

The first group of alternatives are from the area of hierar-
chical forecasting [23] in the forecasting literature and fix a
configuration independent from the data:

Direct: The naive direct approach creates a model for each
node in the time series graph and uses the model to directly
calculate the forecasts of the corresponding node.

Bottom-Up: Arguably the most commonly applied method
in forecasting literature [17] is the bottom-up approach (e.g.,
[10], [24]), where only forecasts for base time series are
created and aggregated to produce forecasts for the whole time
series graph.

Top-Down: The other commonly applied method in fore-
casting literature is the top-down approach (e.g., [25], [9]),
where the most common form distributes the forecasts of
the top node down the hierarchy based on the historical
proportions of the data [17]. Gross and Sohl [16] analyzed

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Direct BU TD Comb Greedy Advisor

error
models

fo
re

ca
st

 e
rr

or
0

0.
05

0.
1

0.
15

0
10

20
30

40
50

#m
od

el
s

(a) Tourism

Direct BU TD Comb Greedy Advisor

error
models

fo
re

ca
st

 e
rr

or
0

0.
05

0.
1

0.
15

0
10

20
30

40
#m

od
el

s

(b) Sales

Direct BU TD Comb Greedy Advisor

error
models

fo
re

ca
st

 e
rr

or
0

0.
05

0.
15

0.
25

0.
35

0
20

40
60

80
10

0
#m

od
el

s

(c) Energy

Direct BU TD Greedy Advisor

error
models

fo
re

ca
st

 e
rr

or
0

0.
02

0.
06

0.
1

0.
14

0
50

00
10

00
0

15
00

0
#m

od
el

s

(d) Gen10k

Fig. 7. Accuracy Analysis

several versions of this approach, where a simple method that
uses the proportions of the historical averages performed best.

Additionally, we consider two alternatives that empirically
choose a configuration based on training data:

Combine: Hyndman et. al. [17] proposed a general hierar-
chical forecasting framework that independently forecasts all
series at all aggregation levels of the hierarchy and computes
a regression model to optimally combine and reconcile these
forecasts. The code is publicly available as part of the hts
package of the statistical computing software R.

Greedy: The second empirical approach is a simple greedy
approach that initially builds all forecast models for all nodes
in the graph and then selects in each step the model with
the highest benefit with respect to forecast accuracy [19]. It
stops when there is no model left that improves the accuracy.
To calculate the forecasts, it only considers the traditional
derivation schemes aggregation, disaggregation and direct.

We executed these approaches for each of the real-world
data sets and one synthetic data set containing 10,000 base
time series Gen10k (Figure 7). The dark grey bars show
the forecast error of the corresponding approach (left y-axis)
and the light grey bars the number of models in the final
configuration representing the model costs (right y-axis). For
all data sets, our advisor results in the lowest overall forecast
error and outperforms the majority of the other approaches
in model costs. The data-independent approaches – direct,
bottom-up (BU) and top-down (TD) – show different behaviors
for different data sets. For Tourism and Gen10k, the top-

down approach exhibits the best forecast error, while for the
Sales data set, the direct and bottom-approach show a lower
error. In contrast, for the Energy data set, all approaches
behave equally with respect to the forecast error. This proves
our initial statement that the best approach depends on the data
set. In terms of model costs, the top-down approach exhibits
the lowest costs as only one model is created, while the direct
approach shows the highest costs as models for all nodes are
required. The Combine approach (Comb) shows a slightly
lower forecast error than the data-independent approaches
for all three real-world data sets, but requires maximum
model costs as models for all nodes are created and utilized.
We did not execute the Combine approach for the Syn10k
data set due to the long execution time (> one day). The
Greedy approach outperforms all other approaches in terms
of forecast accuracy and models costs, but is beaten by our
model configuration advisor. By using a generalized derivation
scheme and carefully selecting most beneficial models first, the
model configuration advisor achieves the lowest forecast error
while keeping low model costs.

C. Parameter Analysis

In a second series of experiments, we more closely analyze
the different parameters of the model configuration advisor.

Indicator Accuracy: First of all, we investigated the ap-
plicability of our two indicators. For this, we analyzed the
correlation between the indicators and the real forecast errors
for two selected data sets. Ideally, the indicator and error

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

real error

in
di

ca
to

r

Sales
Tourism

(a) Correlation Error – Indicator

20 40 60 80 100

0.
00

0.
10

0
20

indicator size |I| (in %)

er
ro

r Energy
Tourism

Sales
Gen10k

(b) Influence of |I|

0 10 20 30 40 50 60

0
10

20
30

40

model creation time (s)

ru
nt

im
e

(m
in

)

Greedy
Direct

Advisor
TopDown

(c) Influence of γ – Time

0 10 20 30 40 50 60

0.
00

0.
10

0.
20

model creation time (s)

er
ro

r

Energy
Tourism

Sales

(d) Influence of γ – Error

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

0.
30

alpha

er
ro
r Energy

Tourism
Sales
Gen10k

(e) Influence of α – Error

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

alpha

m

od
el

s
(in

 %
)

Energy
Tourism

Sales
Gen10k

(f) Influence of α – Models

Fig. 8. Parameter Analysis

values should be exactly the same and positioned on the
straight line in Figure 8(a). For the Sales data set, most of
the points are very close to the ideal line showing a good
correlation of the indicator with the real forecast error. The
Tourism data set exhibits more outliers, but in general shows
a good correlation as well. Therefore, our approach to calculate
the indicators is valid and heuristically captures the real errors.

Indicator Size: The size of the indicators |I| regulates the
number of nodes that are considered in derivation schemes.
Figure 8(b) shows the configuration forecast error in relation-
ship with the indicator size |I|. For the three real-world data
sets, the error decreases with increasing indicator size as more
derivation schemes are possible. Our current strategy includes
the closest nodes in the indicators if the size |I| is restricted.
For that reason the highest error decrease can be observed
in the beginning as nearby nodes (exhibiting similarities in
some dimensional attributes) are more suitable for forecast
derivations. In contrast, the synthetic data set shows only small
error improvements with increasing indicator size. For this
data set the time series were randomly generated and do not
include correlations with respect to the dimensional attributes.
The advisor is able to find similar nodes even when a fraction
of all available derivations is utilized.

Candidate Selection: The parameter γ affects the number
of positive candidates. To analyze the effect of the parameter
γ, we use the Sales data set and artificially vary the time
that is required to create a single forecast model. We then
measured the runtime of the different approaches (Figure 8(c)).
As expected, the Greedy, Direct and Top-Down approach
increase linearly with the model creation time. The Bottom-
Up approach exhibits very similar runtime like the Direct
approach and was omitted in this diagram. In contrast, the
model configuration advisor only shows a slight increase in
runtime. The reason lies in the setting of the parameter γ in
the control phase. With increasing model creation time, more
models are analyzed in the candidate selection phase in order
to reduce the number of models that need to be created in the
evaluation phase. The effect of this approach on the forecast
error is shown in Figure 8(d). Even as fewer models are created
due to high model creation time, the final configuration of the
Sales data set leads to the same accuracy, due to the good
correlation of the indicators with the real errors. For the other
two data set, this correlation is slightly worse, leading to a
slight decrease of the forecast error.

Acceptance Criteria: Our goal of adding most beneficial
models first to a configuration is regulated by the parameter

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

base time series

ru
nt

im
e

(m
in

)
0

10
20

30
40

50
60

1k 20k 40k 100k

Combine
Greedy
Direct

Bottom−Up
Advisor
Top−Down

(a) Scalability

2 4 6 8 10

0
1

2
3

4

query/insert ratio

tim
e

(m
s)

alpha=1.0
alpha=0.5

(b) Forecast Query Runtime

Fig. 9. Runtime Analysis

α. Figure 8(e) shows the development of the configuration
forecast error with increasing α. As the advisor choses most
beneficial models first, the highest error decrease can be
observed in the beginning. For larger αs only small error
improvements are visible. For α = 0.5, most data sets exhibit
a configuration error very close to the best possible error. In
Figure 8(f) the corresponding relative number of models are
displayed. To achieve the error of α = 0.5 less than 15% of
the models are necessary. Even for the highest value of α,
indicating the best possbile configuration, the percentage of
models does not exceed 40%. Thus, with only a fraction of the
available models, we can achieve very high accuracy, allowing
us to reduce the number of models we need to maintain.

D. Runtime Analysis

In a final series of experiments, we analyzed the runtime of
the model configuration advisor. We use the synthetic data
set GenX and vary the number of base time series X ∈
{1k, 10k, 20k, 30k, 40k, 100k}. We measured the total time
that is required to create a configuration for all approaches.
For the model configuration advisor, we set α to 0.5, since
the previous experiments have shown an already good forecast
accuracy with such choice of α. As seen in Figure 9(a),
the direct and bottom-up approach increase linear with the
data size as the configuration creation consists only of model
creation costs, where the bottom-up approach exhibits a lower
runtime as only models for base nodes in the time series
graph are created. In contrast, the top-down approach shows a
constant runtime as it only creates one model for the top node.
The runtime of the Greedy approach strongly increases with
increasing number of time series as in each iteration the benefit
of a model for each node, which does not contain a model,
is analyzed. In contrast, our advisor only analyzes the nodes
chosen in the candidate selection phase and, thus, shows a
better runtime than all other approach, except for the top-down
approach. The dominant factor in the runtime of the advisor
is given by the creation of the forecast models, which leads to
a linear behavior as well. We also denoted the runtime of the
Combine approach, which strongly increases with increasing
data set size as it requires the computation of a regression
matrix over all base forecasts. However, the execution times

for the Combine approach were measured in R and are not
fully comparable with our implementation in Java.

Finally, we loaded the model configuration into F2DB,
using the Gen10k data set for two different parameters of
α (0.5 and 1.0). The loading time was less than one minute
including storing the time series graph, derivation schemes as
well forecast model and weight calculation. We then generated
random forecast queries for base and aggregated time series.
The average accuracy of these forecast queries confirmed with
out measurements in Subsection VI-B. Figure 9(b) shows
the average runtime of a forecast query, where we varied
the proportion of forecast queries and inserts (representing
new time series values) over a period of 10 points in time.
We started with one forecast query per insert (query/insert
ratio = 1), which resulted in about 150,000 forecast queries
and 150,000 inserts. We increased the number queries per
insert up to 10 leading to approximately 1,500,000 queries
and 150,000 inserts. As visible in Figure 9(b), the average
runtime of a single forecast query is very low as models are
already precomputed and just maintained if necessary. We can
observe a higher runtime for a configuration with α = 1 then
for α = 0.5 as in the second case fewer models are stored.
Additionally, the average runtime decreases with increasing
number of queries per insert as less maintenance is necessary.

VII. RELATED WORK

The integration of statistical methods, including time series
forecasting, into database management systems is getting more
and more attention. Recently, Akdere et. al. [26] published
a high-level description of a database system that integrates
regression and classification on ordinary relations. In our
research, we focus only on time series forecasting (requiring
different models) and discuss challenges specific for this task.
The processing of forecast queries was first introduced within
the Fa system [7] that proposed an incremental approach to
build models for multi-dimensional time series. Later, a skip-
list approach [8] was published for very large time series in
order to enable the determination of a suitable history length
for model building. All these approaches investigate how to
efficiently find the best model for one specific forecast query.

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

11

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

We focus on forecasting time series in multi-dimensional
settings that allows exploiting models at different dimensions.

The challenge of forecasting high-dimensional data, while
maintaining real-time response, was also considered by Agar-
wal et. al. [5]. They propose to store and forecast only a
sub-set of attribute combinations and compute other combina-
tions from those using high-dimensional attribute correlation
models. These correlation models are similar to our general
derivation scheme introduced in Subsection II-C. However,
in their work, the set of models is selected manually for
historical importance and seasonality, while we propose an
automatic approach to determine the optimal set of models
to store. Another work in this area provides a framework
for multi-dimensional regression analysis of time-series stream
data [27]. Mathematical properties of regression analysis allow
the calculation of regression models at higher aggregation
levels from a small number of numerical values stored on base
levels. More sophisticated models as usually applied in time
series forecasting can not exploit such properties and require
an empirical selection approach as proposed in this paper.

Determining the best aggregation level for forecasting is
related to hierarchical forecasting techniques [23]. In this
context, the majority of the literature has focused on compar-
ing bottom-up (models are created for base time series) [10]
and top-down (models are created for aggregated time series)
[25] approaches. Recently, Hyndman et. al. [17] proposed a
general hierarchical forecasting framework that independently
forecasts all series at all aggregation levels of the hierarchy and
uses a regression model to optimally combine and reconcile
these forecasts. However, their approach is only applicable for
a small number of time series (as shown in our experimental
evaluation) and, in contrast to our work, only maximizes the
accuracy and does not take model costs into account.

Finally, optimizing queries in multi-dimensional data sets
is related to the computation of multi-dimensional group by
queries [28] and materialized view selection [29]. This work is
orthogonal to ours and can be used to optimize the calculation
of aggregated time series to speed up model maintenance.

VIII. CONCLUSIONS

We proposed a model configuration advisor that returns a
configuration of forecast models for a given time series data set
in multi-dimensional data cubes. By deriving and combining
forecasts for a time series from one or multiple forecast models
based on other time series, we are able to increase forecast
accuracy as well as save model costs. Our general framework
is based on an iterative process that selects a set of candidate
time series in each iteration for which a model should be built
and analyzed. Parameters of the advisor like the number of
candidate models are automatically tuned in a control phase.
In our evaluations we show that our advisor is able to achieve
a higher forecast accuracy than other approaches and that we
are able to calculate a configuration in reasonable time even
for larger data sets and complex models. Finally, we are able
to load a model configuration into our existing PostgreSQL
prototype F2DB and efficiently process forecast queries.

REFERENCES

[1] E. Peeters, R. Belhomme, C. Battle, F. Bouffard, S. Karkkainen, D. Six,
and M. Hommelberg, “Address: Scenarios and Architecture for Active
Demand Development in the Smart Grids of the Future,” in CIRED,
2009.

[2] J. T. Mentzer and C. C. Bienstock, “The seven principles of sales-
forecasting systems,” Supply Chain Management Review, 1998.

[3] H. Feng, N. Lumineau, M. Hacid, and R. Domps, “Hierarchy-based
update propagation in decision support systems,” in DASFAA, 2012.

[4] M. Boehm, L. Dannecker, A. Doms, E. Dovgan, B. Filipic, U. Fischer,
W. Lehner, T. B. Pedersen, Y. Pitarch, L. Siksnys, and T. Tusar, “Data
management in the mirabel smart grid system,” in EnDM, 2012.

[5] D. Agarwal, D. Chen, L. Lin, J. Shanmugasundaram, and E. Vee,
“Forecasting high-dimensional data,” in SIGMOD, 2010.

[6] Y. Cui, R. Zhang, W. Li, and J. Mao, “Bid landscape forecasting in
online ad exchange marketplace,” in KDD, 2011.

[7] S. Duan and S. Babu, “Processing forecasting queries,” in VLDB, 2007.
[8] T. Ge and S. Zdonik, “A skip-list approach for efficiently processing

forecasting queries,” in VLDB, 2008.
[9] G. Fliedner, “An investigation of aggregate variable time series forecast

strategies with specific subaggregate time series statistical correlation,”
Computers & Operations Research, vol. 26, pp. 1133–1149, 1999.

[10] D. Dunn, W. Williams, and T. DeChaine, “Aggregate versus subag-
gregate models in local area forecasting,” Journal of the American
Statistical Association, vol. 71, pp. 68–71, 1976.

[11] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting
and Control. Wiley, 2008.

[12] U. Fischer, F. Rosenthal, and W. Lehner, “F2db: The flash-forward
database system,” in ICDE, 2012.

[13] V. Harinarayan, A. Rajaraman, and J. D. Ullman, “Implementing data
cubes efficiently,” in SIGMOD, 1996.

[14] J. G. D. Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” International Journal of Forecasting, vol. 22, pp. 443–473, 2006.

[15] S. Makridakis and M. Hibon, “The M3-Competition: results, conclusions
and implications,” International Journal of Forecasting, vol. 16, pp. 451
– 476, 2000.

[16] C. W. Gross and J. E. Sohl, “Disaggregation methods to expedite product
line forecasting,” Journal of Forecasting, vol. 9, pp. 233–254, 1990.

[17] R. J. Hyndman, R. A. Ahmed, G. Athanasopoulos, and H. L. Shang,
“Optimal combination forecasts for hierarchical time series,” Computa-
tional Statistics and Data Analysis, 2011.

[18] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International Journal of Forecasting, vol. 22, pp. 679 – 688,
2006.

[19] U. Fischer, M. Böhm, and W. Lehner, “Offline design tuning for
hierarchies of forecast models,” in BTW, 2011.

[20] G. Athanasopoulos, R. A. Ahmed, and R. J. Hyndman, “Hierarchical
forecasts for australian domestic tourism,” International Journal of
Forecasting, vol. 25, pp. 146–166, 2009.

[21] (2012) Tourism Research Australia - National Visitor Survey. [Online].
Available: http://www.ret.gov.au/tourism/research/tra/Pages/default.aspx

[22] (2012) The MeRegio Project. [Online]. Available:
http://www.meregio.de/en/

[23] G. Fliedner, “Hierarichal forecasting issues and use guidelines,” Indus-
trial Management & Data Systems, vol. 101, pp. 5–12, 2001.

[24] A. Zellner and J. Tobias, “A note on aggregation, disaggregation and
forecasting performance,” Journal of Forecasting, vol. 19, pp. 457–469,
2000.

[25] E. B. Fliedner and V. A. Mabert, “Constrained forecasting: Some
implementation guidelines,” Decision Sciences, vol. 23, pp. 1143–1161,
1992.

[26] M. Akdere, U. etintemel, M. Riondato, E. Upfal, and S. Zdonik, “The
case for predictive database systems: Opportunities and challenges,” in
CIDR, 2011.

[27] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang, “Multi-dimensional
regression analysis of time-series data streams,” in VLDB, 2002.

[28] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ra-
makrishnan, and S. Sarawagi, “On the computation of multidimensional
aggregates,” in VLDB, 1996.

[29] S. Agrawal, S. Chaudhuri, and V. R. Narasayya, “Automated selection
of materialized views and indexes in sql databases,” in VLDB, 2000.

Final edited form was published in "2013 IEEE 29th International Conference on Data Engineering (ICDE). Brisbane 2013", S. 853-864, ISBN 978-1-4673-4908-6
10.1109/ICDE.2013.6544880

12

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPEB70.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Ulrike Fischer, Christopher Schildt, Claudio Hartmann, Wolfgang Lehner

