
DISSERTATION

NETWORKS AND TRUST: SYSTEMS FOR UNDERSTANDING AND SUPPORTING INTERNET SECURITY

Submitted by

Bryan Charles Boots

Department of Systems Engineering

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Fall 2022

Doctoral Committee:

 Advisor: Steven J. Simske

 Ramadan Abdunabi

 Anura Jayasumana

 Leo Vijayasarathy

Copyright by Bryan Charles Boots, 2022

All Rights Reserved

ii

ABSTRACT

NETWORKS AND TRUST: SYSTEMS FOR UNDERSTANDING AND SUPPORTING INTERNET

SECURITY

This dissertation takes a systems-level view of the multitude of existing trust

management systems to make sense of when, where and how (or, in some cases, if) each is

best utilized. Trust is a belief by one person that by transacting with another person (or

organization) within a specific context, a positive outcome will result. Trust serves as a

heuristic that enables us to simplify the dozens decisions we make each day about whom

we will transact with. In today's hyperconnected world, in which for many people a bulk of

their daily transactions related to business, entertainment, news, and even critical services

like healthcare take place online, we tend to rely even more on heuristics like trust to help

us simplify complex decisions. Thus, trust plays a critical role in online transactions.

For this reason, over the past several decades researchers have developed a

plethora of trust metrics and trust management systems for use in online systems. These

systems have been most frequently applied to improve recommender systems and

reputation systems. They have been designed for and applied to varied online systems

including peer-to-peer (P2P) filesharing networks, e-commerce platforms, online social

networks, messaging and communication networks, sensor networks, distributed

computing networks, and others. However, comparatively little research has examined the

effects on individuals, organizations or society of the presence or absence of trust in online

iii

sociotechnical systems. Using these existing trust metrics and trust management systems,

we design a set of experiments to benchmark the performance of these existing systems,

which rely heavily on network analysis methods. Drawing on the experiments' results, we

propose a heuristic decision-making framework for selecting a trust management system

for use in online systems.

In this dissertation we also investigate several related but distinct aspects of trust in

online sociotechnical systems. Using network/graph analysis methods, we examine how

trust (or lack of trust) affects the performance of online networks in terms of security and

quality of service. We explore the structure and behavior of online networks including

Twitter, GitHub, and Reddit through the lens of trust. We find that higher levels of trust

within a network are associated with more spread of misinformation (a form of

cybersecurity threat, according to the US CISA) on Twitter. We also find that higher levels of

trust in open source developer networks on GitHub are associated with more frequent

incidences of cybersecurity vulnerabilities.

Using our experimental and empirical findings, we apply the Systems Engineering

Process to design and prototype a trust management tool for Reddit, which we dub Coni

the Trust Moderating Bot. Coni is, to the best of our knowledge, the first trust management

tool designed specifically for use on the Reddit platform. We develop and present a

blueprint for constructing a Reddit trust tool which not only measures trust levels, but can

use these trust levels to take actions on Reddit to improve the quality of submissions within

the community (a subreddit).

iv

ACKNOWLEDGEMENTS

I want to recognize and thank my incredible advisor, Professor Steve Simske. Your

outstanding recommendations, feedback, and ideas were a central part of helping me to

complete this dissertation. Your intellect, breadth and depth of expertise in distinct areas

are singular – you are a true renaissance man! In addition to the content of this

dissertation, you helped me learn a great deal about our field, and you have a been a true

mentor to me. I could not have completed this journey without your help and support. I

want to recognize and thank my distinguished doctoral committee, who have provided

guidance, recommendations, oversight, and encouragement to me – thank you, Professor

Jayasumana, Professor Vijayasarathy, and Professor Abdunabi. I am grateful for the

opportunity to have learned from each of your experiences and expertise. Thank you to the

innumerable other mentors and experts who helped me along different points in my

doctoral journey with their expertise, ideas, advice and support. While many contributed to

my journey and I can’t thank them all here, I would be remiss if I didn’t specifically thank

Jeff Hornsby, Felipe Tapia, Sergio Canavati, Henrique Houayek, Lyle Paczkowski, Kevin

Rooney, Nathan Smith, Brian Anderson, Jim Williams, Scott Savage, Steve Wildman, David

Reed, Dan Larremore, Brian Keegan, and David Eargle. Thank you to all of the Reddit users

who shared their time and experience with me in our interviews for Chapter VII. Thank you

to the amazing communities on Stack Overflow, GitHub, and other helpful Internet

strangers. Finally, thank you to the smart and talented contributors to all of the open

source Python libraries I make use of in this dissertation.

v

DEDICATION

I could not have completed this dissertation without the unwavering and unconditional

support and love of my family. This dissertation is dedicated to Katherine, Betty, Charles,

Ashley, Justin, Stephanie, Alicia, Holly, Leah, Alice, and Lucas. Thank you all.

vi

TABLE OF CONTENTS

ABSTRACT ..ii

ACKNOWLEDGEMENTS ... iv

DEDICATION ..v

LIST OF TABLES .. x

LIST OF FIGURES ... xii

LIST OF EQUATIONS .. xviii

I. Introduction .. 1

Contributions of this dissertation ... 3

Dissertation organization .. 6

II. Background and Overview .. 8

Problem statement .. 12

Research questions investigated in this dissertation .. 13

Scope ... 14

III. Systematic analysis of trust management systems for online applications 16

Types of and properties of trust ... 19

Quantitative scale of trust ... 20

Transitive trust (property) .. 21

Direct and indirect trust ... 24

Distrust .. 25

Global trust and specific (or local) trust ... 26

Swift trust .. 27

Hard trust and soft trust .. 27

Realms of trust ... 28

Key objectives of trust models .. 29

Application context .. 31

Systems or algorithms for measuring and managing trust online 32

Approaches to computing trust .. 35

vii

Graph-based approaches .. 38

Content-based and behavior-based approaches .. 64

Probabilistic approaches ... 67

Fuzzy Logic approaches ... 73

Game Theoretic approaches ... 75

Hybrid approaches (using two or more of the previously-identified approaches

together) ... 78

Other perspectives of trust online .. 89

Social and psychological perspectives on trust ... 95

Open challenges in the design and deployment of trust metrics and trust management

systems ... 97

IV. Benchmarking performance of trust metrics, and proposed framework for matching

a trust metric with an application .. 100

Introduction .. 100

Research questions .. 101

Related work... 102

Benchmarking performance of trust metrics .. 103

Design of benchmarking experiments ... 104

Analysis ... 115

Results and Discussion .. 123

Framework for selecting a trust model .. 156

Limitations .. 163

Future Work .. 164

V. Characterizing the nature of trust and misinformation on Twitter 166

Introduction .. 167

Background .. 168

Related Work .. 171

Research Questions and Datasets .. 172

Methods .. 176

The trust overlay network ... 178

Defining metrics used: hubs, authority, PageRank, eigenvector centrality 181

viii

Generating random networks ... 185

Results and Discussion .. 185

Key findings .. 185

Summary statistics ... 188

Visualizations .. 191

Who is in both networks? .. 196

Components ... 204

Degree distribution .. 205

Reciprocity .. 217

Mean shortest paths .. 217

Centrality measures ... 219

Small worldness ... 227

Conclusions and Future Work ... 227

VI. The relationship between trust and security in open source development 231

Introduction .. 231

Background .. 232

Related Work .. 234

Research Questions ... 237

Methods and Data ... 238

Dataset: rationale, data collection and dataset construction ... 239

Analysis measures .. 252

Results and Discussion .. 255

Summary statistics ... 257

Degree assortativity ... 258

Density .. 258

Reciprocity .. 259

Geodesic paths ... 259

Network visualizations ... 260

Node degree distribution .. 267

Direct trust and transitive trust analysis results .. 271

ix

Community detection .. 293

Conclusions and Future Work ... 297

Limitations .. 299

Future work... 300

VII. Applying the Systems Engineering Process to designing a trust management tool for

Reddit ... 303

Introduction .. 303

Overview of Reddit... 305

Related Work .. 310

Methods .. 311

Overview of the Systems Engineering Process .. 312

Application of the Systems Engineering Process to Our Design Challenge 315

Discussion of Results ... 346

Limitations .. 347

Future Work .. 347

VIII. Discussion, Limitations, and Future Work .. 350

Discussion of this dissertation’s contributions .. 350

Limitations .. 352

Future Work .. 354

References.. 358

Chapter I ... 358

Chapter II .. 358

Chapter III ... 358

Chapter IV ... 363

Chapter V .. 364

Chapter VI ... 367

Chapter VII .. 369

x

LIST OF TABLES

Table 1: Research questions investigated in this dissertation .. 14

Table 2: Selected trust management systems and trust metrics since 1999 33

Table 3: Features review of selected trust metrics and trust management systems, in

descending order of influence (as measured by number of citations) 35

Table 4: Experiment set combinations. Features highlighted in green signify the feature

that is variable for that experiment set. .. 106

Table 5: Structural characteristics of randomly small world and Gn,p networks used in

Experiment Set 1.1 and 1.2. .. 122

Table 6: Structural characteristics for randomly-generated small networks used in

Experiment Set 2. .. 122

Table 7: Structural characteristics for randomly-generated small networks used in

Experiment Set 3. .. 123

Table 8: MAE, code execution time, and Balanced Performance for different trust measures

in Experiment Set 1.2. ... 132

Table 9: MAE, code execution time, and combined performance (MAE x execution time) for

Experiment Set 2. For all experiments, n = 400 and K = 150, while p varies 138

Table 10: MAE, code execution time, and combined performance (MAE x execution time)

for Experiment Set 3. For all experiments, n = 400 and p = 0.02, while K varies in increments

of 50, from 50 to 250. .. 142

Table 11: Correlations between graph structural characteristics and performance of trust

metrics .. 147

Table 12: Relationship between graph structural characteristics in small world networks

and MAE for different categories of trust model .. 162

Table 13: Relationship between graph structural characteristics and code execution times

for different categories of trust model .. 162

Table 14: Number of nodes and directed edges for empirical networks analyzed 178

Table 15: Trust overlay network summary ... 180

Table 16: Summary Statistics for Directed Network Models ... 188

Table 17: Trust network with brokers ... 198

Table 18: Correlations of network structural measures in conspiracies and non-

conspiracies network .. 211

Table 19: Reciprocity in the 5G COVID conspiracies graph and the non-conspiraices graph

... 217

Table 20: Mean shortest path lengths for empirical and random graphs of the 5G COVID

conspiracies network and the non-conspiracies network, respectively 218

xi

Table 21: Summary of graphs generated from the OpenSSL and LE projects for analysis in

this chapter .. 252

Table 22: Summary Statistics for OpenSSL and LE trust networks 257

Table 23: Key structural measures for empirical and random versions of OpenSSL and LE

trust networks .. 257

Table 24: Mean shortest path lengths for the empirical and random versions of the

OpenSSL trust network and the LE trust network .. 260

Table 25: Correlations of trust measures in OpenSSL and LE empirical networks 293

Table 26: Greedy modularity maximization (GMM) community detection statistics for

OpenSSL and LE trust networks ... 297

Table 27: Operational requirements for our trust tool ... 320

Table 28: Candidate PRAW features for use in Reddit trust system 324

Table 29: Functional Requirements and Performance Requirements for Coni the Trust

Moderating Bot .. 326

Table 30: Selected features for computing trust in our system .. 330

Table 31: Sample computation of raw trust values for each object in the example 340

Table 32: Trust adjacency matrix for sample trust calculation ... 341

xii

LIST OF FIGURES

Figure 1: Visual overview of the universe of trust; green objects indicate those that are

within the scope of this work ... 15

Figure 2: Examples of trust in different contexts ... 19

Figure 3: Illustration of transitive trust concept in a small trust network. The solid black

lines represent a direct trust relationship, while the dashed lines indicate transitive trust. 21

Figure 4: Illustration of transitive trust concept in a small trust network. The values placed

on the edges signify the trust that exists between the corresponding nodes. 24

Figure 5: Categories of features considered in design of benchmarking experiments 105

Figure 6: Visualizations of small world graphs of different sizes used for Experiment Set

1.1; panel (1) with n = 400, panel (2) with n = 800, panel (3) with n = 1600, panel (4) with n =

3200, and panel (5) with n = 6400. p=0.02 and K=150 for all. Visualizations produced using

NetworkX and Matplotlib in Python3 with spring layout, node size = 10 and edge width =

0.1. .. 117

Figure 7: Visualizations of Gn,p random graphs of different sizes used for Experiment Set

1.2; panel (1) with n = 400, panel (2) with n = 800, panel (3) with n = 1600, panel (4) with n =

3200, and panel (5) with n = 6400. p=0.02 for all. Visualizations produced using NetworkX

and Matplotlib in Python3 with spring layout, node size = 10 and edge width = 0.1. 118

Figure 8: Visualization of random graphs used in Experiment Set 2. In Experiment Set 2, we

hold constant n = 400 and K = 150 while varying p from 0.02 to (Panel 1), to 0.05 (Panel 2),

0.50 (Panel 3), 0.95 (Panel 4), and 0.98 (Panel 5). Visualizations produced using NetworkX

and Matplotlib in Python3 with spring layout, node size = 10 and edge width = 0.1. 119

Figure 9: Visualizations of random small world graphs used in Experiment Set 3. In

Experiment Set 3, we hold constant n = 400 and p = 0.02 while varying k from 50 to (Panel

1), to 100 (Panel 2), 150 (Panel 3), 200 (Panel 4), and 250 (Panel 5). Visualizations produced

using NetworkX and Matplotlib in Python3 with spring layout, node size = 10 and edge

width = 0.1. ... 120

Figure 10: Performance of trust metrics as measured by Mean Absolute Error (MAE) for

varying sizes of graphs in Experiment Set 1.2. .. 128

Figure 11: Code execution time (in seconds) for different trust measures in Experiment Set

1.1, for varying sizes of Watts-Strogatz small-world networks. Semilog scale. 129

Figure 12: Ratio of execution time to MAE of trust metrics for varying sizes of graphs in

Experiment Set 1.1. Semilog scale. .. 130

Figure 13: Performance of trust metrics as measured by Mean Absolute Error (MAE) for

varying sizes of graphs in Experiment Set 1.2. .. 133

Figure 14: Code execution time (in seconds) for different trust measures in Experiment Set

1.2, for varying sizes of Watts-Strogatz small-world networks. Semilog scale. 134

xiii

Figure 15: Ratio of execution time to MAE of trust metrics for varying sizes of graphs in

Experiment Set 1.2. Semilog scale. .. 135

Figure 16: MAE of each trust metric when applied to the random graphs of Experiment Set

2. ... 139

Figure 17: Code execution time (in seconds) for different trust measures in Experiment Set

2. Semilog scale. .. 140

Figure 18: Balanced performance (MAE x code execution time) for different trust measures

in Experiment Set 2. .. 141

Figure 19: MAE of each trust metric when applied to the random graphs of Experiment Set

3. ... 144

Figure 20: Code execution time (in seconds) for different trust measures in Experiment Set

3. ... 145

Figure 21: Correlation between graph structural characteristics and eigenvector centrality’s
performance. X axis values correspond to MAE, Y axis values correspond to code execution

time (in seconds). ... 149

Figure 22: Correlation between graph structural characteristics and PageRank’s
performance. X axis values correspond to MAE, Y axis values correspond to code execution

time (in seconds). ... 150

Figure 23: Correlation between graph structural characteristics and GTT’s performance. X
axis values correspond to MAE, Y axis values correspond to code execution time (in

seconds). .. 151

Figure 24: Correlation between graph structural characteristics and EigenTrust’s
performance. X axis values correspond to MAE, Y axis values correspond to code execution

time (in seconds). ... 152

Figure 25: Correlation between graph structural characteristics and TrustRank’s
performance. X axis values correspond to MAE, Y axis values correspond to code execution

time (in seconds). ... 153

Figure 26: Correlation between MAE and graph structural characteristics for trust metrics.

... 158

Figure 27: Correlation between code execution times and graph structural characteristics

for trust metrics. .. 159

Figure 28: Correlation between Balanced Performance and graph structural characteristics

for trust metrics. .. 160

Figure 29: Conceptual illustration of the construction of a tweet subgraph. Authors’ own
work .. 175

Figure 30: Conceptual illustration of how tweet subgraphs are interconnected, forming the

overall tweet graph.. 176

Figure 31: Graphical illustration of reciprocity among pairs of nodes 184

xiv

Figure 32: Weakly connected components of empirical networks analyzed in this chapter,

visualized using circular layout; panel (A) depicts the empirical non-conspiracies network,

and panel (B) depicts the empirical 5G COVID conspiracies network 193

Figure 33: 5G COVID conspiracies network, visualized using NetworkX and matplotlib in

Python language, with spring layout. In this figure, nodes’ sizes are adjusted based on their
degree, with higher degree being illustrated by a larger node size. 194

Figure 34: 5G COVID conspiracies networks weakly connected components, visualized

using NetworkX and matplotlib in Python language, with spring layout. Panel (A) depicts the

empirical network with nodes in gold, and panel (B) depicts the random version of the

same network in olive. .. 195

Figure 35: Possible scenarios for explaining presence of nodes in both the conspiracies and

the non-conspiracies networks. In panel (A), C is a member of the conspiracies network,

and visits the non-conspiracy network to attempt to convert non-conspiracy nodes. In

panel (B), C was originally a non-conspiracy member, but is converted and becomes a

member of the conspiracy network. .. 197

Figure 36: Ranking by in-degree of top 100 broker nodes and non-broker nodes in the 5G

conspiracies network. Broker nodes are depicted in gold, and non-broker nodes are

depicted in olive. Semilog scale. ... 200

Figure 37: Ranking by out-degree of top 100 broker nodes and non-broker nodes in the 5G

conspiracies network. Broker nodes are depicted in gold, and non-broker nodes are

depicted in olive. Semilog scale. ... 201

Figure 38: Ranking by eigenvector centrality of top 100 broker nodes and non-broker

nodes in the 5G conspiracies network. Broker nodes are depicted in gold, and non-broker

nodes are depicted in olive. Semilog scale. ... 203

Figure 39: Illustration of a bridge in an example network .. 204

Figure 40: Top 100 components by size for the empirical networks; the non-conspiracies

network is depicted in green, and the 5G COVID conspiracies network is depicted in gold

... 208

Figure 41: Normalized plots of out-degree v. (clockwise from top left) hub, authority,

eigenvector centrality, and PageRank for the 5G COVID conspiracies network 209

Figure 42: Normalized plots of out-degree v. (clockwise from top left) hub, authority,

eigenvector centrality, and PageRank for the non-conspiracies network 210

Figure 43: In-degree v. out-degree for the non-conspiracies network; panel (A) focuses on

degrees below 100 where data is richer, and (B) illustrates the entire degree distribution

... 212

Figure 44: In-degree v. out-degree for the 5G COVID conspiracies network; panel (A)

focuses on degrees below 100 where data is richer, and (B) illustrates the entire degree

distribution ... 212

Figure 45: Out-degree ranking plot for 5G COVID conspiracies network (left, in gold) and

non-conspiracies network (right, in green) ... 213

xv

Figure 46: Degree distributions plotted with log-log scale; on the left (in gold) the empirical

5G conspiracies network is depicted, and on the right (in olive) the random 5G conspiracies

network is depicted ... 213

Figure 47: Degree distributions plotted with log-log scale; on the left (in gold) the 5G

conspiracies network is depicted, and on the right (in green) the non-conspiracies network

is depicted .. 214

Figure 48: Ranking of indegree of top 5000 nodes for empirical networks......................... 215

Figure 49: Ranking of outdegree of top 5000 nodes for empirical networks 216

Figure 50: Ranking of PageRank for emprical and random versions of 5G COVID

conspiracies network .. 221

Figure 51: Rankings of PageRank for empirical and random versions of non conspiraices

network. Semilog scale. .. 222

Figure 52: Rankings of PageRank for empirical 5G COVID conspiriaces and non conspriacies

networks. Semilog scale. ... 223

Figure 53: Rankings of eigenvector centralities in empirical and random versions of the 5G

COVID conspiracies network. Semilog scale. .. 224

Figure 54: Rankings of eigenvector centralities in empirical and random versions of the non

conspiracies network. Semilog scale. .. 225

Figure 55: Rankings of eigenvector centralities for empirical 5G COVID conspiracies and

non-conspiraices networks. Semilog scale. ... 226

Figure 56: An example of a pull request on GitHub. This pull request is the first public pull

request for the OpenSSL project, from 2013. ... 240

Figure 57: Sample linked list constructed from a thread of comments in one pull request

... 243

Figure 58: “For” loop written to transform linked lists of pull request interactions into edge

lists useful for network analysis ... 245

Figure 59: Sample edge list, transformed from the linked list in Figure 57 246

Figure 60: Conceptual illustration of the construction of directed versions of the graphs 247

Figure 61: Example graph with self-loops. Generated in the Python language using the

NetworkX and matplotlib libraries ... 248

Figure 62: Conceptual illustration of the construction of directed versions of the graphs 249

Figure 63: Illustration of representation of reciprocity and weighted edges in our dataset

construction ... 250

Figure 64: Illustration of bipartite network representation; round nodes are developers,

square nodes are documents... 251

Figure 65: Empirical version of OpenSSL trust network, generated using spring layout in

NetworkX and Matplotlib in the Python language .. 262

Figure 66: Random version of OpenSSL trust network, generated using spring layout in

NetworkX and Matplotlib in the Python language .. 263

xvi

Figure 67: Empirical version of LE trust network, generated using spring layout in NetworkX

and Matplotlib in the Python language ... 264

Figure 68: Random version of LE trust network, generated using spring layout in NetworkX

and Matplotlib in the Python language ... 265

Figure 69: Empirical OpenSSL trust network core ... 266

Figure 70: Empirical LE trust network core ... 266

Figure 71: Degree distribution in OpenSSL trust network. Log-log scale. 268

Figure 72: Degree distribution in LE trust network. Log-log scale. 269

Figure 73: Degree rank plot (left) and degree histogram (right) of OpenSSL trust network.

... 270

Figure 74: Degree rank plot (left) and degree histogram (right) of OpenSSL trust network.

... 270

Figure 75: Direct trust measures for OpenSSL empirical trust network. Normalized degree

v. (from top left, clockwise) normalized hubs, normalized authority, normalized eigenvector

centrality, and normalized PageRank. ... 273

Figure 76: Direct trust measures for LE empirical trust network. Normalized degree v. (from

top left, clockwise) normalized hubs, normalized authority, normalized eigenvector

centrality, and normalized PageRank. ... 274

Figure 77: Transitive trust measures for OpenSSL empirical trust network. Normalized

transitive trust v. (from top left, clockwise) normalized hubs, normalized authority,

normalized eigenvector centrality, and normalized PageRank. .. 275

Figure 78: Transitive trust measures for LE empirical trust network. Normalized transitive

trust v. (from top left, clockwise) normalized hubs, normalized authority, normalized

eigenvector centrality, and normalized PageRank. .. 276

Figure 79: Comparing eigenvector centrality rankings for OpenSSL and LE empirical

networks ... 279

Figure 80: Comparing PageRank rankings for OpenSSL and Let’s Encrypt empirical trust

networks ... 280

Figure 81: Ranking of eigenvector centralities for OpenSSL trust networks (empirical and

random) .. 281

Figure 82: Ranking of eigenvector centralities for Let’s Encrypt trust networks (empirical

and random) .. 282

Figure 83: Ranking of PageRank for OpenSSL empirical and random networks. Semilog

scale. ... 283

Figure 84: Ranking of PageRank for Let’s Encrypt empirical and random networks. Semilog
scale. ... 284

Figure 85: Transitive trust rankings for empirical OpenSSL and LE networks. Semilog scale.

... 286

Figure 86: Transitive trust rankings for empirical and random OpenSSL network. Semilog

scale .. 287

xvii

Figure 87: Transitive trust rankings for empirical and random LE network. Semilog scale.

... 288

Figure 88: Normalized degree v. normalized transitive trust for OpenSSL empirical network

... 290

Figure 89: Normalized degree v. normalized transitive trust for LE empirical network 291

Figure 90: Greedy modularity maximization community detection in the OpenSSL empirical

trust network. Green colored edges signify edges across communities, and black edges

signify edges within communities. ... 295

Figure 91: Greedy modularity maximization community detection in the LE empirical trust

network. Gold colored edges signify edges across communities, and black edges signify

edges within communities. ... 296

Figure 92: Top 10 subreddits by number of subscribers, Sept. 2022. Source:

http://redditlist.com/all ... 306

Figure 93: Example of a post and comments from Reddit .. 308

Figure 94: Examples of awards given to a post on Reddit .. 309

Figure 95: The Systems Engineering Process (or Systems Engineering V). Author’s own

work, adapted from [7.7] .. 312

Figure 96: System Architecture of Coni the Trust Moderating Bot 333

Figure 97: Functional Flow Block Diagram for Coni the Trust Moderating Bot 334

Figure 98: Pseudocode for the data retrieval module of Coni the Trust Moderating Bot .. 336

Figure 99: Conceptual structure of a subreddit graph .. 338

Figure 100: Bipartite subreddit graph ... 338

Figure 101: Network projection of user graph within a subreddit 339

Figure 102: Conceptual trust overlay network ... 340

Figure 103: Resulting trust overlay network for this example .. 341

Figure 104: Trust computation module pseudocode .. 342

xviii

LIST OF EQUATIONS

Equation 1: Eigenvector centrality of a given node, i .. 108

Equation 2: Mean Absolute Error (MAE), from [4.21] .. 114

Equation 3: Eigenvector centrality of a given node, i .. 182

Equation 4: Geodesic distance/shortest distance.. 183

Equation 5: Equation for calculating reciprocity in a directed network 184

Equation 6: Calculating assortativity in a network. Adapted from [5.21] Mixing patterns in

networks, Newman. .. 184

Equation 7: Equation for calculating network density... 190

Equation 8, from [6.18], where Q is modularity, m is the number of edges in the network

being analyzed, A is an element of the adjacency matrix representing the network in

question, k is the degree of a node v or w, and c are the communities detected in the

network .. 253

Equation 9, from [6.18] .. 253

1

I. Introduction

To function effectively in a modern economy and society – one which is

underpinned and driven by information and communication technologies – we have to

make some simplifying assumptions about the people, organizations, machines, and other

agents we engage with. One way we do so is through trust. Do I trust this person to give me

a good recommendation on Yelp? Do I trust this person’s opinions about news or politics

on Twitter? Do I trust this business to properly safeguard my payment information? Do I

trust this developer’s pull request to an open source software project?

Trust, while an imperfect, rough, and subjective measure, nonetheless serves us

quite well to be able to engage with people and companies online or in-person with

acceptably low transaction costs [1.1]. Trust is subjective, and is different for every person.

It also changes depending on the context, and it changes over time as agents have new

interactions (or stop interacting). Trust is like a shortcut, which helps us to quickly make

decisions using heuristics [1.2]. This doesn’t mean that trust does or should replace the

deep, critical analysis that’s called for in complex decisions, but in a world where we have

to make hundreds of decisions each day (most of them minor and mundane) trust enables

us to dedicate our time and attention to the areas of our lives that require deeper thinking.

In subsequent chapters we provide a deeper discussion of the definition and boundaries of

trust as used in this dissertation, but to orient the reader we provide the following

2

definition of trust for our purposes, from [1.3]: “Alice trusts Bob if she commits to an action

based on the belief that Bob’s future actions will lead to a good outcome.”

In 2022, there were approximately 13 billion devices connected to the Internet in –

that’s more than one device for every single living person on the planet [1.4]. And,

according to the same estimate, by 2030 that figure will more than double to more than 29

billion connected devices. According to [1.5], the average American spent more than 1300

hours on social media of all types in 2021 – a mean of more than 3.5 hours per day, every

day of the year. According to [1.6] more than half of Americans shop online at least once

per year. And, according to [1.7], GitHub – the wildly popular online software code

repository – counted more than 73 million users (software developers) worldwide in 2021.

The preceding are all illustrations of the reality of being a participant and a citizen in

today’s hyperconnected world. As this connectivity not only grows but accelerates, it

becomes increasingly difficult for individual users, companies, and other organizations to

accurately discern who they should deal with, how much to trust the people or

organizations they do deal with, and who they should lock out of their sphere.

Since at least the 1990s, researchers and practitioners in computer science and

adjacent fields have sought to develop computational methods to improve our

understanding – even if in only a coarse-grained manner – of whom we should trust online,

whom we should distrust online, how much, and in what contexts. Dozens of measures –

varyingly referred to as trust metrics, trust systems, trust management systems, trust

3

values, and other related terms – have been proposed in an attempt to give a quantified

measure of trust in online systems.

Given the nature of online connected systems, it can be useful to model these

systems as networks or graphs, allowing us to extract useful insights based on these

graphs’ structure and dynamics. How can we utilize network-centric information about

online connected systems to better understand the nature of trust in these systems? And, if

we can better understand trust in these systems – what encourages it, what discourages it,

what its effects are (or what the effects are when it is absent) – can we use these

understandings to design higher-performing, safer online networks? This dissertation

explores these questions, using a variety of methods including empirical analysis of real

online networks, analytical tools from graph theory and network science, experimental

simulations, and formal design processes.

Contributions of this dissertation

While it would be satisfying to design or discover a universal trust management

system that can be effectively utilized in any network (at least, any online network), all of

the evidence thus far from other scholars and practitioners indicates that each application,

platform or context requires its own unique version of a trust management system.

This stems from the fact that, among other reasons, agents have different

expectations for trust or distrust depending on the system they interact with; the types of

data available to serve as inputs into a trust management system can vary dramatically

depending on the system in question; the actions being carried out are generally different

4

on each platform; and/or the definition of success for quality of service, security, or

performance (which can all be affected by trust) vary for each system with some systems

prioritizing speed, others prioritizing engagement, and so on.

This dissertation takes a systems-level view of the multitude of existing trust

management systems in an attempt to make sense of when, where and how (or, in some

cases, if) each is best utilized.

With this in mind, this dissertation makes the following contributions to the domain of

online trust metrics and online trust management systems. With respect to decision

making related to trust management system selection, the following contributions are

highlighted:

1. Systems-level analysis of different trust models (Ch. III),

2. Quantitative benchmarking and detailed analysis of trust models’ performance (Ch.

IV),

3. To the best of our knowledge, the most extensive (and one of only a few)

examination of how different graph structural characteristics influence the

performance of trust models for online systems (Ch. IV), and

4. A proposed heuristic framework for selecting which trust model to use, given

specific network characteristics (Ch. IV).

With respect to characterizing empirical trust networks to provide better understanding

of them and the effects of trust (or lack thereof) in real networks, we note the following

contributions:

5

5. An extensive investigation of how online trust affects and is affected by

(cyber)security. This is collectively supported by the following contributions:

a. Discovery of small worldness in an online misinformation trust network (Ch.

V),

b. Characterization of the topology of an online misinformation trust network

on Twitter (Ch. V),

c. Exploration of the relationship between trust and the spread of

misinformation in an online social network, Twitter (Ch. V),

d. Construction of a novel dataset for exploring the relationship between trust

and cybersecurity vulnerabilities in GitHub projects (Ch. VI),

e. Discovery of small worldness in online developer networks on GitHub (Ch. VI),

f. Exploration of the relationship between trust and cybersecurity

vulnerabilities in an online developer network on GitHub (Ch. VI),

6. Construction of a novel dataset of GitHub data (Ch. VI), which can be used by other

researchers investigating different questions related to trust and networks, or

researchers pursuing general (not related to trust) networks questions,

7. To the best of our knowledge, the first Systems Engineering Process-driven design

of a new trust model (Ch. VII), and

8. To the best of our knowledge, design of the first open source prototype trust model

specifically for the Reddit online social network, which we dub Coni the Trust

Moderating Bot (Ch. VII).

6

Dissertation organization

The remainder of the dissertation is organized as follows. In Chapter II we provide a

more detailed overview of the research challenges to be addressed in this dissertation,

discussion of the scope of this dissertation, and basic yet critical definitions. In Chapter III,

we provide a systematic review of foundational research and more recent research related

to online trust metrics. In Chapter IV, using the research landscape understanding

developed from Chapter III, we perform benchmarking of different trust metrics to

understand their accuracy, their code execution speeds, and how these two measures are

affected by different graph structural characteristics. In Chapter V, we apply our insights

from the two preceding chapters to examine what the relationship is (if any) between trust

levels and the spread of misinformation in an online social media platform (Twitter). In

Chapter VI, we apply our insights from preceding chapters to examine what the

relationship is (if any) between trust levels and cybersecurity incidents (measured using

CVEs, or Common Vulnerabilities and Exposures) in GitHub projects. In Chapter VII, we take

our learning and insights from the preceding dissertation chapters and apply them to the

design of a trust tool for the online social network and news aggregator platform, Reddit.

Finally, in Chapter VIII we summarize our key findings, provide further interpretation and

discussion of them from an integrative perspective, and summarize future research

directions resulting from this dissertation.

While each of the realms which we research are different (Twitter, GitHub, and

Reddit), the common thread across all of this dissertation’s work is trust in networks

7

(graphs), and how differing trust levels affect and are affected by network structure and

performance (which includes security). In this regard, the methods and research questions

used in this dissertation can be extended with minor adjustments to also examine similar

questions in other technological, social, or sociotechnical networks.

8

II. Background and Overview

In this dissertation, we explore several related but distinct aspects of trust in online

sociotechnical systems. While much of the research related to online trust management

systems has focused on developing more effective or faster algorithms for estimating trust

in networks and between individuals, comparatively little research has explored what the

organizational or societal effects are of high or low levels of trust in online networks.

A trust metric is a method for measuring (or estimating) trust in an online network;

a trust management system, in addition to measuring trust, includes a module for making

use of estimated trust values to perform actions (such as providing a recommendation to a

user) in the online network. [2.1] provides a thorough review of trust management systems

designed for application in online social networks. Critically, this work provides an excellent

and thorough treatment of trust systems available at the time, breaks the key functions of

a trust management system down into three key dimensions: trust information collection,

trust evaluation, and trust dissemination. Trust information collection is the critical step of

gathering and organizing into a useful format the data that will be needed to compute trust

values; many proposed trust management systems take this step as a given, failing to fully

consider the data input needs of the proposed system and how the system would obtain

data from a real network. These data are often related to historical transactions and ratings

9

between agents in an online system. Trust evaluation is the function of using the data to

compute or estimate trust values between pairs of nodes, and/or for a network as a whole.

And, trust dissemination is the function which makes use of the computed trust values with

a specific goal in mind – for example, providing a movie recommendation to a user, based

on the user’s trust in another similar user.

The uses of a trust management system vary depending on who is applying it. When

applied by the owner or manager of a (typically proprietary) platform or network, global

trust values can be computed and managed for the entire network (or any subset of

interest) to improve aspects of interest such as quality of engagements, amount of

engagement, increasing revenue by providing better recommendations, etc. When applied

by individuals within a network – which typically means that global network information is

unavailable – a trust management system can, among other functions, help to serve as a

decision-making heuristic about with whom a user should interact, and at what level (for

example, as in the Pretty Good Privacy or PGP encryption schema). Most trust

management systems also include a mechanism for attack resistance (this is discussed in

greater detail Chapter III).

A rich body of scholarly work on trust metrics by computer scientists,

mathematicians, network theorists, and related disciplines has been developed in the past

approximately three decades [2.1]. Similarly, much scholarly work related to trust, mistrust,

and distrust has been developed over several decades in the fields of psychology, social

psychology, sociology, management and organizational behavior, and related areas. While

10

these works are critical for understanding the nuances and subtleties of how trust forms

and evolves in real human interactions, the state of trust metric research isn’t (yet)

sufficiently advanced to capture the richness and subtleties of these interactions.

Instead, trust metrics model trust relationships in a simplistic way (compared to the

messy and possibly unquantifiable nature of real-world human-to-human trust

relationships) that allows for computer and information systems to calculate and utilize

them to achieve a goal. Why are researchers and practitioners interested in having a way to

measure trust in the first place? Understanding trust can help to improve network

performance by rewarding trusted and trustworthy nodes, and punishing (or removing)

untrusted or untrustworthy nodes.

Understanding trust can also enable prediction of trust among network nodes that

haven’t previously interacted and aren’t otherwise directly connected [2.2]. Through so

doing, the performance of the network may be improved: users can receive

recommendations for items they may enjoy based on trust predictions between them and

other users, or they can avoid recommendations from users that would cause them to

waste time or money.

To be useful, the trust metric or trust management system must be capable of

operating efficiently at scale in large networks, it needs to be capable of making sense of

historical transactions among agents in the network, and needs to provide results to users

and/or managers of networks that are straightforward in their interpretation.

11

Two of the most common applications of online trust metrics have been seen in

supporting and improving recommender systems and reputation systems [2.1].

Recommender systems provide suggestions to users for other items they may enjoy or be

interested in. Recommender systems take many different approaches, and trust-based

recommender systems are one type. Reputation systems measure and manage online

reputations, serving as a guide to users of the network as to whether and how much to

trust another heretofore unknown user in a transaction. A common example is eBay’s

buyer and seller rating mechanism, which gives a prospective buyer a rough guide for

whether they can trust a seller of an item. Other less common but no less important

applications of online trust metrics have been seen in data communications (PGP/Pretty

Good Privacy), email communications, messaging applications (like WhatsApp, which is also

an online social network), and others.

More recently, beginning around 2015 computational trust metrics have also seen a

spike in interest from the blockchain and cryptocurrency communities. Some blockchain-

based projects are applying decentralized computational trust metrics in a variety of ways

today. One example comes from work.nation, which is an open source collaboration

among Cisco Systems, Comakery, ConsenSys, and the Institute for the Future [2.3].

Work.nation enables users to build a professional work portfolio (for example, JavaScript

coding examples) that can be validated by a trusted network of peers. Work.nation uses

the Ethereum blockchain, Interplanetary File System (IPFS), and uPort for the infrastructure

of its system. To map and manage the trust network, work.nation utilizes Trust Graph,

12

which is also an open source project that according to their GitHub page, is “An open

protocol; A toolkit for building and reading distributed trust graphs; An ambitious plan to create

interoperability between existing and future trust networks; Compatible with existing rating

schemes (scores, percentages, star ratings, etc); Open Source (Apache 2 licensed)” [2.4].

Problem statement

 Although we approach the specific research questions of this dissertation using

different methods and data, all of them can be distilled down to one simple question: “how

does trust affect the performance of online networks?”

While much research has been completed to propose and develop new trust

management systems for use in different contexts and applications, there is comparatively

little neutral, third-party evaluation of these systems’ performance. Moreover, there is

comparatively little prior research that examines how trust management systems’

performance is affected by various network structural characteristics (for example, the

presence or absence of small worldness) or network behavior. To address this gap (in part),

in Chapter IV we perform benchmarking of several well-known trust metrics, and examine

how their performance varies with changes in network structure.

 Computational social scientists have completed a great deal of research into

understanding the structure and dynamics of massive social or sociotechnical networks.

Computational trust researchers have developed numerous methods and techniques for

measuring trust in different systems. There has been comparatively little work done at the

intersection of these two domains to draw insights from social or sociotechnical networks

13

regarding if and how varying levels of trust in these networks affects their performance

and security. We explore these questions as part of Chapter V and Chapter VI.

 There has been much attention paid to developing trust management systems for

various peer-to-peer (P2P) online applications (including filesharing and e-commerce), for

online social networks including Twitter, WhatsApp, and Facebook, as well as for

technological networks like wireless or mobile ad hoc networks (WANETS and MANETS),

distributed computing networks, and even blockchain networks. Surprisingly, there has

been comparatively little trust metric research performed with respect to Reddit, which is

one of the Internet’s ten most frequently-visited sites, putting it in the company of other

such well-known sites as YouTube, Wikipedia, Facebook, Google, Amazon, and Twitter. To

address this gap, in Chapter VII we apply the Systems Engineering Process to the design,

prototype, and testing of a trust management tool specifically designed for the Reddit

platform.

Research questions investigated in this dissertation

 Through the course of this dissertation, we propose and explore several research

questions, which all relate to the core question of this dissertation described in the

previous section. In Table 1, we present each of the research questions investigated in

greater detail in their respective chapters of this dissertation.

14

Table 1: Research questions investigated in this dissertation

Scope

 To more clearly illustrate the boundaries of what is and what is not included within

the scope of network-based trust for this dissertation, we produce Figure 1. The figure

illustrates the different disciplinary perspectives on trust, and which of them are directly

included in this dissertation. Objects colored green in the figure are those which are

included as part of the scope of this dissertation; objects which are shown in the figure but

15

are colored white have a strong influence on the work of this dissertation, but are not

directly included as part of the scope of this dissertation.

Figure 1: Visual overview of the universe of trust; green objects indicate those that are within the scope of this work

16

III. Systematic analysis of trust management systems for online

applications

Over the past decades researchers from computer science and related fields have

proposed a wide range of methods for computing trust in online settings. These methods

are referred to by terms including computational trust (typically reserved for when trusted

nodes are generated using cryptographic methods), trust metrics, trust computation, trust

management, trust management system, trust management framework, trust

management model, trust model, and similar. These terms each have slightly different

meanings, but they all have the aim of enhancing understanding the levels of trust within

complex systems composed of people, machines, or people and machines acting together.

For the purposes of this chapter, only trust metrics that can be readily applied in

online settings are considered. These range from online social networks (OSNs), online

communication networks (which oftentimes work in direct conjunction with OSNs, as in the

case of WhatsApp, which has features of both an OSN and a communication network),

online file sharing networks, online privacy and authentication (as in PGP, or Pretty Good

Privacy), e-commerce, and others – including more recently, a great deal of interest in trust

metrics from the blockchain communities.

Generally, a trust metric is used to measure or estimate trust within a system, while

a trust management system or trust management framework will go a step further by

17

utilizing the results of trust metrics to improve the performance of a system. Trust

management systems generally are made up of two components: a trust computation

component (generally utilizing a trust metric or metrics), and a trust manipulation system

(used to make use of the trust computation to improve some aspect of the network’s

performance).

Scholars and practitioners alike are interested in understanding and improving trust

online for a variety of reasons. In the case of OSNs, one important reason for

understanding trust from the perspective of the operator of the OSN (in cases where they

are proprietary, such as Facebook or Twitter) is to improve the recommendations offered

to the user. In these instances, trust is used as another method of improving recommender

systems – particularly in cases where there is sparse data available. In cases where, for

example, users have not yet provided a sufficient number of reviews of products in certain

categories to be able to make content-driven recommendations, trust-based

recommendations are often successful at providing useful recommendations. Such

recommendations are made to users based on how much they trust (or, how much implied

trust is computed) they have for recommendations from other types of users.

Trust management systems are also useful as a type of reputation system. One of

the earliest applications of online reputation systems at large scale was seen with eBay,

where buyers rate sellers based on the quality of products sold as well as the quality of the

transaction itself. In reputation systems, trust can be used either explicitly or implicitly to

improve the experience for users and/or for the operator of the network. In the explicit

18

case, some online platforms such as epinions.com or FilmTrust allowed users to directly

indicate if they trusted another user, and how much. These explicit ratings could then be

used to provide other services to users based on implicit trust; for example, User A may be

likely to trust User C’s recommendations even though they’ve never interacted before,

because both C and A trust User B.

Another reason for the interest in trust metrics and trust management systems is to

improve the performance of the network. Trust management systems have been

successfully applied to reducing spam both on websites and in email networks, in reducing

the frequency of fake file transfers in online peer-to-peer file sharing networks like

Gnutella, in improving security in email encryption schemes, and some researchers are

currently investigating how trust can be incorporated into telehealth applications to

improve health outcomes [3.1].

For most trust management systems, a critical consideration is not only computing

and applying trust in a network, but also resisting attempts by malicious nodes to attack or

game the system. Many trust management systems include mechanisms to reduce the

effectiveness of coordinated actions by malicious nodes, such as the Sybil attack wherein

attackers create a large number of fake accounts to gain outsized influence in the network.

One of the earliest wide-scale uses of trust online was seen in the Advogato online

community. Advogato was an online community focused on the sharing, distribution, and

discussion of free software. Launched in the late 1990s, Advogato persisted until 2016,

when it was discontinued. One of the key elements of Advogato was its trust metric, which

19

was intended to reduce the frequency of problems that are typically observed in open

online communities. The Advogato trust metric, called mod_virgule, is implemented as an

Apache module in the C programming language, and was used to improve the user

experience until 2006 [3.2]. Another even earlier application for online trust was seen in the

early 1990s with the launch of PGP (Pretty Good Privacy).

Types of and properties of trust

Generally, definitions of trust when applied to online settings includes reference to

beliefs, actions, and context. Beliefs are opinions held by users or nodes in the network

with respect to other users or nodes in the network; many trust management system

model beliefs probabilistically. Actions are carried out by nodes in the network, and can be

things like clicking on links, retweeting a status (on Twitter), liking a post (on Facebook, and

others), reviewing a transaction, and so forth. The context is the context in which trust is

given, a critical distinction because a user that trusts another user in one context may not

trust the same user in a different context. In Figure 2, we see examples of how and why

different nodes may trust or not trust one another depending on the context.

Figure 2: Examples of trust in different contexts

20

One of the definitions that is typical of the approach taken by many trust metrics

and trust management systems comes from [3.3]:

“trust in a person is a commitment to an action based on a belief that the future actions

of that person will lead to a good outcome. The action and commitment does not have to

be significant. We could say Alice trusts Bob regarding email if she chooses to read a

message (commits to an action) that Bob sends her (based on her belief that Bob will not

waste her time). Since trust is usually not a simple binary value (trust or no trust), we

consider it to be similar to a probability that a person will commit to an action.”

Just as there different types of trust management systems, so too are there different

types of trust and different properties of trust that have been identified and described by

scholars.

Quantitative scale of trust

Researchers have proposed varying methods for how to quantitatively represent

trust in a network, but by far the most common method is to represent trust on a

continuous range from 0 to 1. In most trust systems, a trust value of 0.5 represents a

neutral state, values below 0.5 represent low trust, and values greater than 0.5 represent

high trust. Additionally, most systems consider a binary understanding of trusted and not

trusted – rather than trusted, not trusted, and distrusted. The distinction between not

trusted and distrusted is subtle but important; most trust systems that don’t include a state

for distrust assume that nodes that should be distrusted are ignored, and thus they can be

treated as untrusted. Nonetheless, increasingly in the past decade researchers have been

21

explicitly considering and modeling distrust, particularly in applications with direct security

implications. Other systems take a different quantitative scale such as 0 to 10, -10 to 10,

and other variations. Fuzzy-based systems represent trust levels linguistically rather than

quantitatively, using terms such as “no trust”, “low trust”, “high trust”, or “complete trust”.

Transitive trust (property)

One property of trust which is frequently used in trust management systems for

online settings is transitive trust. Transitive trust makes the assumption that trust, to a

certain extent, can be “transmitted” from one node to another node which don’t share a

direct connection. For example, in Figure 3 we give a simple illustration of a small trust

network composed of nodes A, B, C, and D. Each edge, or connection, between nodes

indicates a trust relationship. We see that A is directly connected to B, but is also indirectly

connected to C and D, through B. In the presence of transitive trust, C effectively transmits

a portion of the trust it has for D to both B and A. The dashed lines in the figure indicate

transmission of trust between indirectly-connected nodes.

Figure 3: Illustration of transitive trust concept in a small trust network. The solid black lines represent a direct trust

relationship, while the dashed lines indicate transitive trust.

Two key functions that trust metrics that make use of the transitive property of trust

must incorporate are a propagation function and an aggregation function. In fact, the

usefulness and validity of any transitive trust measure is directly related to the

22

connectedness of a network; without proper limits on trust propagation and trust

aggregation – limits which may derive from small worldness of the network being

investigated – too many nodes may be counted as trusted nodes, causing such a measure

to lose its meaning and usefulness.

Trust propagation function

Much work has been developed by scholars specifically to identify the best way to

transmit – or propagate –trust among nodes that aren’t directly connected. Part of this

includes determining how far along a network path to transmit trust; this is often referred

to as the maximum trust propagation distance (MTPD). Numerous theoretical solutions to

choosing the optimal MTPD have been proposed, but many of these face the real-world

constraint of being too computationally-intense to be useful for practical applications in

large networks. [3.4] proposed a useful and novel approach to this issue by setting the

MTPD as the ceiling of the mean path length of the network. In their paper, they find

evidence for small worldness in the empirical networks they analyze, and they use this

result to set MTPD as approximately equal to the mean path length of the small world

network. Doing so enables for a reasonable amount of trust propagation within the

network, while drastically reducing the problem space and thus, the computational time.

Decay of trust

Related to the propagation distance of trust, researchers have also identified the

issue of decay of trust. This closely related idea states that even within an MTPD, trust need

not be weighted equally along all links of the trust path. If two nodes A and B are separated

23

by five links of equal trust value, the first link’s trust value would be considered to have

little or no decay, while the fifth link in the path would decay to some portion between less

than 100% and greater than 0%. Some trust management systems don’t incorporate trust

decay, while others do so using, for example, a staged decay model where links that are

two or fewer hops from the sink experience a small level of decay, links that are three to

five hops from the sink experience a moderate level of decay, and links that are more than

five hops but less than the MTPD experience a high level of decay.

Trust aggregation function

A directly related issue to MTPD is how to treat each step along a path between

indirectly connected nodes. Logically speaking, it doesn’t make sense to give full “weight” of

a trust relationship from distantly-connected nodes when computing transitive trust. Thus,

most scholars include a method to reduce the trust the further out a source node gets

from the sink node. Methods generally utilize various arithmetic operators, with

multiplication being one of the most common.

Figure 4 illustrates a simple example of this issue. Many trust management systems

quantify trust in the range from 0 to 1. Doing so attempts to capture the belief and

uncertainty in that belief that a node has that another node will take an action, as

described in the definition above from Golbeck. Thus, the value taken by the trust

relationship is often shown as a weight on an edge when modeled as a network, where the

trust value represents the strength of the belief the node has in the other. In the figure, A

mostly trusts B with a value of 0.8, B somewhat trusts C with a value of 0.3, and C mostly

24

trusts D with a value of 0.9. In this example, if using the simple method of multiplying trust

probabilities across a path, using the principle of trust transitivity we would infer that A

trusts D with a value of 0.22 (0.8 x 0.3 x 0.9). By using this type of method for trust

transitivity, scholars have been able to utilize some of the implied trust in a network among

indirectly connected nodes, while keeping the inferences relatively reasonable. Some

scholars’ trust management systems take a more sophisticated approach to transitive trust

computation, weighting the weights according to how far they are from the sink node. For

example, a source node that is only one edge away from the sink node might have its full

edge weight included, while a source node that is three edges away from the sink node

may only have half of its edge weight included in the transitive trust calculation.

Figure 4: Illustration of transitive trust concept in a small trust network. The values placed on the edges signify the

trust that exists between the corresponding nodes.

Direct and indirect trust

The simplest form of trust evaluation in an online network is that of direct trust. Direct trust

is easily observed, evaluated, and quantified. For example, if on an e-commerce platform a

buyer gives a five star rating to the seller they just received an item from, we can directly

observe that this buyer trusts (or has trusted) this seller a great deal. Another example

25

would be on a platform like epinions.com (now defunct), where users explicitly indicated

how much they trusted the opinions of other users that they followed.

Indirect trust, on the other hand, is more difficult and subjective to compute (or to infer),

yet it is the more important of the two in trust management systems that are to be used as

part of recommendation systems or reputation systems. Indirect trust infers the level of

trust that two unconnected users would be expected to have in one another, were they to

actually connect. Indirect trust is inferred in many different ways (described in greater

detail later in this chapter) using different features such as history, behavior, or graph

structure, among others.

Distrust

In the early trust metric and trust management literature most researchers opted to

simplify their analyses and designs by lumping distrust and non-trust into the same bucket,

thereby not considering the distinct case of distrust. Doing so simplifies the designs, no

doubt – which is a tradeoff directly related to the previously mentioned objective of

reducing computational complexity – but for certain applications it can come at the

expense of losing important information about the system being considered. More recent

research (in the past decade or so) has begun to re-incorporate a concept of distrust into

systems design. While untrusted or non-trusted is essentially a neutral trust stance (for

example, it may be a node that is unknown to another node, and therefore a trust

evaluation isn’t made), a state of distrust specifically gives a special (negative) status to

nodes that are distrusted, changing how they are accounted for and managed in these

26

systems. Distrust may arise when actions with negative consequences are performed by

these nodes, or distrust can arise based on the origin of these nodes (for example, IP

addresses coming from countries that are specifically blacklisted).

Global trust and specific (or local) trust

Another distinction commonly seen in trust management systems is that between

global trust and specific (or local) trust. Global trust takes a high level, zoomed out view of

trust in a given network, calculating the total trust (direct and/or indirect) that all nodes in

the network feel towards all other nodes, summing and normalizing these values. Global

trust is useful from the perspective of the owner or manager of an online network, when

direct access to all necessary data is not a barrier. Global trust can also be computed and

managed in open systems (like P2P systems), but it becomes more challenging. EigenTrust

is designed for use in open, P2P systems where no single node has a bird’s eye view of the

entire network, and achieves its aim of global trust computation by distributing different

pieces of the storage and computation responsibilities.

Specific or local trust, on the other hand, is the (direct or indirect) trust that Node A

has or should expect with respect to Node Z. Specific trust is of greater interest to users of

networks, as this is how they can actually make an assessment of if they should trust a

seller of a product in an e-commerce site, a disseminator of a claim on a social media

platform, and so on. In the case of specific trust – depending on the trust system being

considered – each user would have a trust matrix that records the trust value that they feel

towards all other users (many of these would be zeroes).

27

Swift trust

Another type of trust is swift trust. Swift trust develops among individuals and in

groups based on shared tasks or goals, rather than history or demographic similarities

[3.5]. Swift trust is frequently observed in online collaborative communities, such as open

source software development projects, and it is becoming an increasingly important type

of trust to understand in online contexts as activities move to being online first with, in

many cases, people who have never met in person. [3.6] identify two specific types of swift

trust: encapsulated interests, and cognitive trust. Encapsulated interests is essentially a

rational approach to trust: Alice trusts Bob because she feels she must, and she feels Bob

must in turn trust her. Cognitive trust develops based on the characteristics of people

working in the project.

Hard trust and soft trust

Within computer and information systems, there are two “firmnesses” of trust: hard

trust and soft trust. Hard trust is explicitly defined and enforced using security and

authentication policies; users can only do the things that the policy allows them to do. Soft

trust, on the other hand, is [3.7] based on the behavior, experiences, and/or reputations of

agents within a system.

Hard trust is generally not included in the scope of this dissertation, but this section

provides a very brief reference to some of the hard trust schemas for online contexts.

IBM’s z/OS – an operating system for IBM mainframe computers – utilizes concepts of trust

including peer trust and transitive trust for its integrated security services [3.8]. Microsoft’s

28

Active Directory service utilizes concepts of hard trust, including trust transitivity, external

trust, realm trust, forest trust, and shortcut trust [3.9]. PowerSploit (a PowerShell post-

exploitation framework) utilizes concepts of hard trust for red teams to help organizations

improve their security stances in its PowerView module [3.10].

Realms of trust

While most trust management systems are unable to directly distinguish among

these different realms of trust, they are nonetheless important to highlight because they

ultimately are represented in different online platforms.

Personal trust is observed among individuals, and can be one to one, one to many,

or many to one. Organizational or institutional trust is observed within a discrete

organization and, while it is built on many personal trust relationships, its result is an

emergent level and type of trust that is different than the mere sum of its parts.

Organizational trust, depending on the context, may also be observed inter-

organizationally – trust from one organization in another, and vice-versa.

Regarding institutional trust, [3.6] state “it is important to note that trust in open

source communities is rather institutional than personal. The number of participants to a given

open source project is often very large and the communities are open to exits and new entries.

Thus the development of trust cannot be based on repeated interactions of the same individuals

who get to know each other over time and learn to trust each other.” Societal trust is more

abstract, but its analogue tends to be an important factor in massive online social networks

like Facebook or Twitter.

29

Societal trust relates to the general level of trust that individuals within a society

have towards others whom they have never met and don’t know within that same society.

For example, Independent Society (a coalition of not for profit and philanthropic

organizations) conducts an annual survey of trust in civil society.

Key objectives of trust models

While the approaches used to compute and manage trust differ (discussed in

greater detail later in this chapter), most trust models share common objectives and

principles.

The first and most obvious of these objectives is that they aim to accurately

calculate or estimate levels of trust within a network. Some trust systems focus on global

trust (understanding the total trust placed in a given node by all other nodes, from the

perspective of a network manager or owner, or in P2P systems), others focus on specific

trust (trust that one specific node places in another specific node), and some consider both

global and specific trust.

Another common objective in trust systems is to resist attack or manipulation. While

the motivations for attempting to subvert a trust, reputation, or recommendation system

vary depending on the application (e-commerce, social media, etc.), in most networks – and

in all open networks – there are always a certain proportion of the total userbase who aim

to subvert the trust system using various strategies. The first distinction that can be drawn

among attempts to manipulate a network is between uncoordinated and coordinated

attacks. One common strategy in the coordinated category is known as the Sybil attack,

30

wherein a set of fake accounts or profiles are created with the aim of gaining influence in

the network. In an e-commerce setting, for example, this can take the form of this large

group of fake accounts giving fake reviews of products or merchants, and in social media

platforms like Twitter it can take the form of coordinated groups of bot accounts all

pushing the same story. Other types of attacks (not an exhaustive list) include self

promotion, where a coordinated group of malicious nodes works together to boost their

own reputations; slandering, where a coordinated group of users works together to

damage the reputation of other non-malicious nodes (analogous to distributed denial of

service, DDoS, attacks); whitewashing (may be coordinated or uncoordinated) wherein

malicious nodes behave badly for short term gain, then leave the network and reenter with

a new identity; and ballot box stuffing, wherein malicious nodes coordinate to provide

more ratings, votes, evaluations, or similar actions than would otherwise be expected or

permitted [3.1].

A third common objective of trust management systems is that they be

computationally efficient. Because the majority of trust management systems for online

use are designed to be applied in massive complex networks, systems designers must be

conscious of the number of operations and iterations their systems are performing. Many

research projects related to trust management have identified optimal systems or

algorithms that maximize accuracy of trust evaluations or robustness to attack, but do so in

a way that isn’t feasible for real-world deployment in terms of computational complexity.

Thus, some researchers look to simplify existing trust systems to make them feasible for

31

real-world deployment, while other researchers develop approximations of their optimal

systems that trade a small decrease in effectiveness for large improvements in execution

time.

Application context

Generally speaking, the most successful, actionable and useful trust metrics and

trust management systems are those designed for and used in a specific application

context.

In the first wave of online trust systems which were seen roughly from the early to

the mid 1990s, online trust systems were applied to email encryption schemas and online

communities.

In the second wave of online trust systems, which were seen from roughly the late

1990s to the mid 2000s, a large proportion of online trust systems shifted their focus to

peer-to-peer filesharing networks like Gnutella, Kazaa, etc. Many others focused on e-

commerce platforms like eBay, and online communities like epinions.com.

By the late 2000s and early 2010s, online social networks (OSNs) like Facebook and

later Twitter started to garner the attention of more researchers who were working in

online trust systems, and online communities remained popular targets for design of

online trust systems too.

Today (2022), OSNs are still one of the most important categories for application of

online trust systems, but other areas like blockchain and messaging networks like

32

WhatsApp (which have characteristics of OSNs but also of more traditional

communications networks) have also started to garner more attention.

Additionally, IoT and sensor networks have become an area of much interest for

application of trust systems, but these types generally skew more toward the hard trust

end of the spectrum, rather than soft trust which is the focus of this dissertation.

Systems or algorithms for measuring and managing trust online

In the next section of this chapter we present an extensive treatment of the

different methodological approaches that have been used for designing online trust

management systems and trust metrics. In this section, we first present a short summary

of many of the most influential trust systems since 1999 in the form of Table 2. While this

list is not exhaustive, to the best of our knowledge it gives the most extensive listing of

trust metrics and trust management systems in one place. The list begins with PageRank

which, although not explicitly designed as a trust metric, it has nonetheless been used by

many researchers as an approximation for trust. The most influential system specifically

designed for trust management is EigenTrust (which is similar in many ways to PageRank).

33

Table 2: Selected trust management systems and trust metrics since 1999

34

In addition to the listing of systems given above, in Table 3 we also give a more

detailed accounting of some of the more influential trust metrics and trust management

systems. Through this table we intend to give a better high level understanding of what the

different features of the systems are in terms of the type of trust outputted (global, specific

or both), the time complexity of running the systems, the original application context that

they were designed for (though many of them can and have been adapted to different

contexts), and the parameters that are required as inputs to be able to run the trust

computations. In addition to the systems enumerated in the table, dozens of other systems

have been published by researchers and practitioners alike. In the next chapter of this

dissertation, we present a decision making framework for practitioners to select a trust

model, using this table and the features enumerated in it.

35

Table 3: Features review of selected trust metrics and trust management systems, in descending order of influence (as

measured by number of citations)

Approaches to computing trust

Different methodological approaches have been applied to computing trust metrics

and managing trust in online settings. Each approach brings its own advantages and

drawbacks. Most of the trust metrics compute trust using one of the following five

approaches, or a combination thereof: 1) graph-based, 2) content-based or behavior-

based, 3) probabilistic models, 4) fuzzy logic, 5) and game theory. Although later sections of

this dissertation focus attention primarily on graph-based approaches to trust, approaches

from the other categories are included here for comparison, benchmarking and, in some

cases, because they can be adapted to fit a graph-based approach. A brief overview of each

36

approach is given here, and in the next section specific papers from these categories are

reviewed in greater depth.

Graph-based (or network-based) approaches to trust metrics calculate direct trust

and/or infer indirect trust using information about the structure, topology, and/or

dynamics of a system modeled as a graph. A popular subset of graph-based trust

measurement approaches are also known as flow model algorithms. Typical methods

within this approach include equating trust to degree (the connectivity of a given node),

various centrality measures (in particular, eigenvector centrality and PageRank), and path-

based methods which are particularly well-suited for computing transitive trust. A well-

known example of a graph-based trust metric is the EigenTrust system, which relies on

computing the left principal eigenvector of a matrix representing a trust matrix. EigenTrust

is similar to PageRank, which is a frequently-used centrality measure and ranking

technique in network science (and which some researchers use as a trust metric itself).

Content-based or behavior-based approaches to computing trust rely on analyzing

the content of transactions and relationships among agents. In particular, these methods

tend to rely on artificial intelligence and machine learning techniques such as natural

language processing, classification, regression, clustering, decision trees, and similar.

Probabilistic approaches to computing trust in online settings generally make use of either

Bayesian networks and Bayesian probability, or subjective logic. While the total number of

these types of systems is less than those that use a graph-based approach, one of the most

37

influential models – Trust Network Analysis with Subjective Logic, or TNA-SL – comes from

this category.

Game theoretic approaches use the methodologies and insights from Game Theory

to design trust management systems, with one of their key differentiators being the

inclusion of punishment mechanisms, and/or incentives, to modify behavior of nodes in

the network. Many game theoretic approaches to trust computation attempt to reduce

freeriding behavior, which is seen when a node benefits from engaging with a network but

doesn’t contribute back to the network. An example of a game theoretic approach is seen

in [3.11].

Fuzzy logic approaches to trust computation and management avoid the crisp

representation (i.e., quantitative representation) of trust values, opting instead for linguistic

representations which are closer to what real-world users of most online systems would

expect to use. Whereas in most other trust systems a trust measurement might take the

value of 0.8, in a fuzzy logic-based trust system it might instead take the form of “highly

trusted”. An example of a fuzzy logic-based trust system comes from [3.12].

Additionally, many trust metrics utilize a hybrid approach, combining elements of

two or more of the approaches listed above. For example, [3.13] uses a combination of

natural language processing (a form of AI) and graph-based approach to quantify trust in

GitHub. Another example comes from CoTrRank [3.14], in which the authors propose a

trust metric that utilizes the sigmoid function (frequently used as an activation in artificial

38

neural networks in machine learning) combined with graph-based techniques to rank users

on Twitter.

Finally, we also consider other perspectives on online trust which are not, in most

cases, trust metrics or trust management systems, but which nonetheless have either been

influential in the history of development of trust systems or which have other important

effects on how researchers think about trust online.

Graph-based approaches

[3.15] proposes EigenTrust, one of the earliest and most influential trust metrics.

The EigenTrust paper, published in 2003, is one of the most influential in the area of trust

metrics having been cited more than 5400 times by other researches as of June 2022. It

was originally proposed to mitigate issues surrounding inauthentic file uploads/downloads

in peer-to-peer (P2P) networks which were growing rapidly in popularity at the time, thanks

to services like Napster, Gnutella and the many derivative services that ran on the Gnutella

network protocol. Although P2P networks were the original application, EigenTrust has

been extended and applied for use in many other contexts. In such P2P networks, some

nodes would host inauthentic files – files with incorrect names and/or descriptions – with

intentions varying from self-interested but non-malicious, to malicious nodes attempting to

spread worms, viruses, and similar. The networks needed a way to combat the work of

these fake files, and EigenTrust was one method proposed for doing so. EigenTrust is a

global measure that assigns a trust value to all nodes in the network, based on their upload

history. EigenTrust was also designed to be resistant to attempts to subvert the system,

39

though numerous improvements have been proposed to further reduce the ability of

malicious nodes to bypass the system. The authors lay out five key issues that should be

addressed by any P2P reputation system: (1) a self-policing mechanism; (2) the

maintenance of anonymity; (3) the absence of an advantage conferred by “newcomer”

status in the P2P network; (4) minimal overhead to initiate and maintain; and, (5)

robustness to malicious collectives of peers. EigenTrust provides a global trust score for

each node in a network; the trust score of a node comes from the local trust scores

assigned to it by the node’s neighbors. The trust scores given by the node’s neighbors are

weighted based on the neighbors’ own trust scores, and in this way it is similar to

PageRank. Local trust scores are provided by the nodes in the network; when a download

is successfully completed and the file is verified as authentic, the node receiving that file

can verify the node sending the file as being trustworthy. EigenTrust normalizes the trust

values as a way to mitigate the likelihood of malicious peers working in concert from

arbitrarily assigning high trust scores to themselves. Normalizing the trust scores brings

several drawbacks and limitations (which were improved upon by later trust metric

scholars), including the lack of any absolute interpretation of the trust values, and lack of a

way to distinguish between nodes who had many ratings compared to nodes who had few

ratings (this information is lost upon normalizing). Nonetheless, the normalization also

allows for more efficient computation of the global trust values, which is a non-trivial

consideration. EigenTrust also proposes a mechanism to mitigate the likelihood of

malicious nodes gaming the system. A selected subset of peers are specified as score

managers, who are queried by nodes in the network for trust scores of peers. In the event

40

of faulty trust scores being provided by malicious peers who are among score managers, a

majority vote of the score managers settles the issue. This mechanism reduces the

likelihood of malicious nodes succeeding, but it does not eliminate it. The resulting global

trust scores have two important effects in P2P networks: it helps to isolate malicious peers,

and it provides an incentive for free riders to share files.

In [3.16] the authors propose a new trust metric, PeerTrust, for use in online peer-

to-peer (P2P) e-commerce communities, but which could potentially be extended for use in

other contexts too. The authors first identify several problems with other trust frameworks

at the time of the paper’s publication. These shortcomings included an inability to

distinguish honest from dishonest feedback, an inability to incorporate different contexts

of trust, a lack of incentives for peers to leave feedback on others, and an inability to

effectively deal with dynamic behavior of malicious peers. The authors first identify five

factors that they believe are critical for improving a P2P trust system: 1) feedback of one

peer from other peers, 2) scope of feedback (i.e., total number of transactions a peer has

with others), 3) credibility of the peer providing feedback, 4) the transaction context in

which trust is being evaluated, and 5) the community context to account for community-

related features. The authors then propose their trust measure, PeerTrust, which takes into

account each of these five factors. The authors apply their trust metric to a simulated

online community. In the authors’ series of simulations, when considering an increasing

percentage of malicious peers in an overall P2P network they find that different versions of

PeerTrust generally perform better compared to conventional (at the time) trust metrics in

41

cases of malicious peers. However, in the case where the percentage of malicious non-

collusive peers exceeds half of the total number of peers, the PeerTrust measure is less

effective than conventional methods. In simulations considering the rate of maliciousness

(i.e., the number or frequency of malicious acts of a given peer in a given timeframe), the

PeerTrust metric is also robust and features improved performance compared to

conventional methods, and in fact features increased performance as the rate of

maliciousness increases in both a collusive and non-collusive setting. In simulations

considering the number of successful transactions facilitated, the PeerTrust metric

demonstrates marked improvement over conventional methods in a non-collusive setting,

but no noticeable improvement in collusive cases.

[3.17] proposes the TidalTrust algorithm which, as its name implies, treats transitive

trust in a network as a flow that moves back and forth from source to sink. In [3.18], the

authors propose a new trust metric, PageTrust, which is based on the PageRank algorithm.

The PageTrust system extends the PageRank algorithm by allowing for negative links, which

are not included in the original PageRank algorithm. The PageRank algorithm utilizes a trust

matrix; PageTrust introduces a corresponding distrust matrix as its key feature and novel

contribution. PageTrust can also be used as a global trust metric, or a local (specific) one,

depending on the context and the desired outcome of its application. One of the key

contributions of this paper is to include a type of memory for the random walker on a

graph – a key concept utilized in PageRank and other eigenvector-based algorithms. The

addition of memory allows for inclusion of a distrust matrix.

42

[3.3] examines and compares the effectiveness of recommender systems that are

based on similarity (collaborative filtering) and those based on trust. The author posits that

systems that rely purely on similarity of users and/or similarity of items being rated are

limited both in their range of potential applications as well as in the effectiveness of the

similarity measure; recommendations made based on trust, according to the author, may

be more versatile and more useful in applications where data is sparse. This paper is

unique in that it utilizes data collected from real users of an online platform in which the

users explicitly rate how much they trust other users’ opinions (ratings of movies). Most

other trust metric papers rely on various methods for inferring trust based on actions of

agents in a particular system. By performing a set of experiments with real users of an

online movie rating and critiquing platform (FilmTrust), the author isolates specific

elements of similarity that lead to better predictions of trust among users of online

systems. In a standard similarity-based approach, a recommender system would look at

ratings of items that two different users give, and if the overall ratings of these two users

are similar then they will be predicted to similarly respond positively or negatively to other

sets of items. The author finds that rather than relying simply on overall similarity “our

results suggest that overall difference , the maximum single difference in movie ratings ,

difference on movies to which the user assigned extreme ratings , and the user’s average trust

value all are factors in how users assign trust.” Although these findings are specific to

FilmTrust and ratings of movies online, the author makes a compelling case that the

findings can be generalized to many other online contexts in which users rely on ratings,

evaluations, or opinions of other users. Using these findings, the author then attempts to

43

predict trust among users, based on their similarity. The authors find that trust among

users can be predicted better by using a combination of largest single difference in ratings

and agreement in extreme ratings.

[3.19] proposes the PowerTrust system. PowerTrust makes use of a key finding that

the authors observed specifically in online peer-to-peer (P2P) evaluations on eBay, but

which is generalizable to many networks: a power law distribution. The authors reviewed

evaluations that peers (buyers and sellers of goods) gave one another on eBay, and

discovered a power law distribution in their reviews. The authors use this insight to build

their system, taking advantage of this distribution to improve robustness and reduce

computational overhead in calculating trust values in a large network. PowerTrust is

intended for use in P2P networks without a central authority. Although in the case of eBay

– the inspiration for their system – there is a central authority that can see all trust

relationships among peers globally, the trust evaluations are still made on a peer-to-peer

basis and thus, the authors argue it is still applicable to distributed P2P systems. The

authors define power nodes (from power law distribution) as those with a large global

reputation score, and rely on these power nodes. The authors collected interactions from

more than 10,000 users on eBay, with peer evaluations made between 1999 and 2005.

They looked at the peers’ interactions through three lenses: feedback frequency, feedback

amount, and the ranking index. Upon analysis of the collected data, the authors find clear

indications of a power law distribution (a distribution frequently observed in other online

contexts), dynamic growth, and preferential attachment. The PowerTrust system consists

44

of five modules: regular random walk, look-ahead random walk, distributed ranking

module, initial global reputation aggregation, and global reputation updating procedure.

The look-ahead random walk (LRW) utilizes a trust matrix R and a normalized reputation

column vector V. After sufficient iterations of the LRW, V converges to the eigenvector of R.

LRW is similar to other Web-based ranking systems, but in addition to its own local trust

scores it also considers trust scores of its neighbors’ direct trust scores. According to the

authors, using the LRW results in a noticeable increase in computational speed both in

random graphs and especially in power law graphs, compared to a standard random walk.

The distributed ranking module makes use of a distributed hash table to implement

ranking. Similar to the EigenTrust algorithm, PowerTrust relies on score managers which

accumulate the global reputation for a given node. The module uses locality preserving

hashing to select the most reputable nodes. The initial global reputation aggregation

module has each node send all of its local trust scores for its out-neighbors to the

respective score managers. Then, in the global reputation updating module, all score

managers collaborate to identify the power nodes in the network. The authors apply their

system in a simulated environment to analyze its performance along three dimensions,

compared to the EigenTrust algorithm: convergence overhead, ranking discrepancy, and

aggregation error. Convergence overhead considers how quickly the algorithm runs when

aggregating the trust scores; ranking discrepancy considers the accuracy of the algorithm

compared to the ground truth trust values; and aggregation error attempts to quantify the

system’s robustness to malicious peers. The authors show marked improvement in

45

convergence overhead, ranking discrepancy, and robustness to malicious peers (in both

collusive and non-collusive scenarios) compared to EigenTrust.

In [3.20] the authors, recognizing some of the shortcomings of other trust metrics

that had been developed up until that time, proposed their own metric called

TrustWebRank (TW). TW seeks to correct some of the issues that arise from global trust

metrics, like EigenTrust – namely, that when being used in recommender systems, trust

metrics are most effective when personalized to a particular agent receiving the

recommendations. More specifically, three shortcomings that TW attempts to address are

uniqueness of solutions (other trust metrics may lead to multiple solutions to the trust

vector); inability to combine/compare direct and indirect trust; and normalization of trust

measures (which leads to loss of information from the graph). The authors compare

existing approaches from collaborative filtering (CF) for providing recommendations, listing

some of the CF approaches’ drawbacks as having limited usefulness when data is sparse

(for example, if trying to recommend a kitchen appliance when users have only rated

books). Like EigenTrust, TW still relies on centrality feedback, but it corrects for some of the

shortcomings of other trust metrics up until that time. TW allows for cyclic graphs and high

clustering coefficients – both of which are effects observed in real world social networks.

Utilizing the concept of transitive trust, TW takes into account all paths (where a path

exists) on a graph between two pairs of nodes to infer indirect trust between them, assigns

a centrality score to a node based on the centrality of that node’s neighbors (similar in this

respect to PageRank), and provides each agent with a personalized trust score with respect

46

to a given node. Additionally, TW moves beyond static analysis by allowing for dynamic

updating of the trust metrics based on a utility function. The utility function allows agents

to update their trust measures of their neighbors based on the quality of past

recommendations from their neighbors.

In [3.21], the authors extend previous work in which trust is propagated in a way

similar to PageRank, but the authors of this paper consider the reverse: propagation of

distrust. The authors outline three categories of actors who might be interested in sowing

distrust in a network: 1) “bad guys” – self-serving actors who have their own agendas, 2)

“careless big mouths” – actors who are “vocal and opinionated” while also being “careless

and unreliable”, and 3) “polar opposites” – observed in bipartite networks. The authors

propose that, in cases where distrust is present, the distrusted node should be ignored, not

negatively weighted. Mathematically speaking, this means that distrusted nodes should

have a trust score of 0, rather than -1. The authors propose a system that is based on a

modification of the PageRank algorithm, in which no node receives a negative trust score.

The authors posit that distrusted nodes should be treated as being either arbitrary or

adversarial. The authors’ system relies on use of six key axioms: 1) parallel edges are

merged or canceled, 2) items that are distrusted are independent from one another, 3)

edges can cancel out one another, 4) a method for propagating trust, 5) self trust can be

ignored without changing the overall performance of the system, and 6) weighted majority.

In [3.22], the authors propose a trust management system, SWTrust, to help make

recommendations of trust relationships to users in online social networks. The authors

47

propose their system to remedy a shortcoming that they observe in other systems at the

time of publication, which is that other systems rely on generating trust from small

simulated graphs which don’t reflect the reality of the large, complex graphs inherent in

online social networks. The authors’ system develops three modules as part of its system:

1) preprocessing a social network, PSN, 2) building a trust network BTN, and 3) generate

trusted graph, GTN. The PSN module preprocesses a large social network into a smaller

one, so that it can be more efficiently analyzed for the purpose at hand. The BTN module

searches for trustor-trustee paths within the simplified network outputted by the PSN.

Finally, the GTN module selects short trusted paths from the set of possible paths

identified by BTN. The authors evaluate the performance of the SWTrust system on a real

world network, epinions.com. For the PSN module, one of the challenges is to select the

length of the trust paths such that execution time doesn’t become unreasonably large

while at the same time maintaining sufficient coverage of the data. With respect to this

challenge, from the experimental evaluation with the epinions.com dataset the authors

find that their PSN module performs well compared to a naïve approach that would select

all paths, sacrificing a small amount of coverage in exchange for a drastic speeding up of

execution time. With respect to accuracy of estimating trust, the authors find high accuracy

regardless of which of several aggregation methods are used.

In [3.23] the authors propose adding important nuances to the consideration of

trust calculations in online social networks, namely the inclusion of social relationships,

recommendation roles, and preference similarity. Additionally, the authors propose a way

48

to consider evaluation criteria, i.e. a mechanism for nodes receiving trust scores from a

system they interact with to decide how much (if any) faith to invest in these scores. In this

sense, the authors’ model is a more realistic model of how people interact and build trust

based on their interactions. The authors also propose a more realistic trust decay

mechanism that is based on social psychology research, which is that trust decays relatively

slowly in early hops from the source to the sink of the trust, but then decays rapidly after

the early hops. To account for these additional nuances described in the social psychology

literature, the authors propose a mechanism for measuring the quality of transmission of

trust, which they call Quality of Trust Transitivity (QoTT). Using this concept, the authors

then propose a new model for trust estimation called Multiple QoTT Constrained Trust

Transitivity (MQCTT). In an attempt to better account for theories of trust from the social

psychology literature, the authors give their own definition of trust as “trust is the belief of

one in another, based on their interactions, in the extent to which the future action to be

performed by the latter will lead to an expected outcome.” The authors give this definition

to account for the importance of context in trust transitivity: A may trust B in Context 1, but

in Context 2 A does not trust B. The authors propose a number of measures that are then

taken as inputs into their QoTT measure. These include social intimacy degree, role impact

factor, and preference similarity. Social intimacy degree measures how close (socially-

and/or psychologically-speaking) one person is to another, with the implication being that a

higher social intimacy degree will translate to a stronger trust transitivity. Role impact

factor takes account of if the recommending node is a domain expert or not. And,

preference similarity makes use of the social psychology finding that people trust others

49

more who are more similar to themselves. These measures cannot be feasibly calculated in

all contexts, but they are feasible in many of the most frequently-used online social

networks and have only become more feasible since the paper was first published. The

authors also describe three distinct phases of trust decay: an initial slow decay phase in

which trust decays slowly in the first three hops from the source to the sink, a fast decay

phase in which trust decays much more quickly in hops four through six, and finally

another slow decay phase in which trust decays asymptotically to zero beyond six hops

from the source to the sink. Utilizing these properties of trust and the principles which

influence its transmission, the authors define their measure for QoTT. Using QoTT, the

authors develop their trust model MQCTT and apply it to a real online social network, the

email network from the disgraced US company Enron. The authors compare their model to

existing models in the literature at the time, each of which represented a multiplication-

based strategy, and averaging-based strategy, and a confidence-based strategy. The

authors found that MQCTT more accurately models the real-world nuances of trust based

on the social psychology literature.

In [3.4], the authors provide empirical evidence that online trust networks do indeed

exhibit characteristics of small worldness. Up until the time of this paper’s publication,

many of the computational trust metrics that had been developed for use online implicitly

assumed that the networks that the metrics would be applied to exhibited small worldness,

but there had not been empirical verification of this assumption using real-world data. The

authors find that many online networks (as long as they are sufficiently dense) do exhibit

50

small worldness behavior. Small worldness is characterized by high mean clustering

coefficients and low mean path lengths. Small world networks also tend to demonstrate

scale free properties, verified through the presence of power law distributions, and this is

the attribute that the authors use to verify the presence of small worldness in online trust

networks. Because users can generally join and leave online networks at will, the nature of

irregular growth of online trust networks leads them to behave as complex networks. The

authors rely on scale freeness because it considers the networks from a dynamic

perspective rather than a static one (which the centrality and path length measures do) – a

critical attribute of trust networks being that they are dynamic. The authors utilize five real

online social networks to explore their research questions: Advogato, Epinions, Kaitiaki,

Robots, and Squeakfoundation. The networks range in size from 64 nodes (Kaitiaki) to

49,288 nodes (Epinions). Upon analysis, the authors find that the networks do exhibit scale

freeness, to varying extents, verifying a critical and heretofore previously untested

assumption of many computational trust metrics. Another challenge with many

computational trust metrics is how far to propagate trust within the network (referred to as

maximum trust propagation distance, or MTPD). Through their experimental results, the

authors also verify that because of the small worldness of online trust networks, it is only

necessary to know the direct trust of each node and not how the trust propagates. Using

this insight, the authors propose a computationally optimized trust metric that reduces

computational complexity compared to previous trust metrics.

51

The authors of [3.24] propose a Digital Hash Table Trust Overlay Network (DHTON)

to model a peer-to-peer (P2P) trust network and store its reputation scores, together with a

distributed reputation system, which the authors dub DHTrust. The authors identify two

weaknesses in other computational trust metrics at the time of publication: 1) the

possibility that trust score managers (as in PowerTrust) may themselves be malicious, and

2) a potential for incongruency between the provision of services in P2P networks and the

reputational scores that are reported. To address these issues, the authors propose their

system, DHTrust. DHTrust begins with distributing trust locally to trust managers. This local

trust distribution is based on the network structure, rather than randomly as in some other

systems. In this way, DHTrust may more accurately reflect local trust values. Next, the

authors’ system implements a distributed hash table – dubbed DHTON in this paper – as a

method to model the network’s structure and to store and distribute local reputation

information. DHTON is itself based on a Chord network. Finally, DHTrust modifies existing

reputation score calculation methods by merging the two separate questions of service

quality and trust scoring into one. The authors evaluate the performance of DHTrust using

simulations with 4000 peer nodes – 20% of which are malicious – and an identifier length of

12 for the Chord network for implementing the distributed hash table. In the simulations,

the authors compare DHTrust to two other established computational trust metrics:

EigenTrust and PowerTrust. The authors report lower convergence overhead for DHTrust

compared to the other two trust metrics, for varying network sizes, and improved quality of

service for DHTrust compared to EigenTrust. It should be noted that this system is quite

52

similar to TrustGuard, which is not referenced by this paper but precedes this paper by

seven years.

The authors of [3.25] identify weaknesses with respect to malicious actors in the

well-known EigenTrust algorithm, and propose an improved version called EigenTrust++

which seeks to mitigate potential negative effects from malicious actors. The authors

propose that a trust system should be resistant to attacks, thereby enabling good

participants to maintain their good reputation, decreasing the reputation of malicious

participants, and providing new participants with a mechanism for building their

reputations over time. The authors identify three specific vulnerabilities in the EigenTrust

model: its local trust rating, feedback credibility, and the use of a circle of friends. The

authors propose EigenTrust++ to address these three weaknesses. To address the first

weakness, EigenTrust++ updates the original transaction rating formula from EigenTrust,

taking into account the total number of transactions between a pair of nodes. This

modification makes the algorithm more robust to scenarios where there are many, or few,

transactions between a pair of nodes (i.e., in EigenTrust a situation of 10 only positive

interactions receives the same treatment as a situation of 1000 positive interactions with

990 negative interactions, even though the second scenario logically raises concerns based

on the large number of negative interactions). To address the second weakness,

EigenTrust++ instead uses a “feedback credibility-based trust metric”, relying on similarity

to aggregate local trust. The authors posit that two good nodes will give similar feedback to

a common set of peers they have interacted with, and two malicious nodes will do the

53

same, but a good node and a malicious node will give different feedback to a given set of

peers they interact with. Using this insight, the authors use feedback similarity as a weight

in the overall local trust value. This modification means that a high global trust value can

only be achieved by obtaining high feedback credibility and high local trust from peer

nodes. This mitigates the scenario in which, for example, a malicious node gives a low local

trust score to a good node. To address the third weakness, EigenTrust++ updates the

original trust propagation model from EigenTrust (which relies on a uniform distribution) to

instead utilize a differential probabilistic propagation model. EigenTrust++ considers the

proposition that trust should be more likely to propagate among a circle of friends, which

would encourage trust among good nodes and cut off trust propagating to or from

malicious nodes. In EigenTrust, this is not the case as propagation is treated uniformly. The

authors show that the algorithmic complexity of EigenTrust++ is equivalent to that of

EigenTrust, with computational complexity O(n2). After describing their proposed

modifications to the original EigenTrust algorithm, the authors evaluate its performance

and compare it to that of EigenTrust using simulations. The simulations rely on the same

parameters as those used in the original EigenTrust paper. The authors report comparable

performance of EigenTrust++ compared to EigenTrust for Threat Models A and B

(independently malicious nodes, and chains of malicious collectives, respectively), and

marked improved of EigenTrust++ compared to EigenTrust for Threat Models C and D

(malicious collectives with camouflage, and malicious spies, respectively).

54

In [3.26] the authors propose a trust model for use in Web services (such as Web

APIs) that is based on the insight that many online networks demonstrate small world

properties (high mean clustering coefficients and short mean path lengths). The authors’

system relies on three core concepts: 1) a modification to the subjective logic model to

include a “forgetting time” of trust values, 2) a trust evaluation model based on small world

network properties, and 3) a trust computation mechanism for the Web services. The

authors evaluate the performance of their system using three different experiments

implemented through simulation, and compare performance to that of two competing

systems (RATEWeb and a context-based trust computing model). The simulation results

show that the proposed system effectively and correctly identifies high-quality and low-

quality service providers; that when quality of service is quantified and published, service

providers compete to improve quality; and, compared to the two previously mentioned

competing models, the authors’ system performs better in terms of detection capability

and stability.

[3.27] does not propose a new trust metric nor do they use any of the trust metrics

proposed by other scholars, other than various centrality measures: closeness centrality,

betweenness centrality, Eigenvector centrality, and PageRank. This paper applies trust

measures to two online social networks (epinions.com and Ciao) and characterizes the

networks’ structure and dynamics in light of trust. The paper poses three research

questions, which the authors seek to answer through analysis of two different datasets

from online social communities (epinions.com, and Ciao): 1) what are the properties of

55

trust networks?, 2) what is the relation between trust and network topology?, and 3) what

are the dynamics of trust formation? With respect to the first research question, both the

epinions.com and the Ciao networks exhibited classic characteristics of complex networks:

degree distribution strongly different from the Poisson distribution, small-worldness, and

high clustering coefficients. With respect to the authors’ second research question, they

find that Eigenvector centrality and PageRank centrality provide the best measures for

computing trust because they are equally applicable to networks with simple structures

and those with non-simple paths. In addressing the third research question, the authors

report an interesting finding: as trust networks grow over time, the mean path length

decreases, which is consistent with network science laws related to densification and

shrinking diameters. At the same time, clustering coefficient and reciprocity grow over

time.

[3.28] considers how best to rank nodes in networks that are growing dynamically.

Although the authors don’t specifically consider trust networks, this paper is useful for trust

metric scholars because many trust metrics rely on centrality feedback-based metrics,

which PageRank is one example of. One of the most popular ranking algorithms, PageRank,

is generally a useful tool but one which faces shortcomings because of its static nature.

PageRank was originally designed for ranking web pages, but has grown beyond its original

scope to be used in ranking scholarly papers, traffic flow, and images, among others. These

applications of PageRank generally ignore temporal aspects of networks as they grow and

evolve over time, and the authors seek to understand how temporal patterns affect the

56

usefulness of PageRank. The authors develop simulations to understand the performance

of PageRank when temporal aspects are considered, and compare PageRank to a simple in-

degree measure. They base their simulations on a Relevance Model (RM), in which a node’s

relevance decays over time. Using the RM with PageRank, in cases where there is slow

decay or no decay of relevance over time, recent nodes are weighted lower than older

nodes with more connections, which leads PageRank to be biased towards older nodes. On

the other hand, when using the RM with PageRank in a fast decay scenario, old nodes

quickly lose relevance, which means that as new nodes attach to the network they are

more likely to attach to other new nodes, leading PageRank to be biased towards more

recent nodes in the case of fast decay. The authors run a different simulation in which

fitness is considered, the Extended Fitness Model (EFM). Fitness is analogous to “quality”, in

the sense that in PageRank nodes which have more links with other high-quality nodes are

considered to be higher-quality themselves. When using EFM, the authors find that

PageRank outperforms simple out-degree measures in cases where relevance decay and

activity decay are approximately balanced with one another. In cases where relevance

decay is much greater than activity decay, or the reverse (activity decay >> relevance

decay), however, the authors again find that PageRank underperforms simple in-degree.

After performing the simulations, the authors next turn their attention to two real networks

to understand how consideration of temporal effects influences the performance of

PageRank: Digg.com, and the citations network between American Physical Society (APS)

papers. To estimate the accuracy of PageRank, the authors use a measure of total

57

relevance. For the Digg network, the authors find that in-degree outperforms PageRank for

total relevance, but only slightly. For the APS citations network, the authors find that

PageRank is outperformed by the in-degree measure, with in-degree having a much higher

correlation with total relevance than does PageRank. The authors conclude that PageRank

should be used only with careful consideration for how temporal effects influence a given

network, reiterating that PageRank will overestimate the importance of recent nodes in

cases where decay of relevance is faster than decay of activity, and PageRank will

overestimate importance of old nodes in cases where decay or activity is faster than that of

relevance.

An open source trust management framework called Trust Graph was launched in

2015 and is targeted primarily for blockchain-based applications. Trust Graph describes

itself as “an open protocol for sourcing & rendering Trust relationships; It is a toolkit for building

and reading distributed Trust Graphs; An ambitious plan to create interoperability between

existing and future Trust Networks; Compatible with existing rating schemes (scores,

percentages, star ratings, etc); [and] Open Source (Apache licensed).”

In a 2015 white paper laying out the vision for Trust Graph [3.29] (called Trust

Exchange at the time), one of the co-founders of the project laid out a vision for a

decentralized reputation system with the following properties: “Interoperable;

Interconnected; Compatible with permissionless and anonymous accounts; Contextual;

Chronological; Resilient (censorship resistant, immutable, decentralized); Re-interpretable (raw

58

data is open to user and use specific re-interpretation); Not feared; Compatible with the

spectrum of identity” [3.30].

The core building block of the Trust Graph system is what the creators term “trust

atoms”. Trust atoms encode reputation data in its raw form, and are signed with the

private key of the person making the evaluation. Included in each trust atom are fields on

the source of the evaluation (who is making the evaluation?), the target of the evaluation

(who is being evaluated?), a trust value in the range of 0-1, content describing the rating,

context, and a timestamp. Each trust atom is then cryptographically hashed using the

SHA2-256 cryptographic hash, and signed with the source’s private key. Upon signing of a

trust atom, a signed JSON in the JSON-LD Verifiable Claim format is created. Trust Graph

also allows for interoperability using RDF or IETF Reputons. In addition to the trust atoms,

the current reference implementation of Trust Graph utilizes IPFS (Interplanetary File

System) to store and share the trust atom hash files [3.31].

In [3.32] the authors propose the Personalized Hitting Time (PHT) trust mechanism.

PHT is an extension of GHT (general hitting time), which adds additional resistance to Sybil

attacks. GHT, which itself is similar to the PageRank algorithm, reduces the vulnerability of

PageRank to being manipulated by the reports of the node being evaluated. However, the

authors show the GHT is still vulnerable to Sybil attacks. The authors propose their system

based on hitting time, and show that it is an exact algorithm optimized for trust in the

presence of Sybil attacks by strategic agents (agents who attempt to surreptitiously

improve their reputation in the system). The authors’ exact algorithm is O(n4), which they

59

recognize to be prohibitive for practical applications. Thus, the authors also propose a

Monte Carlo-based approximation method which they show to be much faster than the

exact method. The authors evaluate the performance of PHT using a series of simulations.

They demonstrate that in the presence of Sybil attacks, PHT results in no ability by the

malicious nodes to alter their ranking, whereas in generic PageRank the Sybil attack

drastically increases the strategic agents’ ranks, personalized PageRank is shown to be

somewhat resistant but still vulnerable to Sybil attacks, and GHT is shown to have

essentially no resistance to Sybil attacks. The authors also demonstrate that in both dense

graphs and sparse graphs, PHT continues to return a high degree of informativeness as the

proportion of strategic agents in the network grows, whereas GHT, PageRank, and

personalized PageRank all degrade as the percentage of strategic agents grows.

[3.33] extends the work of computational trust metrics to use for WhatsApp, which

is an online messaging system and social network. Until the publication of this paper, most

computational trust metrics did not consider the WhatsApp use case, making this one of

the paper’s primary contributions. Because of WhatsApp’s ubiquity in messaging

(particularly outside of the United States), it has attracted malicious actors who seek to use

the platform for spreading malware with the aim of committing cybercrime, spreading

misinformation, and other malicious intentions. The authors give one example of a

malware attack spread via WhatsApp in which users receive a message with an interesting-

sounding headline. The user clicks on the associated URL, compromising their account and

causing their account to automatically send messages to their contacts asking them to

60

send money. The authors propose their system as a trust score that would accompany the

receipt of any message on WhatsApp, helping the user to decide if they should trust the

message – or even if they should open it in the first place. The authors propose WhatsTrust

as their system for managing trust in WhatsApp, or any similar online messaging-based

social network. WhatsTrust is based on Subjective Logic (SL), utilizing it to calculate local

trust values between pairs of nodes. The WhatsTrust system is composed of two primary

components, each of which is comprised of several smaller parts: the system component,

and the node component. The system component is a centralized component that

maintains two global lists on reputable users and uncertain users. The authors explain how

positive and negative ratings are earned by nodes (a positive rating may be achieved, for

example, when a recipient of a message adds the sender of the message to her list of

contacts; a negative rating may be achieved when the recipient of a message blocks the

sender of a message). The node component contains two parts: a trust calculator & rating

provider, and a local trust list. The rating provider decides where to query trust information

from (locally, from friends, or globally), and then the trust calculator uses the trust

information provided to it by the rating provider to compute a trust value. The use of a

local trust list (for certain calculations) enables faster and more efficient calculations. After

describing the proposed WhatsTrust system, the authors evaluate its performance through

simulation of several different scenarios emulating WhatsApp interactions. They compare

the performance of WhatsTrust with that of EigenTrust and TNA-SL. Simulations were

conducted with varying network sizes to understand the system’s scalability, and different

proportions of malicious nodes were considered to understand the system’s robustness. In

61

54 different simulation scenarios representing different combinations of collusiveness,

maliciousness, and network sizes, WhatsTrust outperforms EigenTrust and TNA-SL in 46 of

the scenarios. The authors also compare execution times for the different trust systems,

and find that WhatsTrust is much faster than TNA-SL. WhatsTrust’s execution time is slower

than that of EigenTrust, but in several of the scenarios it is only marginally slower. The long

execution times of TNA-SL owe to its chained matrix multiplication operations.

[3.14] proposes a new trust metric – CoTrRank – and applies it to rank users on

Twitter. The paper is unique because it uses two networks to evaluate trust, rather than

only one. It does so by considering trust based on a user/tweet basis, rather than

user/user, as others have done previously; thus, the way the authors model the graph it

can be thought of as a bipartite graph in which two different classes of objects connect to

each other. The authors also propose a method for statistically mapping actions of Twitter

users to an appropriate trust degree. The authors collected tweets from Australia and

tested their model on it. The collected data is divided into a user network, which captures

“follow” relationships among users, and a tweet network, which captures the retweet and

reply relations among tweets. The two networks are joined by the “mention” and “post”

relations that take place between users and tweets. In the authors’ method, they first

normalize the trust values of both users and tweets. Normalization poses challenges that

have been discussed in several other papers included in this review, namely, that it doesn’t

properly account for differences in nodes with many interactions and nodes with few

interactions, and it also leads to domination by nodes with high trust values. To account for

62

these problems, the next step in the authors’ method – which is one of its primary novel

contributions – is to map trust values to trust degrees, using the sigmoid function. To

employ the sigmoid function, users are ranked based on their trust values, previously

calculated. Users with a trust value below a chosen threshold are excluded. The remaining

users who were not excluded based on the threshold are divided into three different

groups based on their ranking. The parameters of the sigmoid function can then be

calculated. The authors apply their method to the real Twitter data they collected, and

compare its performance to seven other established Trust Metrics. The authors present a

sample of specific users to illustrate the effectiveness of their metric compared to the

other, existing trust metrics. For the selected users, the CoTrRank metric ranks both of the

users higher than the other metrics do, which they go on to demonstrate makes logical

sense based on the trust scores of the followers of the first set of users. One of the primary

causes for the other metrics’ lower ranking of these users is because they don’t consider all

available information that a platform like Twitter provides.

In [3.34] the authors propose a new trust management systems inspired by ant

colonies, for use in peer-to-peer (P2P) networks of sensors or devices. The authors’

proposed system, AntTrust, differs from other bioinspired trust management systems in

that it is a problem-specific system, as opposed to metaheuristics, which are more

computationally complex and expensive. The problem that AntTrust addresses is how to

locate a trustworthy node by imitating how ants solve similar problems in real ant colonies.

AntTrust relies on four main categories of trust factors: 1) trust values, 2)

63

recommendations, 3) feedback from other nodes, and 4) global trust values. AntTrust is

inspired by the behavior of foraging ants. When ants leave the nest in search of food, they

leave a trail of pheromones on their return journey if they have successfully found food,

which allows their fellow ants to find the same food source. In AntTrust, a file requester is

analogous to the ants’ nest, a request for a file is analogous to an individual ant, and

neighboring nodes are analogous to a food source. When a requesting node successfully

receives a file from another node, it provides a positive rating, which is analogous to the

ants leaving a pheromone trail. The AntTrust system’s architecture is composed of a rating

manager, a trust manager, a feedback manager, a recommendation manager, and a

transaction manager. The transaction manager identifies the most trustworthy file

providers for peers, considering the four trust factors mentioned previously. The rating

manager submits positive or negative ratings for each transaction, based on the validity of

files as determined by the transaction manager. The trust manager calculates new trust

values after each transaction, and the value is a function of the validity/invalidity of the file

transferred. The feedback manager shares ratings and feedbacks among nodes, and the

recommendation manager retrieves recommendations about specific nodes. The AntTrust

algorithm initially selects a file provider randomly, when the network is being initialized and

there are not yet any transaction histories upon which to rely. After a transaction

completes, the file receiver rates the file provider, and a reward (in case of a valid

transaction) or punishment (in case of an invalid transaction) is applied to the file provider.

The file provider selection algorithm (a separate algorithm) identifies trustworthy nodes

based on the four factors described previously. Neither the AntTrust nor the file provider

64

selection algorithms contain any nested loops, leading the time complexity of AntTrust to

be O(n). After describing the AntTrust system, the authors evaluate its performance using

simulations and compare performance to that of the other popular computational trust

metrics EigenTrust and TNA-SL, and competing bioinspired trust metric TACS (Trust Ant

Colony System). The simulations considered the success rate of the algorithm and its

execution time. AntTrust’s success rate was considerably better than that of the three

competing algorithms in all simulation scenarios, with the difference in performance

growing larger as the number of malicious peers in the simulated network increased. With

respect to execution time, AntTrust was comparable to but took slightly longer to complete

than EigenTrust, and AntTrust had a much faster execution time than TNA-SL or TACS.

Content-based and behavior-based approaches

[3.35] proposes a new trust model they call Arbitration Trust or @Trust, based on

feedback arbitration. @Trust aims to mitigate shortcomings of other trust models that had

been published up until the time of this paper, including fragility to attack or manipulation

by malicious peers, high computational overhead, inaccurate trust estimations because of

removing false positives, and other issues. @Trust relies on three main principles: 1)

arbitration nodes are created and assigned, which arbitrate evaluation feedback of nodes

and make decisions based on majority rule, thereby identifying false feedback, 2) all nodes

receive service credibility, feedback credibility, and arbitration credibility scores, each of

which play different roles in decision making and punishment, and 3) arbitration nodes

make rapid decisions on behalf of other nodes, improving the speed of transactions in the

65

network. Whenever a transaction occurs, nodes generate an evaluation of the quality of the

transaction and send these evaluations to the arbitration nodes. The arbitration nodes

then make a decision with respect to this feedback based on a weighted majority rule.

Arbitrations are also rated by management peers. Credibility values for service, feedback

and arbitration are also calculated, which feed into this system’s trust decision making

mechanism. The authors make a subtle but important distinction in their system compared

to others, which is that other systems generally only consider general credibility of an agent

when deciding whether that agent should provide a service or not. The authors’ system, on

the other hand, considers credibility for each service offered by an agent, rather than the

agent’s general credibility, which allows for finer-grained decisions with respect to trust.

The authors analyze the system’s time complexity, breaking it into two constituent parts:

communication complexity and computational complexity. Communication complexity

relates to sending and receiving of messages about states of different nodes within the

network. The authors describe conceptually how their system would be used in a

structured P2P network using the Chord network, and then they evaluate their system’s

performance using simulations and comparing against performance of other systems,

namely RBTrust and OFTrust. The key dimensions that the authors are interested in

evaluating in the simulations are the system’s ability to arbitrate evaluations, ability to

resist attacks or manipulations, and its ability to punish malicious behavior. The authors

find markedly improved success rate (the rate of downloads that are successfully

completed in the P2P network) compared to the two other systems, an increase in the

upload rate (which is taken as a proxy for reducing freeriding behavior (or, said another

66

way, punishing freeriding behavior) compared to the two other systems, and an

improvement in resistance to two types of attacks (whitewashing attack and collusion

attack).

[3.36] points out that most existing trust management systems rely on – and

assume availability of – data related to behavior of agents within a system. This, however, is

not always a given, as for many of the systems for which trust management systems are

proposed certain data is available only to a proprietary provider and not to scholars. In

their system, the authors propose a more generic approach to estimating trust that relies

on network monitoring techniques adapted to this context, analyzing (Internet protocol)

packets exchanged among agents in a system. The authors propose a formal model which

relies on representing a packet along with the formal language that accompanies doing so,

syntactical properties, and semantic properties. In addition to their formal model, the

authors also develop a suite of network monitoring and testing tools that use the formal

model to automatically evaluate trust among agents within the network. These include a

tool for forwarding filtered network traffic to a remote server and a tool that gathers and

tests packets, using the formal model. The second tool makes use of two algorithms which

implement the formal model: the first algorithm is for evaluating the packets, and the

second algorithm provides a timeout function. The authors evaluate the performance of

their model using simulations of industrial DNS (Domain Name Service) network

interactions, which involves clients and servers. Importantly, because the authors are not

proposing a new method for evaluating trust but rather an approach to utilizing generic

67

data when proprietary data may not be accessible, the results they report from their

simulation focus on the resource performance of the system – not on the accuracy in

measuring trust. They find a modest increase in resource consumption (CPU and RAM

usage, and network traffic).

In [3.37] the authors use a semi-supervised learning approach to rank how

trustworthy or untrustworthy different news sites are. Their novel approach lies in the use

of only the words in a news article’s URL, rather than the text of the article. This is a useful

approach because it could be integrated directly by search engines, and it is fast. Using

natural language processing (NLP), they calculate a similarity score between two different

pages, and build a similarity graph using this. They also remove (prune) all pages from their

graph that don’t meet a minimum threshold. From the similarity graph, they apply a biased

PageRank, in which the bias is increasing weight to known fake news websites. They then

build a ranking of distrust of news sites. The authors apply their method to a real dataset of

news websites representing both reliable and unreliable sources of news, and compare the

performance of their method that of a standard support vector machine (SVM). The

authors find a significant improvement in performance compared to the SVM, as measured

by precision, recall, and F1 scores.

Probabilistic approaches

Many trust metrics up until the time of [3.38]’s publication modeled trust in a

simplistic way. Doing so enables computation of the trust metric, but it sacrifices richness

of information since trust is multifaceted, depending on many characteristics between

68

agents and changes depending on the context of where the trust is being applied. Thus, the

authors propose a Bayesian-based trust model which takes into account different

characteristics of agents within a trust network, allowing for greater flexibility and nuance.

The authors’ metric was designed for use in P2P file-sharing networks, but it could

potentially be applied in other settings too. The authors begin constructing their model by

defining four different broad categories of where trust relationships may be found: 1) trust

between a user and her agent, 2) trust in service providers, 3) trust in references, and 4)

trust in groups. Additionally, the authors differentiate between trust in another agent’s

competence, and trust in another agent’s reliability (which, in this paper, considers both

truthfulness and trustworthiness). The authors develop a framework that utilizes a naïve

Bayesian network representing trust between an agent and a file provider in a P2P file-

sharing network. The authors’ model considers leaf nodes under each root node, in which

leaf nodes represent the root nodes’ capabilities in different contexts (in this paper the

contexts are sharing of music, video, document, image, and software files, but these could

vary depending on the context and application). For each leaf node, conditional

probabilities table (CPT) is constructed, which are computed based on satisfaction derived

from a given file sharing transaction, whether the file shared was legitimate (e.g., was a file

that was shared and said to be a music file really a music file?). Download speed and file

quality are also considered in this model, but these are parameters that can be modified

for the specific application at hand. The authors then apply their model to a simulated P2P

file-sharing network to test its effectiveness. They find that, when combining both trust and

reputation systems, their Bayesian-based model exhibits marked improvement in

69

performance (as measured by the proportion of successful recommendations from one

agent to another) over similar non-Bayesian models (ranging from approx. 5-10%

performance improvement, depending on the number of interactions that take place). One

of the limitations of this model is that its usefulness is highest in networks in which agents

have multiple, repeated interactions with one another. In networks where agents have few

and/or infrequent interactions (the authors mention buyers in e-commerce as one

example, in which a buyer may only ever interact with a given seller once), this method is

less effective. However, even in these types of contexts, if small worldness characteristics

are present in the network, the model can still be useful.

Building on the previous work of the TidalTrust algorithm, [3.39] proposes a new

algorithm for measuring trust in online social networks, called SUNNY. One of the primary

contributions of the SUNNY algorithm is to include not only an estimate of the trust value

among nodes in a network, but also to incorporate confidence levels of these trust values.

In SUNNY, confidence is modeled from -1 to 1, with a -1 corresponding to a state of

“disbelief” and a 1 corresponding to a state of “belief”. The authors state that a confidence

model (which is a conditional probability of belief and disbelief) can be generated as inputs

from domain experts, or by using approximation techniques such as similarity or sampling.

SUNNY is a probabilistic, stochastic, local trust metric that is personalized to each node,

and is designed for use in online social networks although it may be useful in other

contexts, too. Experimental results that applied the SUNNY algorithm to the same network

as TidalTrust (the FilmTrust network) found a noticeable improvement in the algorithm’s

70

performance in estimating trust values compared to the ground truth values. SUNNY

generates a Bayesian network, then creates estimates of lower and upper bounds on

confidence values of each leaf node with reference to the sink node. SUNNY then makes a

decision regarding each leaf node as to whether to include it in the final trust computation.

The result of these decisions can be either include (in which the leaf node is included in the

trust calculation with respect to the sink node), exclude (the leaf node is not included in the

trust calculation), or unknown (this is an intermediate state in which the algorithm has not

yet made an include/exclude decision). Once a decision has been made with respect to

each leaf node as to whether it will be included or excluded in the trust calculation, SUNNY

then performs a backward search from each leaf node to the sink node to compute a final

trust value.

[3.40] is a broadly influential paper in the area of trust metrics. The trust network

analysis with subjective logic (TNA-SL) models trust relationships as subjective opinions,

and simplifies complex graphs into series and parallel graphs to enable and simplify

analysis. Like other trust metrics, TNA-SL makes use of the concept of transitive trust in

which trust is transmitted from one node to another that isn’t directly connected. The

authors also add an important nuance related to trust: trust scope. Trust scope considers

the context in which trust is being considered, and only applies it within that context (not

universally). The authors introduce a framework for considering trust in more granularity:

belief, disbelief, and uncertainty (b, d and u respectively), where b + d + u = 1. The authors

discuss operators for trust network analysis, namely, transitivity and fusion. Transitivity

71

involves a discounting function, that is, the farther one moves from an original node, the

more the transitive trust imbued by that original node is discounted. Fusion or consensus

involves combining opinions – especially when the opinions conflict with one another – in a

fair and equal way. This is also known as Bayesian updating. Finally, the principal

contribution of this paper is the proposal of edge splitting for trust analysis. This method

splits dependent trust path edges into multiple edges to avoid path dependency, while also

preserving information in the graph.

In [3.41] the authors propose a new trust metric which they call pervasive trust. The

authors make use of two key axioms related to trust for their paper: “1. We will treat trust

simply as a probability that a given assessment about an agent is true or false (e.g. fair/reliable

or not); 2. We further assume that this belief is transitive, i.e. if agent a trust agent b, which in

turn trusts agent c, then a will also trust c, to some extent.” Pervasive trust makes use of the

concept of transitive trust, used for estimating trust transmission in a network. The authors

describe their approach as being “derived directly from the simple notion of trust transitivity, is

easy to interpret, propagates absolute values of trust, and makes no assumption whatsoever

about the network topology, and direct trust distribution.” The authors define pervasive trust

and how to measure it. Pervasive trust infers trust values for pairs of nodes (rather than

globally, as in EigenTrust and others) and then computes transitive trust based on paths

between source and target nodes. Rather than using all possible paths in calculating

transitive trust, though, pervasive trust considers only those with the largest weights (i.e.,

the greatest trust) to the in-neighbors of the target node. After proposing their trust metric,

72

the authors apply it to a real example – PGP (pretty good privacy) – and analyze its

performance. PGP is a schema for encrypting and decrypting electronic communications,

and makes use of a “web of trust”. A web of trust is a decentralized trust model used to

assert authenticity of public keys and owners of those keys (i.e., the bindings of keys)

whereby the nodes themselves that a key-node binding is legitimate. The web of trust

stands in contrast to a centralized trust model, like certificate authorities, which are used in

traditional public key infrastructure (PKI) schemas. The authors use publicly-accessible data

on PGP transactions; additionally, to test the robustness of their trust metric, they use the

same PGP data but randomly reassign edges within the network. After applying their metric

of pervasive trust in an authority-focused model (similar to the PKI/certificate authorities

model) they find higher overall trust at a network level and more inter-connectivity among

different communities within the network. In this model, highly-connected nodes (generally

the certificate authorities) become more trusted. By contrast, when applying their trust

metric to a community-focused schema (like PGP), they find overall lower trust in the

network, and more focus on intra-community connectivity. The nodes with the smallest

and the largest in-degrees receive the lowest trust values, while those with intermediate

connectivity exhibit higher trust values. The real PGP data in fact show a mix of both

authority-focused and community-focused models present simultaneously within the PGP

network.

73

Fuzzy Logic approaches

[3.42] proposes a trust management system – FuzzyTrust – based on fuzzy logic

inferences. The authors’ system represents trust estimations linguistically, and includes a

module for computing and storing a source node’s trust score, the same for a target node’s

trust score, and a global reputation aggregation weighting module. The authors compare

the performance of their system to that of EigenTrust, using a real world dataset from

eBay. The FuzzyTrust system demonstrates lower computing overhead and slightly

improved detection rate of malicious peers as compared to EigenTrust.

In [3.43] the authors identify several shortcomings with other proposed trust

management systems that had been published up until that time. These shortcomings

include loss of information when aggregating trust paths in graph-based models like

TidalTrust, the inherently difficult nature of trying to model a subjective human concept like

trust using quantified values (typically in the range from 0 to 1). The authors propose a

fuzzy logic-based system, which is an extension and improvement of the previously-

proposed TidalTrust algorithm. The TidalTrust algorithm relies on calculating trust based

on the strongest shortest path between two nodes; that is to say, of all of the possible

paths between A and F, which of these paths is a shortest path and also imputes the

highest level of transitive trust between A and F. The authors of this paper propose a

modification to the strongest shortest path method, instead opting for an “all lengths

strongest path” method – that is, considering which path between A and F provides the

highest trust level, regardless of if that path is long. While this method increases

74

computational complexity, it provides a more precise inference of the trust levels between

nodes, as it can, for example, account for complex paths between two nodes which may

pass more than once through a neighboring node. Additionally, the authors’ system utilizes

a linguistic approach to measuring trust, rather than an explicitly quantified one, using low,

medium-low, medium, medium-high, and high levels of trust instead. To evaluate the

performance of their system, the authors construct simulated trust networks and compare

their fuzzy method with mean aggregation methods and subjective logic aggregation

methods. They find marked improvement in estimating reliability of nodes compared to

TidalTrust.

[3.12] focuses on the specific application of trust management systems to

recommender systems. The authors propose a fuzzy logic-based method which exploit

both trust and distrust to make better recommendations for users. The authors raise

several issues with the way that other systems model trust. One issue is the crisp modeling

of trust, which makes computation easier but which can lead to information loss about the

trust relationships. In real online networks, users generally will express trust in other users

(if they are using a system which has such functionality) linguistically (e.g., low, medium,

high) rather than numerically (most trust systems use a range from 0 to 1). Finally the

authors also point out that in real-world recommendation systems data tends to be sparse,

and other works don’t consider how to propagate and aggregate trust for inferring indirect

trust in cases of network/data sparsity. The authors propose fuzzy computational models

for estimating trust and distrust in online settings. Five different models are proposed with

75

different ends in mind: 1) trust and distrust based on similarity, 2) trust and distrust based

on knowledge, 3) fuzzy trust and distrust modeling, 4) fuzzy trust-distrust propagation of

transitive trust, and 5) a fuzzy approach to aggregation of transitive trust. The similarity-

based trust/distrust model treats users’ interest in items considered by the recommender

system as fuzzy variables. The knowledge-based model utilizes ratings that users give of

one another after completing transactions, representing users’ interactions in terms of

satisfaction, reciprocity, and reliability. The third model translates crisp trust evaluations (in

the range of 0 to 1) into seven sets of fuzzy evaluations ranging from no trust to complete

trust. The authors evaluate the performance of their models using a real world dataset, the

MovieLens dataset which includes 100,000 ratings of movies, with each user having rated

at least 20 different movies. They report superior performance of their methods when

incorporating fuzzy computational models of trust and distrust into recommender systems,

improving their overall performance and also outperforming other trust/distrust-based

models.

Game Theoretic approaches

[3.44] proposes an incentive mechanism to encourage sharing and cooperation in

wireless sensor networks, based on Bayesian games. The authors observe that some trust

management systems ignore the actions of malicious nodes, effectively treating them as

completely malicious when in reality malicious nodes will frequently act with some level of

rationality wherein they sometimes take positive actions to appear better than they are.

Additionally, the authors observe that for good (non-malicious nodes) there is the frequent

76

problem of freeriding, where good nodes don’t cooperate even with other good nodes. The

authors’ incentive mechanism both encourages limited cooperation with malicious nodes

in cases where they are not acting maliciously, and also encourages greater cooperation

among good nodes. The authors evaluate the performance of their mechanism using

simulation, and find that their system delivers improvements on both dimensions

previously described.

In [3.45] the authors propose a game theory-based model for measuring trust in

social networks. The authors consider two types of trust: specific trust (trust between two

actors within a network), and global trust (overall levels of trust within the network as a

whole). The authors' model relies on three main factors: interaction history,

recommendation, and user behavior. In addition to this model, the authors also propose a

punishment mechanism to reduce prevalence of the free-rider problem. The authors posit

that existing trust mechanisms in online platforms (which can be considered social

networks, in certain respects) such as Amazon and eBay rely on global trust, but this

method can be vulnerable to false feedback or recommendations. The authors describe

the free-rider problem – which is observed when participants (nodes) in a system of

exchange seek to benefit from the system without contributing back to it – and how it

affects networks generally and trust in networks specifically. The authors classify nodes

into four different types: service, feedback, recommendation, and managed nodes. In the

authors’ system, service reliability refers to the trustworthiness of an agent in the system to

effectively deliver the service in question, feedback effectiveness refers to the

77

trustworthiness of feedback given (about other nodes) by feedback nodes, and

recommendation credibility refers to the trustworthiness of a given recommendation. The

authors’ system includes two algorithms, one for measuring these credibility values from

direct interactions, and another for inferring these values in the case of indirect

interactions. Critically, the authors’ system also provides three different punishment

strategies, used to punish free-rider nodes and encourage them to stop their free-riding

behavior. The authors estimate their system’s performance using simulations, with

networks of 1000 nodes where 30% are trustworthy nodes, 30% are mixed-trustworthiness

(sometimes trustworthy, sometimes not), 10% are fully malicious nodes, 20% random

malicious nodes, and 10% veiled malicious nodes. Performing their simulations to examine

the effectiveness of the different punishment strategies, the authors find a clear

improvement in quality of service in the networks when including game theory-based

punishment strategies to reduce the prevalence of free-riding.

In [3.46] the authors highlight shortcomings with other trust management systems

for self-organizing wireless networks (this paper’s focus). These include failure to filter

selfish feedback and distrusted recommendations, and a focus on experimental data while

lacking a theoretical foundation. The authors model both a single stage game and a

repeated game, utilizing their proposed payoff matrix (punishment mechanism). The

authors’ system focuses on incentivizing sharing of indirect trust information within the

network; that is, encouraging nodes to share the direct knowledge they have of other

nodes based on their interaction, thereby improving the overall trust estimation of the

78

entire network. Based on simulation results, the authors’ system efficiently promotes

cooperation in the case of sharing of indirect information in both single stage and repeated

games.

Hybrid approaches (using two or more of the previously-identified approaches together)

In [3.47] the authors propose a semi-automated method – TrustRank – for filtering

spam Web pages (Web pages which seek to artificially increase their ranking from search

engine algorithms, like PageRank) that relies on human experts manually scoring Web

pages, then using these manually scored pages as seed together with the link structure of

the Web can discover good (non-spam) Web pages. The authors’ system starts with a

simple but important realization, which is that good pages rarely point to bad pages, while

bad pages may point to good pages, and point to many bad pages (termed approximate

isolation by the authors). TrustRank utilizes a trust function, a trust propagation

mechanism, and trust attenuation (also referred to as “trust decay” elsewhere in this

dissertation). The TrustRank system takes as inputs a transition matrix, the number of Web

pages in the network, a limit on the number of oracle invocations (i.e., the limit on the

number of manually-classified pages), a decay factor, and the number of iterations.

TrustRank first evaluates the desirability of pages to serve as seeds, it then rank orders the

pages based on their desirability, selects the best (top) seeds, normalizes their scores, and

then calculates the TrustRank scores for individual pages. The authors evaluate the

performance of TrustRank using a real world dataset, the (now defunct) AltaVista Web

index from 2003, which contained several billion pages representing more than 31 million

79

Web sites. The authors compare the performance of TrustRank to that of PageRank, and

find that TrustRank presents more good pages to users in search results than does

PageRank, and it presents fewer bad pages than does PageRank, concluding that TrustRank

effectively filters out spam pages.

In [3.48] the authors extend the work of EigenTrust. EigenTrust addressed the

problems of spread of inauthentic, corrupted, or malicious files in P2P networks, but a

slightly different issue that isn’t addressed directly by EigenTrust is the issue of incentivizing

nodes to share files in the first place. The authors of this paper propose a “strategyproof

partition mechanism that provides incentives for peers to share files.” The authors propose, in

essence, identifying communities of like nodes within a broader P2P network, partitioning

these communities into peer groups, and incentivizing downloads from within a given peer

group. The authors’ system starts with the assumption that all nodes – whether they are

malicious nodes or not – are seeking to maximize their own utility function, whatever that

means for them. For the purposes of the system, the utility of a node is its trust score. The

system modifies EigenTrust to incorporate strong non-manipulability by cut partitioning

nodes, though this comes at the expense of a decrease in the core effectiveness of the

EigenTrust system. The authors discover and note a critical tradeoff in this type of design

decision: if partitions are made in a way that leads to small numbers of nodes in the

partitions, the trust values will be less meaningful and thus less useful to users, yet at the

same time if there are more partitions then the error in trust values (compared to the

original EigenTrust system) increases.

80

In [3.49] the authors point out vulnerabilities in trust management systems that had

been proposed up until the time of publication (e.g., EigenTrust, XRep, others). Some of

these vulnerabilities include shilling, in which malicious nodes submit dishonest feedback,

or a malicious node initially exhibiting good behavior to establish a positive reputation, and

then acting maliciously once the positive reputation is established. The authors propose

TrustGuard as a system to combat these and other potential malicious attacks on trust

management systems. At a high-level, the TrustGuard system consists of three

components: a trust evaluation engine, a transaction manager, and a trust data storage

service. The trust evaluation engine is used whenever a potential transaction is to occur

between a pair of nodes, wherein a node seeks information from the network about its

potential pair, aggregating this network information into a trust value. The transaction

manager is responsible for detecting and preventing fake feedback; feedback that passes

the transaction manager’s check is sent to the data storage service, where trust values and

feedback are securely stored. TrustGuard includes three primary mechanisms to reduce

vulnerability of a trust management system to manipulation: 1) strategic oscillation guard,

2) fake transaction detection, and 3) dishonest feedback filter. The strategic oscillation

guard attempts to prevent a node from alternating between honest, positive behavior and

malicious behavior milking the positive reputation it has built up. The fake transaction

guard attempts to identify illegitimate feedback (for example, a malicious node made

attempt to provide negative feedback to a good node for transactions that never occurred),

and the dishonest feedback filter attempts to distinguish honest feedback from dishonest

feedback by malicious nodes. The dishonest feedback filter utilizes a personalized similarity

81

measure (PSM), in contrast with a trust-value based credibility measure (TVM), as others

such as EigenTrust utilize. Another interesting element of note for TrustGuard is its “fading

memory”, which allows for negative interactions with malicious nodes to lose weight as

time goes on. The fading memory mechanism was included primarily as a technique to

improve computational performance, keeping in mind that the paper was published in

2005; it may be unnecessary today, given current computing capabilities and cost, however,

the concept of a fading memory does have support from social psychology researchers.

After proposing and describing the TrustGuard system, the authors evaluate its

performance with respect to the three categories of vulnerabilities (strategic oscillation,

fake transactions, and dishonest feedback) using simulations, with 1024 nodes and a

randomly selected proportion of those nodes being designated as malicious. The authors

find that TrustGuard is resistant to strategic oscillation strategies for several different time

intervals (that is, the time between malicious actions by malicious nodes), imposing a cost

on malicious nodes for this type of behavior. The authors also find that their PSM-based

dishonest feedback filter is much more robust than TVM-based ones both in cases of non-

collusive malicious nodes and in cases of collusive malicious nodes.

In [3.50] the authors propose a new method for calculating direct trust relationships

within an online social network, which then can be used for imputing indirect trust values

among members of the network. The authors point out that trust is a crucial ingredient for

ensuring quality of service and security in online social networks. The authors identify a

gap in the computational trust metrics at the time, namely, that these metrics rely on a

82

direct trust calculation to manage trust but they don’t specify how to calculate the trust

values. The authors propose a new method for calculating direct trust as an input into the

trust systems, relying on Interactions, Relationship types, and Interest Similarity (IRIS). The

authors base their system on the taxonomy used in the FOAF (Friend of a Friend) ontology,

part of semantic Web. Using the FOAF ontology allows for computation of direct trust

values based on users’ interactions, relationship, types, and interest similarity. The authors

apply their method to real FOAF data, foafPub, which contains more than 200,000 records.

Using this dataset, the authors calculate the performance of IRIS compared to the actual

trust value (which is known from the dataset). They find a marked improvement in

performance (as measured by F-score) compared to other methods including TidalTrust,

and naïve measures such as max minus mean, max minus min, etc.

In [3.51] the authors identify several problems prevalent in “Web 2.0” platforms at

the time of publication (which have only intensified since then), including “digital deception,

digital content redundancy, digital copyright confusion and malicious content diffusion.” The

authors mention that DRM (Digital Rights Management) technologies have seen limited

success in addressing some of these problems, but DRM requires strict controls which are

by definition at odds with the open and largely uncontrolled nature of online social

networks. The authors propose a new system that relies on the strong ties and weak ties

theories from sociology, wherein networks display characteristics of positive assortativity

or homophily in the case of strong ties – that is, nodes that are similar to one another in

sone way tend to connect to one another – and negative assortativity in the case of weak

83

ties – that is, nodes with different characteristics tend to connect. In a real world context,

weak ties may be seen more frequently among colleagues for example, while strong ties

are more frequently found among friends or family members. The authors’ system utilizes

the strong ties and weak ties theories to partition a network into corresponding parts,

namely, one where strong ties are predominant (representing approximately 20% of the

overall network) and another where weak ties are dominating (representing the remaining

approximately 80% of the overall network). After the network has been partitioned, the

system relies on trust agents, who evaluate content and behavior of a given node and

share this evaluation with a different node. Content is evaluated based on four parameters:

1) principle, 2) technicality, 3) freshness, and 4) artistry. The first two are considered

objective measures while the second two are considered subjective, and thus the authors

give more weight to the first two factors (without discarding the second two). Behavior

evaluation factors also rely on four parameters: 1) discipline, 2) execution, 3) service, and 4)

enthusiasm. Similar to content evaluation, the authors give greater weight to the first two

objective factors and less weight to the second two subjective factors. The authors evaluate

the performance of their system in a simulation and an emulation of a real world network.

In the simulation, they find that as the number of weak ties in a network increases, the

content evaluation becomes more important than behavior evaluation, while in networks

with increasing numbers of strong ties, the reverse is observed (behavior evaluation is seen

as more important than content evaluation). This makes logical sense, as it stands to

reason that in cases where strong ties are more prevalent the nodes will regulate their own

based on behavior of their neighbors (whom they know well), while in the case of a

84

prevalence of weak ties the nodes, not knowing their neighbors as well, need to rely more

heavily on content to evaluate their neighbors’ trustworthiness. For the emulation, the

authors utilize the real-world topology of Facebook networks to test their system’s

performance. They find strong agreement between their model’s predictions and the

Facebook topology in indicating that an increase in trust placed in a user corresponds with

an increase in both weak ties and strong ties to that user.

In [3.52] the authors propose a system for ranking influence of nodes in a social

network using trust measurements. As such, this paper proposes a trust measurement

system, but not a trust management system. The system is dubbed Trust-Oriented Social

Influence evaluation, or TOSI. Measuring influence in an online social network can help to

provide better recommendations to other users, and the authors point out shortcomings

of other non-trust-based social influence estimation methods. The two primary issues

addressed by TOSI are the issue of inaccurate influence recommendations because not all

contexts of a node’s potential influence are considered, and the issue of susceptibility to

attacks by malicious nodes – in this case, primarily spammers. TOSI considers network

structure, social trust, social relationship, and preference similarity when providing

influence rankings. The authors use two real-world networks – epinions.com and DBLP – to

evaluate the TOSI system’s performance, and compare TOSI’s performance to that of

SoCap (the state of the art influence estimation system). The authors identify the top 1000

most influential nodes based on their actual number of influenced nodes, and use this as

the ground truth dataset. They compare the ground truth dataset to TOSI and to SoCap

85

and find that TOSI significantly outperforms SoCap in how many of the ground truth top

1000 influential nodes it can identify. They also find that TOSI is quite robust to spam farm

attacks while SoCap is unable to identify spam farm attackers, and finally that TOSI features

much faster execution time than that of SoCap.

[3.13] proposes a method for estimating trust among software developers on

GitHub. The authors take a content-graph hybrid approach for estimating trust values. The

contribution of this paper is to provide an automated and scalable method for estimating

trust among developers in OSS (open source software) projects, particularly when two

developers have no previous interactions. The authors propose that their method could be

used by developers to consider with whom to work on projects, whether they should

accept or reject pull requests in GitHub, and as a check on human judgement of pull

requests. The authors take a two-part approach for estimating trust. First, they compute

direct trust between developer pairs with known historical interactions. The authors utilize

natural language processing (NLP) applied to comments made related to pull requests, and

classify each interaction as strongly positive, weakly positive, neutral, weakly negative, or

strongly negative. With the direct trust scores thus established, the authors then use these

to infer indirect trust by constructing a community-wide network and propagating trust. To

do so, the authors rely on the subjective logic model, described elsewhere in this section. In

the subjective belief model, each interaction between nodes takes on specific values of

belief (b), disbelief (d), and uncertainty (u) which all sum to one. The authors map different

combinations of b, d and u to states of trustworthy (high belief, low disbelief, low

86

uncertainty), untrustworthy (low belief, high disbelief, low uncertainty), and lack of trust

(high uncertainty). Additionally, the subjective logic model utilizes transitivity and

cumulative fusion (also discussed in greater depth elsewhere in this section). The authors

apply their method to real data collected from GitHub, all using the Python programming

language. The authors seek to address two research questions: 1) building an

understanding of the relationship between trust and pull request acceptances, and 2)

building a predictive model for pull request acceptance. To address these questions, the

authors perform several different experiments to evaluate the overall performance of the

model with respect to the research questions. The experiments vary the methods used for

determining trust propagation, trust aggregation, and trust path length cutoff. The authors

find that there is a statistically relevant relationship between a positive trust score of a

developer and whether that developer’s pull request will be accepted, but it is a small

effect. For developers with low trust scores or lack of trust, there appears to be no relation

(positive or negative) between their trust scores and whether or not their pull requests will

be accepted.

In [3.53] the authors describe one of the major challenges of designing and applying

trust metrics in online settings, namely, that of how to measure trust across multiple

heterogeneous networks. To address this challenge, the authors propose a method that

uses semantic technologies and data fusion to evaluate trust across different online

networks. The authors’ system incorporates semantic web technology to model

heterogenous networks in a standard format, then fuses these data into one set for further

87

analysis of trust. The system is composed of four primary modules: 1) a data acquisition

module, 2) a coreference resolution module, 3) a trust data fusion module, and 4) a trust

evaluation module. The data acquisition module extracts RDF (Resource Description

Framework, a standard for data sharing on the Web) data between given users across

heterogenous networks, focusing on information that will be useful in building links across

the different networks. The coreference resolution module finds URIs (Uniform Resource

Identifiers – part of the RDF and the key connection between RDF and the Web) of users

across different networks, matches them, and assigns them a unique URI that is specific to

this trust management system. The trust data fusion module aggregates the values of trust

for nodes from the different networks. Because of the often complex nature of trust

measurements in online contexts, and because of the fact that trust data may be sparse in

one network and rich in another network for the same user, the authors recognize that

simple additive or averaging data fusion techniques would be likely to lose, inflate, or

deflate important data. For this reason, they instead select a weighted order weighted

average (WOWA) method. Finally, the trust evaluation module – using data from the

previously-described modules as input – can calculate trust among nodes by using a trust

propagation algorithm. With their proposed system, the authors design a simulation and

an experiment using real world data to evaluate the system’s performance. The simulation

portion of the evaluation is used to evaluate the performance of four different data fusion

techniques in best reflecting the ground truth of trust values. In the simulations, pairs of

networks are fused using the different methods. The authors find that the WOWA method

performs best, regardless of both participant overlap (the percent of participants found in

88

both networks) and tie overlap (the percentage of ties between specific pairs of users that

are observed in both networks). The authors use this finding from the simulation to further

evaluate their system on real-world data, seeking to understand if the multiple networks

approach to trust measurement produced more accurate results than use of a single

network. The authors use coauthorship and collaboration frequency networks as their real-

world dataset test. Twenty-six survey participants were recruited and divided into rating

participants and rated participants. The survey participants were given questionnaires, and

their responses to the questionnaires were used to establish a ground truth of trust

between users to which to compare the trust management system’s inferences. In the case

of overlapping users (those present in both networks), the authors indeed find that their

system is more effective at accurately measuring trust compared to when only one

network is used for the same task. However, in the case of non-overlapping users (those

found in only one or the other network), the authors’ method resulted in worse

performance compared to when only one network is used to measure trust.

The authors of [3.1] note that in modern online social networks, spread of low

quality information or misinformation has become a prevalent problem. The authors

propose their system, DeciTrustNet, as a trust and reputation management system to help

combat these issues. Their system relies on double evaluation feedback (both the target

and the sink of the evaluation are evaluated), inclusion of both global and specific trust for

all users, leveraging the position of a user in the network to estimate their trust (similar to

PageRank), and considering how the user’s reputation has evolved over time (not just their

89

current reputation). The authors evaluate the performance of their system using simulation

compared to performance of two competing systems, SocialTrust and PCR. The simulations

show that DeciTrustNet generally performs as well as and in some cases better than the

competing systems, and much better than when trust is not considered for varying

proportions of malicious nodes. In another simulation, the authors consider the effect of

nodes switching from malicious to non-malicious state and vice-versa. For this scenario,

they find their system’s performance remains robust until the point when about 60% of

users exhibit this behavior switching.

Other perspectives of trust online

While they don’t easily fit into one of the categories of approaches to understanding

or managing trust online, there have nonetheless been several other attempts to

understand and improve trust in online settings. These projects stem from diverse sources,

including government, academic, private sector, and various open source software

communities. Not all of them include a trust metric and/or a trust management system;

many of them aim, instead, to clarify conceptual understandings, to propose roles and

rules related to trust, and similar aims.

The term “web of trust” has been used by many different individuals and

organizations with varying goals and definitions, but here we discuss the web of trust as

relates to PGP (Pretty Good Privacy) and other similar encryption and public key

infrastructure (PKI) programs. In contrast to traditional PKI programs which rely on

specified certificate authorities (CAs), in web of trust encryption programs each user is also

90

by definition a CA. Web of trust is generally more of a hard trust measure, though it

features similarities to some soft trust measures too. Many who study the web of trust in

PGP and similar systems use a measure that is frequently used by soft trust metrics,

namely, mean shortest distance (MSD).

In this book chapter [3.6], the authors examine the influence of trust on

contributors to open source software projects. The authors identify two categories of

motivations for open source contributors: intrinsic and extrinsic. Intrinsic motivations may

be enjoyment based (the contributor does so because she likes doing it), or obligation

based (the contributor feels that she owes something back to the project). The authors

state that trust is a critical ingredient in enhancing cooperation and success of open source

development projects, and that trust in this context tends to be more institutional than

personal. Because many open source projects consist of different contributors who can

enter and exit whenever they wish, the development of trust in open source projects

doesn’t rely as much on repeated personal interactions as it does in other contexts. The

authors posit that trust in open source software development instead takes the form of

swift trust, which is a type of trust observed in teams that work together for a limited

amount of time. Within swift trust, the authors identify two types: encapsulated interests,

and cognitive trust. Encapsulated interests takes a rational approach, described by “Alice

trusts Bob because Alice believes it is in Bob’s best interest to trust Alice.” Cognitive trust is

based on an estimation of the characteristics of the people that are working together on a

project. The authors state that development and presence of trust is critical in attracting

91

new members because new members will be concerned about the ability of the group to

resolve conflicts suitably. Because of the nature of open source software development,

potential new members can easily observe the behavior of the group, and thereby make

their own estimates of how much to trust (or not) that group. On the side of the trustor, the

authors state that “extrinsically motivated trust based on encapsulated interests is

sufficient”. On the side of the trustee (the sink of the trust), there needs to be a certain

minimum number of intrinsically-motivated contributors to enable development of swift

trust from trustors. The authors recognize that institutions must be in place to encourage

participation of intrinsically-motivated contributors, and ensuring that the contribution

costs are low enough to ensure that even intrinsically-motivated contributors don’t leave.

In [3.54] the authors propose Trust-χ, which is an XML-based framework for online

trust negotiation in P2P settings. Unlike other trust negotiation-focused research up until

the time of this paper’s publication, Trust-χ proposes a comprehensive trust negotiation

system which address all aspects of the trust negotiation process (other works until this

paper considered only one part of the overall process). During trust negotiation, a

requestor (the node requesting access to a resource) and a controller (the node which

controls access to the requested resource) exchange certificates and trust tickets. Trust-χ

provides a framework for exchanging and evaluating these certificates which includes a

policy base module, a tree manager module, and a compliance checker module, for both

requestors and controllers, all specified in the χ-TNL (trust negotiation language) which is

based on XML. The policy base module stores the given nodes disclosure policies (which

92

can differ for each node). The tree manager module records the state of the negotiation at

hand, and the compliance checker module tests compliance with the policies, then

determines replies to requests based on compliance.

The National Strategy for Trusted Identities in Cyberspace (NSTIC) was announced in

2010 [3.55], established as a steering group by President Obama to “administer the process

for policy and standards development for the Identity Ecosystem Framework in accordance with

the Guiding Principles in [the] Strategy. The steering group will also ensure that accreditation

authorities validate participants’ adherence to the requirements of the Identity Ecosystem

Framework” [3.56]. NSTIC was guided by four core principles: 1) privacy-enhancing and

voluntary, 2) secure and resilient, 3) interoperable, and 4) cost-effective and easy to use

[3.57]. NSTIC was eventually transitioned to NIST (National Institute of Standards and

Technology), where nearly two dozen pilot implementations of trusted identity were

carried out through the Trusted Identities Group of the Applied Cybersecurity Division of

the Information Technology Laboratory [3.58]. The Trusted Identities Group was eventually

subsumed by the Identity and Access Management group, where some of its work lives on

today.

The authors of [3.59] make a comprehensive survey of trust management systems

available up until that time. The authors categorize trust management systems into six

distinct categories, depending on the approach taken by the system: 1) direct trust, 2)

indirect trust, 3) socio-cognitive trust, 4) organizational trust, 5) trust-aware interaction

decision-making, and 6) performance assessment. Direct trust models rely on observable

93

behaviors of agents. Indirect trust models rely on third-party testimony of other agents.

Socio-cognitive trust models utilize social relationships among agents to estimate trust.

Organizational trust models use affiliations with organizations to estimate trust. Trust-

aware decision making models seek to provide formal frameworks for how to use trust

estimates to make decisions. Performance assessment models utilize real world datasets

to evaluate the performance of other trust models. The authors identify areas for future

research in trust models, identifying nine attributes that trust models should incorporate to

ensure their success: 1) accurate for long-term performance, 2) weighted toward current

(rather than historical) behavior, 3) efficient, 4) robust against attacks, 5) amenable to

statistical evaluation, 6) private, 7) smooth, 8) understandable, and 9) verifiable.

The authors of [3.60] extend an existing computational trust framework (Jøsang’s

Subjective Logic, or SL) by proposing an improved method for initial trust computations

which serve as the starting inputs to the trust framework. The authors characterize trust

frameworks as a form of soft security mechanism, that is, they implement the social idea of

trust in computing environments as a way to improve the quality of interactions among

agents. The authors first conceptualize computational trust metrics as having two primary

components: trust computing, and trust manipulation. In trust computing, trust values are

calculated using measures such as reputation scores, and in trust manipulation new trust

values are computed (or imputed) using different methods. The authors point out that, at

the time of the paper’s publication, most models focused primarily on one or the other of

these pieces (trust computation or trust manipulation). The authors briefly summarize SL

94

as having four primary components: belief, disbelief, uncertainty, and a base rate (referring

to prior interactions). The authors propose and describe a formal language structure for

representing the input elements for belief, disbelief, and uncertainty, and how to compute

their initial values which can then be plugged into the SL model. The pre-trust

computational framework makes use of a selected state of an agent, together with a

neighborhood function which defines what the selected agent knows when in a given state.

Given a certain number of propositions about an agent (for example, that the agent has

knowledge in a relevant field in which a transaction is to take place), all possible states of

trust can be calculated based on the propositions. And, importantly, the framework

considers trust in a given context, rather than how much one agent trusts another

generally.

NIST’s (National Institute of Standards and Technology) Information Technology

Laboratory developed and published SP 800-207: Zero Trust Architecture in 2018 (with

subsequent updates in 2020) [3.61]. While not a trust metric nor a trust management

system and, in fact, taking the opposite approach of assuming no trust in computer

systems, Zero Trust Architecture (ZTA) is nonetheless related to the work described

previously because it considers many of the same challenges and problems that trust

management systems aim to solve, but in a different way. ZTA provides a cybersecurity

framework that recognizes the shifting landscape of modern enterprise technology

infrastructures and platforms, and the corresponding effects that these have on an

organization's cybersecurity stance. One of the key tenets of ZTA, which is an evolution

95

from older cybersecurity stances, is that it focuses on protecting resources themselves,

rather than on network segments. The publication provides deployment models and use

cases. ZTA lays out seven core tenets that together provide a stronger security stance: 1) all

data sources and computing services should be considered as resources, 2) all

communications should be secured, regardless of where in the network those

communications are or pass through, 3) access to resources should be granted on a per-

session basis, 4) access to resources should be granted on a dynamic basis, 5) the

enterprise should monitor security of all resources, 6) authentication and authorization are

strictly and dynamically enforced before they can be used, and 7) the enterprise should

collect as much data as possible about the resources to be used to further improve

security. More directly related to this dissertation, ZTA does include a trust algorithm as

part of its proposed policy engine (which is one of the key logical components of an overall

ZT architecture). The trust algorithm is the specific process used by the policy engine to

decide whether or not to grant access to a resource. ZTA doesn’t define the specific trust

algorithm as it will vary for each organization, but in general this type of trust

measurement system can be considered as a type of hard trust (previously discussed in

this dissertation). Different versions of ZTA have experienced growing popularity in

industry and government in recent years.

Social and psychological perspectives on trust

While not the focus of this dissertation, it is impossible to ignore the extensive

research work related to trust (as well as mistrust and distrust) that has been developed by

96

researchers in fields including psychology (particularly social psychology and

industrial/organizational psychology), sociology, management, and education. Most of the

trust systems reviewed in the preceding sections of this chapter are based either directly or

indirectly on insights related to trust from researchers in these fields, and trust as a

concept in online settings loses meaning and specificity if not first considered from this

foundational perspective. [3.62] identifies improved outcomes for teaching and learning

when professional communities of practice are fostered for teachers and principals in

schools, and – interestingly for our work – indicates evidence in support of closer network

relationships (from our perspective, this means denser networks, and more reciprocal

networks) developing in the presence of higher trust levels. [3.63] provides a thorough

review of organizational trust concepts up until the time of the paper’s publication (1999).

This paper discusses different ways of thinking about trust, which may be a psychological

state, a choice behavior – or both. [3.63] also considers factors that lead to the formation of

trust. These include dispositional trust, which is someone’s natural propensity to trust

someone else with whom they have no prior history. History-based trust is affected by past

interactions between two (or more) people. Third parties may be conduits of trust (this is

essentially the same transitive trust property discussed earlier in this chapter). Category-

based trust results from mutual belonging of two people to the same group, which could

be a social or professional organization. Role-based trust results from the position of

authority held, for example, by a supervisor. And, finally, rule-based trust is based on

shared understandings and acceptance of rules (which may be explicit or implied) about

what types of behaviors are appropriate. [3.63] also considers the benefits of trust in

97

organizations. These include reduced transaction costs (as referenced in Chapter I and

[1.1]), spontaneous sociability (cooperative, altruistic behavior of people within groups with

high trust), and voluntary deference (which refers to the acceptance of and implicit trust in

authority figures in hierarchical structures). Finally, [3.63] identifies several barriers to

formation of trust, which include suspicion, violation of expectations, the ability of certain

technologies such as surveillance systems targeted at employees to undermine trust (this is

surely even more relevant today than it was in 1999, when the paper was published), and

the fragility of trust (following the old adage that trust is hard to build but can be

undermined in an instant).

Open challenges in the design and deployment of trust metrics and trust

management systems

While online trust metrics and online trust management systems have been around

for more than two decades now, there remain open challenges in the design and

application of these systems in online contexts.

One of these challenges is how to deal with ever-expanding online networks.

Facebook today has nearly three billion monthly active users, Twitter has more than 300

million monthly active users, and in 2020 WhatsApp claimed more than 2 billion monthly

active users. As networks expand their complexity grows exponentially because of the new

links or potential links created with each new node that attaches. For this reason, the

analysis and management of trust in these massive online networks becomes more

difficult with time, requiring more sophisticated and smarter techniques – together with

more powerful computing resources.

98

Another open challenge in design and application of online trust management

systems is how to deal with new types of online networks that are increasing rich in media

like videos – examples of such networks include TikTok, YouTube, Instagram, and others.

The inclusion of video in a network makes the challenge of trust inference more difficult

and resource-intensive.

The fact that many users of online services are active not just in one, but several

online networks and social media platforms introduces the challenge of understanding

trust across these heterogeneous networks. In addition to social media platforms, other

online networks based on blockchain or private, closed networks could benefit from data

fusion across these networks to better understand trust.

A perpetual challenge for designers of online trust management systems is their

ability to resist to attack and manipulation. This challenge won’t go away, as the

attractiveness of a network for malicious actors only grows as the network grows, as

alluded to earlier. We see an ever-accelerating prevalence and sophistication of

cybersecurity incidents and attacks on networks, and trust management systems will need

to continue to evolve and improve to meet these challenges.

Finally, an important open challenge in online trust metrics and trust management

systems is the need to develop a science of trust metrics. Thus far, most of the work of

trust systems (including this dissertation) has been empirical and for the most part not

generalizable to other networks (i.e., a system designed for WhatsApp won’t have strong

usefulness for YouTube). Although many scholars have done work in this area already,

99

more remains to be done to put forth a theoretical description of trust online that can be

used to make and test predictions and is more generalizable across different applications

of online trust.

In the next chapter, we spend time considering how to compare disparate trust metrics

and trust systems, and propose a decision making framework for how designers,

managers, or owners of online networks can systematically go about selecting a trust

model – or designing their own – by first defining the context in which it will be required to

operate and the types of data they will have access to.

100

IV. Benchmarking performance of trust metrics, and proposed

framework for matching a trust metric with an application

Introduction

As has been detailed in Chapter III, there are myriad trust metrics and trust

management systems available for online applications with a wide range of different

features, effectiveness, and applicability (and although Chapter III is quite detailed, it still

isn’t a complete list). In Chapter III we described a wide range of features that different

trust management systems require as input to estimate trust, making different trust

management systems more or less effective when different types of data are available.

Given this wide array of options, how are practitioners to go about selecting the trust

management system best suited for use in their specific application?

In this chapter, we seek to address this issue through two main approaches. First,

we develop a set of experiments that we use to benchmark the performance of a select few

methods under varying conditions. Although the specific trust metrics that we use for

benchmarking in this chapter will not fit every potential application, we believe the

methods proposed can be adapted to experiment with different trust metrics not included

in the scope of this chapter’s experiments to determine their suitability for a specific

application. While most of the researchers who produced the papers described in the

previous section provide meticulous testing of their metrics and systems and compare

101

them to the performance of other systems, there is a structural incentive for them to

report superior performance of their systems compared to others. Thus, this chapter

serves to provide a neutral and objective review of systems’ performance under different

conditions. While we include a measure of our own design in this chapter’s review, it is

included simply for purposes of comparison; the aim of this dissertation is not to propose a

new, faster, or more accurate trust management system, but rather to derive insights from

real-world networks using trust measurement methodologies. Second, in this chapter we

also develop a decision making framework that can be used to narrow the field of

candidate trust management systems that a platform owner or platform manager might

consider for their own specific applications. This decision making framework is developed

using the results of the benchmarking experiments outlined in the first part of this chapter.

Research questions

 The research questions pursued in this chapter are foundational for the rest of this

dissertation, as they will influence the different research strategies we apply in later

chapters. In this chapter, we present and explore the following research questions related

to performance of trust metrics in online settings:

RQ4-1: How do various trust metrics’ accuracy in estimating the ground truth trust values

vary with different graph structural characteristics?

RQ4-2: How do various trust metrics’ code execution times vary with different graph

structural characteristics?

102

RQ4-3: Can we identify approximate ranges of values that balance accuracy with speed

of code execution of trust metrics for use in online networks?

RQ4-4: Can we develop a generalized framework for selecting which trust metrics or trust

management systems are best suited for use in different applications?

 To answer these research questions, in later sections of this chapter we propose a

series of experiments that consider different variables related to graph structure, and

measure the performance of different trust metrics while these variables change.

Related work

In addition to the trust metrics and trust management systems that received an

exhaustive review in Chapter III, in this section we briefly discuss work related to

benchmarking performance of trust metrics.

Most papers that present a new proposed design for a new trust metric or trust

management system (those described in Chapter III) provide benchmarking of the new

metric’s performance against existing metrics, or against different versions of itself.

However, these benchmarking results are typically provided with the aim of providing

evidence in support of the effectiveness of the trust metric under consideration – not for

103

providing a neutral examination of effectiveness of multiple trust metrics. A limited

number of trust metric benchmarking studies have, however, been conducted.

In [4.1] the authors propose and evaluate the effectiveness of a testbed for trust

models. This paper primarily develops a formal model for evaluating different attack

strategies on trust management systems for online platforms. [4.1]’s authors consider

attack resistance (and tradeoffs in resistance to different attack strategies) of EigenTrust,

PeerTrust, and Appleseed.

In [4.2] the authors, as part of their systematic literature review, present a system

for classifying different trust systems along various dimensions. This work discusses some

performance benchmarking results from some of the systems reviewing in the paper, but it

does not conduct or present a neutral evaluation of multiple trust metrics against graph

structural characteristics.

In [4.3] the authors present an excellent treatment of trust management systems in

multi-agent settings, and propose a useful categorization system for classifying different

trust management systems. Additionally, the authors provide performance benchmarking

results, but these are limited in their scope.

Benchmarking performance of trust metrics

 In this section, we first perform benchmarking of selected popular trust metrics and

trust management systems to better understand their performance along different

dimensions. We describe our methods for selecting which features and which trust

management systems to consider in our experiments; our procedure for setting up our

104

experiments; the results of the experiments; and discussion and interpretation of the

experiments’ results. In the next section, we will take these results and use them to develop

a decision making framework that can be used by practitioners or other researchers for

identifying promising candidate trust management systems for use in their particular

applications.

Design of benchmarking experiments

Using Table 2 and Table 3 (in Chapter III), we identify categories of features needed

to design our benchmarking experiments in this chapter. The categories of features of

interest for our experiments are presented in Figure 5 and include graph characteristics,

the number of iterations each experiment will run for, which direct trust algorithms to use

for estimating trust, which indirect trust algorithms to use for estimating trust, and which

random graph generative models to use for creating graphs for use in the experiments. We

select these features for inclusion in our experiments because 1) as measures that are

purely structural (i.e., derived from the network’s connectivity) they fall within the scope of

this dissertation as outlined in Chapter II, and 2) because they are measures that will be

universally available to platform managers/operators in almost any online platform and, in

many cases, also available to the public as open data. Other features (for example, history

of private messages exchanged between two users of an online platform) identified in

Chapter III are useful for estimating and managing trust, but data on these features are not

universally available for all online networks, nor are they typically made available to the

public for research. Our success measures of interest for the experimental results are

105

performance of the algorithms as measured by mean absolute error (MAE), code execution

time, and a combined measure of the two.

Figure 5: Categories of features considered in design of benchmarking experiments

Using the categories of features presented in Figure 5, we develop three different

experiment sets (one of which has two subparts) which each change a different variable. In

Table 4, we present summaries of each of these different experiment sets. The first

experiment set (1.1 and 1.2) considers variations in network size as measured by n number

of nodes (which, together with p, directly affects the number of edges generated for the

random graphs), and two different random graph generative models (the Watts-Strogatz

small-world generative model, and the Gn,p or Erdős-Rényi model). Set 2 varies the

probability p of edge rewiring for the Watts-Strogatz small world network model. And, in

Set 3, we vary the number of nearest neighbors K for the initial generation stage of the

Watts-Strogatz small world model.

106

Table 4: Experiment set combinations. Features highlighted in green signify the feature that is variable for that

experiment set.

Feature categories

 Referring back to Figure 5, in this section we provide the rationale for selection of

each category of feature to be incorporated into our benchmarking experiments.

Based on our review in Chapter III of features that are typically taken as inputs for

computing trust metrics, in the category of graph characteristics we identify the following

features as those to be included and varied for our benchmarking experiments: size of

graph as measured by number of nodes n; whether the graph is directed or undirected; the

probability p of either generating an edge (in the case of Gn,p random graphs) or rewiring

an edge (in the case of Watts-Strogatz small world graphs); and K nearest neighbors to

generate (in the case of Watts-Strogatz small world graphs).

107

Trust Measures (Direct and Indirect)

For our trust algorithms, we select two graph influence measurement algorithms to

serve as proxies for estimating direct trust, and three trust metrics developed to measure

indirect trust in graphs. Direct influence measures used in our experiments are eigenvector

centrality and PageRank, and the measures for indirect trust estimation are Basic

EigenTrust, TrustRank, and a generic transitive trust (referred to hereafter as GTT) measure

that we develop for use in this dissertation specifically. The direct trust estimation metrics

of eigenvector centrality and PageRank were selected based on the findings of [4.4], in

which the authors find graph centrality measures PageRank and eigenvector centrality are

most appropriate for application to computing direct trust metrics. [4.4]’s authors find

information in a trust network flows along simple paths (such as a direct path between a

pair of nodes) and non-simple paths (such as triangles), and thus they conclude that

measures like eigenvector centrality and PageRank can be expected to give the most

reliable measures of direct trust in a complex network since trust can flow in simple paths

and non-simple paths alike in trust networks.

Eigenvector Centrality

Eigenvector centrality considers centrality of a node with respect to centralities of its

neighbor nodes. It is particularly useful and robust for different types of networks because

a node can achieve a high importance through having many connections, or by being

connected to other important nodes – or both. The eigenvector centrality of a given node is

108

calculated as in Equation 1 [4.5], where xi is the node in question, Aij is an element in an

adjacency matrix, k1 is the largest of the eigenvalues of A, and xj are xi’s neighbors:

xi = ki
-1 Σ Aijxj

Equation 1: Eigenvector centrality of a given node, i

PageRank

The PageRank algorithm served as the initial foundation for the first version of the

Google search product. PageRank was first proposed for ranking importance of Web pages,

but because it returns a ranked listing of nodes in a network it has been applied broadly to

a diverse mix of other domains. PageRank makes use of the same centrality feedback

mechanism in which nodes with higher prestige provide more prestige when linking to

other nodes [4.5], with an important difference being that it relies on a random walk

strategy (which eigenvector centrality does not).

Basic EigenTrust

 Basic EigenTrust is used in this chapter’s experiments and, as its name indicates, is a

simplified version of the EigenTrust algorithm [4.6] which does not incorporate pre-trusted

nodes or attack resilience measures. We refer the reader back to Chapter III for a deeper

discussion of the mechanics of how the EigenTrust system works.

An important caveat to this chapter’s results and conclusions is that many real world

platforms will wish or need to include a robustness mechanism if implementing EigenTrust,

which increases the computational complexity of the algorithm, and thus the EigenTrust

109

values discussed in this chapter should be considered as the minimum possible (MAE and

code execution times), with values increasing if using one of the other variations of

EigenTrust.

TrustRank

TrustRank was originally developed for application to Web pages but, similar to

PageRank, has been successfully adapted for use in other contexts. For implementing these

algorithms, we use as a starting point [4.7]’s implementation of Basic EigenTrust and [4.8]’s

implementation of TrustRank, but make significant adjustments to both implementations

to accommodate the way we generate and analyze graphs in this chapter.

Generic Transitive Trust (GTT)

 Finally, we also include a generic transitive trust (GTT) measure developed for use in

this dissertation. This dissertation doesn’t propose a new trust management system as in

many of the papers reviewed in Chapter III; instead, GTT is used as an approximate

amalgamation of many of the most common principles observed in many of the trust

metrics reviewed in Chapter III (such as maximum trust propagation distance and trust

aggregation methods) which is more straightforward to use in analysis in later chapters of

this dissertation. Most transitive trust metrics include a trust propagation function, a trust

aggregation function, and a trust decay function. GTT makes use of each of these elements.

For the trust propagation function, we adapt the method in [4.9]. This paper’s authors

verify small worldness in the networks they analyzed and, upon doing so, set the maximum

trust propagation distance (MTPD) as the limit of geodesic path length. The authors verify

110

that the small decrease in accuracy of their trust metric resulting from setting MTPD equal

to geodesic path lengths is minimal, while gains in code execution speed compared to the

optimal solution are significant. Thus, for GTT we set the MTPD equal to the geodesic path

length, rounded up to the nearest whole number.

For GTT’s trust decay function we adapt a method described in [4.10], setting trust

decay as equal to the reciprocal of the distance between source and sink.

For GTT’s trust aggregation function, we aggregate trust values for all nodes in each

network into a raw (non-normalized) trust value, which is simply the sum of all of the

individual transitive trust values placed in each sink node.

Finally, and critically, for these experiments we sample paths in the networks rather

than computing all paths, since for the larger graphs in this chapter’s experiments (n =

3200, n = 6400) the amount of time needed to execute the code would be prohibitively long

(based on O(n3) where n equals the number of nodes in the graph; for n = 6400 this would

be more than 262 trillion potential trust paths). In order to properly scale the trust metric

along with the size of the graph being analyzed, we set the number of samples to equal 2n,

such that the expected value of the number of times a trust path is calculated that contains

each node as a sink is two. Trust values in GTT take continuous values from 0.0 to 1.0.

Graph structural characteristics

 For our experiment sets, we consider graph size as one of the most important

features to vary in our experiments. Graph size has a direct effect on the execution time of

most trust metrics, and as such it is critical to include in our experiments. To generate

111

graphs of different sizes, we include n number of nodes in our experiment sets which,

when combined with p (probability of creating an edge in the Gn,p model) or K (number of

neighbors to which nodes initially connect in small world graphs) determines the number

of edges (and thus, the code execution time for trust algorithms) present in the graph. In

Experiment Sets 1.1 and 1.2 we vary the number of nodes, beginning with n = 400 and

doubling four times from to n = 800, n = 1600, n = 3200, and n = 6400. In the case of the

small world graphs, these lead to graphs ranging in size from 30,000 edges (for n = 400 and

K = 150) to 480,000 edges (for n = 6400 and K = 150). In the Gn,p random graphs, the

expected values of number of edges ranges from 1,600 (for n = 400 and based on p = 0.02)

to 409,600 (for n = 6,400 and based on p = 0.02).

 In addition to graph size, another important feature to incorporate in design of

benchmarking experiments is whether the graph is directed or undirected. A directed edge

in an online social network might look like, for example, User A “liking” a post by User B. An

example of an undirected edge in an online social network, on the other hand, could be the

acceptance of a friend request on Facebook or a connection request on LinkedIn. For these

experiments, we select to consider only undirected networks, but a future extension of this

research should be to incorporate experiments that compare performance of trust

algorithms in directed networks and undirected networks.

 P and K are also considered as key graph structural characteristics to be used as

inputs in our experiments but, as they are specific to the random graph generative models

in which they are used, they are described in greater detail in the next section.

112

Random graph generative models

For our experiments we utilize two random graph generative models: the Gn,p

random graph, and the Watts-Strogatz small world graph. The Gn,p random graph, also

known as an Erdős-Rényi graph, [4.11] takes the number of nodes (n) in the graph and a

probability of edge creation between nodes (p) as inputs. The Watts-Strogatz small world

graph takes as inputs the number of nodes (n) in the graph, the number of neighbors that

each node will initially connect to when generating the network (K), and a probability of

rewiring edges between nodes and their neighbors (p) [4.12]. The Watts-Strogatz model

begins with a ring lattice of n nodes and K edges per node, then with probability p rewires

the edges that were initially generated, randomly creating short paths between nodes that

were previously only distantly connected (hence the name, small world).

Referring to the framework of [4.12], a regular (completely non-random) graph has

p = 0.0 and a completely random graph has p = 1.0; small world graphs fall somewhere in

between the two, with even small amounts of randomness among connections leading to

small worldness. Researchers have confirmed countless examples of small worldness in

real world networks (especially in social contexts), and thus we use the small world graph

as our primary generative model to be considered in our experiment sets, but also include

one experiment set that utilizes the Gn,p generative model to compare the performance of

trust metrics in networks of that type. Both generative models are applied in this chapter

using their implementations in NetworkX [4.13] and [4.14].

113

For selecting K in the small world graphs, we refer to Dunbar’s Number [4.15].

Dunbar’s Number is a purported approximate cognitive limit to the number of meaningful

social relationships the average person can maintain. Many researchers have estimated

the number to be approximately 150 [4.16], [4.17], but the number has also been

estimated to be both higher and lower than 150 by other researchers, in particular as a

result of modern information and communication technology expanding our circle of

potential social relationships, and their very meaning [4.18], [4.19], [4.20]. Thus, we take K =

150 for generation of the small-world random graphs in Experiment Sets 1.1, 1.2, and 2,

and in Experiment Set 3 we vary K in increments of 50 from K = 50 to K = 200.

Ground truth trust

For each random graph generated in our experiments, we first generate random

trust values between all node pairs in the graph, i.e., trust is only generated when an edge

exists between two nodes so that the trust generation process stays true to the actual

structure of the random graphs. Random trust values are generated uniformly between 0.0

and 1.0. The total global trust for each sink node is computed as the sum of all trust values

that source nodes place in this sink node, and then normalized. We perform this exercise

as the first step of our experiments for all random networks specified previously, in Table

4. These trust values are used as the ground truth trust values against which the accuracy

of the trust algorithms selected for our experimental analysis will later be compared.

114

Success measures

 We consider two success measures in this chapter’s experiments: accuracy of the

trust algorithms compared to the ground truth trust values that were generated as

described in the previous section, and code execution speed.

To measure algorithm accuracy, we utilize Mean Absolute Error (MAE). Because the

ground truth trust values are continuous values in the range of 0.0 – 1.0, we select MAE as

our accuracy measure rather than one that would normally be utilized for measuring

accuracy in binary classification tasks such as precision, recall, F1 score, or similar

measures. MAE has been studied extensively as a simple, easy-to-calculate, and easy-to-

understand measure of error that is readily comparable against other MAEs [4.21]. MAE is

measured as in Equation 2, by summing the total absolute error (absolute value of errors)

in a sample and dividing by the sample size.

Equation 2: Mean Absolute Error (MAE), from [4.21]

 To measure code execution speed, we make use of the time module in Python3

[4.22]. At the start of each new iteration of execution of a trust measure, we initiate a new

start time, and stop the time at the end of that iteration. We write the execution time of

each iteration for each trust measure to a list for later analysis.

115

Analysis

We first generate our random graphs for use in our various experiment sets. To get

a sense for the size and structure of the graphs, we present visualizations of each of the

different random small world networks and Gn,p networks used for Experiment Sets 1.1 and

1.2 in Figure 6 and Figure 7, respectively.

The first thing to point out about the visualizations is the marked difference

between the small world graphs (in all of their variations) and the Gn,p random graphs.

Referring to the Helmholtz Principle from the Gestalt Theory of human perception as

described in [4.23], we note that the human eye (and brain) is astoundingly good at picking

out structure from randomness in images. While in the small world graphs, noticeable

patterns or structures can be identified with a quick glance, there is no discernible

structure in the random graphs of Figure 7. This (lack of discernible structure) is a key

premise of why it is useful and important to use random graphs for comparison in this type

of work: if the network under investigation differs markedly from the random equivalent

version of itself, then there is some mechanism (or mechanisms) of interest responsible for

a particular structure or behavior.

As is to be expected, in the smallest of the Gn,p graphs there is relatively little density

and connectivity (as measured by edges), and the graphs densify as they grow in size. In

the case of the small world graphs, we observe a structure similar to the ring lattice

described previously in the section outlining graph generative models, with more pathways

forming between disparate parts of the graphs as they grow in size.

116

In Figure 8, we present visualizations of the random small world graphs used for

Experiment Set 2, where the variant is p, probability of edge rewiring. As is to be expected,

we see that for the graphs generated with a small p (0.02 and 0.05) they continue to look

like small world graphs, whereas for the random graphs with larger p (0.50, 0.95, and 0.98)

they look much more like a Gn,p random graph (compare to the Gn,p random graphs in

Figure 7).

Finally, in Figure 9 we present visualizations of the random graphs used for

Experiment Set 3, in which the variant is K (the number of nearest neighbors connected to

nodes in the first iteration of the small world graph generation process). In these graphs,

we observe a densification of the graphs as K increases, but even for the high K random

graphs they continue to resemble small world graphs, rather than Gn,p random graphs (as

was seen in Figure 8).

117

Figure 6: Visualizations of small world graphs of different sizes used for Experiment Set 1.1; panel (1) with n = 400,

panel (2) with n = 800, panel (3) with n = 1600, panel (4) with n = 3200, and panel (5) with n = 6400. p=0.02 and K=150

for all. Visualizations produced using NetworkX and Matplotlib in Python3 with spring layout, node size = 10 and edge

width = 0.1.

118

Figure 7: Visualizations of Gn,p random graphs of different sizes used for Experiment Set 1.2; panel (1) with n = 400,

panel (2) with n = 800, panel (3) with n = 1600, panel (4) with n = 3200, and panel (5) with n = 6400. p=0.02 for all.

Visualizations produced using NetworkX and Matplotlib in Python3 with spring layout, node size = 10 and edge width

= 0.1.

119

Figure 8: Visualization of random graphs used in Experiment Set 2. In Experiment Set 2, we hold constant n = 400 and

K = 150 while varying p from 0.02 to (Panel 1), to 0.05 (Panel 2), 0.50 (Panel 3), 0.95 (Panel 4), and 0.98 (Panel 5).

Visualizations produced using NetworkX and Matplotlib in Python3 with spring layout, node size = 10 and edge width

= 0.1.

120

Figure 9: Visualizations of random small world graphs used in Experiment Set 3. In Experiment Set 3, we hold constant

n = 400 and p = 0.02 while varying k from 50 to (Panel 1), to 100 (Panel 2), 150 (Panel 3), 200 (Panel 4), and 250 (Panel

5). Visualizations produced using NetworkX and Matplotlib in Python3 with spring layout, node size = 10 and edge

width = 0.1.

121

 Because each trust metric evaluated in this chapter measures trust differently, we

can’t make meaningful comparisons between the trust values estimated with different trust

metrics by directly comparing their raw values. Instead, to be able to compare different

systems’ performance, we consider rankings of each specific node with each trust measure.

We compute the distance between rankings of each node produced by the trust metrics,

compared to the rankings of those same nodes in the ground truth trust set.

An important limitation to this approach includes the fact that we lose information

and precision by considering rankings rather than raw trust values. For example, if Node 1

has a ground truth trust value of 0.8, Node 2 has a ground truth trust value of 0.55, and

Node 3 has a ground truth trust value of 0.05, our method of comparing rankings will fail to

capture the magnitude of difference in trust values between differently-ranked nodes. In

this example, the difference in ground truth trust values of Node 1 and Node 2 (0.25) is

only half the difference between the ground truth trust value from Node 2 to Node 3 (0.5),

but by considering rankings we only see that Node 1 is the most trusted, Node 2 is the

second-most trusted, and Node 3 is the least-trusted.

 In addition to analyzing the success measures described previously (MAE, code

execution time, and a combined measure of the two), we also analyze the correlations

between several graph measures and success measures to better understand how specific

graph characteristics affect trust metric performance so that we can use these as part of

our selection model in the second part of this chapter. These include correlation between

code execution speed and number of nodes, code execution speed and number of edges,

122

code execution speed and geodesic path lengths, code execution speed and graph mean

clustering coefficient, and correlation between MAE and all of the previously listed

characteristics.

Random networks generated for use in experiment sets

Using the categories of features and the methods described in the preceding

sections, we generate our random networks to be used in each experiment. Table 5

presents structural characteristics of the random graphs that were generated for use in

Experiment Sets 1.1 and 1.2; Table 6 presents structural characteristics of the random

graphs generated for use in Experiment Set 2; and Table 7 presents structural

characteristics of the random graphs generated for use in Experiment Set 3. We verify the

small worldness of the small world graphs by observing high clustering coefficients in the

small world graphs compared to those of the Gn,p graphs, and short geodesic path lengths

(comparable to those of the Gn,p networks).

Table 5: Structural characteristics of randomly small world and Gn,p networks used in Experiment Set 1.1 and 1.2.

Table 6: Structural characteristics for randomly-generated small networks used in Experiment Set 2.

123

Table 7: Structural characteristics for randomly-generated small networks used in Experiment Set 3.

Results and Discussion

In this section, we present and interpret the results of each experiment set. For all

experiment sets, we measure performance of each trust measure included as part of this

chapter’s scope; code execution time for each trust metric; and a combined measure of the

two. We measure performance using mean absolute error (MAE), with the mean being

taken over the set of three iterations that were performed for each experiment. The

combined measure, which we call Balanced Performance in this chapter, is taken by

multiplying MAE and code execution times by one another, with the interpretation being

that a lower value of balanced performance signifies a more desirable result (as the values

of MAE and code execution times approach zero, so does that of Balanced Performance).

Key findings

This section summarizes key findings, which are discussed in greater detail in the

following sections.

124

First, we find that the trust metrics evaluated in this chapter are, in general, more

accurate when applied to Gn,p random graphs than when applied to small world graphs.

This result is expected, as small world graphs feature more complex paths than random

graphs, which can lead to both decreased accuracy and increased code execution times.

Nonetheless, since many real world networks to which these measures might be applied

feature small worldness, it should be expected by the researcher that accuracy will be

lower than would otherwise be achieved in a Gn,p random graph.

In this chapter we find that the direct trust measures of eigenvector centrality and

PageRank tend to be more accurate than the indirect trust measures for smaller networks

when applied to small world networks, but as the network sizes grow the accuracy of the

direct trust measures and two of the indirect trust measures (GTT and EigenTrust) tend to

converge to approximately similar values. On the other hand, in Gn,p random graphs,

EigenTrust’s accuracy is only marginally lower than that of the direct trust measures.

For small world networks, as the network size grows, the code execution times for

EigenTrust and TrustRank increase exponentially, but the code execution times for GTT and

both direct trust measures grow more slowly.

When considering a variable p (the probability of rewiring an edge) for small world

networks, we find that accuracy of both direct trust measures and EigenTrust increases

marginally (MAE decreases marginally) directly with increasing p. Accuracy of GTT is highest

for very low and very high p, with an increase in MAE for values of p between 0.05 and 0.95.

125

For increasing K in small world networks, accuracy of all trust metrics evaluated in

this chapter except for TrustRank remain approximately constant. For TrustRank, however,

accuracy increases (MAE decreases) markedly for high K compared to low K.

Experiment Set 1.1

In Experiment Set 1.1, we use the Watts-Strogatz small world generative model,

varying the size of the random graphs from n = 400, doubling them until they reach a size

of n = 6400, while holding p constant at 0.02 and K constant at 150.

Referring to Figure 10, we present performance of each trust measure used as part

of our experiments. The first observation from Figure 10 is that, with the exception of

TrustRank, each of the trust measures’ performance are comparable to one another,

operating in a band of between 0.27 and 0.33. Second, we observe that for both direct trust

measures (eigenvector centrality and PageRank) considered in this chapter, for our generic

transitive trust (GTT) measure, and for Basic EigenTrust, performance is approximately

steady regardless of the network size. For TrustRank, on the other hand, we observe a

marked decrease in performance as the size of the network grows.

In Figure 11 we present code execution time for each of the trust measures, with a

semilog scale (vertical axis is logarithmic scale). As is to be expected, we observe an

increase in execution time for each trust measure as the size of the network being analyzed

increases. However, there are some important differences among the trust measures, with

the execution time for the Basic EigenTrust algorithm increasing the fastest as the size of

the network increases. Our GTT measure is the slowest for the smallest graph, but by the

126

time we reach the largest network considered in these experiments it is the fastest of the

indirect trust measures (i.e., it is slower than both eigenvector centrality and PageRank

which are both direct trust measures, but it is faster than the other indirect trust

measures).

In Figure 12, we observe the Balanced Performance (previously described) of each

trust metric. From this figure, we observe that for the indirect trust measures of EigenTrust

and TrustRank their Balanced Performance increases exponentially (the figure’s y axis is

logarithmic scale), indicating that their usefulness will degrade when applied to much

larger graphs (as would be expected in real world platforms). On the other hand, Balanced

Performance of the direct trust measures of eigenvector centrality and PageRank, as well

as the indirect trust measure GTT, grows more linearly, indicating they are likely to be more

useful for platform managers when graph sizes are large.

These results provide important insight for platform owners or managers who

might be considering implementing a trust management system into their network. If

accuracy of a trust measure is the most critical outcome to be designed for, then – if the

network to which they will apply their measure demonstrates small worldness – the

platform manager might consider using one of the direct trust measures, or the indirect

trust measures GTT or EigenTrust. If execution speed is of similar importance to the

platform manager, then they might consider one of the direct trust measures (eigenvector

centrality or PageRank), as they are markedly faster than the indirect trust measures for all

network sizes considered in these experiments. And, if the platform manager seeks a

127

balance between performance and speed, they might opt for either of the direct trust

measures, or an indirect trust measure similar to our GTT or TrustRank.

128

Figure 10: Performance of trust metrics as measured by Mean Absolute Error (MAE) for varying sizes of graphs in Experiment Set 1.2.

129

Figure 11: Code execution time (in seconds) for different trust measures in Experiment Set 1.1, for varying sizes of Watts-Strogatz small-world networks. Semilog

scale.

130

Figure 12: Ratio of execution time to MAE of trust metrics for varying sizes of graphs in Experiment Set 1.1. Semilog scale.

131

Experiment Set 1.2

 Experiment Set 1.2 holds K and p constant for varying n, using the Gn,p random

graph generative model.

Referring to Figure 13 we see the accuracy of each trust metric when applied to the

random graphs generated for Experiment Set 1.2. The first thing to note is that accuracy is

significantly higher compared to when they are applied to small world networks for both

direct trust measures, as well as for EigenTrust. Accuracy of GTT and TrustRank are similar

to the accuracies they demonstrate when applied to small world networks. In the case of

GTT, this is expected, since GTT is designed for use in small world networks in mind. We

also observe that accuracy remains relatively stable for various network sizes, but GTT’s

accuracy does appear to improve with the largest network size. TrustRank’s accuracy in

these experiments is barely better than random chance and, in the case of the largest

random graph (n = 6400), it is actually lower than for random chance.

Referring to Figure 14 we see code execution times for each trust metric for each of

the experiments that form this set (y axis is logarithmic scale). For all trust measures we

observe an increase in code execution times as the size of the networks they are applied to

grows. Nonetheless, there are important differences in the rate of increase in code

execution speed. The code execution times grow exponentially with the size of the network

for EigenTrust, TrustRank, and PageRank. In the case of EigenTrust and TrustRank, code

execution times exceed those of GTT by the time we reach the second-largest and largest

versions of the graphs in our experiment sets. Code execution speeds for eigenvector

132

centrality increase more slowly than the previously-mentioned metrics, and code execution

speed increases most slowly for GTT.

Figure 15 presents the balanced performance of each metric, which takes into

account both accuracy and code execution time; a lower number indicates better overall

balanced performance. Eigenvector centrality delivers the best overall Balanced

Performance, while the Balanced Performance of GTT increases at the slowest rate, which

indicates that for network sizes much larger than the ones analyzed in this chapter it would

provide the best balance between accuracy and code execution time. For the other trust

metrics, because their MAE remains approximately constant with growing network size and

their code execution times increase with growing network size, their balanced performance

also degrades as the network grows.

Table 8: MAE, code execution time, and Balanced Performance for different trust measures in Experiment Set 1.2.

133

Figure 13: Performance of trust metrics as measured by Mean Absolute Error (MAE) for varying sizes of graphs in Experiment Set 1.2.

134

Figure 14: Code execution time (in seconds) for different trust measures in Experiment Set 1.2, for varying sizes of Watts-Strogatz small-world networks. Semilog

scale.

135

Figure 15: Ratio of execution time to MAE of trust metrics for varying sizes of graphs in Experiment Set 1.2. Semilog scale.

136

Comparing results of Experiment Set 1.1 and Experiment Set 1.2

Comparing code execution times for small world graphs and Gn,p graphs of the

same size, we observe that for the direct trust measures (eigenvector centrality and

PageRank) and for one of the indirect trust measures (generic transitive trust, or GTT) the

code execution times are faster in the Gn,p networks than in the small world networks for

all network sizes. For both direct trust measures, code execution times only grow slightly

even as the size of the network doubles. For GTT, the code execution time grows

approximately linearly with the size of the network; a doubling in the network size results

in an approximate doubling in code execution time for GTT. On the other hand, for the

other two indirect trust measures (EigenTrust and TrustRank), we observe faster code

execution times in the small world networks than in the Gn,p networks, for graphs of all

sizes. However, unlike for GTT and the direct trust measures, the speed of code execution

for both of these indirect trust measures grows exponentially with growth in network size;

code execution times more than double as the size of the network doubles. This indicates a

possible limitation of their usefulness in very large graphs.

Examining the accuracy of the trust measures (as measured by Mean Absolute

Error, or MAE), we also notice interesting results. First, our experiments show that

PageRank delivers the highest accuracy (lowest MAE) for both small world and Gn,p

networks, followed very closely eigenvector centrality. After the direct trust measures, we

find a virtual tie in accuracy between GTT and EigenTrust for small world networks, with

GTT demonstrating slightly better accuracy than EigenTrust. However, in the case of Gn,p

137

networks EigenTrust performs significantly better than GTT. This result is expected, since

GTT is designed specifically for use in small world networks (as described previously in this

chapter). For both small world and Gn,p networks, TrustRank demonstrates the lowest

accuracy (highest MAE), with MAE barely better than guessing for the smaller network sizes,

and worse than guessing for the largest network size considered in these experiments, n =

6400. For all trust measures except TrustRank, we also observe a significant difference in

accuracy when applying the trust measures to a small world graph and a Gn,p random

graph. In the case of TrustRank, we observe little difference in accuracy when applied to a

small world graph compared to a Gn,p graph. Accuracy is degraded by approximately half

for both direct trust measures (eigenvector centrality and PageRank) as well as for

EigenTrust in the small world graph compared to the Gn,p random graph. For GTT, accuracy

is degraded by a smaller amount (approximately one-third) when applied to the small

world graph compared to the Gn,p graph.

Finally, when considering a balanced measure that accounts both for accuracy and

code execution time, we observe similar trends as reported in the previous sections. For all

measures except for TrustRank, we observe lower performance in the Gn,p networks than

in the small world networks, with little difference between the two for TrustRank. For small

world networks, PageRank demonstrates the best balance between accuracy and speed,

followed by eigenvector centrality, GTT, TrustRank, and EigenTrust. For Gn,p random graphs,

eigenvector centrality features the best balance between accuracy and speed, followed by

PageRank, GTT, EigenTrust, and TrustRank.

138

Experiment Set 2

In this section, we present the results of Experiment Set 2. Experiment Set 2 took p,

(probability of rewiring edges in the Watts-Strogatz small world generative model) as the

variable, while holding n constant at 400 and K constant at 150. In this experiment set, p

varied from 0.02 to 0.98.

In Figure 16 we see the MAE for each trust measure included in this chapter. We

observe that, generally, MAE decreases (i.e., accuracy increases) for all trust metrics as p

increases. The exception to this general statement is that for both direct trust measures as

well as for EigenTrust, MAE appears to hit a local minimum at n = 0.95 and then begins to

increase for p = 0.98. These results may or may not be anomalous, and should be further

explored with larger network sizes in future experimental work.

In Figure 17 we present code execution times with a semilog scale (Y axis is

logarithmic scale) for each trust metric as p varies. We observe that for each of the indirect

trust measures, code execution time remains relatively steady for all p, while code

execution time increases for the direct trust measures as p increases.

Table 9: MAE, code execution time, and combined performance (MAE x execution time) for Experiment Set 2. For all

experiments, n = 400 and K = 150, while p varies

139

Figure 16: MAE of each trust metric when applied to the random graphs of Experiment Set 2.

140

Figure 17: Code execution time (in seconds) for different trust measures in Experiment Set 2. Semilog scale.

141

Figure 18: Balanced performance (MAE x code execution time) for different trust measures in Experiment Set 2.

142

Experiment Set 3

In this section, we present and interpret the results of Experiment Set 3. Experiment

Set 3 took K, (the number of nearest neighbors during the initial graph generation phase of

the small world graph generative model) as the variable, while holding n constant at 400

and p constant at 0.02. In this experiment set, K varied from 50 to 250 in increments of 50.

Table 10: MAE, code execution time, and combined performance (MAE x execution time) for Experiment Set 3. For all

experiments, n = 400 and p = 0.02, while K varies in increments of 50, from 50 to 250.

Figure 19 presents the MAE for each trust metric used in this chapter. We see that,

with only minor fluctuations, the general trend is for MAE to decrease with increasing K in

small world networks. Accuracy of eigenvector centrality and PageRank are remarkably

similar to one another for all K. For small K, GTT is the most accurate indirect trust metric

followed closely by EigenTrust. For larger K, EigenTrust is the most accurate of the three

indirect trust measures, followed closely by GTT, and TrustRank. Importantly, we observe

drastically improved accuracy of TrustRank for higher K compared to lower K. We posit that

this is an artifact of the metric’s design, since it was originally developed for application to

Web pages, which often have a large number of links to other pages.

Figure 20 presents code execution times for each trust metric for this experiment

set. We observe approximately constant code execution times for each trust metric

regardless of K (with the exception of minor fluctuations which are most likely explained by

143

random differences in performance of the system environment used to perform the

experiments). However, an interesting dip in execution times for K = 150 for all metrics

except TrustRank, with code times increasing for smaller and larger K values surrounding K

= 150. We re-ran the experiments several times for K = 150 to check if this was a fluke of

our environment or some other external factor, but each time the experiments continued

to return similar results for K = 150.

144

Figure 19: MAE of each trust metric when applied to the random graphs of Experiment Set 3.

145

Figure 20: Code execution time (in seconds) for different trust measures in Experiment Set 3.

146

Correlation between performance and graph structural characteristics

 In this section, we present and analyze correlations between the accuracy as

measured by MAE and code execution speeds on one hand, and different graph

characteristics (size, random graph generative model, probability of edge rewiring in small

world graphs, and number of nearest neighbors in small world graphs) on the other hand,

for each trust metric evaluated in this chapter. Table 11 presents the correlations between

these measures for each of the five trust measures (two direct, three indirect) evaluated as

part of this chapter; positive correlation coefficients >0.50 are highlighted in green, and

negative correlation coefficients <-0.50 are highlighted in red. In the following subsections,

we provide additional discussion and interpretation of these results for each of the trust

metrics.

147

Table 11: Correlations between graph structural characteristics and performance of trust metrics

148

Eigenvector centrality

 When eigenvector centrality is applied to small world graphs for estimating trust

values, MAE varies inversely with increasing p and increasing K. That is, as the probability of

edge rewiring (p) in a small world graph increases, eigenvector centrality becomes more

accurate (lower MAE) in approximating ground truth trust values. And, as the number of

nearest neighbors of nodes (K) in a small world graph increases, eigenvector centrality

becomes more accurate (lower MAE) in approximating ground truth trust values. On the

other hand, for small world graphs, as the size of the graph increases, eigenvector

centrality becomes less accurate in estimating ground truth trust values (MAE increases,

but at a lower rate than the increase in the size of the graph). When applied to Gn,p random

graphs, eigenvector centrality becomes more accurate (lower MAE) in estimating ground

truth trust values as the size of the network grows.

 Considering code execution times, when eigenvector centrality is applied to small

world graphs for estimating trust values, code execution time increases as the network size

grows. However, as p increases we see a moderate decrease in code execution times, and

as K increases we observe a large decrease in code execution times. Both of these results

are expected since a higher p makes the graph more similar to a Gn,p graph, and a higher K

increases the density of the graph. When applied to a Gn,p graph, code execution speed for

eigenvector centrality also increases as the size of the network grows, at approximately the

same rate as is observed in small world networks.

149

Figure 21: Correlation between graph structural characteristics and eigenvector centrality’s performance. X axis values correspond to MAE, Y axis values correspond

to code execution time (in seconds).

150

Figure 22: Correlation between graph structural characteristics and PageRank’s performance. X axis values correspond to MAE, Y axis values correspond to code

execution time (in seconds).

151

Figure 23: Correlation between graph structural characteristics and GTT’s performance. X axis values correspond to MAE, Y axis values correspond to code

execution time (in seconds).

152

Figure 24: Correlation between graph structural characteristics and EigenTrust’s performance. X axis values correspond to MAE, Y axis values correspond to code

execution time (in seconds).

153

Figure 25: Correlation between graph structural characteristics and TrustRank’s performance. X axis values correspond to MAE, Y axis values correspond to code

execution time (in seconds).

154

PageRank

 When PageRank is applied to small world graphs for estimating trust values, MAE

varies directly with an increase in the size of the network; that is, as the network grows,

PageRank becomes progressively less accurate in estimating the ground truth trusts in the

network. One key reason for this is because there is recursive small- and mid-size world

behavior; in other words, higher-order clustering than "classic" small world. For increasing

p and K values, however, accuracy of PageRank in estimating ground truth trust values

increases (MAE decreases). When applied to a Gn,p graph, PageRank becomes more

accurate (lower MAE) as the size of the network grows.

 When evaluating code execution speeds, there is a direct positive relationship

between increasing n, p, and K and code execution speeds in small world networks, and

between n and code execution speeds in Gn,p graphs.

Generic Transitive Trust (GTT)

 Different from the two direct trust measures discussed in the immediately

preceding sections, for GTT (an indirect trust measure) we observe increasing accuracy in

estimating ground truth trust values as network size (n) grows for small world and Gn,p

graphs, and increasing accuracy as p increases for small world networks. However, in a

reversal of the observations from the direct trust measures, we see a decrease in accuracy

of GTT (increasing MAE) as K increases.

155

 Examining code execution speeds, for GTT we see a direct relationship between an

increase in code execution speed and a growing network size (n) for both small world and

Gn,p graphs; we also observe an increase in code execution speeds as p increases, but at a

lower rate. And, as K increases, we observe an inverse relationship between code execution

speed for GTT.

 These results are expected, as GTT is specifically designed for application in small

world networks, with the tradeoff being increased accuracy resulting in slower code

execution speeds.

EigenTrust

 Similar to GTT, EigenTrust demonstrates an inverse relationship between increasing

network size and MAE, though the improvements to accuracy as the network grows is

lower for EigenTrust than for GTT. We also observe an inverse relationship between MAE

and an increasing p in small world networks. Different from GTT, however, in EigenTrust we

observe increasing accuracy (decreasing MAE) as K increases.

 When considering code execution speeds, we see a direct positive relationship

between code execution speeds and increasing network size (n) for small world and for Gn,p

graphs, and a positive but more modest relationship between increasing p and code

execution speeds in small world graphs. Similar to GTT, there is an inverse relationship

between increasing K and code execution speeds, but code execution speed decreases

faster with EigenTrust with an increasing K than it does with GTT.

156

TrustRank

 Finally, for TrustRank we see an inverse relationship between accuracy and growing

network size in both small world and Gn,p graphs. As both p and K increase, TrustRank

becomes more accurate. When considering code execution speeds, we see increasing code

execution speeds with TrustRank for increasing network sizes of small world and Gn,p

graphs, and increasing code execution speeds for increasing p. On the other hand, as K

increases, code execution speed for TrustRank decreases. TrustRank also takes a damping

factor (similar to PageRank), which for this chapter’s experiments we set to 0.85, which is

industry standard for PageRank-like measures.

Framework for selecting a trust model

 Using the results and analysis from the previous section of this chapter, in this

section we propose a conceptual framework to assist practitioners and researchers in

selecting a trust model for use in their own applications.

Before presenting our framework, we first present Figure 26, Figure 27, and Figure

28 to provide additional analytical background on how we derived our selection

framework. Each of these figures are radar charts which plot how the performance (MAE,

code execution speed, and Balanced Performance) are affected by different graph

structural characteristics. From Figure 26 we see, for example, that both EigenTrust and

GTT demonstrate an inverse relationship between MAE and increasing network size (that is,

they become more accurate as the network grows in size). From Figure 27, among other

insights, we can observe that code execution speed for eigenvector centrality is strongly

157

affected by the size of the network, but it is barely affected by changes in path lengths (L)

or clustering coefficients in small world networks.

158

Figure 26: Correlation between MAE and graph structural characteristics for trust metrics.

159

Figure 27: Correlation between code execution times and graph structural characteristics for trust metrics.

160

Figure 28: Correlation between Balanced Performance and graph structural characteristics for trust metrics.

161

 We take the specific quantitative insights from Figure 26, Figure 27, and

Figure 28 and translate them into a more universal, heuristic framework which we present

in Table 12 and Table 13. Given that most real world technological, sociotechnical, and

social networks exhibit small worldness [4.24], we present the framework for small world

networks first. Table 12 presents heuristic relationships between the expected MAE of a

trust metric with respect to the ground truth trust values for the network to which it is

applied, and how the MAE is affected by different graph structural characteristics (network

size n, p, K, L geodesic path lengths), and graph clustering coefficients. Table 13 presents

the same heuristics for code execution speed.

In the tables, a sign of “+” indicates a mildly positive relationship between the two

factors (between 0 and 0.5), a “++” indicates a strongly positive relationship (>0.5) between

the two factors, a “-“ sign indicates a mildly negative correlation (between 0 and -0.5)

between the two factors, a “--" indicates a strongly negative correlation (<-0.5), and a

“negligible” entry indicates a relationship that is statistically indistinguishable from 0.

To generalize our results beyond the specific trust metrics evaluated in this chapter,

we collapse the trust metrics from this chapter into archetypal categories of trust metric

type. Centrality-based trust metrics are those like eigenvector centrality which estimate a

node’s trust value using a graph centrality measure. Other examples are degree centrality

and betweenness centrality. Centrality feedback metrics are those like PageRank which

consider the importance, influence or (in our case) trust of nodes that link to a node.

Centrality feedback plus path uses centrality feedback while also considering paths

162

between nodes within a graph. Finally, path-based metrics rely primarily on the multiple

paths (if any) between a sink and a source node to estimate trust. The degree of relevance

of each algorithm is clearly network architecture-dependent, with the degree of

recursiveness of clustering likely a key driving factor.

As with any design challenge, in examining the framework we see that there are

tradeoffs in accuracy and speed when selecting a trust metric to use in an application. Our

framework provides a systematic way for thinking about how to make these tradeoffs

during design, based on the structural characteristics of the network to which it will be

applied.

Table 12: Relationship between graph structural characteristics in small world networks and MAE for different

categories of trust model

Table 13: Relationship between graph structural characteristics and code execution times for different categories of

trust model

163

Limitations

Our framework is constrained by several limitations; thus, caution, judgement and

interpretation are required when using the framework. First, as was described earlier in

this chapter, our experiments only consider global trust, not local trust. This is a useful

measure for managers of platforms who have access to relevant proprietary data about

the platform, but it is less useful for inferring trust relationships between specific nodes.

Second, our framework was derived solely from graph structural characteristics, and thus

when considering platforms that have access to other data types such as content or

behavior this framework will be incapable of considering these measures. Additionally, our

framework doesn’t consider all categories of trust models (though it does encapsulate the

most popular categories). Our framework is derived from a limited dataset and limited

number of experiments, and thus its robustness and sensitivity should be explored further.

Finally, the framework only provides heuristic guidance – not specific quantitative

predictions – as to the direction and approximate intensity of performance metrics’

relationships to graph structural characteristics. Despite these limitations, to the best of

164

our knowledge our framework represents the first systematic selection framework for a

trust metric, based on a quantitative experimental analysis of the relationship between

specific graph structural characteristics and corresponding performance of different

categories of trust models.

Future Work

To strengthen the findings of this chapter, future work should focus on robustness

and sensitivity checks of the various measures investigated. Additional graph structural

characteristics could be considered, such as assortativity. Critically, future work should also

evaluate differences between performance of trust metrics applied to directed v.

undirected graphs; this chapter considered only undirected versions, but inclusion of

benchmarking on directed graphs represents an important extension for real world

networks. The experiments should be run for more iterations than we did in this chapter

(three iterations of each experiment) to further smooth out any differences owing to

random factors that may be present in our findings, and to add statistical power to the

findings. Additional trust metrics should also be benchmarked; in this chapter, although we

selected trust metrics that are representative of the majority of the types of trust metrics

that have been designed, there are many more that could have been included. Our

experiments only consider global trust values. While these values are useful for managers

of platforms who seek to minimize spread of bad information and have access to all data

needed to perform these computations, they are less useful for inferring pairwise trust

165

from one node to another. Thus, future research should also consider how performance of

trust metrics changes when considering local, pairwise trust values.

166

V. Characterizing the nature of trust and misinformation on Twitter

Owing to the hyperconnected nature of modern businesses, economies, and society

we’ve observed a high and accelerating rate of breaches of security and privacy of user

data. A popular cybersecurity model is the CIA Triad. In this model, “C” stands for

Confidentiality, “I” stands for Integrity, and “A” stands for Availability. When considering

cybersecurity through the lens of the CIA Triad, we can see that cybersecurity incidents

don’t only have to involve data breaches, ransomware, identity theft, or other cybercrimes.

The online spread of misinformation and disinformation can be considered as a

subcategory of cybersecurity threat, as it deals with the “I” – (data) Integrity – of the CIA

Triad. Researchers have discovered and described an increasing number and severity of

misinformation, disinformation, and misinformation (MDM) threats whose spread is

enabled and, in many cases, encouraged by online social network platforms. CISA, the

Cybersecurity and Infrastructure Security Agency (an agency of the United States

Department of Homeland Security) considers misinformation to be part of the overall

cybersecurity threat landscape [5.1].

As online connectivity has grown and as more of our daily interactions shift to taking

place online, trust metrics and misinformation in the online realm have both been explored

extensively by researchers. Less well-understood to-date is the overlap of trust with online

misinformation networks.

167

In this chapter, we seek to develop a stronger understanding of the relationship

between trust and misinformation in online social networks.

Does trust lead to the network structures that we see in an online misinformation network?

Or, do misinformation networks lead to the types of trust relationships that we observe?

Or is it both, or something else?

To explore these questions, we utilize an empirical dataset from the Twitter platform

regarding a specific subset of misinformation: conspiracy theories related to the COVID-19

pandemic.

Introduction

In 2013, the World Economic Forum (WEF) listed “digital wildfires in a

hyperconnected world” as a global risk for policymakers and technologists to address as

part of its annual Global Risks Report [5.1]. The WEF report authors stated that “The global

risk of massive digital misinformation sits at the centre of a constellation of technological and

geopolitical risks ranging from terrorism to cyber attacks and the failure of global governance.

This risk case examines how hyperconnectivity could enable “digital wildfires” to wreak havoc in

the real world. It considers the challenge presented by the misuse of an open and easily

accessible system and the greater danger of misguided attempts to prevent such outcomes.”

[5.1] Unfortunately, the WEF report authors were justified in their worry, as we observe an

increase in the frequency, severity, and ubiquity of online misinformation across

geographies and platforms since 2013.

168

Many scholars and practitioners today are focused on how to identify

misinformation in online social networks (OSNs). The most popular approaches today

leverage techniques from natural language processing or deep learning to identify and

classify online claims as true or false (misinformation), and to flag them for further

treatment. Other approaches make use of crowdsourcing to use the community in flagging

and fighting online misinformation. These methods hold great promise, and are already

helping to combat the prevalence of online misinformation.

Can these machine learning (ML) misinformation detection models be augmented

by layering trust metrics on top of them? All other factors being held equal, it stands to

reason that a user is more likely to share, comment on, and ultimately believe a

misinformation claim online if they first hear that claim from a trusted connection. If we

can understand the characteristics of misinformation trust networks, this may serve as an

additional tool in helping to slow spread of the same.

Computer scientists have been developing and implementing trust metrics for more

than two decades, as a way to estimate trust among agents in an increasingly-connected

world. In this chapter, we use the principles and concepts developed by this rich body of

work and apply them to improve our understanding of the nature of trust and

misinformation online.

Background

Trust is an inherently subjective and social phenomenon which is difficult to

precisely model and quantify computationally. In spite of these challenges, simple, coarse-

169

grained models of trust have been developed and demonstrated their usefulness in

improving the functioning of sociotechnical systems – particularly online social networks

(OSNs) (including e-commerce settings), but also distributed computing systems, wireless

communications networks, Internet-of-Things (IoT) networks, and other related networks

whose primary function is to facilitate transactions among agents.

For more than two decades, scholars in computer science and adjacent fields have

developed numerous trust metrics (as reviewed in Chapter III of this dissertation), which

are methods for quantitatively estimating trust among nodes in a network. Some trust

metrics are designed for use with a specific platform or context in mind, while others are

relatively speaking more general purpose. For the purposes of this chapter, we use [5.3]’s

definition of trust: “trust is the belief of one in another, based on their interactions, in the extent

to which the future action to be performed by the latter will lead to an expected outcome.”

By examining this definition, we can see that trust relationships 1) need not be

mutual, and 2) when one agent trusts another, it doesn’t necessarily imply anything else

about that relationship. For example, on Twitter if A follows B, it is an explicit expression of

A trusting in B within the context of Twitter; A trusts that B will have interesting,

entertaining, or otherwise worthwhile things to say. B need not follow A back in order for A

to trust in B; in many cases it’s quite likely that B isn’t even aware of the existence of A.

Similarly, even if A follows and thereby trusts (within the context of Twitter) B, it doesn’t

necessarily mean that they are friends, or even know each other.

170

Another important property of trust that most trust metrics make use of is

transitivity of trust. This concept tells us that trust, to a certain extent, can be transmitted

from one node to another even when those nodes are not direct neighbors, by virtue of

their shared trusted connections. This transmission is not perfect and it has a limited

distance (i.e., trust diminishes the farther one moves away from the original source of the

trust), but it has nonetheless been found to be a useful concept for estimating local and

global trust.

Global trust scores consider overall trust levels in a network, typically registering

and representing these trust values in the form of a trust matrix. Global trust measures can

be useful for authorities managing complex networks of interconnected nodes, but may be

less useful for an individual node wanting to know whose recommendation they should

trust. A well-known example of a global trust metric is EigenTrust, originally designed for

use in peer-to-peer (P2P) file sharing systems [5.4].

Local trust scores provide estimates of trust from the perspective of a given node

with respect to other nodes in the network. In this case, the agent is less concerned with

performance of the overall network but rather how that particular node can benefit from

knowing their own trust values with respect to their neighbors (or their neighbors’

neighbors). An example of a local trust metric is SUNNY, which can be used to provide

trust-based recommendations for an individual user in a network [5.5].

Two of the most frequent applications of trust metrics have been seen in

recommender systems and reputation systems (refer back to Chapter III for additional

171

detail). To be sure, these are far from the only applications of trust metrics but they are the

ones that have received the most attention and research. Recommender systems provide

suggestions to users for other products they may enjoy, other people they should connect

with, other movies they should watch, and so on. One of the more popular techniques in

recommender systems is collaborative filtering (CF). CF tends to work quite well when there

is rich data, but in cases where data is sparse relying on trust metrics can prove to be a

useful alternative.

Reputation systems provide a score keeping mechanism for contributors to online

communities to publicly display the value they provide to the wider community. Examples

include reviewers of restaurants on Yelp, reviewers of products on eBay or Amazon, and

answerers of questions on Epinions or Quora.

Related Work

Many researchers have investigated issues related to spread of misinformation and

echo chambers in OSNs. These include [5.6], [5.7], [5.8], [5.9] and [5.10] and have

investigated these issues in different platforms (Facebook, Twitter, etc.) and using different

methods (analytics, AI/ML, etc.). Much work has also been conducted to automatically

identify online bots, who frequently spread or amplify misinformation online (though they

are not the only sources) [5.11] [5.12] [5.13] [5.14]. Related to characterizing trust in online

networks, [5.15] provide a comprehensive treatment of online networks epinions.com and

Ciao to understand the structure, topology, and dynamics of trust within these networks.

[5.16] examines trust in online networks and find evidence for the existence of small

172

worldness in these networks. [5.17] examines trust on Twitter and propose a new method

for estimating trust on Twitter, then ranking users based on their trust levels. To the best of

our knowledge, no other researches have yet examined the intersection of trust and

misinformation online.

Research Questions and Datasets

In this chapter we don’t seek to identify misinformation online; we seek to

understand how and if trust influences its presence and spread, and what the topology of

networks in which misinformation spreads look like.

This paper proposes three research questions as early explorations into the nature

of trust and misinformation in an OSN, specifically in Twitter:

RQ5-1: What is the topology and structure of an online misinformation trust network?

How is it similar to, and how does it differ from a regular information trust network?

RQ5-2: Does trust lead to the network structures that we see in an online misinformation

network, or do misinformation networks lead to the types of trust relationships that we

observe?

RQ5-3: How do the structures of misinformation trust networks influence their behavior?

173

To answer these questions, we make use of a labeled COVID-19 misinformation

tweets dataset from [5.18]. The authors gathered data from Twitter between 17 January

2020 and 15 May 2020, focusing on tweets that referenced 5G and the coronavirus

pandemic. The authors refer to any public message on Twitter – which encapsulates

tweets, retweets, replies, and quotes – as statuses. The authors collected more than

800,000 statuses related to COVID-19 during the aforementioned time period, then

selected 10,000 of them at random to be manually classified.

Status was classified into three distinct categories. The first category was tweets that

dealt with conspiracy theories conflating 5G and the coronavirus (i.e., claims that 5G

networks were responsible for causing COVID-19). The authors selected this (and other

COVID-related conspiracy statuses) because there was more scientific agreement about

their falsity than there is for political tweets, for example. The second category was of

tweets that dealt with conspiracy theories generally related to COVID-19, but not

specifically focused on 5G (e.g., the virus wasn’t real, or it was intentionally developed and

released, etc.). The third and final category of tweets were non-conspiracy tweets related to

COVID-19. For this paper, we make use only of the 5G COVID conspiracy tweets and the

non-conspiracy tweets, as we reason that the specific use of one particular conspiracy

theory will help to bring the results of our analysis into greater focus.

For each of these categories, the authors constructed subgraphs consisting of an

edge list, a nodes list, and a subgraph plot. Each subgraph represents the structure of a

status (tweet), not a user; that is, each subgraph traces the spread of a specific status

174

among specific users. The edge list for each subgraph represents follower relationships

among users represented within that particular status, i.e. if Alice originates a status stating

“Does 5G increase your likelihood of getting COVID?” and Bob comments favorably on that

status, Bob and Alice share a directed edge with Alice as the sink. If Alice replies favorably

to Bob’s favorable comment, Alice and Bob share a directed edge with Bob as the sink. And,

if Charlie retweets Bob’s comment, Charlie and Bob share a directed edge with Bob as the

sink. Figure 29 gives a graphical illustration of this construction. Additionally, in many of the

subgraphs there are multiple components which may not be connected. The interpretation

of this in the context of this dataset is that users may access information through other

non-Twitter sources. For example, a user may be on Twitter, then leave Twitter and browse

an online forum, encounter an item of misinformation, and then return to Twitter where

they then tweet/retweet/comment/reply to it. One additional important note to mention

related to the dataset and its construction is that, because of the how Twitter’s API works,

the authors of the dataset were limited to collecting 100 statuses per tweet; thus, the

network sizes are each limited in the dataset, but in reality some of them may have been

larger (perhaps much larger). Nonetheless, this limitation does not seriously affect our

analysis, as we are less interested in the total number of users reached and more

interested in the structure and dynamics of this reach.

175

Figure 29: Conceptual illustration of the construction of a tweet subgraph. Authors’ own work

In the toy illustration presented in Figure 30, we can begin to see how a larger graph

can be constructed based on the individual subgraphs. In Tweet 2, C is the originator of the

tweet, where it is retweeted by E, then B, then D. This creates a direct path from C → E → B

→ D, but it also creates an indirect path from A → D, since A is connected to C in Tweet 1. In

Tweet 4, we can see a case with two distinct components. In the first component with E and

B, we can see that there are reciprocal edges between the two. This indicates that E

originated a tweet, B retweeted it, and then E subsequently responded to B’s retweet. And,

in the other component in Tweet 4, we can see that A and F are connected, with A

originating the tweet and F retweeting it. In the case of Tweet 4, the same subject is being

discussed, but it was originated independently by E and A. Such cases may represent a

range of possibilities, two of the most likely ones being 1) E and A both independently

learned of the claim of the tweet from elsewhere (a different network within Twitter, or a

176

network outside of twitter like a forum), or 2) that there is in fact a path from E to A, but it is

outside of twitter – for example, E could have texted the claim contained in the tweet to A,

and A then posts it in Twitter.

Figure 30: Conceptual illustration of how tweet subgraphs are interconnected, forming the overall tweet graph

Methods

To answer the research questions, we take a general exploratory approach to

analyzing the structure and behavior of the empirical networks (and in some cases,

analyzing specific nodes of interest, too), and we compare these to the structure and

behavior of representative random graphs. In cases where there is no significant difference

177

between the random graphs and the empirical ones, we conclude that there is unlikely to

be any underlying mechanisms of interest; in cases where there are significant differences

between the empirical graphs and their corresponding random graphs, we explore the

phenomena further and attempt to provide explanations for mechanisms that may

contribute to the phenomena.

We first construct graphs from the misinformation dataset described in the previous

section. We use Python3, and the following Python libraries: Pandas (data handling and

data analysis), NumPy (mathematical and matrix operations), NetworkX (graph modeling

and analysis), and Matplotlib (visualizations).

To facilitate system-level analysis, we join all of the 5G COVID conspiracy subgraphs

into one overall 5G COVID conspiracy graph. We do the same with all of the non-conspiracy

COVID subgraphs, creating one overall non-conspiracy COVID graph.

The networks are modeled as directed, unweighted graphs. Given that each

subgraph represents a specific misinformation tweet, in this case a node represents a user

(not a tweet), and when an edge exists between users it represents transmission of the

tweet in question. Thus, if B retweets or comments on A’s tweet, there is a directed edge

from A to B. If, subsequently, A responds to B’s comment, then a directed edge is also

created from B to A, creating reciprocity between A and B. in this way, a subgraph is

formed for the tweet in question. It should also be noted that within each tweet’s subgraph

there may be multiple unconnected components, as users may independently tweet a

piece of misinformation after discovering from a different (non-Twitter) source. A node

178

(user) may also be present in multiple subgraphs because they interact with multiple

different tweets.

Additionally, for part of our analysis we are interested in which users are present in

both the conspiracy and non-conspiracy networks, and so we concatenate all of the

subgraphs from each category (5G COVID conspiracy, and non-conspiracy COVID) of the

[5.18] dataset into one graph for representing each category, which allows us to see how

different users from each graph interact with one another more generally across different

tweets. This results in the network sizes described in Table 14, which provides a summary

of the characteristics of the two modeled empirical networks. It should be noted that the

number of nodes n and the number of directed edges m from the conspiracy and non-

conspiracy graphs do not sum to the same amount for the “Entire Network” column, and

this is because there are a small number of nodes that are present in both graphs.

Additional discussion of this point is provided later in this chapter.

Table 14: Number of nodes and directed edges for empirical networks analyzed

The trust overlay network

A trust relationship, and by extension a trust graph, is different in subtle but

important ways from a standard graph. A trust relationship doesn’t have to be mutual, like

179

a friendship graph might be. A trustor (also referred to as a source) may trust in a trustee

(also referred to as a sink), without that trust necessarily being reciprocated. By virtue of

the interactions that occurred in our Twitter graphs, we assign a trust relationship to any

interaction between two nodes. When A retweets B’s status, a directed edge from A to B is

drawn, and we infer that to some extent A trusts B (in this context), or he wouldn’t have

retweeted the status. Thus, we construct a trust overlay network as a representation of

trust relationships on top of the original structural network.

Table 15 summarizes the trust overlay network, which is a virtual network modeling

trust on top of the tweet statuses network. We see that in comparison with the tweet

statuses network shown in Table 14, there are clear differences between the nature of

trustors and trustees. In both the conspiracy and the non-conspiracy graphs, there are

fewer trustors than trustees, and in the case of the non-conspiracy graph there are far

fewer trustors than trustees. An implied fact of these figures is that there are some nodes

who are only trustors – they only retweet statues, but other don’t retweet their statuses –

and some nodes who are only trustees – their statuses are retweeted, but they don’t

retweet others’ statuses. The nodes in the 5G COVID conspiracies graph also have a

noticeably higher mean degree than those in the non-conspiracy graph. The interpretation

of this is that the conspiracy nodes are more active and more likely to share or reshare

statuses than the non-conspiracy nodes are. Additionally, there are important differences

between a small subset of nodes that are present in both networks, which we discuss in

the next section.

180

Table 15: Trust overlay network summary

Because of the nature of the dataset used, we don’t have more granular information

about the detailed nature of interactions among users. For example, we don’t know when

an edge is formed between two users if it’s because a tweet was retweeted, if it was

commented on, if it was replied to, etc. – we only know that one of these actions happened.

Additionally, with the dataset we used we don’t have direct access to the content of the

tweets, retweets, comments, etc. (though, in most cases, the tweets are still posted and

could be matched with the records in this dataset). Pairing the graph structural data with

textual analysis of the comments would add another layer of understanding to the

findings.

Thus, we must rely on simple/naïve trust measures. This is precisely the type of

scenario that graph-based trust metrics tend to perform best in, in which we know little

about the characteristics of different nodes but we have fairly detailed information about

the structure of the network. For this reason, we use a method similar to that described in

[5.15], which focuses on simple trust measures based on various centralities; these

measures only analyze direct trust between nodes that are directly connected.

181

Defining metrics used: hubs, authority, PageRank, eigenvector centrality

To analyze our networks, we apply several different typical network analysis

measures to them. In this section, we briefly discuss these metrics, how they are calculated,

and what each is useful for.

Centrality measures

Centrality is an important concept in the study of networks, and there are many

different centrality metrics that have been proposed by scholars. Regardless of the type of

centrality being considered, centrality metrics generally seek to quantitatively understand

the prominence of a given node based on its connectivity to surrounding nodes and to the

broader network. Different centrality metrics are sensitive to different aspects of a graph,

and thus require interpretation. In this chapter, we utilize two centrality metrics:

eigenvector centrality, and PageRank. We select these two specifically because of the

findings from [5.15], wherein the authors find that centrality measures PageRank and

eigenvector centrality are most appropriate for application to computing trust metrics. This

is because the number of trustors of a node isn’t assured to be a reliable measure of trust

in that node, and thus measures like degree centrality – which are directly reliant upon the

in-degree or out-degree of a node – will suffer from this same shortcoming. The authors of

[5.15] find that information in a trust network flows in simple paths (such as a direct path

between a pair of nodes) and non-simple paths (such as triangles). For this reason, they

conclude that measures like eigenvector centrality and PageRank can be expected to give

182

the most reliable measures of trust in a complex network, since trust can flow in simple

paths and non-simple paths in these types of networks.

Eigenvector centrality considers the centrality of a node with respect to the

centralities of its neighbor nodes. It tends to be a useful and robust centrality measure for

many different types of networks because a node can achieve a high importance through

having many connections, or by being connected to other important nodes – or both. The

eigenvector centrality of a given node is calculated as in Equation 3 [5.19], where xi is the

node in question, Aij is an element in an adjacency matrix, k1 is the largest of the

eigenvalues of A, and xj are xi’s neighbors:

xi = ki
-1 Σ Aijxj

Equation 3: Eigenvector centrality of a given node, i

The PageRank algorithm was used as the initial algorithm for the Google search

engine. Although PageRank was first proposed for ranking importance of web pages,

PageRank returns a ranked listing of nodes in a network, and as such it has been applied

broadly to many other domains. PageRank makes use of the same centrality feedback

mechanism in which nodes with higher prestige provide more prestige when linking to

other nodes [5.19], with an important difference being that it relies on a random walk

strategy which eigenvector centrality does not.

Like PageRank, the HITS algorithm (hyperlink-induced topic search) was originally

designed for ranking Web pages, but it has since been adapted to many other uses too

183

[5.20]. HITS utilizes two important concepts, Hubs and Authorities. Hubs are nodes in a

network who serve in some sense as clearinghouses, connecting many different nodes or

resources, but which on their own aren’t authoritative. Authorities, on the other hand, are

linked to by many hubs. Said another way, hubs receive high scores for the values of its

links, while authorities receive high scores for the value of the node itself (its content in the

case of the Web).

Geodesic paths (path lengths)

Geodesic paths (also referred to as a shortest path) give the shortest possible

distance (measured in number of edges traversed) between two nodes in a graph, given a

set of paths between the nodes. Given an adjacency matrix A, the shortest distance

between two nodes i and j is given by finding the smallest value of r in the equation below.

[Ar]ij > 0

Equation 4: Geodesic distance/shortest distance

Reciprocity

Although reciprocity is not required for a trust relationship to be present, measuring

reciprocity in trust networks give us a useful additional data point, and an indication as to

the level of trust present in the network. In its simplest form, reciprocity is observed when a

pair of nodes in a directed network both link to each other, as in the figure. In a trust

network, when reciprocity exists between a pair of nodes, it implies some level of mutual

trust within a certain context.

184

Figure 31: Graphical illustration of reciprocity among pairs of nodes

Overall reciprocity in a graph can be calculated by simply identifying the number of edges

in the graph which are reciprocal, and dividing by the total number of edges [5.19].

Equation 5: Equation for calculating reciprocity in a directed network

Assortativity

Degree assortativity measures how likely it is for a node to connect with a node of

another type, and can take any value from -1 to 1 [5.21]. A degree assortativity value of 1

would indicate like nodes connecting only to like nodes, a degree assortativity value of 0

would indicate no pattern to the types of nodes that any given node connects to, and an

assortativity value of -1 would indicate that nodes connect only with nodes different from

themselves.

Equation 6: Calculating assortativity in a network. Adapted from [5.21] Mixing patterns in networks, Newman.

185

Generating random networks

To provide us with a useful null model for comparing the empirical networks to, we

generate a set of random networks based on the empirical networks, using the

configuration model. The configuration model generates a random graph based on a given

degree sequence [5.18], which we take to be the actual degree sequence from the

empirical networks. In this type of configuration model, the degree of each node is fixed,

which leads to the direct result that the number of edges in the network is also fixed. We

randomly generate 100 random networks using the configuration model for the directed

5G COVID conspiracies graph, and the non-conspiracies COVID graph. The results of the

100 random networks are averaged when compared against the empirical networks.

Where appropriate, comparisons of the empirical networks with the random networks are

provided in the following sections.

Results and Discussion

In this section, we present the results of our analyses, and interpret their meaning.

Key findings

We find that eigenvector centrality is a useful and simple estimate of direct trust for

both online misinformation networks and online information trust networks,

demonstrating lower time runtime than other more complex trust metrics.

We find that in misinformation trust networks the sources of (mis)information enjoy

higher trust, while in the non misinformation network the consumers of information are the

ones who enjoy relatively higher trust. Using eigenvector centrality as a measure of direct

186

trust, when considering this metric from a global level we find that the misinformation trust

network has an order of magnitude (approx. 10x) more trust than the non misinformation

network. We hypothesize that this is one of the mechanisms that causes misinformation to

be more prevalent in these networks, but also suspect that it is an iterative loop where the

sharing of misinformation also causes trust to increase.

We find that a strong influence on the trust levels in the networks – and by

extension the likelihood that misinformation will spread – comes from a relatively small

number of nodes who can be classified as brokers (discussed in greater detail below). The

brokers make up less than 4% of the total network analyzed, yet they represent a

magnitude or order more of the transmission of information and misinformation in the

network.

With these same brokers, we find that in the context of misinformation trust

networks brokers may be less skeptical of claims from others and more likely to trust their

peers, compared to the general population. Based on our analysis, we find that in online

misinformation trust networks broker nodes are more trusting and more trusted, helping

to reinforce misinformation beliefs within a community and increasing the likelihood that

misinformation will spread to other groups.

We find evidence for small worldness in the online misinformation trust network. To

the best of our knowledge, this is the first publication that specifically identifies evidence

for small worldness when considering the intersection of trust and misinformation online.

187

That is, small worldness in a trust network in an online context appears to either influence

or be influenced by – or both – the ease with which misinformation spreads.

We find that misinformation nodes are more active and more likely to share or

reshare statuses than the non-misinformation nodes are.

We find that there are many smaller communities that share similar ideas but which

aren’t directly connected, indicating that transitive trust has real-world limits on how far it

can be propagated and that this propagation distance should be directly related to the

network’s structure.

We find that in misinformation trust networks the component sizes are smaller than

in information networks, allowing trust to more easily form. These smaller component

sizes may lead to more frequent and deeper contact among nodes than would be observed

in larger components.

We find that misinformation nodes demonstrate mildly positive assortative mixing.

In positive assortative mixing, nodes that are similar to one another by some measure tend

to connect mostly with other similar nodes (“birds of a feather”, or homophily). In negative

assortative mixing, nodes that are different from one another by some measure tend to

connect more with one another (“opposites attract”) [5.21]. In our case, this finding

indicates a preference by the conspiracy-oriented nodes to trust in and seek information

from other similar (conspiracy-oriented) nodes, while the non misinformation nodes

exhibit slightly negative assortative mixing, leading them to seek out more diverse

information sources.

188

We find that there are noticeably shorter mean path lengths in the misinformation

trust network than in the information trust network, enabling misinformation to spread

easier and faster.

Summary statistics

First, we present summary statistics to orient us as to the nature of the networks

that were analyzed. In Table 16, we sketch out the general characteristics of the networks

in terms of number of nodes, number of (directed) edges, the size of the weakly connected

component for each, the number of components, the densities, and the assortativity.

Table 16: Summary Statistics for Directed Network Models

In examining Table 16 we see that the size in terms of both nodes and directed

edges of the non-conspiracy graph is much larger than the 5G COVID conspiracies graph, a

fact that is not surprising given the insular nature of most conspiracy theory networks. As

was mentioned previously, we also see that the sum of nodes and edges from each

network is greater than it is for the entire network, and this is because of the presence of

189

some nodes (3522 of them) in both networks; this will be discussed in greater detail later in

the paper.

The weakly connected component of a directed graph is the size of the connected

component of the underlying undirected graph, ignoring edge directions. If ignoring edge

direction, all nodes within the connected component can be reached by all other nodes. We

can see from Table 16 that for both networks, most nodes are included in the weakly

connected component.

We also see the number of components in each network is relatively large, implying

that although most nodes are part of the weakly connected component, there are

nonetheless a significant number of nodes that are part of their own small independent

components. Keeping in mind that each subgraph of the conspiracy and non-conspiracy

networks represents a specific tweet around which activity occurs, the real world

interpretation of this for these components is that 1) there are a large number of tweets

which, relatively speaking, don’t gain as much traction as more popular ones, and/or 2)

there are many smaller communities that share similar ideas but which aren’t necessarily

directly connected.

Network density is a measure of how many edges are present relative to the total

number of possible edges (which is a function of the total number of nodes in the

network). For directed graphs, network density is given by Equation 7, with the

denominator representing the total possible number of edges; a network with density of 1

190

means that every node is connected to every other node, and a network with density of 0

means that there are no edges present.

Equation 7: Equation for calculating network density

From Table 16, we see that density in both networks is low (close to 0), which is

typical for real-world networks with many possible connections. It is interesting to note,

however, that the density of the 5G COVID conspiracies network is an order of magnitude

higher than that of the non-conspiracy network, a likely indicator of higher levels of trust

within the conspiracy network.

Finally, in Table 16 we also presented the degree assortativity of each network. A

high degree of assortativity indicates homophily, which is frequently observed in social

networks. We see that for both networks the degree assortativity is close to 0; nonetheless,

there is a small preference within the 5G COVID conspiracies network to connect with other

nodes of similar degree, and in the non-conspiracies network we see a slight preference for

nodes to connect with nodes of different degree. One possible interpretation of these

values is that the conspiracy minded nodes have a slight preference for trusting in and

seeking information from other nodes that are similar to them, while the non conspiracy

nodes have a slight preference for trusting nodes that are different from them, seeking out

more diverse information sources.

191

Visualizations

On its own, visualizing a network doesn’t necessarily provide actionable information

at a detailed level. Nonetheless, by visualizing the networks we can start to get a sense for

their structures, giving us clues as to what elements of them – if any – are promising for

further investigation. Below, we provide visualizations of the connected components of the

5G COVID conspiracies network, and the non-conspiracies COVID networks.

In Figure 32, we see the weakly connected component of the empirical non-

conspiracies network next to the empirical 5G COVID conspiracies network. From this

figure, it’s apparent that proportionally there are a small number of nodes (relative to the

total network size) that occupy an important place in terms of connectivity, while in the 5G

COVID conspiracies network we see a relatively higher proportion (relative to the total

network size) of highly-connected nodes.

In Figure 33, we see a visualization of the 5G COVID conspiracies network, with the

nodes sized according to their degree. Through this visualization, we get a clearer idea for

the importance (as measured by connectivity) of different nodes within the network, where

it is clear that the network is composed of a relatively small number of high-degree (highly-

connected and – based on our definitions for purposes of this chapter – highly trusted)

nodes at the core surrounded by many more relatively low-degree nodes on the periphery.

In Figure 34, we see the weakly connected component of the empirical 5G COVID

conspiracy network (panel A) and the random version of the same network (panel B). There

is a clear difference between the two networks, which indicates that there may be

192

mechanisms of interest at play. Since we are interested in exploring the relationship

between trust and the structure and behavior of misinformation networks, we can start to

see that trust is likely to be high in these networks, as they are well-connected and

generally have short path lengths between nodes, particularly in the cores.

193

Figure 32: Weakly connected components of empirical networks analyzed in this chapter, visualized using circular layout; panel (A) depicts the empirical non-

conspiracies network, and panel (B) depicts the empirical 5G COVID conspiracies network

194

Figure 33: 5G COVID conspiracies network, visualized using NetworkX and matplotlib in Python language, with spring layout. In this figure, nodes’ sizes are adjusted
based on their degree, with higher degree being illustrated by a larger node size.

195

Figure 34: 5G COVID conspiracies networks weakly connected components, visualized using NetworkX and matplotlib in Python language, with spring layout. Panel

(A) depicts the empirical network with nodes in gold, and panel (B) depicts the random version of the same network in olive.

196

Who is in both networks?

Before proceeding further with the analysis of the networks’ structure and behavior,

we first examine an important question which we hypothesized would have a large

influence on the same: namely, are there nodes that were present in both the 5G COVID

conspiracies network and the non-conspiracies network and, if so, how did they differ in

their attributes and their behavior from nodes that were found in only one or the other of

the two networks?

What is the interpretation be of a node being found in both networks? Through

reasoning we identify at least three likely possibilities, but we are unable to say with

certainty which of these possibilities (if any) represent the reality because we don’t have

more granular information from the dataset about these nodes. The first possibility is that

a node found in both networks believes in a conspiracy theory, and enters the non-

conspiracy network to try and convince others of their belief. A second possibility is that a

node found in both networks previously did not believe in a conspiracy, but later comes to

believe in one. Finally, a third possibility is that both of these scenarios may happen for

some nodes; the node may first have been a member of the non-conspiracy network, then

gets converted to being a member of the conspiracy network, and then returns to the

conspiracy network to attempt to convert more nodes.

197

Figure 35: Possible scenarios for explaining presence of nodes in both the conspiracies and the non-conspiracies

networks. In panel (A), C is a member of the conspiracies network, and visits the non-conspiracy network to attempt to

convert non-conspiracy nodes. In panel (B), C was originally a non-conspiracy member, but is converted and becomes

a member of the conspiracy network.

We find a striking difference in the connectivity of the nodes that are found in both

networks compared to nodes that are found only in one or the other of the two networks.

From this point forward we refer to the nodes present in both networks as brokers. [5.22]

says that “brokers play an integral role in connecting different communities of actors, moving

knowledge and information.”

198

We find 3522 brokers – nodes that are present in both the 5G COVID conspiracies

network and the non-conspiracies network. In Table 17, we present a summary of the trust

network when considering the presence of brokers.

It's clear from Table 17 that the brokers have significantly higher connectivity than

their non-broker peers. When comparing broker to non-broker nodes, we see a nearly

threefold increase in degree connectivity (2.6x for the 5G COVID conspiracies network and

nearly 2.9x for the non-conspiracies network). Additionally, for each subgraph we consider

the ratio of trustors (sources of trust) to trustees (sinks or receivers of trust). Again, we find

a significantly higher ratio of trustors : trustees when considering only brokers. A real-world

interpretation may be that brokers in the context of misinformation trust networks (not

generally) are less critical of claims from others and more likely to trust their peers,

whether those peers are brokers or non-brokers. The trustor : trustee ratio is significantly

lower in the non-conspiracy graph with brokers removed, close to a 1:2 ratio of trustors to

trustees.

Table 17: Trust network with brokers

199

Brokers

To better understand the nature of the brokers in this dataset, we consider rankings

of broker nodes in the 5G COVID conspiracies network. In Figure 36, we see the ranking of

the top 100 broker nodes compared with the ranking of the top 100 non-broker nodes

from the 5G COVID conspiracies network based on in-degree (trustors). In Figure 37 we see

the same rankings based on out-degree (trustees). For both trustors and trustees, we see a

clear and consistent difference between the two groups: the broker nodes demonstrate

significantly higher in- and out-degree than the non-broker nodes; the trend holds for the

rest of the network beyond the top 100.

200

Figure 36: Ranking by in-degree of top 100 broker nodes and non-broker nodes in the 5G conspiracies network. Broker nodes are depicted in gold, and non-broker

nodes are depicted in olive. Semilog scale.

201

Figure 37: Ranking by out-degree of top 100 broker nodes and non-broker nodes in the 5G conspiracies network. Broker nodes are depicted in gold, and non-

broker nodes are depicted in olive. Semilog scale.

202

In Figure 38 we see a similar trend when considering the eigenvector centralities for the top

100 broker nodes and the top 100 non-broker nodes. With the exception of just a handful

of nodes, the broker nodes once again have significantly higher eigenvector centrality

values than their non-broker counterparts.

We interpret this as additional evidence that broker nodes in the context of a

misinformation trust network are both more trusting and more trusted, leading to stronger

within-group reinforcement of misinformation beliefs, and an increased likelihood of

spread of misinformation beliefs to other groups.

203

Figure 38: Ranking by eigenvector centrality of top 100 broker nodes and non-broker nodes in the 5G conspiracies network. Broker nodes are depicted in gold, and

non-broker nodes are depicted in olive. Semilog scale.

204

Broker nodes generally occupy a space on a bridge. In networks, bridges are edges

that connect two otherwise unconnected components of the network; if the bridge (edge)

were to be removed, the two components in question would no longer be connected. As

such, bridges are another useful measure for understanding the criticality of a node in the

overall performance of a network, even if that node would not otherwise be considered

important based on connectivity measures. Figure 39 provides a visual illustration of a

simple bridge, where m1 in the figure represents an edge which is also a bridge from A to

B; if the edge m1 were to be removed the two components of the network would no longer

be connected.

Figure 39: Illustration of a bridge in an example network

Components

A component in a network is a group of connected nodes that together form their

own subgraph within the broader graph. As was presented previously in Table 16, we find

276, 1634, and 1774 components in the 5G COVID conspiracies network, the non-

conspiracies network, and the full network, respectively. We analyze the rankings of the

components by size, comparing the 5G COVID conspiracies network to the non-

conspiracies network. Figure 40 presents the results of this analysis for the 100 largest

components in each network.

205

We see a clear difference between the two networks in component size, with the 5G

COVID conspiracies component sizes being generally smaller than the comparable ones

from the non-conspiracies network.

An interpretation of this related to trust may be that trust can more readily form

and strengthen in the 5G COVID conspiracies network because the component sizes are

comparatively smaller. The smaller component sizes could lead to more frequent and

deeper contact among nodes than would happen in larger components.

Degree distribution

To gain a better understanding of the structure of the networks being analyzed, we

construct several plots depicting different views of degree distributions of the 5G COVID

conspiracies network and the non-conspiracies network.

First, as was noted previously, there is a significant difference in mean degree

between the two networks; the node with highest outdegree in the non conspiracies

network is less than twice that of the node with highest outdegree in the conspiracies

network, despite the fact that the non conspiracies network is several times larger than the

conspiracies network. This indicates a relatively higher degree of activity, engagement, and

connectivity in the conspiracies trust network than in the non conspiracies trust network.

To gain an understanding of nodes’ trust, we use the same method as in [5.15]

where prestige is used as a proxy for trust, with prestige being measured by the centrality

values of nodes. In Figures 41 and 42 we present normalized plots of the out-degree

against hubs, authority, PageRank, and eigenvector centrality for the 5G COVID

206

conspiracies network and the non-conspiracies network, respectively. With the way we’ve

constructed our graphs, outdegree represents a trust relationship with the source of the

outdegree being the sink of the trust (the trustee). In examining the figures, we notice

several interesting points.

First, when comparing the conspiracies network (Figure 41) with the non

conspiracies network (Figure 42), we notice a marked difference in the distribution of

centrality measures against outdegree (trustees). In the conspiracies network, nodes with

high outdegree (sources of information) generally have relatively high eigenvector

centrality values, too. In Table 18, we see a correlation coefficient between outdegree and

eigenvector centrality of 0.6836. On the other hand, in the non conspiracies network nodes

with high outdegree (trustees) generally have low eigenvector centrality values, and nodes

with high eigenvector centrality values generally have low outdegree. Referring to Table 18,

we see a correlation coefficient of 0.0178 – barely different from zero. However, from Table

18 we also see a significantly higher correlation between indegree (trustor status) and

eigenvector centrality for the non-conspiracies network (0.2688). The real world

interpretation for this phenomenon is that in the conspiracies network, sources of

(conspiracy) information – who have higher outdegree values than do their followers –

enjoy higher trust, while in the non-conspiracies network the consumers of information are

the ones who enjoy relatively higher trust. Additionally, when considering the mean

eigenvector centrality values in both networks, we observe that the trust values (as

measured by eigenvector centrality) are an order of magnitude higher in the conspiracies

207

network than the non conspiracies network. We interpret this as meaning that the overall

levels of trust in the misinformation trust network are high than in the non conspiracies

network, and we hypothesize that these higher levels of trust are a significant contributor

to the ability of the misinformation to spread and reinforce beliefs.

Second, for the conspiracies network we observe nonlinear relationships for all of

the measures except for outdegree v. PageRank, which is roughly linear. In the non-

conspiracies network, all of the measures appear nonlinear.

Next, for both networks we see very similar distributions in outdegree v. hub,

outdegree v. authority, and outdegree v. eigenvector centrality, but a noticeable difference

in outdegree v. PageRank. This is consistent with [5.15] findings that examined trust in the

epinions.com and Ciao online networks. We confirm [5.15]’s findings and adopt eigenvector

centrality as the most straightforward measure of direct trust for these types of networks.

Finally, interestingly in the conspiracies network outdegree v. PageRank and

outdegree v. eigenvector centrality plots are noticeably different from one another, but in

the non-conspiracies network these two measures appear quite similar. We propose that

this differential may be useful as a test for identifying networks that may be experiencing

greater spread of misinformation. We also propose that eigenvector centrality functions as

a more useful direct trust measure for misinformation trust networks.

208

Figure 40: Top 100 components by size for the empirical networks; the non-conspiracies network is depicted in green, and the 5G COVID conspiracies network is

depicted in gold

209

Figure 41: Normalized plots of out-degree v. (clockwise from top left) hub, authority, eigenvector centrality, and PageRank for the 5G COVID conspiracies network

210

Figure 42: Normalized plots of out-degree v. (clockwise from top left) hub, authority, eigenvector centrality, and PageRank for the non-conspiracies network

211

In Table 18, we present correlations among the different measures studied for both

networks. One interesting difference between the two networks is that there is a strong

correlation (0.8410) between indegree and outdegree for the conspiracies network, but

very little correlation (0.0221) between the same measures for the non conspiracies

network. This indicates that in the conspiracies network there is a much higher degree of

reciprocity (which we will discuss specifically in a later section) – a node is almost as likely to

be a trustor as it is to be a trustee – while in the non conspiracies network there is little

reciprocity. In the conspiracies network, we see a strong relationship between outdegree

and eigenvector centrality, while in the non conspiracies network the strongest relationship

is between PageRank and indegree.

Table 18: Correlations of network structural measures in conspiracies and non-conspiracies network

212

In Figures 43 and 44 we plot trustors v. trustees for the two networks. For each

figure, the left panel is a zoomed in view of the lower end of the distribution where data

points are denser, and the right panel is the overall distribution. In these figures, we see a

close relationship between indegree and outdegree in the conspiracies network (roughly

speaking, for each in-link there is an out-link) while in the non conspiracies network we

observe that a node is much more likely to have a high indegree than a high outdegree.

Figure 43: In-degree v. out-degree for the non-conspiracies network; panel (A) focuses on degrees below 100 where

data is richer, and (B) illustrates the entire degree distribution

Figure 44: In-degree v. out-degree for the 5G COVID conspiracies network; panel (A) focuses on degrees below 100

where data is richer, and (B) illustrates the entire degree distribution

213

Figure 45: Out-degree ranking plot for 5G COVID conspiracies network (left, in gold) and non-conspiracies network

(right, in green)

Figure 46: Degree distributions plotted with log-log scale; on the left (in gold) the empirical 5G conspiracies network is

depicted, and on the right (in olive) the random 5G conspiracies network is depicted

In Figure 47, we see the distribution of node degree for the 5G COVID conspiracies

network and the non conspiracies network, plotted with a log-log scale. We observe stark

differences between these distributions and a Poisson distribution. Both networks exhibit

the characteristic attributes of a power law distribution, wherein there are a small number

of very high degree nodes, together with a very large number of relatively low degree

214

nodes, leading to a long tail in the distribution. [5.23] take this – together with a high

clustering coefficient and small worldness – as an indicator of a complex network.

Figure 47: Degree distributions plotted with log-log scale; on the left (in gold) the 5G conspiracies network is depicted,

and on the right (in green) the non-conspiracies network is depicted

215

Figure 48: Ranking of indegree of top 5000 nodes for empirical networks

216

Figure 49: Ranking of outdegree of top 5000 nodes for empirical networks

217

Reciprocity

We compute reciprocity for the networks analyzed in this chapter, and find that the

reciprocity in the 5G COVID conspiracies network is noticeably higher than that of the non-

conspiracies network. This finding is separate from the networks’ density and various

centrality measures, discussed previously, and is another indication of higher trust among

nodes in the misinformation trust network than in the information trust network. The

interpretation of this is that total trust levels (as measured by reciprocity) are higher in

misinformation trust networks than information trust networks.

Table 19: Reciprocity in the 5G COVID conspiracies graph and the non-conspiraices graph

Mean shortest paths

Because of the size of the networks being analyzed, it is computationally prohibitive

to calculate all shortest paths. The time complexity of calculating all shortest paths in a

graph is on the order of O(n3), where n equals the number of nodes in the graph. For large

graphs such as the ones analyzed in this work (>90,000 nodes) we would need to calculate

more than 730 trillion possible paths. Instead, we randomly sample 10,000 pairs of nodes

and compute the shortest paths between these 10,000 pairs. Additionally, to find path

lengths there must exist a path between a pair of nodes, so we consider only the

218

connected component of our graphs to ensure that there always exists a path between the

pair of randomly selected nodes.

In Table 20 we present the mean shortest path lengths for the empirical and

random graphs for the 5G COVID conspiracies network, and the empirical and random

graphs for the non conspiracy network. One of the first things we notice is relatively short

path lengths in both networks. Next, we notice the marked difference in shortest path

lengths between the empirical and the random graphs, indicating that path length for both

information trust networks and misinformation trust networks are likely to be an important

driving factor of their behavior. Finally, we also make note of the shorter path lengths in

the conspiracies network than in the non conspiracies network – more than one full link

shorter, on average – with the interpretation being that all other things equal it is easier for

misinformation to spread in the conspiracies network than in the non conspiracies

network.

Table 20: Mean shortest path lengths for empirical and random graphs of the 5G COVID conspiracies network and the

non-conspiracies network, respectively

219

Centrality measures

PageRank

We analyze the networks (empirical and random) using PageRank. Figures 50 and 51

both show a similar power law-like distribution for PageRank, with a small number of

nodes having relatively high PageRank values, and a large number of nodes having

relatively low PageRank values. Additionally, we see that there is close agreement between

the empirical and the random graphs for both the 5G conspiracies network and the non-

conspiracies network. Because of the similarities in the empirical and the random networks

for PageRank, we conclude that PageRank is a less useful direct trust measure for

understanding the nature of trust in a misinformation trust network.

In Figure 52, we compare PageRank values for both empirical networks. We observe

the interesting result that PageRank values are noticeably higher for the 5G COVID

conspiracy nodes compared to the non-conspiracy nodes at almost all parts of the

distribution curve. Within the context of how we have defined trust in this chapter, we

interpret this to mean there are higher levels of trust in the misinformation trust network

than in the standard information trust network.

Eigenvector Centrality

Figures 53 and 54 present the eigenvector centrality rankings for the empirical and

random versions of the 5G COVID conspiracies and the non-conspiracy networks,

respectively. Unlike PageRank, we find a marked difference between measurements of

eigenvector centrality for our empirical networks compared to the random networks. We

220

take this as another indication that eigenvector centrality serves as a useful measure of

direct trust for these types of networks.

In Figure 55, we present a comparison of the two empirical networks’ eigenvector

centrality rankings to one another. In both networks, we see a similar maximum

eigenvector centrality value (maximum value of 0.186 in the 5G COVID conspiracies

network, and 0.197 in the non-conspiracies network). As discussed previously, we find that

the trust in the misinformation network (as measured by eigenvector centrality) is an order

of magnitude higher than that of the information (non conspiracies) network, enabling

faster spreading of misinformation and a higher likelihood of these beliefs taking root.

221

Figure 50: Ranking of PageRank for emprical and random versions of 5G COVID conspiracies network

222

Figure 51: Rankings of PageRank for empirical and random versions of non conspiraices network. Semilog scale.

223

Figure 52: Rankings of PageRank for empirical 5G COVID conspiriaces and non conspriacies networks. Semilog scale.

224

Figure 53: Rankings of eigenvector centralities in empirical and random versions of the 5G COVID conspiracies network. Semilog scale.

225

Figure 54: Rankings of eigenvector centralities in empirical and random versions of the non conspiracies network. Semilog scale.

226

Figure 55: Rankings of eigenvector centralities for empirical 5G COVID conspiracies and non-conspiraices networks. Semilog scale.

227

Small worldness

Small world networks are characterized by short mean path lengths (compared to

the regular network), high clustering coefficient (compared to the random network), and

degree distributions that are significantly different from the Poisson distribution.

As described in earlier sections, we find a power law distribution of node degrees in

both the misinformation trust network and the information trust network. Networks that

exhibit the power law distribution are also referred to as scale free networks [5.24]. Scale

free networks exhibit interesting characteristics: they are robust to random failures even

when the percentage of failed nodes or links is high, yet they are fragile to intentional

attack wherein if the right nodes (highly connected nodes) are targeted, the network can be

severed by removing only a small number of nodes or links. An implication of this concept

for a misinformation trust network is that the diffusion of conspiracy theories or other

misinformation could be curtailed relatively easily by deplatforming the most trusted

sources of misinformation.

Consistent with findings that are typical for real world networks from other

researchers, we find evidence for small worldness and scale freeness in both the

misinformation trust network and the information trust network.

Conclusions and Future Work

In this chapter we have presented an exhaustive examination of the structure and

topology of online misinformation trust networks, comparing them to non misinformation

online trust networks, and to random equivalent networks. Our analysis presents evidence

228

in support of the existence of small worldness in online misinformation trust networks.

This finding has important implications for how to measure trust in these types of

networks, and for designing trust management systems that rely on the transitivity

property of trust.

We confirm [5.15]’s findings that eigenvector centrality serves as a simple yet useful

and robust metric for measuring direct trust in online settings.

We find a relationship between higher levels of trust in an online network and the

ability of misinformation to more readily spread, but we are unable to draw a conclusion

from this as to causality and, if there is a causal relationship, what the direction of the

causality is. Further investigation will be required to be able to answer these questions.

Although this work utilizes a dataset that specifically focused on COVID-19

misinformation on a specific platform (Twitter), we believe the findings are applicable and

extensible to online misinformation generally. Future research should examine

misinformation trust networks in other online settings, such as other social media

platforms, online messaging platforms (like WhatsApp), in the comments sections of news

websites, or simply in other domains on Twitter. In this study, we did not examine temporal

effects of these misinformation trust networks. Future research will explore the temporal

aspect of misinformation and trust. For example, it will be insightful to consider if and how

different levels of trust affect the speed of spread of misinformation, or to investigate if

there is a relationship between differing trust levels and the speed with which links form

229

(i.e., if the amount of time that lapses between engagements with a given tweet affects the

ease with which trust relationships form).

Future work should also consider models for epidemic spreading on networks,

which include temporal aspects as referenced in the previous paragraph. For example, a

traditional SIS model could be adapted and prove useful for modeling epidemic spread of

misinformation in online networks. In the classical SIS model, there are two compartments

of the population: the “S” compartment represents nodes in the network that are

susceptible to the contagion in question, but not currently infected, and the “I”

compartment representing nodes that are currently infected with the contagion in

question. In the SIS model, nodes can alternate between being susceptible (S) and infected

(I), and back to susceptible. The SIS model takes as inputs the number of nodes (N), the

number of initially infected nodes (I), the probability of contact with an infected node (β)

and the probability of recovery (γ, i.e., transitioning from I back to S) [5.19]. We posit that

beta can be estimated using the proportion of misinformation nodes in the overall

network, while gamma can be approximated using the rate of contact of broker nodes

(discussed in depth in an earlier section of this chapter) with the rest of the population. We

also posit that the level of reciprocity in a misinformation trust network should have a

direct effect on the recovery rate, gamma. In [5.25] we see evidence supporting the idea

that higher reciprocity leads to echo chambers. We hypothesize that within the context of

this chapter higher levels of trust should lead to a higher beta (infection rate) because

nodes are more likely to come into contact with the infection (in this case, an artifact of

230

misinformation – a tweet), while simultaneously causing a lower gamma (recovery rate)

because nodes, once infected, are more likely to remain connected with similar nodes (the

echo chamber effect).

Finally, future research should also explore generative network models for

reproducing online misinformation networks. If existing generative network models are

unable to adequately reproduce the generative process for online misinformation

networks, efforts should be made to develop a generative model that mimics the process

for generation of online misinformation trust networks. Doing so will provide scholars and

practitioners with additional insights into how these networks grow and evolve, and more

importantly they may be useful in helping to slow the spread of online misinformation

when paired with other methods like AI/ML models that identify misinformation.

231

VI. The relationship between trust and security in open source

development

Introduction

To improve our understanding of the relationship between trust and security in

open source development projects online, we turn to GitHub. GitHub is an online service

for hosting software development repositories, with nearly 70 million users and tens of

millions of code repositories [6.1]. GitHub hosts both private repositories (used internally

for organizations who don’t want to open source their software) and public repositories

(used for open source software development and control). In an open source project, if a

developer wants to propose a change (via a commit) to existing software code, they can

initiate this process by creating a pull request. Different projects have different

requirements, rules, or expectations for how to submit a pull request to their project, but in

general pull requests describe the change being proposed and give their reasoning for the

proposed change. From here, a conversation (in the form of a threaded discussion, as is

typical in many online forums) can ensue between the developer who opened the pull

request and the developers who administer the project in question and have authority to

merge commits. Typically, these conversations are a back and forth between the originator

of the pull request and one or more project administrators. If the originator of the pull

request presents a convincing argument for why the code base should change, the

232

administrators of the project will approve the commit. With this process in mind, we can

extract data from GitHub that are useful for modeling the trust networks of these online

open source software development projects. Later in this chapter, we detail how we

construct a dataset and graphs from these online interactions in GitHub’s pull request

system.

Background

Free and open-source software (FOSS) projects provide critical technological

infrastructure for organizations of all sizes, in countless industries, around the world.

Examples of widely used FOSS include the Apache HTTP server, the nginx server, the

Python programming language, the Linux kernel, and all the related Linux operating

systems. A primary working method for producing and distributing FOSS is through

creation, modification, and tracking of documents. Typically, software code begins its life as

a document – text, in the form of a high-level programming language that human

engineers can readily understand, share, modify and save in a document. Additionally,

FOSS projects often feature not just a single document of code, but rather multiple code

documents that reference one another – for example, a “main.py” and a “config.txt”

document – in addition to ancillary documents such as licensing, readme, admin, logs, and

others. Thus, FOSS projects can be modeled as sociotechnical systems or networks of

developers and documents, organizing and giving structure to the work of FOSS projects.

Developers and contributors to FOSS projects are the primary intended users of the

resulting document collections. Nonetheless, because these documents are public and

233

easily accessible, they also open themselves to scrutiny and attempted attacks by attackers

(blackhat hackers). Blackhat hackers seek to identify and exploit vulnerabilities in software

(or hardware). This software may be proprietary, or it may be open source. Attackers’ goals

are varied, ranging from criminal to political to bragging rights. One advantage attackers

have when seeking vulnerabilities in FOSS is they generally have full access to source code,

with full understanding of the structure and logic of the software, and knowledge of how

data flows through and is transformed by the code. A 2021 report by Synopsys found 84%

of FOSS code bases had at least one reported security vulnerability, and the average

number of vulnerabilities was 158 per codebase [6.2]. This issue is compounded by the fact

that FOSS projects typically are not standalone entities, but instead rely on other FOSS

components to complete tasks; according to the same Synopsys report [6.2], an average

software application today relies on 528 open-source components.

FOSS projects are by their nature highly collaborative. This collaborative creation

and modifying of documents in a public forum allow for data to be collected and analyzed

related to the dynamics of the development project over time. Collaborators, the

documents they produce, and their interactions in any given FOSS project form a graph, or

network. Naturally, these graphs feature varying degrees of formality and complexity,

depending on the specific FOSS project. If we think about these interactions as a graph or

network, we can then apply a variety of network analysis techniques to uncover insights

about their behavior.

234

One such network analysis method that computer scientists have developed for

application in information and communication systems (principally the Internet and the

Web, though there are others) is trust metrics and trust management systems. Trust is a

concept that is difficult to objectively measure, but which nonetheless can be critical for

realizing improved performance of an engineered system. Trust affects the speed, quality,

efficiency, and/or success of transactions between people, among groups of people, from

person to machine, from machine to machine, or any combination of these. Therefore,

having ways to estimate or model different types and levels of trust becomes useful.

Related Work

[6.3] considers how trust affects contributors to open source software projects. The

authors identify two primary types of motivations for open source contributors: intrinsic

motivations and extrinsic motivations. Intrinsic motivations can be enjoyment based or

obligation based. Based on these two broad categories (intrinsic and extrinsic) the authors

propose five types of open source contributors based on their motivations: 1) commercial

service providers (such as Red Hat), which are extrinsically-motivated, 2) software

customizers, who are also extrinsically motivated, 3) reputation investors (people who seek

to become well-known for their contributions), also extrinsically-motivated, 4) Homo Ludens

“just for fun” contributors, who are intrinsically-motivated, and 5) those who are members

of the tribe “helping others”, “giving back”, also intrinsically-motivated. Intrinsically-

motivated contributors are particularly important in the starting phase of a new project,

because they are the ones most likely to expend the time, effort, and attention needed to

235

create something new. The authors state that trust is a critical ingredient in enhancing

cooperation and success of open source development projects, and that trust in this

context tends to be more institutional than personal. Because many open source projects

consist of many different contributors who can enter and exit whenever they wish, the

development of trust in open source projects doesn’t rely as much on repeated personal

interactions as it does in other contexts. The authors posit that trust in open source

software development instead takes the form of swift trust, which is a type of trust

observed in teams that work together for a limited amount of time. Within swift trust, the

authors identify two types: encapsulated interests, and cognitive trust. Encapsulated

interests takes a rational approach, described by “Alice trusts Bob because Alice believes it

is in Bob’s best interest to trust Alice.” Cognitive trust is based on an estimation of the

characteristics of the people that are working together on a project. The authors state that

development and presence of trust is critical in attracting new members because new

members will be concerned about the ability of the group to resolve conflicts suitably.

Because of the nature of open source software development, potential new members can

easily observe the behavior of the group, and thereby make their own estimates of how

much to trust (or not) that group. On the side of the trustor, the authors state that

“extrinsically motivated trust based on encapsulated interests is sufficient”. On the side of

the trustee (the sink of the trust), there needs to be a certain minimum number of

intrinsically-motivated contributors to enable development of swift trust from trustors. The

authors recognize that institutions must be in place to encourage participation of

236

intrinsically-motivated contributors, and ensuring that the contribution costs are low

enough to ensure that even intrinsically-motivated contributors don’t leave.

Researchers have successfully derived valuable insights into the behavior of

complex systems, including information and communication systems, by modeling them as

graphs or networks. A network consists of nodes, which are “participants” in a network, and

edges which are “interactions” among the participants (nodes) of the network. With this as

the foundation for analysis, we can apply analytical techniques to a network to draw

insights about its structure and behavior.

Scholars have developed numerous methods for estimating trust in diverse

information and communication systems, such as online social networks, peer-to-peer

(P2P) file sharing networks, encryption schemas (i.e., PGP), and others. Trust is inherently

an amorphous and subjective concept, and thus it takes on different meanings in different

contexts and is difficult to measure precisely. Nonetheless, as a developed area of

research, trust scholars have proposed and defined several different types of trust. For our

purposes, we take trust to mean the ability of one party to rely on the accuracy and

integrity of another party’s work – namely, the accuracy and integrity of pull requests in an

online collaborative software development environment, GitHub.

Much research has been made into questions of cybersecurity in open source

software projects. Approaches have considered if and how the complexity of code affects

its security, if and how the number of contributors to an open source project affects its

237

security, the application of the software in question, where the software in question is

deployed (i.e., Web-based versus embedded or desktop) [6.4].

Comparatively little work has considered the intersection of trust metrics and online

FOSS projects. [6.5] proposed a system that incorporated a “karma” value of developers on

open source projects which was derived from the developer’s upvotes and activity. [6.6]

present an extensive system that combines machine learning and graph techniques to

estimate trust among developers in GitHub. They first gather data from pull requests on

GitHub and then apply a natural language processing model to the comments contained in

the pull requests to perform sentiment analysis. With the results of the sentiment analysis,

the authors translate positive sentiments to high trust values and negative sentiments to

low (or zero) trust values. They then use these direct trust values (direct trust between a

pair of developers) together with graph based techniques to estimate indirect trust among

developers who have never interacted.

Research Questions

 To gain a clearer understanding of the role played by trust in online open source

development projects, we propose the following research questions, which we investigate

throughout this chapter:

RQ6-1: What is the structure and topology of a trust network in free and open source

software (FOSS) projects?

238

RQ6-2: Does trust lead to the network structures that we see in online FOSS networks, or

do FOSS networks by their nature give rise to the types of trust relationships that we

observe?

RQ6-3: What is the relationship (if any) between the trust network and security incidents

in FOSS projects?

To answer these research questions, we first construct and then utilize a dataset of

interactions in two different FOSS projects hosted on GitHub, both of which are aimed at

Internet security (cryptographic functions and encryption). In the following section, we first

describe our construction of a dataset from GitHub, then describe the analysis methods we

apply to this dataset to improve our understanding of the role of trust in online open

source software development.

Methods and Data

Different from Chapter V where we utilized an existing dataset, for Chapter VI we

collect our own raw data and transform it into a usable dataset. In this section, we describe

our methods for creating the dataset, as well as our methods used to then analyze the

dataset in pursuit of our research questions.

239

Dataset: rationale, data collection and dataset construction

In this section, we describe our methods for creating the dataset, as well as our

methods used to then construct graphs from the dataset and to analyze the dataset via

these graphs.

Rationale

Before collecting any data, we needed to select useful sample projects to be able to

answer our research questions. To do so, we begin our process by reviewing the list of

disclosed CVEs (Common Vulnerability and Exposures, operated by The Mitre Corporation

and the US National Cybersecurity FFRDC) for open source software projects that are

available for public review in GitHub. We begin our exploratory analysis by reviewing the

“MSR 20 Code Vulnerability Dataset” (hereafter referred to as the MSR dataset) from [6.7].

The MSR dataset includes 122,774 CVE entries from 2002 to 2019, each of which includes

21 features. Features included commit ID (in a specific code repository), CWE (common

weakness enumeration) ID, CVE ID, a link to the CVE description Web page, CVSS (common

vulnerability scoring system), the (primary) programming language used in the project,

what the project was, and several other features. While the full MSR dataset includes more

than 100,000 records, the subset of data that represents CVEs associated with a known

FOSS project on GitHub includes 4246 records.

We selected 2015 as our sample year, as it is far enough in the past that new

developments related to CVEs disclosed in that year should be finished, but recent enough

to still be able to draw useful parallels to FOSS projects of today. In 2015, there are 374

240

CVEs represented in the MSR dataset, and of these there were seven that were specifically

associated with OpenSSL, which is a project whose repository is publicly hosted on GitHub.

OpenSSL’s contributors describe it as “a robust, commercial-grade, and full-featured toolkit

for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. It is also a

general-purpose cryptography library” [6.8]. OpenSSL helps to secure billions of Internet

based transactions every day, around the world. Because OpenSSL is an open source

project and is hosted on GitHub, we can observe revisions of documents associated with

the project over time, and interactions among collaborators and documents. Moreover,

because OpenSSL is software that is specifically designed for use on the Internet (as

opposed to embedded software, enterprise software, etc.) – the focus of this dissertation –

we identify it as a good candidate for our analysis.

Figure 56: An example of a pull request on GitHub. This pull request is the first public pull request for the OpenSSL

project, from 2013.

To provide a useful comparison project, we seek a project that is also available for

observation in GitHub, primarily intended for Internet-based use, and has comparable

241

reach or impact to that of OpenSSL. With these criteria in mind, we identify Let’s Encrypt as

our comparison project. Let’s Encrypt is “a free, automated, and open certificate authority”

[6.9] started in 2012 and is today the world’s largest certificate authority. Let’s Encrypt was

later brought under the umbrella of the Internet Security Research Group (ISRG), and is an

official collaborator with the Linux Foundation. In 2015, Let’s Encrypt’s ACME protocol

(which verifies that an actor who claims to control a domain name actually controls that

domain) was submitted to the IETF (Internet Engineering Task Force) for inclusion as a

standard; it was subsequently rolled into an RFC (request for comment) as a proposed IETF

standard. As of the writing of this dissertation, Let’s Encrypt issues more than two million

certificates each day, and more than 290 million active certificates in total [6.10]. Let’s

Encrypt’s code base is, like that of OpenSSL, available publicly on GitHub and thus, we can

observe changes and developer interactions that happen in it. In 2015, there were no

known CVEs associated with the Let’s Encrypt project, though there were subsequent

vulnerabilities discovered. For example, in 2020 a vulnerability was announced which

required Let’s Encrypt to revoke outstanding security certificates generated with the

vulnerable code, leading to millions of certificates being revoked [6.11]. Nonetheless, as

there were no known CVEs associated with Let’s Encrypt in 2015, we confirm it as a useful

comparison project.

Data collection

With our projects selected, we move forward with collecting data associated with

the projects. Frequently in a FOSS project, an author of a pull request (PR) will propose and

242

describe his change, and one or more reviewers will evaluate the proposed change. Often

there will be one or more rounds of discussion between the initiator of the PR and the

reviewer(s). If a PR is accepted, the change is adopted into the codebase with a commit.

Thus, we collected data on collaborators who proposed, reviewed, and accepted changes

to code in these documents, and each time an interaction resulted in a commit to the

codebase, we count this as a trusted transaction, resulting in a trust (sub)graph connecting

all participants in that particular PR. Of note, because of the way we define what

constitutes a satisfactory interaction, there are no “negative” interactions in our case – only

positive or neutral ones.

GitHub provides an archive accessible to the public of all activity associated with

public repositories hosted on the platform, with data provided from more than 20 event

types represented in the data. The data are housed at [6.12] and can, among other

methods, be accessed using Google BigQuery (Google’s cloud data warehouse). We identify

features of interest for our analysis: 1) all pull requests for each project within the analysis

timeframe, 2) all users who interact within each pull request, 3) the originator and the

closer of each pull request, 4) the outcome of the pull request (if the pull request results in

a commit or not), which we will use to infer trust resulting from each interaction, and 5) the

documents that were modified in each successful pull request (for example,

“challenges.py”), and 6) only considering closed pull requests (most of the pull requests

created in 2015 for both projects have been closed, but in both cases there are a smaller

243

number of pull requests that are still open, and since we rely on the outcome of the pull

request to infer trust, we can’t do so from open pull requests).

Dataset construction

From the raw data we next aim to construct a dataset that will be usable for

network modeling and analysis purposes. We semi-automatically sort and organize the raw

data to put it in the order and structure that will result in a meaningful dataset for our

purposes using a combination of Python code and manual methods.

We first order the data in descending order of chronological occurrence (i.e., when

was a comment posted), and sort the ordered data by pull request. This results in groups

of pull requests in which comments and actions that take place within a given pull request

are sorted chronologically. Next, both to simplify analysis and also to provide a basic level

of privacy safeguard for the GitHub users and documents represented in our dataset, we

generate random numbers and assign these numbers to a user_id field to developers, and

a doc_id field to documents. Figure 57 provides a sample of what the formatted dataset

looks like before transforming it into a format that is more amenable to graph analysis. In

Figure 57, each row represents a linked list [6.13]. In our case, these linked lists are chains

of interactions that took place within a given pull request, with the leftmost node being the

originator of the pull request, and the rightmost node being the closer of the pull request.

Figure 57: Sample linked list constructed from a thread of comments in one pull request

244

Inference of trust from dataset

Before continuing our dataset formatting work, we need to ensure we capture

approximations of trust in the network. To a limited extent, we can make the assumption

that comments (and therefore links/edges) between developers represented some very

basic levels of trust. However, beyond this simple measure we reason that if a pull request

results in a successful commit (i.e., the changes being proposed by the originator of the

pull request are accepted by the project administrators) we can infer there is some level of

trust among the developers represented in the comments thread of that pull request.

Conversely, in pull requests where the proposed commit is rejected, we assume a lack of

trust among the developers represented in that thread; importantly, with the data that we

consider, lack of trust is not necessarily the same as mistrust or distrust [6.14], [6.15]. Thus,

when a pull request results in a successful commit, we assign a trust value of “+1” to the

edges in the subgraph represented by that pull request. When a pull request results in a

rejection of a proposed commit, we assign a trust value of 0 to the edges in the subgraph

represented by that pull request.

Next, to be able to construct graphs from our dataset (described in the following

section) it will simplify our analysis if we first format our data into a structure that can be

readily manipulated by our network analysis software (NetworkX). For our purposes, we

identify the edge list data format as the most fitting. Doing so makes our own analysis

easier to perform, but it will also result in a more useful dataset to share with other

researchers, as an edge list is one industry standard data format for network analysis. Over

245

a series of rows, an edge list makes note of pairs of nodes that are connected, with the first

node listed typically being the source node and the second node typically being the target

node (in the directed case), and the two separated by a delimiter (a tab, in our case). To

properly create the edge list, we can’t simply separate the rows at every second tab,

because doing so would miss half of the connections represented in each row. Instead, we

must iteratively read through each row, writing to a list the first node as a source node and

the second node as a target node, then advancing rightward by one node with what was

the target node now becoming the source node, and the node to its right becoming the

target node. Figure 58 provides the iterative loop that was written in Python to generate

the edge list from the linked chain of pull request interactions.

Figure 58: “For” loop written to transform linked lists of pull request interactions into edge lists useful for network

analysis

After applying the iterative loop presented in Figure 58, we obtain an edge list with

each row of the list containing two nodes: the first node a source node, and the second

node a target node. Figure 59 illustrates what the resulting edge list looks like after

transforming the linked list shown in Figure 57.

246

Figure 59: Sample edge list, transformed from the linked list in Figure 57

Once we have constructed edge lists from the dataset, we are now ready to begin

analysis, beginning first with construction of graphs which we describe in the next section.

Trust graph construction: developer-developer network

With our dataset ready for use, we begin by constructing graphs from the dataset.

We construct multiple graphs with different purposes in mind for each. Graphs are

constructed using the NetworkX Python library (versions 2.6 – 2.8.x, as multiple updates

were released over the course of drafting of this chapter) [6.16]. An important difference

between the methodology described in this chapter and that of Chapter V is that these

graphs are by definition and construction trust networks because of the data we collected

and how we collected it; in Chapter V, we had to extract a trust overlay network from the

basic structural network. Thus, the following descriptions of the graphs are all of trust

networks.

First, from the dataset we construct multigraphs from the OpenSSL project and the

Let’s Encrypt project (referred to hereafter as LE). A multigraph is a graph in which parallel

edges (multiple edges) are allowed between pairs of nodes, and self-loops (edges where a

node connects to itself) are also included. In the context of this chapter, more than one

247

edge between a pair of nodes indicates multiple interactions between them in the

comments section of a pull request, while a self-loop indicates a developer responded to

his or her own comment before someone else did (often to give additional context or

details about their previous comment). In Figure 61, we provide an example illustration of a

real network that includes self-loops. Because self-loops (replies to one’s own comments)

don’t indicate any changes in trust, nor do they indicate any presence or lack of trust

between pairs of nodes, we remove self-loops from our empirical graphs.

Figure 60: Conceptual illustration of the construction of directed versions of the graphs

248

Figure 61: Example graph with self-loops. Generated in the Python language using the NetworkX and matplotlib

libraries

We also construct directed graphs of the same networks. In the directed version of

the graphs, edges have direction. Based on how we collected our data, when a developer

posts a comment or reply to another developer, the developer who is making the comment

receives an inbound edge while the developer who is being replied to receives an

outbound edge. Construction of the directed graphs will be useful for analyzing reciprocity

in the networks, and for constructing our trust overlay network (a virtual, trust-based

network that sits on top of the basic, structural network).

249

Figure 62: Conceptual illustration of the construction of directed versions of the graphs

 Finally, we construct undirected versions of the graphs for both projects. In the

undirected versions, edges have no directionality and are collapsed into simple edges.

However, we tabulate information about edge weights to preserve this information for

later analysis, creating a “weights” attribute in our graphs. Generating the undirected

versions will be useful for other types of analysis in which directed edges are either not

allowed or which will result in intractable calculations, for example, in computing network

diameters.

250

Figure 63: Illustration of representation of reciprocity and weighted edges in our dataset construction

Trust graph construction: bipartite network of developers and documents

In addition to the graphs representing developer-developer interactions, we also

construct bipartite networks in which developers are indirectly connected to one another

as a result of the documents that they modify (and vice-versa), rather than being connected

through their threads of discussion in a pull request. As in the previous descriptions of the

constructed graphs, we infer trust levels by examining the result of the pull request

(approved or rejected commit) [6.14], [6.15]. Constructing bipartite networks allows us to

consider the levels of trust placed in documents – and by extension, the code and resulting

software itself – arising indirectly from the trust levels of the developers who modify them.

Figure 64 illustrates a simple example of such a bipartite developer-document network. In

this example, A, B and C (all developers) are connected to one another indirectly as a result

of the changes they each make to Z, Y and X (all documents).

251

Figure 64: Illustration of bipartite network representation; round nodes are developers, square nodes are documents.

Random graph generation (configuration model)

To gain a better understanding of whether the structure and behavior we observe in

the networks are caused by random processes or if they are caused by a specific

mechanism or mechanisms, we construct random equivalents of the empirical graphs

discussed in the previous sections. To provide a useful model for comparison, we generate

a set of random networks based on the empirical networks, using the configuration model.

The configuration model creates a random graph using a given degree sequence as input

[6.17]. In this chapter, we take this degree sequence to be that of the empirical networks. In

this type of configuration model, the degree of each node is fixed, which directly leads to

the number of edges in the network being fixed, too. We generate 100 random networks

using the configuration model for each of the graphs described previously for both the

OpenSSL project and the LE project. The results of the 100 random networks are averaged

when compared against the empirical networks. In Table 21, we provide a summary of all

252

of the graphs that are generated for use in this chapter, each of which is useful for a

different type of analysis.

Table 21: Summary of graphs generated from the OpenSSL and LE projects for analysis in this chapter

Analysis measures

As in Chapter V, we consider reciprocity, various centrality measures, assortativity,

and standard summary statistics measures for this network. We refer the reader back to

Chapter V for additional detail on methodology related to these measures. In addition to

those measures already used and described in Chapter V, we apply other measures in this

chapter which we describe in this section. These measures include modularity, community

detection, and a transitive trust calculation.

Modularity and community detection (clustering)

In this chapter, we apply an additional technique that wasn’t used in Chapter V,

community detection. Community detection is useful to identify what community

structures, if any, exist within a graph [6.17]. In the context of this chapter, this could mean

identification of communities with higher or lower values of trust within them as compared

253

to the graph as a whole. Myriad community detection algorithms have been proposed by

researchers, and they are similar to graph partitioning methods with the difference that in

community detection algorithms there is no set number of partitions that is being sought.

Most community detection algorithms work in an iterative fashion, proceeding until a

maximum threshold is reached. For our purposes, we utilize the greedy modularity

maximization proposed by [6.18]. Greedy modularity maximization community detection

starts with each node in the network as its own standalone community with successive

joins of communities in an iterative fashion until the modularity ceases to increase.

Modularity measures the prevalence of like nodes that connect to other like nodes in the

network, while greedy algorithms focus on locally optimum (as opposed to globally

optimum) decisions. In [6.18] the authors define modularity as in Equation 8, and its

resulting maximization as in Equation 9.

Equation 8, from [6.18], where Q is modularity, m is the number of edges in the network being analyzed, A is an

element of the adjacency matrix representing the network in question, k is the degree of a node v or w, and c are the

communities detected in the network

Equation 9, from [6.18]

254

Trust metrics

In this section, we discuss the measures we utilize in this chapter to estimate trust

values. We discuss measures for direct trust estimation and indirect trust inference.

Direct trust is estimated using the same methods as in Chapter V (eigenvector

centrality, PageRank, and degree); we refer the reader back to Chapter V for additional

detail on these measures.

We estimate indirect trust (transitive trust) using our own transitive trust measure,

which we construct by modifying the methods proposed in [6.19] to fit our networks. We

refer to this method simply as generic transitive trust (GTT). Our method is as follows. As

was discussed in Chapter III, most transitive trust metrics include a trust propagation

function, a trust aggregation function, and a trust decay function. Our method includes

each of these elements. For the trust propagation function, we adapt the method in [6.19]

wherein the authors, upon verification of small worldness of their networks, set the

maximum trust propagation distance (MTPD) as the ceiling of the mean shortest path

length. In [6.19] the authors verify that the small decrease in accuracy of their trust metric

resulting from setting MTPD equal to the mean shortest path length is negligible, and that

the gains in terms of speed of computation are significant. Once we compute the mean

shortest path lengths (discussed in a subsequent section), we round this value up to the

nearest whole number and set this as the MTPD. In both trust networks, the MTPD equals

3. Thus, trust in the networks analyzed in this chapter is propagated along all paths

between every pair of nodes that are equal to or shorter than the MTPD. To define our

255

trust decay function, we adapt a method described in [6.6]. In our case, we set the trust

decay as equal to the reciprocal of the distance between source and sink such that a

distance of 1 produces a trust value of 1 (1/1), a distance of 2 produces a trust value of 1/2

(reciprocal of 2), a distance of three produces a trust value of 1/3 (reciprocal of 3), and so

on. Finally, for our trust aggregation function, we aggregate all trust values for all nodes in

each network into a raw (non-normalized) trust value, which is simply the sum of all of the

individual transitive trust values placed in each sink node. As is typical for many other trust

measures, such as in EigenTrust, we then normalize our trust estimates to make them

more readily comparable across networks. We normalize the trust measures by dividing

the raw trust score (the sum total of all trusts given to a particular sink node) by the total

possible trust for that node. For example, if a node (based on its number of connections

and paths within the network) has a maximum possible raw trust score of 10 and its actual

estimated raw trust score is 8, we divide 8/10 to obtain a normalized trust score of 0.8. As

in many other trust metrics, trust values can only take values from 0.0 to 1.0, and a value of

0.0 does not necessarily signify distrust but rather lack of trust; a value of 1.0 would signify

complete trust; and values falling between these two extremes indicate an intermediate

level of trusting or untrusting.

Results and Discussion

 In this section, we present the results of our analyses and give interpretation of their

meaning. We first present a summary of the key findings from our analyses, and then

256

discuss these results and their interpretations in greater depth with respect to this

chapter’s research questions.

We find evidence for small worldness in both the OpenSSL trust network and the LE

trust network. This finding allows us to apply our simplifying assumption of setting MTPD

equal to the ceiling of the mean shortest path length in each network when computing

transitive trust.

We present evidence that the traditional centrality measure of eigenvector centrality

is fast and effective for measuring direct trust in nodes, confirming the findings from [6.20].

At the same time, considering only direct trust leaves out a large piece of the overall

picture, and thus, a transitive trust measure is needed as well.

Similar to in Chapter V, we find an important difference in the distribution of

eigenvector centrality measures in the OpenSSL trust network compared to the LE trust

network, and propose that this difference could serve as a useful proxy indicator for higher

or lower levels of trust in a network.

We find generally higher levels of trust in the OpenSSL network compared to the LE

network when using several different trust measures. With several caveats (discussed later

in this chapter), we propose that contrary to our original suspicion higher trust levels in a

FOSS project may be correlated with higher frequencies of security issues as measured by

CVEs.

257

Summary statistics

In Table 22, we present basic summary statistics of the trust networks as modeled in

this chapter. Compared to the networks analyzed in Chapter V, the networks are relatively

small; the OpenSSL trust network features 132 nodes with 1043 (undirected) edges and a

mean degree of 7.9, while the LE trust network features 263 nodes with 3255 (undirected)

edges and a mean degree of 12.4.

Table 22: Summary Statistics for OpenSSL and LE trust networks

Both networks are fully-connected, which means that all nodes can be reached by

all other nodes if ignoring directionality, and thus, the connected component size for both

networks is simply equal to the number of nodes n.

In Table 23, we present key structural measures of the empirical and the random

versions of both the OpenSSL and the LE trust networks; we interpret these measures in

greater detail in the following sections.

Table 23: Key structural measures for empirical and random versions of OpenSSL and LE trust networks

258

Degree assortativity

 In Table 23 we see the degree assortativity for the empirical and random versions of

the OpenSSL and the LE trust networks. Comparing the empirical networks, we see that in

both cases the empirical networks have negative degree assortativity, with the OpenSSL

trust network showing a more negative degree assortativity than the LE trust network. The

interpretation of this is that in both networks nodes have a slight preference for connecting

with nodes that are different from them in terms of degree, with the OpenSSL nodes

having a stronger preference than the LE nodes. When comparing the empirical and the

random equivalent graphs for both the OpenSSL and the LE trust networks, we see a

significant difference in degree assortativity between empirical graphs and ones generated

by random processes. This serves as an indication that non-random mechanisms led to the

rise of these networks.

Density

 Referring back to Table 23, we see the densities of each of the empirical and

random networks. Comparing the OpenSSL and the LE empirical networks, we see similar

densities in both networks, with the OpenSSL trust network featuring slightly higher density

than the LE trust network. When comparing each empirical network to its random

259

equivalent, we see that the empirical trust networks’ density is approximately half that of

the random equivalent networks. Once again, we take this as evidence that non-random

processes gave rise to both empirical networks.

Reciprocity

Table 23 presents reciprocities for the directed versions of our empirical trust

networks and their random equivalents. From this table, we first compare the two

empirical networks to one another. We find a higher level of reciprocity in the OpenSSL

network than in the LE network, a possible indicator of higher levels of trust in the OpenSSL

network as compared to the LE network. When considering the empirical networks

compared to their random equivalents, in both cases (OpenSSL and LE) we also see a

marked difference, indicating that it is likely that reciprocity plays a role in the behavior of

both trust networks.

Geodesic paths

 In Table 24 we present the mean shortest path lengths (geodesic paths) for the

empirical and random equivalent versions of the OpenSSL trust network and the LE trust

network. Comparing the two empirical networks, we see very similar mean shortest path

lengths of approximately 2.5. When comparing each empirical network to its random

equivalent, we see a marked difference, once again providing evidence that a non-random

processes have generated the trust networks. We interpret the difference between the

random and the empirical networks’ path distances as additional evidence that this type of

trust network structure is not the result of random processes. Additionally, taking the

260

mean shortest path lengths presented in Table 24 we round them up to the nearest whole

number (in both cases, 3) and take these to be the ceilings of the maximum trust

propagation distance for use in the trust propagation function of our transitive trust metric

described in an earlier section.

Table 24: Mean shortest path lengths for the empirical and random versions of the OpenSSL trust network and the LE

trust network

Network visualizations

In Figures 65 and 66, we present visualizations of the empirical and random

versions, respectively, of the OpenSSL undirected trust network. Figures 67 and 68 present

visualizations of the empirical and random versions, respectively, of the Let’s Encrypt (LE)

trust network. And, to gain a clearer sense of which nodes are in Figures 69 and 70 we

present visualizations of the same networks with only those edges that have weight > 15,

representing those nodes which based on their number of interactions may be the most

influential nodes. Interestingly, despite their differences in scale (the LE network has twice

the number of nodes as the OpenSSL network and more than three times the number of

edges) in both networks we observe a very similar core size of highly-connected nodes,

indicating a small group of trusted nodes (key contributors to the development project).

261

The visualizations were produced using the NetworkX and Matplotlib libraries in the

Python language. Spring layout was used for both with k=0.33 in all cases (k in the spring

layout implementation of NetworkX is the optimal distance between nodes when

visualizing them), and the width of edges is sized according to their weights, with the

thicker edges representing a higher edge weight. The weights of edges represent multiple

connections between the same nodes, i.e. multiple comments between the same

developers will result in a higher edge weight between the two.

In both networks, we observe a core of a few highly connected nodes, with many

more nodes that have few connections (small degree). Most interestingly, for both the

OpenSSL and the LE trust networks we observe clear differences between their empirical

and random versions. This indicates that the structures in these networks are not

generated by random mechanisms, leading us to continue our consideration of trust as

one possible factor that influences the structure and topology of these networks.

262

Figure 65: Empirical version of OpenSSL trust network, generated using spring layout in NetworkX and Matplotlib in the Python language

263

Figure 66: Random version of OpenSSL trust network, generated using spring layout in NetworkX and Matplotlib in the Python language

264

Figure 67: Empirical version of LE trust network, generated using spring layout in NetworkX and Matplotlib in the Python language

265

Figure 68: Random version of LE trust network, generated using spring layout in NetworkX and Matplotlib in the Python language

266

Figure 69: Empirical OpenSSL trust network core

Figure 70: Empirical LE trust network core

267

Node degree distribution

In Figure 71 and Figure 72, we present plots of node degree distributions on a log-

log scale for the OpenSSL and the LE trust networks, respectively. In both trust networks,

we observe a power law distribution, indicating the networks are examples of scale-free

networks. Scale-free networks are a special case of small world networks, and thus we find

evidence that both of these networks – as is typical for real world social networks –

demonstrate small worldness.

To check the closeness of fit with the power law distribution of node degree, for

both networks we perform a log-likelihood ratio (-2LL) test, comparing the fit of the

lognormal distribution to the fit of the power law distribution [6.21]. In the OpenSSL

network, we find an 82% probability that the distribution observed is a true power law

distribution, and for the Let’s Encrypt network, we find 92% probability that the distribution

observed is a true power law distribution.

In Figure 73 and Figure 74, we present node degree rankings and degree histograms

for both the OpenSSL and the LE trust networks. In the histograms, we observe “long tails”

in the distribution of node degree – another classic sign of a power law distribution. Having

verified the small worldness of both networks, we can proceed with our use of the mean

path length in each trust network as the maximum trust propagation distance for our own

transitive trust calculations, discussed in a previous section.

268

Figure 71: Degree distribution in OpenSSL trust network. Log-log scale.

269

Figure 72: Degree distribution in LE trust network. Log-log scale.

270

Figure 73: Degree rank plot (left) and degree histogram (right) of OpenSSL trust network.

Figure 74: Degree rank plot (left) and degree histogram (right) of OpenSSL trust network.

271

Direct trust and transitive trust analysis results

 In this section we present and interpret the results of our analyses using direct and

indirect (transitive trust) measures in the OpenSSL and LE networks. First, we present

comparisons of several different direct and indirect trust evaluations methods, followed by

a more detailed discussion about each method’s results. Following the methods described

in [6.20] for direct trust estimation in online networks, in Figure 75 and Figure 76, we

present four different perspectives on direct trust estimation for the OpenSSL and LE

networks, respectively. In both figures, reading clockwise from the upper left we present

normalized degree against normalized hubs, against normalized authority [6.22], against

normalized eigenvector centrality, and against normalized PageRank. Several important

observations can be drawn from these plots.

In the case of normalized degree against normalized HITS (hubs and authority), we

observe an approximately linear relationship for both networks. One interesting difference

between the OpenSSL and the LE networks is seen in the normalized degree v. normalized

eigenvector centrality quadrants of the figures. In the case of the OpenSSL network, we

observe an approximately linear relationship between the two, similar to the other

measures illustrated in Figure 75. However, for the LE network we observe a more

exponential relationship between normalized degree and normalized eigenvector

centrality, with high relative eigenvector centralities being observed even for nodes with

low relative degree. This may indicate a more egalitarian distribution of total network trust

than in the OpenSSL network, which in light of this result appears more hierarchical.

272

Referring to the quadrants representing PageRank and eigenvector centralities v. generic

transitive trust in Figure 77 and Figure 78, we find similar results; there appears to be an

important difference in the distribution of trust globally within the OpenSSL network

compared to the LE network. Finally, when comparing the trust distributions when

measured by a direct trust measure as in Figure 75 and Figure 76, we see clear differences

in the trust levels when measured by an indirect trust measure as in Figure 77 and Figure

78.

273

Figure 75: Direct trust measures for OpenSSL empirical trust network. Normalized degree v. (from top left, clockwise) normalized hubs, normalized authority,

normalized eigenvector centrality, and normalized PageRank.

274

Figure 76: Direct trust measures for LE empirical trust network. Normalized degree v. (from top left, clockwise) normalized hubs, normalized authority, normalized

eigenvector centrality, and normalized PageRank.

275

Figure 77: Transitive trust measures for OpenSSL empirical trust network. Normalized transitive trust v. (from top left, clockwise) normalized hubs, normalized

authority, normalized eigenvector centrality, and normalized PageRank.

276

Figure 78: Transitive trust measures for LE empirical trust network. Normalized transitive trust v. (from top left, clockwise) normalized hubs, normalized authority,

normalized eigenvector centrality, and normalized PageRank.

277

Trust measures – direct trust

 Adapting a method from [6.20] for use in our networks, we apply standard centrality

measures as proxies for direct trust measurements. These measures are useful because

they give a sense for how much each node is trusted by its direct neighbors; in the

following section we discuss how we measure and infer trust in nodes with respect to their

indirect neighbors.

In Figure 79 we present rankings by eigenvector centrality for the OpenSSL and the

LE empirical networks. For approximately the first quartile of the distribution we observe

higher levels of direct trust as measured by eigenvector centrality in the OpenSSL network

compared to the LE network. For the latter three quartiles of the distribution, we see the

direct trust levels in the LE network outpace those of the OpenSSL network. We interpret

this to mean that trusted nodes are (relatively speaking) more trusted in the OpenSSL

network than in the LE network, but “everyday” nodes in the LE network enjoy relatively

more trust than their similarly-situated counterparts in the OpenSSL network. Figure 80

gives a similar perspective, but instead of eigenvector centrality its considers direct trust as

measured by PageRank. This figure shows higher direct trust levels in the OpenSSL network

than in the LE network for most of the distribution.

In Figure 81 and Figure 82 we present direct trust as measured by eigenvector

centrality for the empirical and random versions of the OpenSSL and LE trust networks,

respectively. Figure 83 and Figure 84 provide another perspective, this time plotting direct

trust as measured by PageRank for the empirical and random equivalent graphs of the

278

OpenSSL and the Let’s Encrypt trust networks, respectively. In both of these figures we

observe that for the majority of the distribution there is a significant difference between

trust levels in the empirical and the random equivalent graphs. Across each of these

figures, we observe a significant difference in direct trust levels at nearly all levels of the

distribution for the empirical against the random equivalent networks. We interpret this as

additional evidence that these trust networks were not formed by random processes, and

that trust may (in part) play a role in explaining the behavior of both empirical networks.

279

Figure 79: Comparing eigenvector centrality rankings for OpenSSL and LE empirical networks

280

Figure 80: Comparing PageRank rankings for OpenSSL and Let’s Encrypt empirical trust networks

281

Figure 81: Ranking of eigenvector centralities for OpenSSL trust networks (empirical and random)

282

Figure 82: Ranking of eigenvector centralities for Let’s Encrypt trust networks (empirical and random)

283

Figure 83: Ranking of PageRank for OpenSSL empirical and random networks. Semilog scale.

284

Figure 84: Ranking of PageRank for Let’s Encrypt empirical and random networks. Semilog scale.

285

Trust measures – transitive trust

 In this section, we present and discuss the results of our transitive trust analyses.

The analyses discussed in this section utilized our modified transitive trust measure as

described in an earlier section of this chapter. We find that there are generally higher

transitive trust (total trust) levels present in the OpenSSL network than in the LE network.

On the one hand this is surprising, as the LE network being larger presents more

opportunities for nodes to establish more connections and have more interactions with

their peers; on the other hand, it is reasonable because in a smaller network (like OpenSSL)

developers have more opportunity to engage in deeper and more frequent interactions

with a smaller number of peers, leading to deeper trust with those peers. In Figure 85 we

present rankings of transitive trust for each empirical network using our transitive trust

measure. The figure shows slightly higher total trust levels in the OpenSSL network

compared to the LE network for the top approximately 50 nodes (developers), similar trust

levels between both networks from approximately node 50 to node 80, and in the tail of

the distribution a higher trust level in the LE network for nodes 80+.

In Figure 86 and Figure 87 we present transitive trust rankings for the empirical and

random versions of the OpenSSL and the LE trust networks, respectively. In both figures,

we observe a clear difference in trust levels for the two versions of the network throughout

the distribution, with the random version displaying higher trust levels than the empirical

network for most of the distribution. This indicates that trust is generated in the LE

network not by random processes but by a specific mechanism or mechanisms.

286

Figure 85: Transitive trust rankings for empirical OpenSSL and LE networks. Semilog scale.

287

Figure 86: Transitive trust rankings for empirical and random OpenSSL network. Semilog scale

288

Figure 87: Transitive trust rankings for empirical and random LE network. Semilog scale.

289

In Figure 88 and Figure 89 we present plots of normalized degree against

normalized transitive trust scores for each node in the empirical OpenSSL and LE trust

networks, respectively. In both networks, we see roughly similar distributions, with an

exponential relationship between the two measures (degree and transitive trust). We find

that up to approximately 60% of the maximum transitive trust level in a given network,

there is very little change in a node’s (normalized) degree. After reaching this threshold of

approximately 60% of maximum transitive trust level, there is an inflection wherein

normalized degree of a node begins to move more closely in relation to changes in

normalized transitive trust. We also check the sensitivity of this result by varying the MTDP

used in the generic transitive trust measure, and find similar results. This makes sense,

because nodes with higher degree are, all other things equal, more likely to also have more

paths going through and to them, which will increase their trust values as measured by our

generic transitive trust measure. While the patterns are similar in both networks, we find

this pattern is even more slightly pronounced in the LE trust network than in the OpenSSL

trust network. Our interpretation of this is that 1) there is little difference in how trust

forms with respect to the network structure (degree) across the two networks, indicating

that this may be a feature of growth of trust networks in online settings more generally,

and 2) even as a relatively “unimportant” node (one with few connections, i.e., low degree)

it is relatively easy to achieve a fairly high position in terms of trust in the network. For

example, a node that only has 1% of the degree that the highest degree node has can still

potentially achieve a trust level of more than 50% of the trust level of the highest degree

node.

290

Figure 88: Normalized degree v. normalized transitive trust for OpenSSL empirical network

291

Figure 89: Normalized degree v. normalized transitive trust for LE empirical network

292

Trust correlations table

In Table 25 we present correlations among various trust measures, both direct and

indirect, which we have applied in the preceding sections. Several interesting points stand

out from the table. First, when comparing the correlations among various trust measures

in these networks against the correlations in Table 18 in Chapter V, we see a much closer

agreement (higher correlation) between PageRank and eigenvector centrality in the

OpenSSL and LE networks than for the networks analyzed in Chapter V. This is to be

expected, as the networks in Chapter V are much larger and more complex in terms of

their structures and paths. We also observe a stronger correlation between our transitive

trust measure and both eigenvector centrality and PageRank (our proxies for direct trust

estimations in this chapter) in the OpenSSL trust network compared to the LE trust

network. Once again, this is not surprising when considering what each of these measures

take as inputs, because in this chapter the LE trust network is approximately twice the size

of the OpenSSL trust network when measured by number of nodes, and more than three

times the size when measured by number of edges. Based on the design of our transitive

trust measure utilized in this chapter, we expect that as the size of the network under

analysis grows the agreement between our transitive trust measure and direct trust

measures such as PageRank and eigenvector centrality will drop. We take this as a positive

gauge of its usefulness (in addition to the other evidence presented previously) for

estimating transitive trust in networks that share similar characteristics to those analyzed

in this chapter. Additionally, we find additional evidence in support of findings similar to

293

those from other researchers discussed at length in Chapter III which demonstrate that

naïve network measures such as simple degree are typically not good approximations for

trust in online networks. One implication of this is that, when designing recommender

systems or reputation systems for online settings, a simple recommendation based on

number of followers or number of connections will be unlikely to produce satisfactory

results for most users.

Table 25: Correlations of trust measures in OpenSSL and LE empirical networks

Community detection

Using the greedy modularity maximization algorithm described in the previous

section, we apply community detection techniques to our networks. We find eight distinct

communities in both the OpenSSL trust network and in the LE trust network. In Figure 90

and Figure 91 we present visualizations of the OpenSSL and LE empirical trust networks.

The visualizations were generated in the Python language using the NetworkX library, the

294

Matplotlib library, and the greedy modularity maximization algorithm described in a

previous section. In both figures, the nodes’ colors indicate which community they belong

to. In the figure corresponding to the OpenSSL network, green edges signify connections

across different communities, and black edges signify connections within communities. In

the figure corresponding to the LE network, gold edges signify connections across different

communities, and black edges signify connections within communities.

Because the same number of communities are found in both networks, the

resulting communities in the LE trust network are larger than those of the OpenSSL trust

network, with the direct result that we observe higher total trust levels in the OpenSSL

communities than in the LE communities. Additionally, in the OpenSSL network we observe

greater inter-community connections than intra-community connections, while in the LE

network the mix of the two edge types (connections) is more balanced. One interpretation

of this could be that communities within the first network are more insular, leading to

higher levels of trust, while communities in the second network are just as likely to engage

in cross-community interactions as they are in intra-community interactions, decreasing

trust levels in the overall network.

295

Figure 90: Greedy modularity maximization community detection in the OpenSSL empirical trust network. Green colored edges signify edges across communities,

and black edges signify edges within communities.

296

Figure 91: Greedy modularity maximization community detection in the LE empirical trust network. Gold colored edges signify edges across communities, and black

edges signify edges within communities.

297

In Table 26, we present the results of the greedy modularity maximation community

detection algorithm in the context of trust. Although we find the same number of

communities in both networks, we find a smaller mean community size in the OpenSSL

trust network compared to the LE trust network; this is to be expected, as the overall size

of the OpenSSL trust network is also smaller. In examining which (if any) of the top 10 most

trusted nodes as measured by our transitive trust metric defined in this chapter are found

in the largest community, we find in the OpenSSL trust network six of the top 10 most

trusted nodes are present in the largest community, while only four of them are found in

the largest community in the LE trust network. We interpret this as additional evidence that

trust levels are higher in the OpenSSL network than in the LE network.

Table 26: Greedy modularity maximization (GMM) community detection statistics for OpenSSL and LE trust networks

Conclusions and Future Work

In this section we consider the research questions that were posed at the beginning

of this chapter and interpret them in light of our results from the previous section. After

doing so, we present a discussion of limitations of this chapter’s results and future work to

expand the findings of this chapter.

298

With regard to “RQ6-1: What is the structure and topology of a trust network in free and

open source software (FOSS) projects?” in the preceding sections we have presented an

exhaustive analysis of the structural and topological properties of two major FOSS projects

in the year 2015. With respect to both trust networks, we have showed that they exhibit

classic characteristics of small world networks. Most importantly, they both exhibit a power

law distribution in their node degrees; a power law distribution is indicative of a scale-free

network, which are one kind of small world network. This finding could have important

implications for thinking about how open source projects grow and evolve, and potential

implications for security of those projects. We have described the nature of both direct

trust and transitive trust – both of which arise directly from the structure of the network

itself – in the OpenSSL and the LE networks, and have verified the validity of using

traditional centrality measures (eigenvector centrality) to infer direct trust and the

usefulness of our new method for inferring indirect trust. We have described the structure

of online FOSS project networks in terms of modularity and communities, in terms of

connectivity, assortativity, and reciprocity.

With regard to “RQ6-2: Does trust lead to the network structures that we see in online

FOSS networks, or do FOSS networks by their nature give rise to the types of trust relationships

that we observe?”, while we have not yet been able to definitively answer this question, we

have found strong evidence that the trust networks analyzed in this chapter are anything

but random. We have not yet identified a network generative model that replicates the

299

creation of these networks, but we have provided convincing evidence that the need for

such models exists as the networks are non-random.

With regard to “RQ6-3: What is the relationship (if any) between the trust network and

security incidents in FOSS projects?”, we find that based on our analyses described in this

chapter – counter to our original suspicion – there appears to a relationship between higher

trust levels and more frequent security incidences in a FOSS project. While this statement

requires many caveats (described in the following section detailing limitations of this work),

we nonetheless find higher levels of trust by several measures in the OpenSSL trust

network than in the LE trust network. During the analysis period, there were seven known

CVEs associated with the OpenSSL project while there were none associated with the LE

project in 2015. One possible explanation for this finding may be that in these types of

networks, when trust is higher contributors may unintentionally and inadvertently give less

scrutiny to contributions than they would in contexts where trust is lower, possibly leading

to security issues. As was discussed in [6.3] trust is a crucial ingredient in online FOSS

projects and they wouldn’t exist as we know them without trust. Thus, there may be an

important paradox present in online FOSS projects of needing to increase trust to enable

project contributions to continue, and yet including additional mechanisms to ensure that

high levels of trust don’t lead to less scrutiny of the security (and quality) of contributions.

Limitations

This chapter considered hand picked examples of interactions from high-profile

FOSS development projects. It may be the case that these examples represent anomalies in

300

the overall population of FOSS projects. Although within our selected projects we had a

large sample size, within the world of FOSS the sample size was small. Thus, caution should

be taken in trying to generalize the results too broadly, recognizing that a broader sample

of FOSS projects will be needed to draw more robust conclusions. It may be the case that

this type of analysis is much more difficult to do on smaller FOSS projects with fewer

documents, revisions, lines of code, and collaborators. Conversely, larger sets may benefit

from additional small world analysis, as described in [6.23]. From the analysis performed in

this chapter, we cannot claim a causal relationship between developer network trust and

higher or lower incidence of cybersecurity vulnerabilities; this chapter only highlights

evidence of some relationship between the two. Interpretation is necessary if attempting to

apply these findings to any specific FOSS development project. The small sample size used

precludes us from performing meaningful statistical analysis (such as regression). However,

this work uses empirical data from known interactions, and so provides a platform

appropriate for a larger scale experiment. This approach is valid for making inferences

about these kinds of relationships but may be more challenging to implement such

measurements into a real-time trust system, when the outcome is not known ex-ante (as in

these examples).

Future work

Future research should expand this line of investigation, utilizing the methods and

tools described in this chapter as a roadmap. Future research should extend the analysis to

a longitudinal analysis, including both more samples of more projects within a given

301

timeframe as well as expanding the time horizon analyzed (only one year was considered

in this chapter). It will be useful to include some consideration of the complexity of the

software in question (experience and research indicate that more complex software will

inevitably have more vulnerabilities introduced over time compared to simpler software).

Additionally, it will be useful to include a consideration of the number of developers who

view the code on a regular basis, as the number of eyes viewing code should result in fewer

bugs – or, at least, in the bugs being discovered and resolved more quickly.

Temporal aspects were not considered in this chapter, but doing so is another

natural extension of this work. Issues related to this include how the trust networks grow

and evolve with respect to time, event analysis (examining how or if the trust networks

change when a new CVE is announced, or when the vulnerability related to it is first

discovered), and identifying (or developing) a network generative mechanism that parallels

the actual generation and evolution of these types of trust networks.

This chapter described initial observations of interest to engineers who are

designing new Internet-based information or communication systems or maintaining

existing ones. This chapter raises intriguing possibilities for developing document

management system architectures that may be more resistant to reverse engineering

attempts by attackers. Nonetheless, there is much additional work and future research

needed to be able to deepen the understanding outlined here. It will be important to

expand the sample size of projects considered, to give sufficient statistical explanatory

power. It will also be useful to consider different types and measures of trust beyond the

302

ones mentioned here, and to further explore the sensitivity of the measures considered in

this chapter to different combinations and variations of network characteristics. This

chapter takes a narrow definition of trust; future research should consider different types

of trust outlined by other scholars. Similarly, this chapter considered only a few trust

metrics; others should be tested, too. It may also or instead be the case that a trust metric

specially designed for applicability to online FOSS projects may be needed. This chapter

considers document collections in the context of FOSS, but it is conceivable that the same

ideas may be tested and valid in other domains such as proprietary (non-open source)

software development, technical publications, and others.

303

VII. Applying the Systems Engineering Process to designing a trust

management tool for Reddit

Introduction

In the preceding chapters of this dissertation we have largely investigated the issue

of trust in online networks from an observational perspective: how can platform managers

go about selecting a trust metric from the dozens that have been proposed?; how does trust

affect security in GitHub?; how does trust affect spread of misinformation on Twitter?

In this chapter, we seek to apply our findings from the preceding chapters. We

outline our process of systematically designing, developing, and testing a functional

prototype of an agent for helping online community managers leverage trust for improving

the quality of exchanges in their networks.

Based on our extensive literature review in Chapter III we have, surprisingly,

identified little work that has been done to examine trust on Reddit, and how it affects

community quality. Reddit is an online social network, news aggregator, and discussion

forum founded in 2005 (more detail on Reddit is provided in a subsequent section).

As was discussed in Chapter III, the most effective trust management systems are

designed for application in a specific network such as a P2P file sharing network, an e-

commerce platform, or an online social network like Twitter. Based on our extensive

304

literature review conducted for Chapter III of this dissertation, together with a

supplemental context-specific literature review for this chapter, we have yet to find

previous work by other researchers that proposes a trust management system for Reddit.

Thus, in this chapter, we outline a Systems Engineering-driven approach to

designing, prototyping, and testing a trust management tool specifically designed for use in

Reddit, which we dub Coni the Trust Moderating Bot. Upon the discovery of a lack of trust

management systems for Reddit, based on the literature we initially thought a peer-to-peer

focus for a Reddit trust model would be useful, but through the course of applying the

Systems Engineering process to our design challenge we discovered a more useful and

more specific challenge to solve for: the need for improved trust-driven automated tools

for Reddit moderators which make use of the transitive property of trust for online

systems. In this chapter, we describe this user discovery process as part of the broader

Systems Engineering Process.

Although we cover the high points of several key parts of the Systems Engineering

Process in this chapter, we also recognize that there are certain key elements of the

process which we don’t include in this chapter in order to leave sufficient room for

presentation and discussion of our results; these include a risk analysis, functional support

plans (since this is an open source project not associated with an enterprise), or an

operations and maintenance plan. Additionally, we recognize that it is more common for

this process to be applied to large teams with different disciplinary backgrounds requiring

extensive planning, coordination and integration. Nonetheless, we demonstrate the

305

usefulness and effectiveness of the process for projects of different types, sizes and scopes

by applying it to the design of our Reddit trust tool. We believe that the application of the

Process to our design project resulted in a higher-quality end result because it forced us to

focus on specific user problems.

In the following sections, we provide additional background on the Reddit platform;

describe related research work; consider the extensive ecosystem of Reddit moderator

bots that have already been developed; describe our methods for defining, designing, and

testing our bot; and analyze and discuss the results.

This chapter’s contributions include demonstration of the effectiveness of the

Systems Engineering Process for application to Web-based software and social media

systems; proposal of a method for collecting and organizing transactions data on Reddit for

use in a trust management system; presentation of a complete blueprint for a Reddit bot

that uses trust to perform moderating actions in a subreddit; and application of several of

this dissertation’s key findings from earlier chapters.

Overview of Reddit

Reddit is referred to by many as “the front page of the Internet”. Founded in 2005 by

Steve Huffman, Alexis Ohanian, and Aaron Swartz, today Reddit claims more than 50

million daily active users, and is consistently one of the top 10 most-visited websites on the

entire Internet. Reddit users can follow news stories, learn a new programming language,

study for certifications, watch cute videos of puppies, get advice for speculating on financial

investments, share art work, or ensconce themselves in a political echo chamber. Thus,

306

Reddit in this sense truly is a platform that plays host to a vast array of different topics,

viewpoints, and user end-goals.

Reddit is home to thousands of discussion forums dedicated to a specific topic,

which are known as subreddits. Figure 92 lists the top 10 subreddits by number of

subscribers, as of Sept. 2022. It’s also interesting to note that there is only a loose

correlation between the size of a subreddit and how active it is (by frequency and number

of posts and comments).

Figure 92: Top 10 subreddits by number of subscribers, Sept. 2022. Source: http://redditlist.com/all

There are several different types of agents active on Reddit. The primary category of

agents are users (redditors), moderators, administrators, and bots. Each subreddit has

several moderators (and, in the case of the largest subreddits, many moderators) who do

their best to ensure compliance with that subreddit’s rules, as well as with general Reddit

rules. In most cases, moderators are unpaid volunteers who agree to serve as moderators

307

out of their passion for the particular subreddit they’re moderating. Especially for many of

the smaller subreddits, the moderators are also often the same people who first created

the subreddit. Additionally, Reddit uses administrators, who have many of the same

privileges and responsibilities as moderators, and are Reddit employees (rather than

volunteers). Administrators tend to focus more on compliance with general Reddit rules

and policies. Finally, there are also numerous bots used in Reddit to perform different tasks

(including automated moderation). The first primary category of Reddit bots are those that

openly operate as bots (they don’t try to conceal the fact that they are bots). Some Reddit

bots automatically perform their given tasks (such as the AutoModerator bot), while others

need to be invoked by a user (such as the RemindMe Bot, which when a user tells it to will

remind them of something at a specified point in the future). Additionally, as is the case on

other social media platforms, there is a second category of bots which attempt to conceal

the fact that they are bots from other users. The reasons for designers of these types of

bots to conceal the true nature of these bots are numerous, but they are often malicious –

ranging from spamming to coordinated spread of disinformation and more.

On Reddit, a user (known as a Redditor) can create a post, which is equivalent to

opening a new discussion thread in an online forum. Frequently, when users create a post

they will link to an external article, include a photo or video, and some commentary or

interpretation of the same. Alternatively, they may post an anecdote and ask advice about

how to resolve the situation they’re in, or ask a question about a specific technical domain.

308

 Once a post has been created, users can comment on the post. Using the previous

examples, users might give their reaction to the news article, photo or video that was

shared; they might give advice on how to resolve another user’s problem; or they might

answer a specific how-to question within a technical domain. Of course, posts may also

veer off topic or into the personal; for example, posts are frequently made to correct

another user’s grammar or spelling, or to share memes.

Figure 93: Example of a post and comments from Reddit

 Users can also upvote or downvote comments and posts, give awards or “Reddit

gold” to comments or posts to demonstrate their approval or disapproval of the content of

309

a post or comment. Some users may feel so passionate about a post or comment that they

spend real-world money to purchase virtual Reddit coins and then award Reddit Silver,

Reddit Gold, or Reddit Platinum (depending on the amount spent) as a gift to the user

whose post or comment they strongly approve of.

Figure 94: Examples of awards given to a post on Reddit

 Each user who has an account (Reddit can be viewed without an account, but to

post, comment, upvote or downvote, requires an account) has a “karma score” attached to

their account, which is related to that user’s upvotes and downvotes; however, importantly

karma scores are not calculated with a simple one-to-one relationship of upvote (or

downvote) to karma point [7.1]. The karma score is directly related to this dissertation’s

focus of trust in networks, because in many subreddits users with sufficiently high karma

scores can bypass automatic moderation of their posts and comments as a result of being

designated a de-facto trusted contributor (this does not, however, mean that moderators

of a subreddit can’t moderate their activities at all).

 Finally, users and moderators can also designate “flair”. Flair are essentially tags

which moderators can utilize to provide additional control over their subreddit, together

with providing an opportunity for users to share more of their personality. Flair can be

applied to a user account, to a post, or both. One example of flair is to include the home

city next to the user’s account name when posting in a specific subreddit. Moderators can

310

apply flair to users, and then set rules in their subreddit to only allow users with flair

(“flaired users”) to perform certain actions.

Related Work

[7.2] extends work of other researchers and combines multiple disciplinary

perspectives to develop deeper understanding of the relationship between regular users

and moderators on Reddit, and also to extend the understanding of how the various built-

in functionalities of Reddit affect development of trust among users and moderators.

Among other interesting findings, the author notes that trust on Reddit in large part is

linked to authority of a user or a subreddit. Authority on Reddit, in turn, is associated with

expertise in a given domain (typically the domain that a given subreddit is dedicated to),

and/or a history of high-quality posts. Linking these findings to the functionalities of Reddit

(referred to as affordances), the author observes that the use of flair in a subreddit can

lead to high levels of trust in a subreddit if managed properly by moderators, but can in

fact degrade trust within a subreddit if managed improperly (or not managed at all) by

moderators.

[7.3] finds that, similar to many other social or sociotechnical networks, the

phenomenon of “answer-people”, i.e., individuals who for various (typically intrinsic)

motivations are prolific question answerers, are present on Reddit. Answer-people may or

may not be experts, but they are generally trusted by the community. The answer-people

feature a large number of connections compared to regular users of a subreddit, as they

interact with many different users in answering their questions. The authors also find that,

311

in general, it is rare for users on Reddit to be significantly active (i.e., acting as answer-

people) in more than one subreddit, which lends support to our proposed model

(described later in this chapter) wherein an important measure of trust is trust within a

subreddit – not overall karma on Reddit generally. This concept in other settings has also

been referred to as a trust neighborhood [7.4].

[7.5] examines how, in the face of intentional content manipulation by malicious

actors, moderating practices by Reddit as well as by volunteer moderators (non-employees)

affects trust within subreddits, and on Reddit generally.

In [7.6] the authors examine how vote (upvotes, downvotes) manipulation on Reddit

affects the visibility of subreddits and of threads in those subreddits. Through a series of

experiments, the authors examine the effects of artificial vote boosting of threads. They

find that in subreddits which normally receive comparatively little upvote/downvote

activity, artificially boosting the votes of a thread causes massive effects in increasing the

thread’s visibility. On the other hand, in subreddits in which it is typical for threads to

receive large numbers of upvotes (either because there are more users, or they are more

active, or both) then the effect – while still positive and large – is less pronounced.

Methods

 To identify gaps in the existing solutions for managing trust (and, more generally,

managing community quality) on Reddit, we apply the Systems Engineering Process to

understand needs of users, and systematically design a solution that meets these needs. In

312

this section, we describe the methods to be used in this chapter; in the following section,

we detail how we applied each of these methods to design our trust tool.

Overview of the Systems Engineering Process

To design and prototype Coni the Trust Moderating Bot, we follow the Systems

Engineering Process, as illustrated in Figure 95.

Figure 95: The Systems Engineering Process (or Systems Engineering V). Author’s own work, adapted from [7.7]

Not depicted in this figure is a critical “step zero” for setting the direction of the

design project, which is needs analysis. In the needs analysis phase of the project, we aim

to “show clearly and convincingly that a valid operational need (or potential market) exists for a

new system” [7.7, Chapter 6]. This phase helps to answer the “why?” for why a new system is

needed, and – if it truly is needed – how it will be different from other existing solutions.

One key output from the needs analysis phase is a set of operational requirements (what

will the system do?).

Following needs analysis, referring to Figure 95 the next step is concept exploration.

In the concept exploration phase, the primary objective is to “convert the operationally

313

oriented view of the system derived in the needs analysis phase into an engineering-oriented

view required in the concept definition and subsequent phases of development” [7.7, Chapter 7].

One of the key outputs of the concept exploration phase is a set of performance

requirements, which are a translation of the operational requirements from the previous

phase into a version which can be readily implemented and tested by engineers.

Performance requirements should be defined as part of a formal and careful process of

requirements analysis, wherein the operational requirements are analyzed, refined, and

then validated. Another important output of this phase is a set of candidate system

concepts, which are different possible conceptual combinations of capabilities that, taken

together, will support performance (and operational) requirements thus far established.

This is derived from sub-steps of the concept exploration phase of implementation concept

exploration and performance requirements validation.

After concept exploration concludes, we proceed with concept definition. In the

concept definition phase we “define the functional and physical characteristics of a new

system…that is proposed to meet an operational need defined in the preceding conceptual

phases” [7.7, Chapter 8]. The primary output of this phase of the Systems Engineering

process is selection of a single configuration of the system that serves as a baseline from

which to iterate design. Activities in this phase include functional analysis and formulation,

functional allocation, concept selection and validation, systems architecting, and creation of

system functional specifications.

314

In the concept definition or high-level design phase, the first real work of designing

the broad outlines of the system begins. It begins to “characterize the system in sufficient

detail to enable its operational performance, time of development, and life cycle cost to be

predicted in quantitative terms” [7.7, Ch. 8]. One of the primary outputs of this phase is the

selection and definition of a specific configuration of subsystems that will enable the

overall system to achieve its stated objectives.

In the detailed design phase, the various subsystems that were identified and

sketched in the high level design phase are analyzed and described in greater detail, down

to the component level.

In the development, implementation and installation phase, the designs outlined in

the high level design and detailed design phases of the Systems Engineering Process are

translated into tangible end products (in our case for this chapter, this is the writing and

deploying of actual code), implementing the design concepts in the physical (or virtual)

world.

In the testing phase, the system’s actual performance is compared to its intended

performance, using the set of tests that were designed in previous phases of the

development process. Major or unexpected discrepancies between as-installed

performance and designed performance are investigated and addressed.

In the verification phases, the design team systematically reviews the design to

ensure that the system as designed satisfies all of the requirements that were established

in earlier phases of the development process.

315

Application of the Systems Engineering Process to Our Design Challenge

In this section, we describe the specific activities and steps we took during several

phases of the Systems Engineering Process. For the sake of brevity and to leave sufficient

room for discussion and interpretation of the results of our process, we don’t detail our use

of every single phase of the Systems Engineering Process but instead focus on the most

critical and relevant ones for our design challenge.

Needs analysis

 For the needs analysis phase of our design challenge, we conducted a series of

interviews with Reddit users. Using the insights we gained from the user interviews, we

then performed extensive secondary research, reviewing numerous subreddits, GitHub

repositories and documentation, the Reddit API documentation, and other third-party

sources.

For the user interviews, we aimed to ensure a diverse mix of user types were

represented in our interviews, including light users, frequent users, longtime users, and

new users. While each individual interview took its own unique direction based on the

interviewee’s perspective, we began each interview with a standard set of questions. In

total, we interviewed 10 different Reddit users to better understand their experiences with

and reasons for using the platform. Users ranged from relatively new (had an account for

about 18 months) to seasoned (had an account since approx. 2010); most users engaged

with Reddit on the dedicated mobile app, but occasionally (especially for more complex

subjects) they would engage with Reddit via the Web on their computers; most were

316

frequent but relatively light users, checking Reddit at least a few times per week but usually

spending 15 minutes or less per session; users’ purposes for using Reddit varied from

seeking to learn a new skill to staying up to date on news items to entertainment; most

users did not pay any particular attention to who the other users were they were

interacting with, paying attention primarily to the content instead; most users were fairly

passive, only posting or commenting occasionally, relative to the total amount of time they

spent on the platform; and, when asked, most users stated that when evaluating the

reliability of information or claims on Reddit, they tend to take what they see with a dose of

skepticism and, if needed, were prepared to investigate other sources to verify or debunk a

claim they saw on Reddit.

After the user interviews were finished, we performed a content analysis of the

responses given and clustered them by themes. Below, we highlight several of the key

insights from our content analysis that are relevant for designing our Reddit trust bot:

1. Community quality in many subreddits is often perceived by longtime members to

decline when a subreddit grows in size (number of subscribers) – particularly when

a subreddit grows rapidly in size during a short period of time due to some viral

effect or timely new event that causes large numbers of new users to join.

2. Following from (1), at least for the users we interviewed, a critical insight is that trust

is generally placed more in a particular subreddit than it is in individual users, as

would be more common in other online social media platforms like Twitter or

317

Facebook. Using this realization, we propose that a trust measure that focuses on

understanding trust in a subreddit rather than at an individual level.

o Because on Reddit a subreddit’s quality is directly linked to the quality and

activity level of that subreddit’s moderators, it follows that trust from average

Reddit users is inherently and implicitly placed into a subreddit’s moderators –

even if a user never has any interaction with those moderators.

3. At the aggregate level Reddit users are very active (billions of engagements happen

each month), but when considering the ratio of page views to concrete

engagements (upvoting/downvoting, posting, commenting, etc.) many users are

quite passive – they may read through ten posts in a single day and not interact with

any of them, or with the comments contained in those posts. This insight is

supported by work from [] wherein the researchers identify an approximate 90-9-1

rule with 90% of users in social media “lurking” (passively reviewing content, but not

interacting with it), 9% of users interacting with content through actions like

upvoting or liking, and only 1% of users actively posting and commenting.

4. Different from most other popular media platforms like Twitter, Facebook or TikTok,

the average Reddit user pays comparatively little attention to who the other users

are they’re interacting with. Instead, they pay more attention to the content and the

communities with which they’re engaging. To be clear, an important element of this

is paying attention to the comments from other users, but in the case of Reddit, the

average user cares less about who makes a comment than the content of that

comment

318

Upon identification of these needs, we spend some time to better understand the

landscape of existing solutions for moderators on Reddit, both from within Reddit and

from third party developers.

Existing solutions

 Reddit directly provides several useful tools to help moderators of subreddits in

their tasks of moderating. These include AutoModerator, which is a bot that helps

moderators to automate some of their common tasks. AutoModerator performs actions

specified by the moderators of a subreddit based on rules that the moderators set up.

AutoModerator acts on posts and comments and depending on the rules set up by the

moderators, can approve, remove, filter, mark as spam, or report the content posted by a

user. Additionally, AutoModerator can leave a comment on an item if it meets the specified

rules, it can automatically send a private message to the moderators or to the user who

posted, and several other actions. On the other hand, AutoModerator cannot re-check

content that has already been posted, if that content is later edited. AutoModerator also

cannot detect reposts, base its decisions on upvotes/downvotes, cannot make decisions

based on flair, cannot make decisions about a user’s history a post’s history, and several

others. Thus, AutoModerator performs critical functions for moderators of subreddits, but

its functionality is quite limited in scope and can’t consider many of the factors that would

go into estimating trust [7.7].

 Reddit also provides a suite of other tools for moderators which the moderators

have to apply manually. These include community settings, whereby moderators can set

rules (which are automatically enforced) related to content, safety, and privacy for their

319

subreddit. And, of particular interest for this dissertation, Reddit also includes Crowd

Control as a tool for moderators, which “lets moderators automatically collapse/filter

comments and filter posts from people who aren’t trusted users within their community yet”

[7.8]. Crowd Control provides moderators with more control over user actions (which, as

described above, can’t be done by AutoModerator).

Additionally, there is an extensive ecosystem of bots developed by third party

contributors for purposes for improving moderation activities on Reddit. These third party

Reddit moderator bots provide automated moderation functions customized to the specific

needs of a particular subreddit. One subreddit, called r/Bot with more than 2000 members,

provides a forum within Reddit for moderators to discuss moderator bots, and to request

specific automatic moderation functions from volunteer third party developers. An

example is Clippy, which scans users’ posts and awards them points for high quality posts,

with the goal of encouraging more thoughtful discourse in subreddits [7.11]. The

BotDefense bot helps subreddit moderators to identify and ban other bots which are

posting spam or performing other undesirable actions [7.12]. AssistantBot (also known as

Artemis) helps subreddit moderators to better organize their communities by enforcing

flair and by gathering statistics on the community [7.13]. RepostSentinel is a moderator bot

that helps to detect reposts of existing posts [7.14]. Reposting of popular posts is one

strategy used by malicious bot accounts and by malicious user accounts in an attempt to

quickly and artificially inflate their karma score. Another moderator bot utilizes machine

learning to automatically detect and remove hate speech in a subreddit [7.15]. User _pacjax

320

[7.16] has developed a moderator bot that calculates scores of users in a subreddit, and

ranks them based on scores. However, the source code for this bot is not currently

available for inspection on an open platform like GitHub, so neither moderators of

subreddits nor developers can inspect the code to clearly understand how it works – which

is an important aspect of increasing trust in these types of software tools.

Finally, there is also a robust set of third party tools called Toolbox. Toolbox is

implemented as a browser extension for the Chrome browser (not a Reddit bot) which

enables subreddit moderators to perform actions including user history analysis, tools for

modifying the moderation queue, and more [7.17]. Toolbox claims more than 8000

moderators have installed and used their set of tools.

Operational requirements

Based on our user interviews as well as our secondary research, subreddit

moderators would benefit from having an addition tool at their disposal to help them make

a quick and rough judgement as to how much to trust an unknown user seeking to join or

post in their subreddit. In Table 27 we present the operational requirements of such a tool.

Table 27: Operational requirements for our trust tool

321

Concept exploration

We considered two primary concept alternatives. In the first, we would rely primarily

on existing bots for providing data related to users, posts, and subreddits that has already

been processed and transformed into some form of reputation or quality assessment. In

the second, we would obtain data directly from the Reddit API, process and transform it

ourselves, and utilize these data for computing trust and then performing actions based on

these trust levels.

Concept of Operations (CONOPS)

Operational requirements detail the “why?” of a system. In addition to the why, we

also consider the “how?” and the “who?” which, in the needs analysis phase of the Systems

Engineering Process, manifests itself in the form of a Operational Concept/Concept of

322

Operations (CONOPS) statement. A CONOPS statement for designing Coni the Trust

Moderating Bot follows:

1. Increase the quality of interactions among users in subreddits (quality of interaction

is defined later on), using the principles of trust in online networks that have been

detailed in earlier chapters of this dissertation, and by numerous other researchers

a. Improve the “I” of the CIA triad – integrity of information

2. Using pre-existing tools including the Reddit API, Python, and various Python

libraries, provide a tool for moderators of subreddits to know how much or if to

trust users posting in their subreddit when there is otherwise no previous history of

interaction with said user.

Operational context (Scenarios)

 The operational requirements answer the “why?” of a system, the CONOPs

addresses the “how?” and “who?” of a system, and the remaining piece – the “where?” and

the “when?” – of how the system is to be used is addressed through scenarios (operational

context description).

 The primary and typical scenario in which Coni is needed and for which she is

designed is that of moderating untrusted or distrusted users’ actions within a single

subreddit. Typically, these subreddits are smaller in terms of number of subscribers (the

most popular subreddits generally receive strong support from volunteers who develop

tools and help enforce community standards) and may be focused on fairly mundane

subjects. Frequently, previously unknown users may join these subreddits, and moderators

323

are unlikely to know how to treat these users initially with no history in the subreddit. Most

of the time, these unknown users are acting in good faith and seeking to authentically

engage with the community. However, in a non-negligible portion of cases, unknown users

may be malicious actors with various goals: to post or spread spam; to spread

disinformation; to spread hate or other toxic language; to promote illegal activity or to

attempt to commit cybercrime (like stealing users’ credentials through phishing); and other

malicious acts. These malicious actors may come and go in a seemingly random fashion;

other times, there may be some external news event which causes a sudden and

unexpected influx of malicious users intent on some coordinated goal.

Candidate features considered for Reddit trust system

 To identify which features are available for potential use in our Reddit trust system,

we refer to the Reddit API documentation and the PRAW documentation [7.18]. PRAW

(from Python Reddit API Wrapper) is a wrapper for the Reddit API to interact with it using

the Python language. We use PRAW both to retrieve data needed for our trust

computations, and also to send commands to our bot when it needs to perform an action.

We consider four classes from PRAW for our Reddit trust system: subreddits,

Redditor (users), Comments, and Submission (posts). Examining the documentation for

each of these classes, we identify the methods and attributes listed in Table 28 as

candidate features which could be used in construction of our Reddit trust system. We

return to this list of candidate features later in our design process to select a smaller subset

of these features for use.

324

Table 28: Candidate PRAW features for use in Reddit trust system

Trust insights from earlier in this dissertation

 Our results from Chapter IV, Chapter V, and Chapter VI indicate that there may be

an ideal middle ground between too much trust and not enough trust for supporting

healthy functioning of a community. We highlight several of these findings which will be

useful for design of our trust system in this chapter.

In Chapter IV, we identified ranges of graph structural characteristics that appear to

be correlated with improved accuracy in estimating ground truth trust values by trust

metrics.

In Chapter V, we found that the global trust levels were markedly higher within

conspiracy-oriented communities that were responsible for spreading misinformation on

Twitter than the global trust levels in non-conspiracy communities.

325

And, In Chapter VI, we found that higher global trust levels within a community of

open source software developers was correlated with higher rates of cybersecurity

vulnerabilities (though no causation can be claimed based on the work completed in this

dissertation). We consider these findings as we go about designing our trust bot for Reddit.

We will utilize these insights from our earlier research to inform the design of our

trust metric, to be proposed in a later section.

System requirements

 Based on the operational requirements established in an earlier section, we begin

to translate these into more specific system requirements. In Table 29 we present

functional and performance requirements for Coni the Trust Moderating Bot. We develop

these requirements using the operational requirements as our guide and starting point,

and to ensure that operational requirements are met, in Table 29 we provide a direct trace

from each functional requirement back to at least one operational requirement. We

identify a total of 22 different top-level functional requirements which flow from the four

operational requirements.

326

Table 29: Functional Requirements and Performance Requirements for Coni the Trust Moderating Bot

327

High-level design

 Following the definition and analysis of system requirements, we advance to high-

level design of Coni the Trust Moderating Bot. We complete three primary steps within the

high-level design phase: design of our trust computation system; design of system

architecture diagram; and design of a functional flow block diagram (FFBD).

Our system

Before we can continue any further with design of our Reddit trust system, we first

need to solidify how we will compute trust values on Reddit. After detailed consideration

and exploration of the insights from the needs analysis, the operational requirements, and

the system requirements defined in previous sections of this dissertation we propose the

following methods for computing trust in Reddit.

First, as was outlined previously, we seek to support moderators of subreddits in

their ongoing charge of fostering high-quality discourse within their subreddits. As a result,

we focus our trust system on measuring and managing trust within a single subreddit – not

across the entirety of Reddit.

In this chapter we don’t propose a new way to compute trust – we utilize PageRank

for computing direct trust, and our generic transitive trust (GTT) metric first presented in

Chapter IV of this dissertation for computing indirect trust. Instead, our method includes

two novel additions. The first of these is in deciding which values (available to us from the

Reddit API) to use as trust values and how to weight them, before inputting them into our

trust measures. The second novel contribution is the utilization of the computed trust

328

scores by an autonomous agent (Coni the Trust Moderating Bot) to perform actions and/or

give recommendations to moderators for improving the quality of service of a subreddit.

Our method takes as input a trust overlay network, which we describe how to

construct in the following sections. To aggregate trust values which will be input into the

trust metrics (PageRank and GTT), we propose the following.

Taking a subreddit as the unit of analysis, we first propose computing a total global

trust value for a given subreddit, to be used by that subreddit’s moderator(s) (via Coni the

Trust Moderating Bot) as a measure of how healthy and vibrant their community is. Higher

trust values should be correlated with more frequent and high-quality discourse within

their subreddit.

Additionally, we propose computing a within-subreddit trust value for each user who

interacts with the subreddit. This within-subreddit trust value will also be used by the

subreddit’s moderators (via Coni the Trust Moderating Bot) to specify or recommend

privileges for users, and to encourage or discourage different actions by the subreddit’s

users.

Why the standard Reddit karma score isn’t sufficient
As described at the beginning of this chapter, Reddit already includes a rough

measure of trust in users, so why do we need another one? Reddit karma measures actions

taken across the entirety of Reddit – not within a specific subreddit – and thus, while the

Reddit karma score may provide useful information as to the direction of a user’s

trustworthiness, it is less useful for application in any one subreddit.

329

One reason for this is that malicious actors have numerous methods at their

disposal for manipulating and artificially boosting their karma scores. Methods include

copying popular posts or comments and reposting them as their own with the expectation

of many upvotes; pay ‘click farms’ to upvote content; and stealing credentials of established

accounts to make use of the established account’s karma (until it gets shut down by

Reddit).

Additionally, consider an example where a user has a total karma score of 10,000,

with 9,000 of that karma score having been earned through actions in the History

subreddit (r/history) because of high-quality posts and comments. The user is a trained,

professional historian and thus has many opportunities to share her expertise with

r/history. The fact that 90% of the user’s karma score was earned in the r/history subreddit

is indicative that the user is highly-trusted in this subreddit. The user’s high karma score of

10,000, having been earned primarily in r/history, is much less useful in helping us to

assess the trust (or expected trust) that should be placed in the user if she then goes to

engage in the Technology (r/technology) subreddit – but Reddit makes no distinction about

where or how karma was earned when publicly displaying a user’s karma score.

For these reasons, we focus in on the gap of a subreddit-specific trust score for

users as a method for predicting the quality of a user’s contributions within a subreddit

and, by extension, the long-term quality of discourse within a subreddit. Reddit does not

provide this for users by default, but it can be feasibly computed using Reddit’s API.

330

Our system

 In this section, we describe our proposed system for computing trust values for any

user that engages in a specific subreddit (whether or not they are subscribers to that

subreddit), which can then be used by the bot module of our system to take actions (or

make recommendations, depending on the permission level granted to it by a moderator)

to improve the quality of a subreddit.

 As was discussed earlier in this chapter, we can compute trust based on actions

taken by users with respect to posts and with respect to comments. From the candidate

features outlined previously in Table 28, in Table 30 we present the features selected as

those to be used for computing trust in our system. In the table, features highlighted in

blue are those which are directly used as inputs into trust scores; features in which are

used as informational or reference features to help organize the data (such as “id”). We

select these features from the larger list of candidate features in part because they are

primarily graph-based features which require little to no context to apply to a trust

measure.

Table 30: Selected features for computing trust in our system

331

To compute total trust in a subreddit, we propose computing the total trust of each

user who is active within that subreddit – based solely on interactions that take place within

that subreddit. To compute the trust in each user, we propose computing the trust placed

in that user’s posts and that user’s comments made within the subreddit under consideration.

From these premises, we propose our trust aggregation system as follows.

To compute the total trust invested in each user, we apply the following method.

First, each user is given a base trust score. To this base trust score, we add the sum total

(positive or negative) of trust scores that derive from the posts or comments made by the

user. For all users in the subreddit, we then normalize their raw trust scores.

To compute a user’s trust:

1. Compute the base trust of the user,

2. Compute the sum of trust in all posts created by the user within the given

subreddit,

3. Compute the sum of trust in all comments created by the user within the given

subreddit,

4. Add (1) + (2) + (3) together to obtain the raw trust value,

5. Normalize by the total raw trust score within the subreddit under consideration

To compute a user’s base trust value:

1. Compute the user’s account age; if account age > 1 year, add 100 points to their

base trust,

332

2. Check to see if the user has a verified email address; if yes, add 100 points to their

base trust,

3. Get all of the trophies for the user, and for each trophy add 1000 points to their

base trust,

4. Get all of the awards for the user, and for each award add the “value” of that

trophy to their base trust (refer to the “This is a list of known global awards”

section in [7.19] for award values),

To compute a post’s or a comment’s trust:

1. Using the upvote ratio and the score, calculate the total number of upvotes and

total number of downvotes:

a. total votes = score / upvote ratio,

b. upvotes = score,

c. downvotes = total votes – upvotes

2. Get the total number of comments that have been made on the post

3. Get the total number of awards for the post; for each award, add the value of the

award to the post’s raw trust score

4. For each upvote, add 0.5 trust

5. For each downvote, add -1 trust (we posit that intensity of the negative reaction

that provokes a downovte is, all other things being equal, greater than the

intensity of the positive reaction that provokes an upvote)

6. For each comment made to the post, add 0.5 trust

333

7. Add (4) + (5) + (6) to obtain the raw trust value,

8. Normalize the raw trust value

System architecture diagram

 In Figure 96, we present the system architecture diagram for Coni. This diagram

derives from the system requirements defined in an earlier section, together with the trust

system defined in the previous section. Through using the Systems Engineering Process,

we were able to identify the proper relationships among the different modules (in an

earlier design, we had the graph construction module depending on the trust computation

module, rather than the reverse as in the design manifested in the figure). Our system

takes inputs of data from Reddit (via the API), holds them temporarily in the data module,

then passes them to the graph construction module where they are organized into a

structure that can be readily processed by the trust computation module. When trust

scores and levels are determined in the trust computation module, they are passed to the

trust storage module, where they are made available to the bot module to enable it to

make recommendations and take actions on the Reddit platform.

Figure 96: System Architecture of Coni the Trust Moderating Bot

334

Figure 97: Functional Flow Block Diagram for Coni the Trust Moderating Bot

335

Functional flow block diagram

 To better conceptualize the relationships between different functional requirements

and the timing of when different functions need to be executed for Coin the Trust

Moderating Bot, we develop a functional flow block diagram (FFBD) for our system, which

we present in Figure 97. The figure provides a visual representation of how data enters our

system, flows within it, is transformed, and is utilized to perform actions which are then

manifested back on the Reddit platform.

Detailed design

 In this section, we describe our work that was completed as part of the detailed

design phase of our overall design process. Utilizing the results of the high-level design

phase, we propose a trust computation model specific to Reddit, and then describe the

design of the primary software modules needed to implement and utilize scores from the

trust model. For the sake of brevity, we don’t describe the trust storage module in detail,

since it is similar to any other storage module one would encounter in a typical Web-based

software application.

Data retrieval module

The primary data source for a Reddit trust tool is through Reddit’s API, accessed

using PRAW. Reddit makes a multitude of detailed public information available through its

API, including detailed information about users and their actions and histories, posts,

comments, and related items. We perform an in-depth review of the PRAW documentation

[7.20] to better understand its capabilities, and how different components and functions

might fit together as part of a trust tool.

336

The data retrieval module is responsible for interacting with the Reddit API (via

PRAW, in our case) and pulling data about users, subreddits, posts, and comments which

will be needed later to perform the trust computations. The data retrieval module takes as

inputs commands about which data to collect and the data from the Reddit API, and

outputs these data to the trust computation module. Pseudocode for the data retrieval

module is presented in Figure 98.

Figure 98: Pseudocode for the data retrieval module of Coni the Trust Moderating Bot

Graph construction module

The graph construction module is responsible for organizing the data from the data

retrieval module into a structure that can be processed by our trust model. It takes as

inputs data about users, posts, comments, and subreddits from the data retrieval module,

and it outputs a structural graph and a trust overlay network in the form of edge lists. The

trust overlay network, in turn, serves as the input for the trust computation module.

337

Constructing a subreddit graph

 Before computing trust values, we need to first structure the available Reddit data in

a way that will allow us to do efficiently and correctly compute trust values. To do so, our

first step is to construct a graph from the available Reddit data. This graph will serve as the

structural foundation, from which we will next construct the trust overlay network (trust

graph). The boundaries of analysis for Coni the Trust Moderating Bot are a single

subreddit, and thus, the graphs we construct represent the structure of a specific

subreddit. The subreddit structure network will be constructed as an unweighted, directed

multigraph. A multigraph allows for parallel edges between the same pair of nodes;

inclusion of directionality is key, since comments have a source and a target. In the

following step (construction of the trust overlay network), we will collapse multiple parallel

edges into single, weighted edges.

From the Reddit API we can obtain data about users, posts that the users create,

and comments that users make about a post. We consider each of these objects to be

nodes, but nodes of different classes. When a user creates a post, a directed out-edge from

the user to the post will be created. When a user creates a comment within a post, a

directed out-edge from the post to the user is created. And, when a user replies to another

user’s comment, an out-edge is created from the reply to the previous comment. We

illustrate this structure conceptually in Figure 99. In this figure, solid lines represent direct

actions that link the two nodes at either end of the edge; dashed lines represent

connections that are indirectly created as a result of user actions (i.e., User A is indirectly

connected to User B when B comments on the post made by A). Following, in Figure 100,

338

we present a version of the same graph from the previous figure that considers the

network as a bipartite graph, wherein users only directly connect to posts or comments

(not to other users). Finally, in Figure 101 we provide the user projection network, wherein

users connect to one another indirectly as a result of the posts and comments they make.

Figure 99: Conceptual structure of a subreddit graph

Figure 100: Bipartite subreddit graph

339

Figure 101: Network projection of user graph within a subreddit

Constructing a trust graph

 Using the previously-constructed graph as a structural foundation, we next proceed

to add in actions taken by users in the subreddit under consideration that will be used to

compute trust values. We refer to this more detailed network as the trust overlay network,

and it will be a directed, weighted graph.

 Starting from the Reddit structural graph, we add in data related to upvotes,

downvotes, number of comments, trophies, etc. for each post and comment. Each of these

actions are completed by a user (i.e., a post cannot upvote another post, a comment

cannot upvote a comment, etc.) and ultimately are aimed at another user (with posts and

comments serving as intermediate nodes between user nodes). Taking a simple example

that continues with the example from the previous section, we obtain Figure 102.

340

Figure 102: Conceptual trust overlay network

In the example above, using our method we would compute total global direct trust

in each object as in Table 31, and edge weights for trust relationships between users as in

Table 32. From the computations of Table 31 and Table 32, we can then construct a trust

graph which, for this example, looks like Figure 103.

Table 31: Sample computation of raw trust values for each object in the example

341

Table 32: Trust adjacency matrix for sample trust calculation

Figure 103: Resulting trust overlay network for this example

Trust computation module

 The trust computation module is responsible for implementing the trust

computation model which we proposed and described earlier in this chapter. The trust

computation module takes as its inputs the graph data generated by the graph

construction module.

The trust computation module computes trust scores for a given subreddit and for

the users who have engaged with that subreddit. Once trust scores are computed, they are

sent as outputs to the trust storage module. Pseudocode for the trust computation module

is presented in Figure 104.

342

Figure 104: Trust computation module pseudocode

343

Bot module

 Finally, the bot module – which is the one module in our system that can take an

action (if a moderator grants it the proper permission) on Reddit – takes input from the

trust computation module in the form of trust levels for users, and based on these inputs

performs actions on behalf of the moderators of a subreddit.

In our initial design, the bot module can take the following actions if it has the

proper permissions granted to it by a subreddit’s moderator:

• Display a user’s trust score to moderator

o Assign (either automatically or manually, depending on moderator’s

preference) “trusted” flair to trusted users, to allow them to post/comment

without restriction

• Display subreddit’s trust score to moderator

o If total subreddit trust level is too high (refer back to “Trust insights from

earlier in this dissertation” section of this chapter), admit more untrusted

users (or lower the threshold for becoming a trusted user), and

o If total subreddit trust level is too low, increase the threshold for trusted

users

• Flag a distrusted user’s posts/comments for manual review by moderators

• Give awards (through the gilding method in PRAW) or trophies to trusted users to

encourage others to follow their example of high-quality posts or comments

344

Prototyping and Development

 We develop a working prototype of Coni the Trust Moderating Bot using Python3,

PRAW to interact with the Reddit API, Pandas to organize and manipulate the data,

NetworkX to construct the graphs, and NumPy to perform the trust computations. Using

the system architecture diagram, FFBD, and pseudocode designed and presented in the

previous section, we translate these artifacts into working Python code, which we can then

test using the testing plan described in the following section. For our prototype, we do not

implement the trust storage module, instead passing trust values directly to the bot

module. This method works properly for testing, but for a real-world application the trust

storage module should not be neglected, as it is what will allow trust information to remain

persistent for a moderator over time.

Testing

 Continuing with application of the Systems Engineering Process, we propose a

testing plan that uses a combination of validation with empirical datasets and simulations

for evaluating the performance and the effectiveness of Coni the Trust Moderating Bot.

 To test the first module of our system – the data retrieval module – we directly test

the ability of our code to retrieve data via the Reddit API and hold in memory for

subsequent use. The Reddit API does not require any credentials to pull data from it, but it

does require authentication to be able to perform actions on Reddit (such as those which

we propose for Coni). Thus, as part of the data retrieval module we also include an

authentication function, to login to our test account created for the purposes of this

345

chapter’s design challenge. Through inclusion of diagnostic messages in our code (for

example print(“logging in”) when first initiating the authentication function, and print(“logged

in”) once the authentication function has successfully completed), we verify that all

functional requirements are executing properly in this module.

To test the second, third and fourth modules of our system (graph construction

module, trust computation module, and trust storage module) we propose utilization of an

existing third party Reddit dataset such as [7.21]. Measures to be tested for the graph

construction module include checking to ensure the graphs as generated are properly

connected and with the correct directionality; for the trust computation module we check

that no errors are returned when computing trust values, and that trust values computed

by our code align with randomly-selected spot-checked trust values that we compute

manually for comparison.

To test the final module – the bot module – we propose testing using a combination

of empirical validation and simulation. While the previous tests allow us to test our

modules’ functionality without affecting anyone else, because the bot module is designed

to take actions in the “real” (virtual) world, we must take additional precautions when

testing it. Reddit has a subreddit specifically designed for developers to test the

functionality of their bots, called the “testing” (r/test) subreddit. We can use this subreddit

to test the functionality of our bot module for making posts or comments. However, to test

moderator capabilities (such as assigning flair to a user based on that user’s computed

trust level), we will need to have our own subreddit in which we can assign moderator

346

privileges to our bot. As a first test before such a “live” test, we instead propose a

simulation. We can develop a simulated subreddit in Python, generating random users,

random posts and comments from those users, and random actions (upvotes and

downvotes) of users with respect to posts or comments. We can then compute trust values

within this simulated subreddit, and feed them to the bot module to test her ability to

complete actions that align with the various trust scores.

Discussion of Results

 In this chapter, we have applied the Systems Engineering Process to the design

challenge of improving quality of service on the Reddit platform. We’ve provided a

complete and feasible conceptual design for a Reddit bot – Coni the Trust Moderating Bot –

that can help moderators improve the quality of service within the communities (subreddit)

that they modify. Coni provides estimates of trust for specific subreddits, and trust of users

engaging in those subreddits. Coni’s trust estimates are more context-specific than the

universal karma score provided by Reddit for all users.

Through application of the Systems Engineering Process, we identified a specific set

of challenges faced by users and moderators of subreddits (communities) within Reddit.

From this needs analysis, we proposed a novel method for aggregating transactions on

Reddit to be used in as inputs into existing trust metrics (PageRank and GTT). We

completed high level design of Coni the Trust Moderating Bot, translating operational

requirements into functional and performance requirements. These functional and

performance requirements, in turn, were translated into a system architecture design and

347

a functional flow block diagram, to help us better understand how data flow in our system,

and how they need to be transformed to achieve our purposes. Next, in the detailed design

phase, we break our overall system down into five smaller subsystems, or modules: a data

retrieval module, a graph construction module, a trust computation module, a trust

storage module, and a bot module. We proposed specific methods for how to collect and

aggregate transactions data from Reddit and transform these into trust graphs, and then

trust scores. We designed specific actions that the bot module, with the proper

permissions from a subreddit’s moderator, can perform in a subreddit to monitor and

manage the quality of service within that subreddit.

Limitations

 While useful, this chapter’s contributions also have their limitations. One of the most

important ones (which should also be addressed through future research, as described in

the following section) is the limited work done thus far to explore the robustness of the

tool’s trust estimates by performing sensitivity analyses. This chapter’s work only considers

a few basic combinations of attributes and values for those attributes to be used in

computing trust values. Additionally, this chapter’s system does not (yet) include any

mechanism for mitigating effects of attacks on the trust measurement system.

Future Work

Future work should extend both the functionality and the robustness of our design,

and carry out further evaluations as to the effectiveness of the designs.

348

More robust testing of the prototype created in this chapter should be carried out

before finalizing development of the complete system. Tests should include both empirical

analysis and simulations. The empirical tests should check the validity of the trust

estimates using a much larger empirical dataset; candidate datasets could include [7.21] or

[7.22] as examples, or construction of a new dataset for these purposes using the Reddit

API. In the empirical tests, user rankings of general Reddit karma scores can be compared

against user rankings of the within-subreddit trust scores computed using this chapter’s

methods. Simulations can be used to further test the effectiveness and robustness of the

bot module’s abilities to monitor and manage interactions within a community (subreddit).

Upon completion of additional testing, the findings from the tests should be used to

incorporate design improvements into a complete development.

In addition to more testing and development, future work should also explore the

sensitivity of the trust measures to the inclusion or exclusion of different features identified

in Table 28, and also how any such changes affect the code execution speed for Coni.

Coni’s functionalities may also be extended in future work to enable her to interact

with other Reddit bots. For example, Coni may be extended to be able to request data from

AssistantBOT, which is a Reddit bot that tabulates statistics for different users and

subreddits. Coni could also be extended to function with other non-Reddit APIs to add even

more capabilities related to content of posts and comments, such as sentiment analysis or

fact checking. While this chapter focuses on graph-based measures for estimating trust in

subreddits, additional information can be added to the trust equation by considering

349

content of posts and comments made by users. To this end, numerous sentiment analysis

libraries have been developed which could be integrated with Coni, and Google offers a

fact checker API [7.23].

Future work could also examine the effectiveness of expanding the realm of analysis

for users’ trust. When computing trust for a specific subreddit, future work could also take

into account the trust levels present in other subreddits in which users are also engaged; in

this sense, such an extension would function similar to PageRank, treating entire

subreddits as pages (rather than the comments, posts, and users within those subreddits,

as we did in this chapter), but to do so would first need to collapse each subreddit into a

single trust value. As part of this work, we could consider how activity in high-quality or low-

quality (or controversial) subreddits affects the usefulness of trust measures.

Finally, Coni in her current form does not include an attack resistance mechanism,

other than those inherent directly in the design of Reddit’s transaction systems. Most other

successful trust management systems such as EigenTrust propose a basic (non attack-

resistant) version, and an attack resistant version. In our case, types of attacks that Coni

could be subjected to could include sybil attacks (wherein a coordinated group of fake

accounts are created with the purpose of increasing the reputation – in this case, the

karma score), badmouthing attacks, or ballot stuffing.

350

VIII. Discussion, Limitations, and Future Work

In this chapter, we summarize the findings of this dissertation, putting them into

context (including discussion of the limitations of the findings), and propose future

research work to extend the work completed in this dissertation.

Discussion of this dissertation’s contributions

Throughout this dissertation, we have completed an investigation of trust in online

settings that is both broad and deep. We provided an updated and comprehensive

overview of the current state of the field of research related to online trust metrics and

trust management systems (Chapter III). In Chapter IV, we completed an objective analysis

of the performance of several well-known trust metrics (both direct trust and indirect

trust), measured by accuracy of the trust estimates and speed of code execution. In

Chapter IV, we also collapsed the findings of the experimental benchmarking work into

generalized categories of trust metrics and graph structural characteristics. This allowed us

to produce a heuristic model that can be used by others (particularly practitioners) who

may be considering use of a trust management system for their online networks as an

initial screening tool. Our heuristic model can help them narrow the field of candidate trust

management systems that will be most fitting for their network’s needs. In Chapter V, we

explored the relationship between trust and the spread of misinformation in online social

media (which, according to the US Cybersecurity and Infrastructure Security Agency, is a

351

form of cybersecurity threat) by examining a labeled dataset from Twitter. In this chapter,

we contributed to knowledge in the field through discovery of small worldness effects in

online conspiracy trust networks; through an exhaustive characterization of the structural

and topological forms taken by online misinformation trust networks; and (among other

contributions) through the interesting discovery of the key role played by brokers in the

spread of misinformation (users who were active both in the non-misinformation networks

and the misinformation networks). In Chapter VI, we explored the relationship between

trust and security vulnerabilities in open source developer networks on GitHub. Among

other findings, this chapter contributed to knowledge and understanding in the field

through discovery of small worldness in online developer networks; through an exhaustive

characterization of the structure and topology of online open source developer networks;

through discovery of an inverse relationship between security vulnerability incidences (as

measured by CVEs) and trust levels in the developer network; and through discovery of

evidence supporting the need for a graph generative model to be developed for use in

open source online developer networks. In Chapter VII, we contributed to knowledge and

understanding in the field through production of a comprehensive blueprint and prototype

system and agent for understanding and managing trust on Reddit; application of the

Systems Engineering Process to a Web-based open source design challenge, demonstrating

its usefulness in this domain; in both cases, to the best of our knowledge our work is the

first to address these questions from the Systems Engineering perspective.

352

Limitations

While we have produced contributions to several areas of the field, this

dissertation’s findings also have their limitations.

In Chapter IV, the heuristic framework we developed is constrained by several

limitations. Chapter IV’s experiments only considered global trust, not local trust. Global

trust is a useful measure for managers of platforms who have access to data about the

platform, but is less useful for inferring trust relationships between specific nodes (which

local trust will do). Also, our framework was derived only from graph structural

characteristics, so when considering platforms that have access to other data types such as

content or behavior this framework will be incapable of considering these measures. We

also don’t consider all categories of trust models (though our framework does encapsulate

the most popular categories of trust management systems). Our framework is derived

from a limited dataset and limited number of experiments, so the sensitivity of results

should be explored further. Finally, the framework only provides heuristic guidance – not

specific quantitative predictions – as to the direction and approximate intensity of

performance metrics’ relationships to graph structural characteristics.

In Chapter V, we only considered direct trust measures, not indirect trust measures.

Thus, there are likely additional insights to be drawn from the dataset using indirect trust

measures which our work did not explore. The work of Chapter V also only considered

graph characteristics for estimating trust; additional insights can most likely also be

discovered by a content-focused analysis of the data, too. Another important of Chapter V’s

353

findings is that, while large, the dataset we used focused only on misinformation stemming

from conspiracy theories related to the COVID-19 pandemic; it could be the case that the

spread of misinformation of a different origin may respond differently to varying trust

levels in a network.

In Chapter VI, we only used hand-picked examples of interactions from high-profile

FOSS development projects. It could be that these examples represent anomalies in the

overall population of FOSS projects. Our selected projects had a large sample size over the

within the projects, but within the universe of FOSS the sample size was comparatively

small. It may be that this type of analysis is more difficult to do on smaller FOSS projects

(smaller than the ones we analyzed in this dissertation) which feature fewer documents,

fewer revisions, fewer lines of code, and fewer contributors. Conversely, larger sets than

the ones we examined in this dissertation could benefit from additional small world

analysis. Our analysis does not enable us to claim a causal relationship between developer

network trust and higher or lower incidence of cybersecurity vulnerabilities; our work only

underscores evidence that there is a relationship between the two. Interpretation is

necessary if attempting to apply these findings to any specific FOSS development project.

Finally, our approach is valid for making inferences about these kinds of relationships but

may be more challenging to implement such measurements into a real-time trust system, in

which the outcome (in our case, the presence or absence of a CVE) is not known ex-ante.

 Chapter VII’s results are useful, but also have their limitations. A critical limitation

(which should also be addressed as part of future research on the subject) is the limited

354

work done thus far to explore the robustness of the tool’s trust estimates by performing

sensitivity analyses. Chapter VII’s work only considers a few basic combinations of

attributes and values for those attributes to be used in computing trust values, and –

critically – our design does not yet include any mechanism for mitigating effects of attacks

on the trust measurement system, which would limit its usefulness in a live application as

malicious agents will inevitably discover and attempt to leverage this fact.

Future Work

 In considering future research directions related to this dissertation, we first point

out several high-level directions that will be promising. Next, we also summarize and

recapitulate more specific and narrowly-focused future research recommendations related

to the work from each chapter.

 This dissertation utilized some methods and techniques from artificial intelligence

(AI) and machine learning (ML) such as community detection, clustering, search and

optimization, and others. However, the focus of this dissertation was not specifically on

utilizing these techniques. For example, further development and application of link

prediction, trust neighborhood prediction, classification of nodes with respect to trust are

all promising areas for future research (and are areas which many researchers are already

pursuing).

 This dissertation only gave basic consideration to temporal aspects of trust

networks. However, this (temporal aspects of graphs) is an area of active research for many

355

network scientists, and it is an area of research that would help to further advance the

understanding of the nature and effects of trust on networks.

Turning our attention to more specific and narrowly-defined future research

directions resulting from each of this dissertation’s chapters, from Chapter IV we note the

need to focus on better understanding the robustness and sensitivities of the various

measures investigated in the chapter. Future work related to Chapter IV should also

evaluate differences between performance of trust metrics applied to directed v.

undirected graphs; this chapter considered only undirected versions, but inclusion of

benchmarking on directed graphs represents an important extension for real world

networks. This is a critical area for future research, since PageRank (one of the trust

measures used in Chapter IV’s experiments) was originally designed for use in directed

networks (though it can still be applied to undirected ones). Experiments should be run for

more iterations than we did in our work to smooth out differences owing to random

factors, and add statistical power to the findings. Additional trust metrics should also be

benchmarked. Our experiments only consider global trust values, so future benchmarking

research should also consider local trust values.

Related to Chapter V’s work, future research should consider models for epidemic

spreading on networks (which include temporal aspects as referenced elsewhere). A

traditional SIS model could be adapted and may prove useful for modeling epidemic

spread of misinformation in online networks, and how this relates to trust. We posit that β

(the probability of contact with an infected node) in the classical SIS model can be

356

estimated using the proportion of misinformation nodes in the overall network, while γ

(the probability of recovery) can be approximated using the rate of contact of broker nodes

(discussed in depth in Chapter V) with the rest of the population. Future research related to

Chapter V should also explore generative network models for reproducing online

misinformation networks. If existing generative network models are unable to adequately

reproduce the generative process for online misinformation networks, efforts should be

made to develop a generative model that mimics the process for generation of online

misinformation trust networks. Having such generative models available could be useful in

helping to slow the spread of online misinformation – particularly when paired with other

methods like AI/ML models that identify misinformation.

Future work related to Chapter VI should extend the analysis to a longitudinal

analysis, including both more samples of more projects within a given timeframe as well as

expanding the time horizon analyzed (only one year was considered). It would also be

useful and informative to consider the complexity of the software in question (experience

and research indicate that more complex software will inevitably have more vulnerabilities

introduced over time compared to simpler software) as a control. Additionally, it will be

useful to include a consideration of the number of developers who view the code on a

regular basis, as the number of eyes viewing code should result in fewer bugs – or, at least,

in the bugs being discovered and resolved more quickly. Temporal aspects were not

considered in Chapter V, but doing so is another natural extension of this work, including

investigating how the trust networks grow and evolve with respect to time, and event

357

analysis (examining how or if the trust networks change when a new CVE is announced, or

when the vulnerability related to it is first discovered). Additionally, identifying (or

developing) a network generative mechanism that parallels the actual generation and

evolution of these types of trust networks is an important area for future research.

Finally, future work related to Chapter VII should extend both the functionality and

the robustness of our design, and carry out further evaluations as to the effectiveness of

the designs. More robust testing of the prototype created in Chapter VII should be carried

out; tests should include both empirical analysis and simulations, as well as sensitivity

analysis of the parameters included in the trust measure developed for use by the bot. Our

bot’s (Coni the Trust Moderating Bot) functionalities may also be extended in future work

to enable her to interact with other Reddit bots, as well as to interact with third party APIs

(for example, Google’s fact checker API). Future work could also examine the effectiveness

of expanding the realm of analysis on which users’ trust scores are based. When computing

trust for a specific subreddit, future work could also take into account the trust levels

present in other subreddits in which users are also engaged; in this sense, such an

extension would function similar to PageRank, treating entire subreddits as pages.

358

References

Chapter I

[1.1] RH Coase, "The nature of the firm." Economica 4.16 (1937): 386-405.

[1.2] D. Kahneman, Daniel. Thinking, fast and slow. Macmillan, 2011.

[1.3] J. Golbeck, “Computing and applying trust in web-based social networks”. PhD

Dissertation, University of Maryland, College Park, 2005.

[1.4] Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2021,

with forecasts from 2022 to 2030. 2022. Statista Web page. Retrieved from

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[1.5] P. Suciu, “Americans Spent On Average More Than 1,300 Hours On Social Media Last

Year”, Forbes, 2021. Web page. Retrieved from

https://www.forbes.com/sites/petersuciu/2021/06/24/americans-spent-more-than-1300-

hours-on-social-media/

[1.6] D. Tighe, “Online shopping behavior in the United States - statistics & facts”. Statista

Web page. Retrieved from https://www.statista.com/topics/2477/online-shopping-

behavior/

[1.7] The 2021 State of the Octoverse. 2021. Web page. Retrieved from:

https://octoverse.github.com/

Chapter II

[2.1] Sherchan, Wanita, Surya Nepal, and Cecile Paris. "A survey of trust in social networks."

ACM Computing Surveys (CSUR) 45.4 (2013): 1-33.

[2.2] Ghafari, Seyed Mohssen, et al. "A survey on trust prediction in online social networks."

IEEE Access 8 (2020): 144292-144309.

[2.3] work.nation demo prototype. [n.d.]. Web page. Retrieved from

https://demo1.worknation.io/

[2.4] Trust Graph. [n.d]. Retrieved from https://github.com/trustgraph/trustgraph

Chapter III

[3.1] R. Ureña, F. Chiclana, and FE Herrera-Viedma. “DeciTrustNET: A graph based trust and
reputation framework for social networks”, Information Fusion, Volume 61, September 2020,

Pages 101-112.

[3.2] Virgule module, available http://virgule.sourceforge.net/.

359

[3.3] J. Golbeck. "Trust and nuanced profile similarity in online social networks." ACM

Transactions on the Web (TWEB) 3.4 (2009): 1-33.

[3.4] W. Yuan et al. "The small-world trust network." Applied Intelligence 35.3 (2011): 399-

410.

[3.5] D. Meyerson, KE Weick, and RM Kramer. "Swift trust and temporary groups." Trust in

organizations: Frontiers of theory and research 166 (1996): 195.

[3.6] M. Osterloh and S. Rota, "Trust and community in open source software production,"

Analyse & kritik 26.1 (2004): 279-301.

[3.7] J. Lopez, Jorge, S. Maag, and G. Morales. "Behavior evaluation for trust management

based on formal distributed network monitoring." World Wide Web 19.1 (2016): 21-39.

[3.8] IBM, “z/OS Integrated Security Services Network Authentication Service

Administration: Realms of Trust”, available

https://www.ibm.com/docs/en/zos/2.1.0?topic=service-realm-trust-relationships

[3.9] Microsoft Active Directory, “Managing Trusts”, available https://forsenergy.com/en-

us/domadmin/html/7296dc81-0672-4023-9937-c060fd7eef2f.htm

[3.10] PowerShellMafia, “PowerSploit”. Repository on GitHub, available
https://github.com/PowerShellMafia/PowerSploit/blob/dev/Recon/PowerView.ps1

[3.11] Wang, Yingjie, et al. "A game theory-based trust measurement model for social

networks." Computational social networks 3.1 (2016): 1-16.

[3.12] V. Kant and KK Bharadwaj. "Fuzzy computational models of trust and distrust for

enhanced recommendations." International Journal of Intelligent Systems 28.4 (2013): 332-

365.

[3.13] H. Sapkota, PK Murukannaiah, and Y. Wang, "A network-centric approach for

estimating trust between open source software developers," PLOS One 14.12: e0226281,

2019.

[3.14] Li, W. Zhao, J. Yang, and J. Wu, “CoTrRank: Trust Ranking on Twitter,” IEEE Intelligent

Systems, 36(1), 35–45, 2021. https://doi.org/10.1109/MIS.2020.3045001

[3.15] S. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “The Eigentrust algorithm for
reputation management in P2P networks,” Proceedings of the 12th international conference

on World Wide Web (WWW '03), 2003. Association for Computing Machinery, New York, NY,

USA, 640–651. DOI:https://doi.org/10.1145/775152.775242.

[3.16] L. Xiong and L. Liu. "Peertrust: Supporting reputation-based trust for peer-to-peer

electronic communities." IEEE transactions on Knowledge and Data Engineering 16.7 (2004):

843-857.

360

[3.17] J. Golbeck, “Computing and applying trust in web-based social networks”. PhD

Dissertation, University of Maryland, College Park, 2005.

[3.18] C de Kerchove and P Van Dooren. "The pagetrust algorithm: How to rank web pages

when negative links are allowed?." Proceedings of the 2008 SIAM International Conference on

Data Mining. Society for Industrial and Applied Mathematics, 2008.

[3.19] R. Zhou and K. Hwang. "Powertrust: A robust and scalable reputation system for

trusted peer-to-peer computing." IEEE Transactions on parallel and distributed systems 18.4

(2007): 460-473.

[3.20] FE Walter, S. Battiston, and F. Schweitzer. "Personalised and dynamic trust in social

networks." Proceedings of the third ACM conference on Recommender systems. 2009.

[3.21] C. Borgs et al. "A novel approach to propagating distrust." International Workshop on

Internet and Network Economics. Springer, Berlin, Heidelberg, 2010.

[3.22] W. Jiang, G. Wang, and J. Wu. "Generating trusted graphs for trust evaluation in

online social networks." Future generation computer systems 31 (2014): 48-58.

[3.23] G. Liu, Y. Wang, and MA Orgun. "Trust transitivity in complex social networks." twenty-

fifth AAAI conference on artificial intelligence. 2011.

[3.24] W. Xue et al. "DHTrust: A robust and distributed reputation system for trusted peer‐
to‐peer networks." Concurrency and Computation: Practice and Experience 24.10 (2012): 1037-

1051.

[3.25] X. Fan et al. "EigenTrust++: Attack resilient trust management." 8th International

Conference on Collaborative Computing: Networking, Applications and Worksharing

(CollaborateCom). IEEE, 2012.

[3.26] F. Liu et al. "A Web Service trust evaluation model based on small-world networks."

Knowledge-Based Systems 57 (2014): 161-167.

[3.27] S. Agreste, P. de Meo, E. Ferrara, S. Piccolo, and A. Provetti, “Trust Networks:

Topology, Dynamics, and Measurements,” IEEE Internet Computing, 19(6), 26–35, 2015.

https://doi.org/10.1109/MIC.2015.93

[3.28] MS Mariani, M. Medo, and YC Zhang. "Ranking nodes in growing networks: When

PageRank fails." Scientific Reports 5.1 (2015): 1-10.

[3.29] Trust Graph: Reputation for Decentralized Ecosystems. Available:

https://trustgraph.net/

[3.30] N. Thorp, “Decentralized Cooperation needs Decentralized Reputation”, Rebooting
the Web of Trust I: San Francisco (November 2015). Available: cite

https://github.com/WebOfTrustInfo/rwot1-sf/blob/master/topics-and-advance-

readings/DecentralizedCooperationNeedsDecentralizedReputation.md

361

[3.31] Trust Graph, repository from GitHub. Available

https://github.com/trustgraph/trustgraph/blob/master/README.md

[3.32] B. Liu, DC Parkes, and S. Seuken. "Personalized hitting time for informative trust

mechanisms despite sybils." Proceedings of the International Conference on Autonomous

Agents & Multiagent Systems. ACM, 2016.

[3.33] Almuzaini, Fatimah, et al. "WhatsTrust: A trust management system for WhatsApp."

Electronics 9.12 (2020): 2190.

[3.34] N. Al-Otaiby, A. Alhindi, and H Kurdi. "AntTrust: An Ant-Inspired Trust Management

System for Peer-to-Peer Networks." Sensors 22.2 (2022): 533.

[3.35] X. Meng, Y. Ding, and Y. Gong. "@ Trust: A trust model based on feedback-arbitration

in structured P2P network." Computer Communications 35.16 (2012): 2044-2053.

[3.36] J. Lopez et al, "Behavior evaluation for trust management based on formal

distributed network monitoring." World Wide Web 19.1 (2016): 21-39.

[3.37] V. Woloszyn and W. Nejdl. "Distrustrank: Spotting false news domains." Proceedings

of the 10th ACM Conference on Web Science. 2018.

[3.38] Y. Wang, and J. Vassileva, "Bayesian network-based trust model." Proceedings

IEEE/WIC International Conference on Web Intelligence (WI 2003). IEEE, 2003.

[3.39] U. Kuter and J. Golbeck. "SUNNY: A new algorithm for trust inference in social

networks using probabilistic confidence models." AAAI. Vol. 7. 2007.

[3.40] A. Jøsang and T. Bhuiyan. "Optimal trust network analysis with subjective logic." 2008

Second International Conference on Emerging Security Information, Systems and Technologies.

IEEE, 2008.

[3.41] O. Richters and TP Peixoto. "Trust transitivity in social networks." PLOS One 6.4

(2011): e18384.

[3.42] S. Song et al. "Trusted P2P transactions with fuzzy reputation aggregation." IEEE

Internet Computing 9.6 (2005): 24-34.

[3.43] M. Lesani and N. Montazeri. "Fuzzy trust aggregation and personalized trust

inference in virtual social networks." Computational Intelligence 25.2 (2009): 51-83.

[3.44] R. Feng et al “An incentive mechanism based on game theory for trust management",

Security Comm. Networks, 7, 2318– 2325, 2014. doi: 10.1002/sec.941

[3.45] W. Jiang et al. "Understanding graph-based trust evaluation in online social networks:

Methodologies and challenges." ACM Computing Surveys (Csur) 49.1 (2016): 1-35.

[3.46] HJ Li et al. "Exploring the trust management mechanism in self-organizing complex

network based on game theory." Physica A: Statistical Mechanics and its Applications 542

(2020): 123514.

362

[3.47] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, "Combating web spam with trustrank."

Proceedings of the 30th international conference on very large data bases (VLDB). 2004.

[3.48] Z. Abrams, R. McGrew, and S. Plotkin, "Keeping peers honest in EigenTrust."

Proceedings of the 2nd Workshop on the Economics of Peer-to-Peer Systems. 2004.

[3.49] Srivatsa, Mudhakar, Li Xiong, and Ling Liu. "TrustGuard: countering vulnerabilities in

reputation management for decentralized overlay networks." Proceedings of the 14th

international conference on World Wide Web (WWW). 2005.

[3.50] S. Hamdi, et al. "IRIS: A novel method of direct trust computation for generating

trusted social networks." 2012 IEEE 11th International Conference on Trust, Security and

Privacy in Computing and Communications. IEEE, 2012.

[3.51] Q. Pei et al. "A strong and weak ties feedback-based trust model in multimedia social

networks." The Computer Journal 58.4 (2015): 627-643.

[3.52] G. Liu, et al, "TOSI: A trust-oriented social influence evaluation method in contextual

social networks." Neurocomputing 210 (2016): 130-140.

[3.53] M. Imran, et al, "Calculating trust using multiple heterogeneous social networks."

Wireless Communications and Mobile Computing 2020 (2020).

[3.54] E. Bertino, E. Ferrari, and AC Squicciarini. " Trust-χ: A Peer-to-Peer Framework for

Trust Establishment," IEEE Transactions on Knowledge and Data Engineering, 16.7 (2004): 827-

842.

[3.55] The National Strategy for Trusted Identities in Cyberspace, 2010. Available:

https://obamawhitehouse.archives.gov/blog/2010/06/25/national-strategy-trusted-

identities-cyberspace

[3.56] National Strategy for Trusted Identities in Cyberspace, 2010. Available:

https://www.dhs.gov/xlibrary/assets/ns_tic.pdf

[3.57] Identity Ecosystem Steering Group, 2013. Available:

https://web.archive.org/web/20130815232538/http://www.idecosystem.org/page/adherenc

e-nstic-guiding-principles

[3.58] National Institute of Standards and Technology (NIST), Applied Cybersecurity

Division, “Identity and Access Management Pilots”, retrieved from

https://www.nist.gov/pilots

[3.59] H. Yu, et al, "A survey of multi-agent trust management systems," IEEE Access 1: 35-50,

2013.

[3.60] M. Tagliaferri, and A. Aldini, "A trust logic for pre-trust computations," 2018 21st

International Conference on Information Fusion (FUSION). IEEE, 2018.

363

[3.61] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Architecture, Special

Publication (NIST SP)”, National Institute of Standards and Technology, Gaithersburg, MD,

[online], https://doi.org/10.6028/NIST.SP.800-207,

https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930420

[3.62] YH Liou and AJ Daly, “Closer to learning: Social networks, trust, and professional

communities,” Journal of School Leadership, 24(4), 753-795, 2014.

[3.63] RM Kramer, "Trust and distrust in organizations: Emerging perspectives, enduring

questions," Annual Review of Psychology, 50 (1999): 569.

Chapter IV

[4.1] P. Chandrasekaran and B. Esfandiari, "Toward a testbed for evaluating computational

trust models: experiments and analysis," Journal of Trust Management 2.1: 1-27, 2015.

[4.2] W. Sherchan, S. Nepal, and C. Paris, "A survey of trust in social networks," ACM

Computing Surveys (CSUR), 45.4, 1-33, 2013.

[4.3] H. Yu, et al, "A survey of multi-agent trust management systems," IEEE Access: 35-50,

2013.

[4.4] S. Agreste, P. de Meo, E. Ferrara, S. Piccolo, and A. Provetti, “Trust Networks: Topology,
Dynamics, and Measurements,” IEEE Internet Computing, 19(6), 26–35, 2015.

https://doi.org/10.1109/MIC.2015.93

[4.5] M.E.J. Newman, Networks. Oxford: Oxford University Press, 2010, pp. 169-180.

[4.6] S. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “The Eigentrust algorithm for
reputation management in P2P networks,” Proceedings of the 12th international conference

on World Wide Web (WWW '03), 2003. Association for Computing Machinery, New York, NY,

USA, 640–651. DOI:https://doi.org/10.1145/775152.775242.

[4.7] D. Roble (GitHub username danielrobleM), “Simulación de EigenTrust Simple”,
repository from GitHub, 2013. https://github.com/danielrobleM/-SimulationEigenTrust/.

[4.8] A. Pahari (GitHub username AyanPahari), “TrustRank Implementation (Python)”,
repository from GitHub, 2021. https://github.com/AyanPahari/TrustRank-Implementation-

Python.

[4.9] W. Yuan, D. Guan, Y.K. Lee, and S. Lee, “The small-world trust network,” Applied

Intelligence, 35(3), 399–410, 2011. https://doi.org/10.1007/s10489-010-0230-7.

[4.10] H. Sapkota, PK Murukannaiah, and Y. Wang, "A network-centric approach for

estimating trust between open source software developers," PLOS One 14.12: e0226281,

2019.

[4.11] P. Erdős, and A. Rényi, "On the evolution of random graphs," Publ. Math. Inst. Hung.

Acad. Sci 5.1: 17-60, 1960.

364

[4.12] DJ Watts and SH Strogatz, "Collective dynamics of ‘small-world’ networks," Nature

393.6684: 440-442, 1998.

[4.13] NetworkX, “watts_strogatz_graph”. Available
https://networkx.org/documentation/stable/reference/generated/networkx.generators.ran

dom_graphs.watts_strogatz_graph.html

[4.14] NetworkX, “gnp_random_graph”. Available
https://networkx.org/documentation/stable/reference/generated/networkx.generators.ran

dom_graphs.gnp_random_graph.html

[4.15] R. Dunbar, "Coevolution of neocortical size, group size and language in humans,"

Behavioral and Brain sciences, 16.4: 681-694, 1993.

[4.16] B. Gonçalves, N. Perra, and A. Vespignani, "Modeling users' activity on Twitter

networks: Validation of Dunbar's number," PLOS ONE, 6.8: e22656, 2011.

[4.17] R. Dunbar, "How many friends does one person need?," How Many Friends Does One

Person Need?, Harvard University Press, 2022.

[4.18] D. Striga and V. Podobnik, "Benford’s law and Dunbar’s number: Does Facebook have
a power to change natural and anthropological laws?," IEEE Access 6: 14629-14642, 2018.

[4.19] D. Wedding, "Have We All Exceeded Dunbar's Number?," APA Psycnet, 2009.

https://psycnet.apa.org/doi/10.1037/e672152011-001.

[4.20] A. Hernando, D. Villuendas, C. Vesperinas, et al, “Unravelling the size distribution of

social groups with information theory in complex networks,” Eur. Phys. J., B 76, 87–97, 2010.

https://doi.org/10.1140/epjb/e2010-00216-1

[4.21] T. Chai and RR Draxler, "Root mean square error (RMSE) or mean absolute error

(MAE)?–Arguments against avoiding RMSE in the literature," Geoscientific model

development, 7.3: 1247-1250, 2014.

[4.22] Python, “Time Module”. Available: https://docs.python.org/3/library/time.html

[4.23] B. Dadachev, A. Balinsky, H. Balinsky and S. Simske, "On the Helmholtz Principle for

Data Mining," 2012 Third International Conference on Emerging Security Technologies, 2012,

pp. 99-102, doi: 10.1109/EST.2012.11

[4.24] AL Barabási, Network Science. Cambridge: Cambridge University Press, 2016.

Chapter V

[5.1] Cybersecurity and Infrastructure Security Agency, “Mis, Dis, Malinformation”, 2022.
Available: https://www.cisa.gov/mdm

365

[5.2] World Economic Forum, “Global Risks 2013 Eighth Edition,” 2013. Available:
https://reports.weforum.org/global-risks-2013/risk-case-1/digital-wildfires-in-a-

hyperconnected-world/

[5.3] G. Liu, Y. Wang, & M. Orgun, “Trust Transitivity in Complex Social Networks,”
Proceedings of the National Conference on Artificial Intelligence (AAAI), 2011.

[5.4] S. Kamvar, M.T. Schlosser, and H. Garcia-Molina, “The Eigentrust algorithm for

reputation management in P2P networks,” Proceedings of the 12th international conference

on World Wide Web (WWW '03), 2003. Association for Computing Machinery, New York, NY,

USA, 640–651. DOI:https://doi.org/10.1145/775152.775242.

[5.5] U. Kuter and J. Golbeck. "SUNNY: A new algorithm for trust inference in social

networks using probabilistic confidence models," AAAI, Vol. 7, 2007.

[5.6] J. Ratkiewicz, M. Conover, M Meiss, B. Gonçalves, S. Patil, A. Flammini, and F. Menczer,

“Truthy: Mapping the spread of astroturf in microblog streams,” Proceedings of the 20th

International Conference Companion on World Wide Web, WWW 2011, 249–252.

https://doi.org/10.1145/1963192.1963301

[5.7] S. Flaxman, S. Goel, and J.M. Rao, “Filter bubbles, echo chambers, and online news

consumption,” Public Opinion Quarterly, 80 (Specialissue1), pp. 298–320, 2016.

https://doi.org/10.1093/poq/nfw006

[5.8] M. del Vicario, A. Bessi, F. Zollo, F. Petroni, A. Scala, G. Caldarelli, H.E. Stanley, and W.

Quattrociocchi, “The spreading of misinformation online,” Proceedings of the National

Academy of Sciences of the United States of America, 113(3), pp. 554–559, 2016.

https://doi.org/10.1073/pnas.1517441113

[5.9] C. Shao, P.M. Hui, L. Wang, X. Jiang, A. Flammini, F. Menczer, and G.L. Ciampaglia,

“Anatomy of an online misinformation network,” PLoS ONE, 13(4), 2018.
https://doi.org/10.1371/journal.pone.0196087

[5.10] X. Lou, A. Flammini, and F. Menczer, “Manipulating the Online Marketplace of Ideas,”
preprint from http://arxiv.org/abs/1907.06130, 2019.

[5.11] C. Shao, G.L. Ciampaglia, A. Flammini, and F. Menczer, “Hoaxy: A Platform for
Tracking Online Misinformation,” Proceedings of the 25th International Conference Companion

on World Wide Web (WWW '16 Companion). International World Wide Web Conferences

Steering Committee, Republic and Canton of Geneva, CHE, 745–750, 2016.

https://doi.org/10.1145/2872518.2890098

[5.12] M. Granik and V. Mesyura, “Fake news detection using naive Bayes classifier,” IEEE

first Ukraine conference on electrical and computer engineering (UKRCON) (pp. 900-903), 2017

IEEE.

366

[5.13] F.A. Ozbay and B. Alatas, “Fake news detection within online social media using
supervised artificial intelligence algorithms,” Physica A: Statistical Mechanics and its

Applications, 540, 123174, 2020.

[5.14] X. Zhou and R. Zafarani, “A survey of fake news: Fundamental theories, detection

methods, and opportunities,” ACM Computing Surveys (CSUR), 53(5), 1-40, 2020.

[5.15] S. Agreste, P. de Meo, E. Ferrara, S. Piccolo, and A. Provetti, “Trust Networks:
Topology, Dynamics, and Measurements,” IEEE Internet Computing, 19(6), 26–35, 2015.

https://doi.org/10.1109/MIC.2015.93

[5.16] W. Yuan, D. Guan, Y.K. Lee, and S. Lee, “The small-world trust network,” Applied

Intelligence, 35(3), 399–410, 2011. https://doi.org/10.1007/s10489-010-0230-7

[5.17] P. Li, W. Zhao, J. Yang, and J. Wu, “CoTrRank: Trust Ranking on Twitter,” IEEE Intelligent

Systems, 36(1), 35–45, 2021. https://doi.org/10.1109/MIS.2020.3045001

[5.18] K. Pogorelov, D.T. Schroeder, P. Filkukov, S. Brenner, and J. Langguth, “WICO Text: A
Labeled Dataset of Conspiracy Theory and 5G-Corona Misinformation Tweets,” Proceedings

of the 2021 Workshop on Open Challenges in Online Social Networks, 21–25, 2021. Association

for Computing Machinery, New York, NY, USA, DOI 10.1145/3472720.3483617,.

[5.19] M.E.J. Newman, Networks. Oxford: Oxford University Press, 2010.

[5.20] J.M. Kleinberg, “Method and system for identifying authoritative information
resources in an environment with content-based links between information resources” US
Patent 6112202A, August 29, 2000, https://patents.google.com/patent/US6112202.

[5.21] M.E.J. Newman, “Mixing patterns in networks,” Physical review. E, Statistical, nonlinear,

and soft matter physics 67 2 Pt 2, 2003.

[5.22] R.S. Burt, “Structural Holes: The Structure of Competition”, Cambridge, MA: Harvard

University Press, 1992.

[5.23] R. Albert and A.L. Barabási, “Statistical mechanics of complex networks,” Rev. Mod.

Phys., Vol. 75, Issue 1, pp. 47-97, 2002. American Physical Society, DOI

10.1103/RevModPhys.74.47, https://link.aps.org/doi/10.1103/RevModPhys.74.47.

[5.24] A.L. Barabási and R. Albert, “Emergence of Scaling in Random Networks,” Science, Vol

286, Issue 5439, pp. 509, Oct. 1999. DOI 10.1126/science.286.5439.509.

[5.25] D. Wang and Y. Qian. "Echo chamber effect in rumor rebuttal discussions about

COVID-19 in China: social media content and network analysis study." Journal of Medical

Internet Research 23.3 (2021): e27009.

367

Chapter VI

[6.1] Synopsys 2021 Open Source Security and Risk Analysis Report. [2021]. Web page.

Retrieved from https://www.synopsys.com/software-integrity/resources/analyst-

reports/open-source-security-risk-analysis.html

[6.2] GitHub users listing, available https://github.com/search?q=type:user&type=Users

[6.3] M. Osterloh and S. Rota, "Trust and community in open source software production,"

Analyse & kritik 26.1 (2004): 279-301.

[6.4] C. Cowan. "Software security for open-source systems." IEEE Security & Privacy 1.1

(2003): 38-45] [cite Payne, Christian. "On the security of open source software." Information

systems journal 12.1 (2002): 61-78.]

[6.5] FS Gysin and A. Kuhn. "A trustability metric for code search based on developer

karma." Proceedings of 2010 icse workshop on search-driven development: Users,

infrastructure, tools and evaluation. 2010

[6.6] H. Sapkota, PK Murukannaiah, and Y. Wang, "A network-centric approach for

estimating trust between open source software developers," PLOS One 14.12: e0226281,

2019.

[6.7] J. Fan, Y. Li, S. Wang and TN Nguyen. “A C/C++ Code Vulnerability Dataset with Code

Changes and CVE Summaries”. In MSR ’20: The 17th International Conference on Mining
Software Repositories, May 25–26, 2020, MSR, Seoul, South Korea. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3379597.3387501. GitHub repository available

https://github.com/ZeoVan/MSR_20_Code_Vulnerability_CSV_Dataset

[6.8] OpenSSL Cryptography and SSL/TLS Toolkit. [n.d.]. Web page. Retrieved from

https://www.openssl.org/

[6.9] Let’s Encrypt [n.d.]. Web page. Retrieved from https://letsencrypt.org/

[6.10] Let’s Encrypt Usage Statistics [n.d.]. Web page. Retrieved from

https://letsencrypt.org/stats/

[6.11] B. Schneier, “Let’s Encrypt Vulnerability”, Schneier on Security Web page. Retrieved

from https://www.schneier.com/blog/archives/2020/03/lets_encrypt_vu.html

[6.12] GH Archive [n.d.]. Web page. Retrieved from https://www.gharchive.org/

[6.13] N. Parlante. "Linked list basics." Stanford University Computer Science Library, 2006.

Retrieved from http://117.211.166.170:8080/jspui/bitstream/123456789/1552/1/Linked.pdf

[6.14] R. Boyle P. Bonacich. “The Development of Trust and Mistrust in Mixed-Motive

Games.” Sociometry 33.2 (1970): 123–139. Web.

368

[6.15] RM Kramer, "Trust and distrust in organizations: Emerging perspectives, enduring

questions," Annual Review of Psychology, 50 (1999): 569.

[6.16] AA Hagberg, DA Schult and PJ Swart, “Exploring network structure, dynamics, and
function using NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008),

Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11–15,

Aug 2008.

[6.17] M.E.J. Newman, Networks. Oxford: Oxford University Press, 2010.

[6.18] A. Clauset, ME Newman, and C. Moore, “Finding community structure in very large

networks.” Physical Review E 70(6), 2004.

[6.19] W. Yuan, D. Guan, Y.K. Lee, and S. Lee, “The small-world trust network,” Applied

Intelligence, 35(3), 399–410, 2011. https://doi.org/10.1007/s10489-010-0230-7

[6.20] S. Agreste, P. de Meo, E. Ferrara, S. Piccolo, and A. Provetti, “Trust Networks:
Topology, Dynamics, and Measurements,” IEEE Internet Computing, 19(6), 26–35, 2015.

https://doi.org/10.1109/MIC.2015.93

[6.21] A. Clauset, Aaron, CR Shalizi, and MEJ Newman. "Power-law distributions in empirical

data." SIAM Review 51.4 (2009): 661-703.

[6.22] J.M. Kleinberg, “Method and system for identifying authoritative information

resources in an environment with content-based links between information resources” US
Patent 6112202A, August 29, 2000, https://patents.google.com/patent/US6112202.

[6.23] H. Balinsky, A. Balinsky and S. Simske. “Document sentences as a small world”,
presented at 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC),

Anchorage, AK, USA, 9-12 October 2011. Published in: Tunstel, E. and Nahavandi, S. eds.

Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

Los Alamitos, CA: IEEE, pp. 2583-2588. 10.1109/ICSMC.2011.6084065

369

Chapter VII

[7.1] “Why isn’t my link karma accurate?”, 2014. Web page. Retrieved from
https://www.Reddit.com/r/NoStupidQuestions/comments/2flcgr/comment/ckace35/

[7.2] T. Squirrell, Tim. "Platform dialectics: The relationships between volunteer moderators

and end users on Reddit." New Media & Society 21.9 (2019): 1910-1927

[7.3] C. Buntain and J. Golbeck. "Identifying social roles in Reddit using network structure."

Proceedings of the 23rd International Conference on World Wide Web. 2014.

[7.4] PT Metaxas and J. DeStefano. "Web spam, propaganda and trust." International

Conference on World Wide Web, 2005.

[7.5] M. Potter. "Bad actors never sleep: content manipulation on Reddit." Continuum 35.5

(2021): 706-718

[7.6] M. Carman et al. "Manipulating visibility of political and apolitical threads on Reddit via

score boosting." 2018 17th IEEE International Conference On Trust, Security And Privacy In

Computing And Communications/12th IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE). IEEE, 2018

[7.7] Kossiakoff, Sweet, Seymour, and Biemer. Systems Engineering--Principles and Practice.

2d ed. Wiley and Sons. Hoboken, N.J., 2011

[7.8] E. Hargittai and G. Walejko. “THE PARTICIPATION DIVIDE: Content Creation and
Sharing in the Digital Age1.” Information, Communication & Society 11.2 (2008): 239–256.

Web.

[7.9] AutoModerator Documentation. [n.d.]. Web page. Retrieved from

https://www.Reddit.com/r/AutoModerator/wiki/index/

[7.10] Reddit moderation tools documentation. “What is crowd control?” [n.d.]. Retrieved

from https://mods.reddithelp.com/hc/en-us/articles/360038129231-What-is-Crowd-

Control-

[7.11] Reddit user u/Clippy_Office_Asst, “Introducing /u/Clippy_Office_Asst (aka Clippy)”,
2020. Web page. Retrieved from

https://www.Reddit.com/r/Clippy_Office_Asst/comments/jlme7b/introducing_uclippy_office

_asst_aka_clippy/

[7.12] Reddit user BotDefense. [n.d.]. Web page. Retrieved from

https://www.Reddit.com/user/botdefense

[7.13] Reddit user AssistantBOT. [n.d.]. Web page. Retrieved from

https://www.Reddit.com/user/assistantbot

[7.14] Reddit user repostsentinel. [n.d.]. Web page. Retrieved from

https://www.Reddit.com/user/repostsentinel

370

[7.15] Reddit user u/toxicitymodbot, “Updated bot backed by moderation-oriented ML for

automatically reporting + removing hate speech, personal attacks, insults”, 2022. Web
page. Retrieved from

https://www.Reddit.com/r/redditdev/comments/xdscbo/updated_bot_backed_by_moderati

onoriented_ml_for/

[7.16] Reddit user u/_pacjax_, “I made a bot that calculates user scores & ranks on a sub”,
2022. Web page. Retrieved from

https://www.Reddit.com/r/Bot/comments/w4nc3p/i_made_a_bot_that_calculates_user_scor

es_ranks_on/

[7.17] Toolbox for Reddit. [n.d.]. Web page. Retrieved from

https://www.Reddit.com/r/toolbox/

[7.18] B. Boe, “Working with PRAW’s Models » Comment”, 2022, Documentation for PRAW:

The Python Reddit API Wrapper. Web page. Retrieved from

https://praw.readthedocs.io/en/latest/code_overview/models/comment.html

[7.19] B. Boe, “Working with PRAW’s Models » Submission”, 2022, Documentation for PRAW:

The Python Reddit API Wrapper. Web page. Retrieved from

https://praw.readthedocs.io/en/latest/code_overview/models/submission.html

[7.20] B. Boe, Documentation for PRAW: The Python Reddit API Wrapper. Web page. Retrieved

from https://praw.readthedocs.io/

[7.21] H. Gupta (Kaggle user hritik7080), “Reddit's 2400 Posts Dataset”, 2020. Web page.
Retrieved from cite https://www.kaggle.com/datasets/hritik7080/Reddit-flair-dataset

[7.22] Kaggle user Chris (rootuser), “Worldnews on Reddit from 2008 to Today”, 2016. Web
page. Retrieved from https://www.kaggle.com/rootuser/worldnews-on-Reddit

[7.23] Google Developers, “Fact Check Tools API”. [n.d.]. Web page. Retrieved from
https://developers.google.com/fact-check/tools/api/

