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ABSTRACT 
 
 
 

UNDERSTANDING METEOROLOGICAL IMPACTS ON AMBIENT PM2.5 

CONCENTRATIONS USING RANDOM FOREST MODELS IN BEIJING 

 
Policymakers and non-governmental organizations have been implementing policies and 

interventions designed to reduce exposure to hazardous air pollution. Having knowledge of how 

non-policy related factors (i.e., meteorology) impact air pollution concentrations in a given study 

area can better inform longitudinal studies of the effects of the policy on air pollution and health. 

In this study, we apply a random forest machine learning approach to evaluate how 

meteorological factors including temperature, relative humidity, wind speed, wind direction, and 

boundary layer height influence daily PM2.5 concentrations in rural Beijing villages during 

heating months (January and February of 2019 and 2020). Ten-fold cross validation indicated 

good model performance with an overall r2 of 0.85 for season 1, and 0.93 for season 2. The 

models were able to identify variables that were the most important for predicting PM2.5 

concentrations both field seasons (relative humidity) and variables that had changes in relative 

importance between seasons (temperature and boundary layer height). Additionally, examination 

of one and two-way partial dependence plots as well as interactions through Friedman’s H-

statistic granted insight into how meteorology variables influence PM2.5 concentrations. Findings 

from this work provide a basis for adjusting for meteorological variability in important indicators 

of air quality like PM2.5 concentrations in an ongoing real-world policy evaluation of a province-

wide ban on household use of coal for space heating in Beijing, which is critical for isolating (to 

the extent possible) changes in measured pollutant concentrations attributable to the policy. 
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1. INTRODUCTION 
 
 
 

 Fine particulate matter air pollution (PM2.5) is a heterogenous, particle phase air pollutant 

that is emitted from combustion, abrasion, and industrial processes. Evidence from 

epidemiological studies have identified associations between exposure to PM2.5 and 

cardiovascular disease.1–7 Emerging research has also identified PM2.5 exposure as a risk factor 

for obesity, diabetes, and neurogenerative diseases.8–11 These studies and others have established 

exposure to PM2.5 ass a leading environmental health risk factor globally.2 In addition to the 

well-studied adverse health outcomes associated with PM2.5 exposure, certain chemical 

components of PM2.5, like black carbon, can absorb heat and contribute to atmospheric 

warming.12,13 

 In response to the health and climate impacts of PM2.5 pollution, governments, non-

profits, and non-governmental organizations have enacted polices and interventions designed to 

improve air quality.14 Such policies and interventions include those intended for short term (e.g. 

temporary restriction on traffic) and long term (e.g. improved vehicle standards) impact. A recent 

focus of air pollution interventions has been on reducing exposure to household air pollution 

generated from solid fuel-based cooking and heating. Approximately three billion globally cook 

and or heat their homes with solid fuel stoves, which generates high amounts of hazardous air 

pollution indoors as well as contributing to poor outdoor air quality.15–17 Household air pollution 

is a persistent source of harmful exposures in China, where estimates through 2012 indicate that 

nearly 85% of rural households burn solid fuels to heat their homes and 40% of rural households 

still use some solid fuels to cook.18 Interventions for settings with household solid fuel 

combustion include a range of sociological and technological efforts to introduce cleaner burning 
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solid fuel stoves and/or fuels to promote transitions to electric or natural gas powered 

heating/cooking.19,20 

 A thorough evaluation of how air quality interventions work in practice (i.e. 

“accountability studies”) is critical for understanding how and to what extent they benefit public 

health.21 In addition to pre- and post-intervention air quality measurements, rigorous 

accountability studies should account for confounding variables that can also influence air 

quality, including other regulations that may directly or indirectly influence air quality, adoption 

of policies, technologies and or strategies, and atmospheric conditions. One study found that 

wintertime ambient PM2.5 concentrations in north and south east Asia could vary by up to 25% 

between years due to different meteorological conditions.22 Given that China has enacted 

numerous policies designed to improve ambient air quality, knowledge of how meteorology 

impacts PM2.5 concentrations over space (i.e. area where policy is enacted) and time (i.e. period 

when policy is expected to have an impact) is important in the broader context of efforts to 

evaluate the effectiveness an impacts of individual policies on air pollution.  

 In the past, accountability studies of air quality interventions have most commonly 

adjusted for meteorology in a few ways. For example, in regression models that are constructed 

to evaluate the effects of an air pollution intervention policy on one or several downstream health 

outcomes, researchers may include terms for common meteorological variables (e.g., 

temperature and relative humidity). In other examples, researchers run several emissions model 

scenarios with different air pollution emissions inputs that reflect the potential outcome scenarios 

of the air pollution intervention policy. The relationship between meteorology and air pollution 

concentrations is complex and non-linear, so having to correctly adjust each meteorological 

parameter to meet regression model assumptions can be challenging and make model 
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interpretation difficult.23 Additionally, the ability of emissions modeling to properly characterize 

and quantify relationships between air pollution and meteorological variables relies on the 

robustness of the underlying model assumptions and the accuracy of the emissions inventories 

which may not be available for all sources in every region. 24,25 The challenges encountered 

using parametric methods to model the impact of meteorology on PM2.5 concentrations may be 

more easily handled by robust, non-parametric machine learning algorithms such as random 

forest models.26 These models do not require pre-determined information about the structure 

(i.e., linear, spline, cubic) of the relationship between variables. Additionally, assumptions about 

the distributions of data are more relaxed than for parametric models, which is beneficial for 

environmental data that often have skewed distributions.  
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2. OBJECTIVES, OUTPUTS, AND OUTCOMES 
 
 
 

This thesis contributes to a larger study that seeks to evaluate the impact of transitioning 

households from coal-based space heating to electric or natural-gas based heating on air quality 

and health. The context of this study is a natural experiment (i.e., observational study) where the 

coal-to-electricity energy transition occurs at the village level throughout the Beijing province in 

China. To successfully conduct the analysis for the larger study, variables that have the potential 

to confound the impacts of the policy on air pollution and health must be characterized and 

quantified. This thesis pursues the following objectives: (1) quantify the joint and independent 

effects of meteorological variables on ambient PM2.5 during two heating seasons; (2) determine 

whether and how meteorological variables should be represented in the health-based analyses 

(i.e., mediation analysis of the impact of changes in PM2.5 due to the policy on health) as 

confounding variables; and (3) propose approaches to representing meteorology in the mediation 

analysis. I hypothesize that the influence of meteorological variability on local, outdoor PM2.5 

where we are evaluating effects of a coal-ban policy may vary over time and should thus be 

accounted for separately in each season over the entire period of the analysis (four years). I 

propose random forest models as an effective model type for the above-mentioned objectives. An 

effective model in this study is one that meets objective 1 by correctly modeling the relationships 

between meteorological variables and PM2.5, as well as providing results that are easily 

interpretable and useful for objectives 2 and 3. 

With this hypothesis and rationale in mind, the work conducted as part of this thesis was 

designed to yield the following outputs: a measure of how strongly meteorological variables 

predict outdoor PM2.5 in the study setting (i.e., predictability); a measure of how much including 
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meteorological variables increases (or decreases) model accuracy (i.e., variable importance); the 

marginal effects of individual meteorological variables on prediction of outdoor PM in the study 

setting (i.e., partial dependence); and the simultaneous effect of two or more meteorological 

variables on prediction of outdoor PM2.5 in the study setting partial dependence, and variable 

interactions. For objective 1, I will quantify the impact of meteorological variables on ambient 

PM2.5 in our study by evaluating the predictability of random forest models that include 

meteorological variables. Differences in the predictability between models developed for two 

heating seasons will be used to assess the differences in impacts of meteorology on PM between 

heating seasons to determine if meteorology should be modeled separately for each season. 

Identification of meteorological variables that should be included in the mediation analysis 

(objective 2) will be assessed by comparing the relative variable importance and two-way 

variable interaction strength among meteorological variables. We will also use the shape of the 

partial dependence plots to inform how to model meteorological variables in the mediation 

analysis for objective 2. Further, our findings about the relationships and interactions between 

meteorological variables and PM2.5 will be compared to known physical relationships in our 

study region. For objective 3, we synthesize our results of predictability, variable importance, 

partial dependence, and variable interactions to make recommendations about how to model 

meteorology in our study setting and, ultimately, correct for meteorological variability in our 

study setting so that we can evaluate the effectiveness of the emissions reduction policy in a real-

world context. 
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3. REVIEW OF LITERATURE 
 
 

 
3.1. PM2.5 exposure and health 

3.1.1. Sources of PM2.5 

 Fine particulate matter (PM2.5) air pollution is a mixture of airborne solid particles and 

liquid droplets with a diameter of 2.5 microns or less. Dominant sources of ambient PM2.5 vary 

by region based on proximity to different sources. Urban areas across the world share three 

common sources of PM2.5: resuspended crustal material (dust), vehicle emissions, and secondary 

aerosols. 27–31 Most urban areas also contain sources related to industrial processes in the region 

that are usually characterized by concentrations of specific metals related to the industry.32–35 In 

regions that burn solid fuel for cooking and or heating, PM2.5 resulting from the combustion of 

coal and or biomass may also be a present source.36,37 Other sources in urban areas are more 

specific to the region and can include ship emissions in coastal cities, solid waste burning, 

construction dust, or oil refining.31,32,36,38 Rural areas usually have fewer sources of ambient 

PM2.5 than urban areas and are less commonly analyzed for sources. Rural areas that burn solid 

fuel for household energy needs can see large contributions from solid fuel combustion.39,40 

Depending on the proximity to a major city, rural areas can be subject to pollution transported 

from a nearby city. Secondary sources and dust have also been found to contribute to ambient 

PM2.5 in rural areas.39  

 In addition to emissions from a range of sources and source activities, ambient PM2.5 

concentrations can be impacted by meteorological conditions.23,41,42 Variables like temperature, 

relative humidity, wind speed, wind direction, and boundary layer height can impact the 

dispersion, transport, deposition, and rate of particle formation for PM2.5. For example, increased 
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temperature and relative humidity can increase secondary aerosol formation, which is why it can 

be more common to observe higher contributions to ambient PM2.5 from secondary sources in the 

summertime.43–45 Higher wind speed and boundary layer height can increase horizontal and 

vertical dispersion respectively, reducing ground level PM2.5 concentrations.46,47 Wind direction 

can positively or negatively influence PM2.5 concentrations depending on the proximity and 

direction relative to sources.48 

2.1.2. Health effects of PM2.5 

 Exposure to PM2.5 can be more hazardous than exposure to larger particles (e.g., PM10, 

total suspended particulates (TSP)) because PM2.5 is small enough to penetrate deep into the 

lungs and be absorbed into the blood stream.3 The mechanisms by which exposure to PM2.5 

cause disease is still an area of active study, but evidence has been presented for several 

biochemical mechanisms. For example,  PM2.5 may cause disease through the generation of 

cellular reactive oxygen species (ROS).49,50 Redox-active components of PM2.5 like transition 

metals and polycyclic aromatic hydrocarbons (PAHs) can react in cells and generate ROS which 

can lead to cellular damage and disease.49,51–54 Exposure to PM2.5 has also been found to be 

associated with the upregulation of inflammation-related genes.55 Further, chronic inflammation 

has been associated with several chronic diseases including hypertension and cardiovascular 

disease.56,57 

  Decades of epidemiological evidence provide, arguably conclusive, evidence that human 

exposure to PM2.5 is associated with increased risk of cardiovascular disease.1,3,7,58 In the global 

burden of disease studies, preventable exposure to air pollution is a leading cause of death 

globally and was estimated to have contributed to 4.58 million deaths in 2017.59 More recent 

evidence has linked PM2,5 exposure to increased risk of diabetes, obesity, and neurological 
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disease.8,10,11 Not all areas of the world are impacted by PM2.5 exposure equally. People living in 

low-income countries, the elderly, and small children are those who may experience elevated 

exposures, as well as elevated susceptibility to health effects of PM2.5 exposure2,59 Leading 

environmental risk factors include exposure to household air pollution from burning solid fuels 

indoors and at home, which is more common in low-income countries.15,60 

3.2. Accountability studies of air quality interventions 

3.2.1. Accountability study frameworks 

 An accountability study is one that aims to assess the effectiveness of a given policy or 

intervention. In 2003, the Health Effects Institute (HEI) published a conceptual framework 

outlining the “accountability chain” which identifies the relationship between a regulatory action 

and a human health outcome by evaluating relevant “links” in the chain.61 In order, the links are 

regulatory action, emission, ambient air quality, exposure/dose, and human health response. This 

framework also outlines potential confounding variables that can affect the relationship between 

any two sequential links in the chain. For example, how much a group targeted by a policy 

complies with said policy will impact how much the regulatory action impacts emissions. The 

purpose of each link past the “regulatory action” link is to provide researchers with specific 

outcomes that can be used to evaluate the impacts of a regulatory action. Under this framework, 

each link should be evaluated in full to understand the regulation at a mechanistic level.  

 In contrast to the HEI suggested accountability chain, Zigler and Dominici 2014 propose 

a “direct accountability” approach for evaluating the effectiveness of a regulatory action.62 In the 

direct accountability framework, relationships between regulations, air quality, and health 

outcomes are evaluated using statistical methods. Zigler and Dominici argue that using a 

potential outcomes study design, some of the links in the accountability chain do not need to be 
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examined directly. “Potential outcomes” refers to the issue of only being able to observe the air 

quality under one of following scenarios: 1. The policy is enacted; 2. The policy is not enacted. 

In an ideal scenario from the research design perspective, we would be able to measure the air 

quality under both scenarios and compare the difference to evaluate the effectiveness of a given 

regulation. However, this is infeasible. Instead, to replicate the “counterfactual” (i.e., observing 

air quality under the conditions without regulatory action), we can select a control set of 

conditions that is similar in ways to the treated set of conditions in ways that are related to air 

quality and health. Selecting an adequate control allows for the application of statistical methods 

that do not require evaluation of every link in accountability chain chain.  

3.2.2. Examples of previous accountability studies 

 Extensive reviews that synthesize the results of accountability studies related to air 

quality have been published elsewhere.24,63,64 The focus of this section will be on the 

examination of two accountability settings where initial evaluations of the regulations found 

them effective at improving air quality and health endpoints, but later studies called the initial 

findings into question.  

 The first example we turn to is the the 1996 Summer Olympic Games, which were hosted 

in Atlanta, Georgia. To reduce traffic related air pollution during the games, several control 

measures were put into place. Examples of control measure include an increase in public 

transport available 24-hrs a day during the Games, restricting traffic in the downtown area near 

the games, and efforts to reduce vehicle travel during commuting hours. A 2001 analysis by 

Friedman et al., was one of the first to evaluate the impact of short-term traffic-related air 

pollution interventions and is frequently cited as evidence that they are effective.65 Their analysis 

found a reduction in hospital visits associated with pediatric asthma, as well as reductions in 
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outdoor ozone during the Games. Additionally, they noted that meteorological conditions during 

the Games did not differ by a large amount compared to the baseline measurements. In 2010, 

Peel et al. noted the limitations of the Friedman and colleagues 2010 study and performed a 

follow-up analysis using additional meteorological and health data.66 While Peel et al. (2010) 

found evidence of reduced ozone concentrations, they attributed them to meteorological 

conditions that were not conducive to ozone production. Additionally, they did not identify 

changes in respiratory- or cardiovascular-related emergency department visits for adults or 

children during the Games after adjusting for seasonal trends in air pollution concentrations and 

health outcomes during the years before and after the Games. 

 In a second example, we consider 29th Olympic Games held in August of 2008 in the 

capital city of Beijing by host country China. As a stipulation of hosting the Olympic and 

Paralympic events, the Chinese government agreed to reduce emissions and improve air quality 

for the duration of the Games. Starting in late July of 2008, local control measures including the 

closure of heavily polluting factories, replacement of coal-burning furnaces with natural gas 

replacements, and restriction of on-road vehicle traffic patterns. Similar measures were also 

taken in nearby regions of China to reduce the impact of regional transport on air quality in 

Beijing. The planned nature of these restrictions let researchers use this as an opportunity for a 

“natural experiment” or observational study (discussed in section 2.2.3). 

Several studies in Beijing recruited participants and measured baseline health and air 

quality prior to the restrictions being implemented. X. Wang 2009 and M. Wang 2009 attributed 

reductions in measured outdoor black carbon (a chemical component of PM), carbon monoxide, 

nitrogen oxides, and traffic-related volatile organic compounds to traffic-control measures.67,68 

Ambient concentrations of ozone, carbon monoxide, nitrogen oxides, and sulfur dioxide 
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concentrations were also found to be lower during the Games compared to the previous two 

years.69 Additionally, improvements in health endpoints were measured for biomarkers of 

inflammation, birthweight, peak expiratory flow, and asthma related hospital visits.70–73 Most of 

the aforementioned studies related to the Beijing Olympic Games air emissions interventions 

account for meteorology in some way, most commonly by including variables for temperature 

and relative humidity in their statistical models. In 2009, W Wang and colleagues preformed an 

in-depth meteorological analysis and found that meteorological conditions accounted for 40% of 

the variability in PM10 during and post-Games, whereas source control only account for 16% of 

the variability.74 Few of the previous studies that attempted to control for meteorology mention 

the effect of meteorology in these situations. While these studies predominantly concluded that 

the air pollution emissions restrictions in place during the Games had positive impacts on 

multiple health and exposure endpoints, the work by W Wang et al. (2009) shows that they failed 

to elucidate the multiple pathways through which air pollution concentrations and health 

endpoints may be changing.  

3.2.3. The role of observational studies for accountability 

 The gold standard for evaluating the effect of any treatment on any outcome is a 

randomized controlled trial (RCT).75,76 RCTs are appealing to scientists because through the 

process of random treatment assignment, the relationship between confounding variables and the 

outcome is severed. This allows for simple comparisons of the outcome between the treatment 

and control group to make causal statements about treatment effectiveness. A RCT approach 

would not work for air pollution studies for several reasons. First, it would be unethical to 

forcibly expose humans to air pollution given the well documented health effects. Second, 

regulations are large in scope, expensive, and logistically difficult to implement without having 
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to worry about doing so in a RCT framework. Third, it is difficult to blind participants to 

treatment status, which may impact behaviors associated with the health or air pollution outcome 

of interest. 

Observational studies are perhaps the most common study design in environmental health 

because they do not suffer from the ethical dilemma that a RCT would.76,77 In an observational 

study, researchers observe an outcome of interest without having a direct say in what the 

treatment is, who receives the treatment, and how/when the treatment is administered. This lack 

of randomization and control of the study design means that observational studies are subject to 

bias by confounding variables. Around the turn of the 21st century, researchers proposed a 

potential outcomes framework for addressing causality in observational studies. The potential 

outcomes framework states that casual effects of an intervention are the difference between the 

outcomes of the person’s current treatment status (e.g., treated) to what it would be if they had 

the opposite treatment status (e.g., untreated). Therefore, causal statements about the impact of 

interventions measured through observational studies can be made with sufficient understanding 

of the potential outcomes under opposite treatment status (i.e., “counterfactual”). Details of 

adjusting for confounding and constructing a counterfactual scenario are discussed in the 

following section.  

3.3. Tools for addressing meteorology in accountability studies 

3.3.1. Summary of current approaches for addressing meteorology in accountability studies 

 The current approach to accountability studies can be divided into two main categories 

based on their outcome of interest. The first major category of air pollution accountability studies 

evaluates the impact of a regulation on air quality through two major analysis routes. The first 

analysis route consists of applying statistical tools for detrending meteorological effects like 
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Autoregressive Integrated Moving Average models or Kolmogorov-Zurbenko (KZ) filters to 

time series of air pollution concentrations.78,79 These methods use multiple moving averages 

taken across several different time periods of interest. For example, passing a time series of 

pollution concentrations through the developed KZ filter can remove the impacts of long term 

and seasonal meteorological effects, leaving behind a residual signal that can be interpreted as 

short term meteorological impacts. Regression methods (i.e., multiple linear, general additive, 

generalized estimating equations) with the residual signal as the response and meteorological 

variables as the predictors can then be applied to determine the associations between 

meteorological variables and air pollution concentrations. Statistical detrending methods require 

long-term measurements of pollutions over multiple years to get accurate estimates of 

meteorological impacts. Some interventions are implemented for only short periods of time (i.e., 

emissions restrictions for the Olympic Games), in which case, detrending may not be feasible. 

Additionally, studies of interventions administered in areas of the world that lack extensive 

monitoring networks (i.e., rural China) are usually too resource-constrained to conduct multi-

year, real-time measurements of pollutants. However, statistical detrending methods can still 

prove useful in areas where sufficient data are available.  

The second most common way to understand how a regulation impacts air quality is 

through the use of chemical transport models (CTMs).24,80–82 Commonly used CTMs are the 

Community Multiscale Air Quality model (CMAQ) and the Goddard Earth Observing System 

chemistry model (GEOS-Chem). Both the CMAQ and GEOS-Chem models use emissions 

inventories, meteorological variables, and atmospheric chemistry to simulate air pollution 

concentrations. To evaluate the effect of a particular air pollution regulation or policy, changes to 

an emissions inventory based on the expected impacts of the regulation can be made and 
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compared to a model with the non-altered emissions inventories as an input. CTMs are very 

comprehensive and incorporate decades of knowledge on metrological and atmospheric 

chemistry impacts on air pollution. They can be useful for predicting the impacts of a regulation 

over large spatial scales. However, CTMs are limited by the quality of the emissions inventories 

supplied to them. Up to date emissions inventories are not available for every region of the 

world. Additionally, these models do not take into consideration human behavior which can 

impact policy adoption, and therefore emissions, especially if a policy is implemented in a 

heterogenous manner over time and space (e.g., over multiple years across several or many cities 

or villages).  

 The second common category of accountability studies are epidemiological studies that 

evaluate the health impact of air pollution regulations.65,66,70,71 These studies use regression-

based methods such as mixed effects models, general estimating equations, or general additive 

models to quantify the relationship between PM2.5, a regulation, and continuous health outcomes 

like blood pressure or binary health outcomes like hospitalizations. A common statistical 

framework within in a cohort study is the difference-in-difference (DiD) approach, which 

compares the difference of a response between the treatment and control group pre- and post-

treatment.83,84 As mentioned in section 2.2.1, selecting a control group with similar 

characteristics for variables that are relevant to the outcome can strengthen the statistical power 

of an observational study by eliminating, or at least accurately account for, confounding 

variables. Most studies account for meteorology by including, most commonly, terms for 

temperature and relative humidity in the regression model statements. While temperature and 

relative humidity are important meteorological variables to consider, there are other variables 

relevant to consider such as wind speed and boundary layer height. Additionally, the relationship 
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between PM2.5 and meteorological variables can be non-linear and include interaction terms that 

may be hard to address in regression models. Not including important confounding variables or 

mis-specifying the outcome-confounder relationship in a regression model can lead to inaccurate 

estimations of the treatment effect. 

 Air quality interventions (i.e., coal ban, clean cookstove programs) impact several 

variables (“mediators”) that are associated with health outcomes including exposure to multiple 

pollutants, household temperature, and subjective wellbeing. Mediation analysis can be applied 

to disentangle the “indirect effects” of the policy on health caused by one mediator variable (e.g., 

PM2.5 exposure or outdoor PM2.5) compared to other mediator variables (e.g., indoor 

temperature) as well as the “direct effect” of the policy itself on health. This type of analysis is 

useful because it enables researchers to make causal statements about how much of the impact of 

a given air quality intervention on health is due to changes for a given mediator (e.g., PM2.5) 

which gives insight into how the intervention works. However, this type of analysis is 

challenging because it requires accounting for as many confounding variables, including 

meteorology, as possible. 

Mediation analysis is sensitive to mediator-outcome confounding, among other 

confounding biases. Within the context of the worked presented herein, meteorological variables 

like temperature and relative humidity can impact both the health outcome (e.g., blood pressure) 

and PM2.5 concentrations. Because mediation analysis is sensitive to confounding in this way, 

methods to control for confounders during statistical analysis stage are required. The two most 

common ways of controlling for mediator-outcome confounding in mediation analysis are 

sequential g-estimation and inverse probability weighting with propensity score matching. 

Sequential g-estimation estimates the controlled direct effect by first modeling the outcome as a 
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function of the mediator (e.g., PM2.5), policy (e.g., coal ban), and confounders (e.g., 

meteorological variables). Next, a new outcome variable is calculated by subtracting the effect of 

the mediator from the outcome variable. Finally, the new controlled outcome variable is modeled 

as a function of the mediator and confounders.  

Inverse probability weighting takes a different approach by first modeling the mediator as 

a function of confounding variables. Each observation is then assigned a weight based on how 

much the mediator can be explained by the confounders. Observations receive a lower weight the 

more the mediator can be explained by the confounding variables. The weights are then included 

in a standard regression where the outcome is modeled as a function of the outcome, mediator, 

and policy. Inverse probability weighting has been shown in a comparative simulation study to 

be sensitive to properly modeling the mediator-confounding relationship, which in our study 

would include the PM2.5-meteorology relationship.85 

3.3.2. Machine learning approach 

 The application of machine learning (ML) in academic research has risen in popularity in 

recent years, in part, due to the development of user-friendly packages for commonly used 

statistical programing languages like R and Python.86–88 Examples of commonly used ML 

methods include random forest, XGBoost, Bayesian regression trees, and neural networks. Most 

regression-based ML methods employ a decision tree-based method to develop a predictive 

model. Specific details of the method used in this study will be discussed in the methods section 

and the basics of a decision tree model will be described here. Decision trees are constructed by 

testing which value for a particular predictor variable does the best job at sorting the response 

variable into two separate bins.89 For example, predicted PM2.5 could be sorted into two bins 

based on whether the associated relative humidity was above or below a certain value. The 
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response then continues to be sorted by predictor values until some criteria has been met (e.g., 

some function is optimized. or the new way of sorting is not better than the previous way of 

sorting).  

Some ways that tree-based ML methods differ from one another are how large a decision 

tree grows, how much influence each variable has, and how a stopping point is determined. 

Decision trees in random forest models are weighted equally and continue to grow until the 

sorting of a new node no longer improves on the sorting of the previous node. In contrast, 

decision trees in XGBoost consist of only one sorting variable per tree and each tree assigned a 

weight based on a selected optimization function. The random forest approach was chosen over 

other decision tree models because its relatively low barrier to understand and implement.  

ML methods can be useful tools for analysis because they are not bound by the same 

assumptions as standard regression techniques. First, ML does not require prior knowledge of the 

type of relationship between a predictor and response. In comparison, regression methods usually 

require transformation or other adjustments (e.g., polynomial terms, splines) to the model 

statement to meet the assumption of a linear relationship between a response and predictor. 

Additionally, due to the sequential and random nature of variable evaluation at each step of 

constructing a decision tree, ML models fit interactions between predictor variables. For 

example, let us define hypothetical scenario (equation 1) with response Y as a function of 

predictors x1, x2, x3, and x, with two terms, in this case, representing interactions between x1 and 

x4, and between x2 and x3. 

(1) Y = x! + x" + x# + x$ + (x! × x$) + (x" × x#) 

An example model statement for a ML method would be (equation 2):  

(2) Y = 	 x! + x" + x# + x$ 
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At some point in the construction of the decision tree, x1 will be selected and determined to be 

the best variable for sorting the response at that point of the tree. At the next sorting step, if x4 is 

the best variable to sort by it would be able to reflect the interaction between itself and x1, 

because the variable had previously been sorted by x1. The variable x4 has a higher likelihood to 

be chosen as the next variable to sort the predictor by because it should minimize any sorting 

error by modeling the interaction term. 

 The most common criticism of ML models is their “black-box” nature, meaning 

researchers are not able to observe or determine how the model is making decisions or interpret 

the implications of those decisions. Previously, the lack of ML model interpretability has limited 

their use to predictive tasks, where an understanding of how the model is reaching its’ decisions 

is less important than in descriptive models. Recent research has led to the development of 

explanatory tools to increase the transparency of ML models. The explanatory tools extend the 

use of ML models past prediction and enable descriptive information to be extracted from the 

model. Being able to identify descriptive information is advantageous given that ML models are 

useful for modeling data with complex underlying relationships. While the descriptive 

information may not be causal in all cases, it can still provide insight into relationships that are 

important to consider in explanatory models.90 

Here, I present a set of common explanatory tools and metrics for ML models that can be 

used for a range of descriptive purposes. To begin, to determine which variables are contributing 

to the prediction of a given response and their contributions relative to one another, variable 

importance metrics can be calculated for predictor variables to determine which variables are 

contributing to the prediction of the response and their contributions relative to one another. If, in 

addition to this, we would like to assess the marginal effect of a predictor on the response 
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variable (similar to a regression coefficient), partial dependence plots (PDPs) are appropriate.89 

PDPs are calculated using the same method as Pearl’s back-door adjustment (i.e. a generalizable 

approach to adjusting for the effect of a measured confounder in conventional causal analysis 

frameworks), so it has been argued that they can also be interpreted casually in certain 

circumstances.91,92 To instead to understand the conditional effect of a predictor on the response, 

individual conditional expectance (ICE) can be constructed.94 Further, Friedman’s H-statistic can 

be calculated to quantify how much of the main effect (i.e., marginal effect from the partial 

dependence plot) of a predictor variable is explained by interactions. Information about 

interactions is useful for understanding how combinations of values of two or more variables 

may alter the predictor-response relationship shown in the partial dependence plots. In the 

context of this work, collectively,  these explanatory tools are useful for determining whether and 

how meteorological variables should be included in the mediation analysis (objective 2) as well 

as showing how meteorology could be represented in the mediation analysis (objective 3). 

 ML models have been applied to predict PM2.5 concentrations in several studies with high 

predictive power (r2 > 0.8) using satellite measurements, meteorology, and land use variables. 

Most studies use satellite-based aerosol optical depth (AOD) values as surrogate measure of 

PM2.5 concentrations over the study area.95–98 Robust relationships between AOD and PM2.5 have 

been established, but there are limitations to using AOD over measured PM concentrations 

including missing values due to cloud cover and low spatial resolution.99 As a result of using 

satellite measurements in these ML modeling efforts, most studies tend to predict PM2.5 

concentrations over a large spatial area with low spatial resolution (e.g. country, county, 

state).100,101 Doing so requires interpolation of PM2.5 concentrations from AOD or ground 

monitors which may not accurately reflect the spatial heterogeneity within a particular grid cell. 
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To our knowledge, very few studies have applied ML methods and explanatory tools to model 

environmental data collected on the ground in the field as part of an observational study. At 

present, it is unclear how capable ML methods are for modeling known physical relationships 

from field-based observational data. Given the widespread use of observational studies in 

environmental health settings, and the need for tools to account for confounding variables like 

meteorology, especially in field-based observational studies of air quality policy interventions, 

more evaluations of ML methods and explanatory tools in the context of observational studies, 

such as the work presented here, is warranted.  
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4. METHODS 
 
 
 

4.1. Study Setting 

 This analysis uses data that were collected from November to February in 2018/2019 and 

2019/2020 as part of a larger longitudinal study designed to assess the air pollution and health 

impacts associated with the transition from coal-based residential space heating to the use of 

electric and natural gas-powered heat pumps for household heating (Figure 1). Specifically, 

outdoor air quality data were gathered from 49 villages in the Beijing region, situated in the 

rural, mountainous regions of the Miyun, Huairou, Fangshan and Mentougou districts. These 

villages were located far (> 40 km) from the Beijing city center, where outdoor air pollution 

concentrations were most likely to be most strongly influenced by local sources. At baseline (i.e., 

winter 2018-2019), households in these villages reported using coal and biomass as their primary 

sources of fuel for household space heating. 

4.2. PM2.5 Measurements and Calibration 

 PM2.5 concentrations were collected at 1-minute resolution using ZeFan sensors 

(www.zfznkj.com), which measure PM via light-scattering using the Plantower PMS7003 

sensor. These sensors have shown high agreement with reference instruments in several 

studies.102,103 One to three sensors were placed in each village during the heating season (Table 

S1). The Spearman correlation coefficients between sensors in the same village were generally 

above 0.80 (Figure S1), so reported values and values used in this analysis represent the average 

of PM2.5 concentrations measured by all sensors in a given village. All sensors were calibrated 

using two methods. First, before and after sensor deployment for each season, they were co-

located and calibrated against two standard reference instruments (TEOM 1400A and BAM 
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model 5030) over the course of approximately 10 days. Additionally, a correction factor was 

developed by comparing time-integrated sensor concentrations to filter-based PM2.5 

measurements collected in each village throughout the duration of each field season. These filters 

were collected from each village approximately every 7 days during the heating season 

(November-February) on Zefluor filter media (PTFE 37 mm with 2 µm pore size, Pall Labs) 

using ultrasonic personal air samplers (Access Sensor Technologies, CO, USA).104 Briefly, air 

was actively sampled continuously at a rate of 1.0 L min-1 over filter sampling media (Zefluor 

PTFE 37 mm with 2 µm pore size, Pall Labs). Sampling flow rates were calibrated and checked 

before and following each UPAS deployment using a mass flow meter (Alicat Scientific, AZ, 

USA). Additional information about sensor calibration, the development of correction factors, 

and gravimetric analysis is available in the appendix (Text S1 and Figures S2-S6). 

4.3. Meteorological Data 

Hourly boundary layer height, 2-m temperature, 2-m dew point temperature, and 2-m 

horizontal wind speed components (u, v) were obtained from the European Center for Midrange 

Weather Forecasting ERA5 reanalysis dataset (0.25 x 0.25 resolution).105 Village-level 

meteorology values were found by identifying the four surrounding grid points with values 

available from the ERA5 reanalysis, and then applying inverse distance weighted interpolation 

from those four grid points to the village. Percent relative humidity was calculated from the 2-m 

dew point temperature using the “weathermetrics” package (version 1.2.2) in R.106 Total hourly 

wind speed and wind direction were calculated from the horizontal wind speed components. 

4.4. Random Forest Modeling 

Random forest (RF) models are a machine learning approach that generates an ensemble 

(forest) of independently constructed decision trees that are used for prediction.107,108 Each tree is 
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built by selecting a set number of predictor variables at each node, sorting the values of the 

outcome variable by the values of the predictor variables, and selecting the predictor variable 

that has the lowest sorting error for each node. Sorting error is determined at each node by 

evaluating residual sum of squares for all possible binary classifications of each variable selected 

to be tested. The tree is fully constructed once the sorting error of a new node does not improve 

upon that of any previous nodes. The models have two main parameters: the number of trees in 

each forest and the number of parameters tested at each node. The value for these parameters that 

minimize the prediction error can be found by generating forests parameter values and selecting 

the value that results in the lowest prediction error. For this study, the number of trees grown per 

forest was 500 and 2 variables were tested at each node. 

 Models of daily PM2.5 were constructed using the meteorological variables mentioned 

previously, as well as dummy variables for village, district, and day of year. Due to differences 

in sensor deployment between the first season and second season, the number of observations in 

November and December in season one was considerably lower than in season two. Therefore, 

we restricted our analysis to only data collected in January and February in season one and 

December, January, and February in season two to achieve as balanced a dataset as possible, 

with respect to the number of observations per month. Unbalanced data can lead to the model 

being better at predicting outcomes in the level of a variable with more observations because it 

has been trained on more observations of that type.109,110 The models in both seasons include 

values from January and February of the respective field season and the season one model was 

built using data from 38 (76% of total study villages) villages, whereas the season two model 

was built with data from 49 (98% of total study villages) villages. The capacity for the season 
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one data to predict the season two data was evaluated only for the villages and days of year 

included in the season one model.  

The prediction results from the models generated in this study were evaluated using 10-

fold cross validation. In this approach, the data is randomly divided into 10 equally sized bins 

(“folds”) that each contain 10% of the data. One of these folds is held out (“out-of-bag”), and a 

forest is generated using the other 90% of the data. This is repeated 9 times for a total of 10 

forests, with each iteration holding out a different fold. The overall model root mean square error 

(RMSE) and r2 is calculated by a simple linear regression using the observed values of the held-

out folds and the predicted values from the forest where that fold was held out. These models 

were created using the “caret” package (version 6.0-86) in R.88  

Variable importance for each variable is calculated by permuting each predictor variable 

and comparing the out-of-bag prediction error to the unpermuted case.111 The difference is 

averaged across all trees and normalized by the standard deviation. Variable importance is given 

as percent increase in MSE (when the variable is permuted versus not). A larger percent increase 

in MSE indicates a higher degree of importance relative to variables with a lower percent 

increase in MSE. Partial dependence curves were calculated for each meteorological variable 

included in the model. For each observation, all predictor variables were held constant except the 

predictor variable of interest (xi), and predictions for each observation at each value of xi in the 

dataset were made. The predictions for each observation at each value of xi were then averaged 

to produce the final partial dependence plot. The derivation and additional explanation of the 

partial dependence plots can be found elsewhere.112 For the purpose of this thesis, one of the 

main objectives was to determine whether and how meteorological variables should be 

represented in a health-based mediation analysis. The partial dependence plots contribute to this 
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objective by showing the shape of the relationship between a predictor and response variable, 

which can then be used to transform the meteorological variable in a mediation analysis that 

assumes linearity. 

Two-way interactions between select meteorological variables were quantified by 

Friedman’s H-statistic and given as the percent of the effect of a given predictor variable on the 

response due to interactions with other predictor variables. Briefly, the H-statistic is calculated 

by comparing the variance of partial dependence of a selected predictor variable to the variance 

of the partial dependence of all other variables (or a second variable of interest for two-way 

interactions). Detailed mathematical explanations of the H-statistic can be found elsewhere in the 

literature.113 In the context of this work, understanding how different combinations of different 

predictors (i.e., meteorological variables) impact the response (i.e., ambient PM2.5) is critical to 

determining how to represent these variables, which are confounders, in the larger study context 

(i.e., mediation analysis to understand the impact of an air quality policy intervention on 

pollution levels). The evaluation of two-way interactions is valuable for further understanding 

how combinations of different predictors impact the response (objective 2). For this thesis, the 

following two-way interactions are presented as a demonstration for the season two data only: 

relative humidity-boundary layer height, wind speed-wind direction, and wind speed-boundary 

layer height. These interactions were investigated because they were the strongest interaction 

(relative humidity-boundary layer height) for the variable with the highest importance (relative 

humidity) or have a known interaction in the literature (wind speed-wind direction) or are related 

to air stagnation (wind speed-boundary layer height).114,115 

 Random forest models have been shown to be sensitive to spatial and temporal 

autocorrelation due to the potential for the formation of non-spatially and non-temporally 
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independent folds.116 To account for this, we also preformed separate spatial and temporal 10-

fold cross validation. The folds in these models were not randomly generated, but rather split by 

the spatial and temporal variable of interest. For this study, the spatially-balanced cross 

validation models were generated on folds that each contained data for 10% of the total villages 

in the study. The folds for the temporally-balanced cross validation were split so that each had 

data for 10% of the days of the year. The results from these models give insight into how well 

the overall model, where the folds were split randomly, preform over space and time. The folds 

for the spatial and temporal cross validation models were generated using the “CAST” package 

(version 0.5.1).117  

 We conducted several sensitivity analyses to determine the impacts of our data and 

variable choices on the predictability of the season one model for the season two data. First, we 

developed a model that did not contain the day of year variable, which could absorb some 

unexplained variation each year without having it be useful for predicting the next year. We also 

limited the observations in season two that were predicted by the season one model to those that 

had meteorological values within the range measured in the season one to prevent extrapolation 

by the season one model for the season two data. Finally, villages that had transitioned from coal 

to electricity-based heating between seasons one and two were excluded from the season two 

data being predicted by the season one model. 
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5. RESULTS AND DISCUSSION 
 
 
 

5.1. Descriptive statistics 

Boxplots of daily average PM2.5 and meteorological parameters by district and month are 

provided in the appendix (Figure S7). Median (inter quartile range) daily PM2.5 concentrations 

during the study durations in seasons one and two respectively were: Miyun: 38.1 (39.5) µg m-3, 

52.9 (50.9) µg m-3; Huairou: 33.6 (33.4) µg m-3, 31.4 (35.5) µg m-3; Fangshan: 67.3 (51.4) µg m-

3, 66.1 (57) µg m-3; and Mentougou: 34.3 (41.3) µg m-3, 42.1 (41.4) µg m-3. Outdoor PM2.5 

concentrations in these districts were lower than in rural regions of the nearby Northern China 

Plain, where average wintertime concentrations in recent years have ranged from 75 µg m-3 to 

over 100 µg m-3.118–120 Pollution concentrations were also lower than the typical wintertime 

average of at least 80 µg m-3  in the Beijing city center.121,122 Notably, the average daily 

concentrations in all districts were much higher than the newly released World Health 

Organization guideline of 5 µg m-3 annual average and 15 µg m-3 24-h average.123  

5.2. Random forest models 

Results for the overall, the spatially-balanced, and the temporally-balanced 10-fold cross 

validation models the first winter season are shown in Figure 2. The overall model had a 

relatively large r2 value of 0.85 and a RMSE of 13.1 µg m-3. For the spatially-balanced and 

temporally-balanced cross validation models, the r2 decreased to 0.76 and 0.54, respectively. The 

RMSE for these models also increased to 16.6 µg m-3 for the spatially-balanced model, and 22.8 

µg m-3 for the temporally-balanced model. Figure 3 shows the predicted daily PM2.5 

concentrations for the season two data using the season one model. The season one model in 

general overpredicted the season two data and performed relatively poorly with large error (r2 = 
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0.45, RMSE = 33.5 µg m-3). Figure 4 presents the results for the overall, spatial, and temporal 

cross-validation models developed with the data from the second winter season. The models 

developed using the season two data predict the season two data much better than the season one 

model (overall r2 = 0.93, RMSE = 11.1). The spatially-balanced and temporally-balanced season 

two models also see decreases in the r2 (spatial = 0.85, temporal: 0.73) and increases in the 

RMSE (spatial: 16.3 µg m-3, temporal: 22.8 µg m-3).   

 The high within-season predictability of our models shows that meteorological variables 

are important predictors of ambient PM2.5 in our study and should be controlled for in a 

mediation analysis. These findings contribute to objective 1 of determining the joint impacts of 

meteorology on PM2.5 in our study. Random forest models that include meteorological and land 

use variables tend to have the highest predictability (r2 > 0.80) among random forest models that 

predict ambient PM2.5 because they include information that accounts for most of the variability 

in PM2.5 concentrations.100,101,124 However, our models that included only meteorological 

variables approach the same predictability of those that have included additional variables (i.e., 

land use). For example, the random forest model constructed in Huang et al. 2018 to predict 

PM2.5 concentrations in the Northern China Plain, including both rural and urban areas, (r2 = 

0.88; RMSE = 14.89 µg m-3) included 34 variables such as fraction of various surface cover, 

population density, and cloud cover. Our findings that fewer variables were needed to achieve 

similar levels of predictability may be explained, in part, by the potentially smaller number of 

sources that contribute to PM2.5 in rural relative to urban areas. For example, a land use variable, 

like length of roadway in a given area, that could be used as a proxy for roadway emissions 

would probably not have been beneficial in our rural study setting where the contributions of 

traffic to overall PM2.5 are much smaller compared to urban settings.   
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The worse performance of the spatially-balanced and temporally-balanced cross 

validation models indicates that the overall model does not predict as well across villages or 

across days of the year. In the spatially-balanced cross validation model, the data for 10% of 

villages was contained in each fold (~5 villages in each fold), eliminating the use of the “village” 

variable for prediction because the model did not include any data from villages assigned to the 

held-out folds. This would be similar to removing the village random effect in a mixed effects 

model or the village specific intercept in a regular linear model. These village level adjustments 

are important in the overall model because, without them, our data trends (“shrinks”) more 

towards the population mean. We don’t observe a similar shrinkage towards the mean in the 

temporally-balanced cross validation models, where each fold contained data for 10% of the days 

of the year measured in our study. However, we do observe a more general, balanced, spreading 

of the data around the 1:1 line compared to the overall model. This suggests that the 

predictability of the season one and season two overall model is inflated by temporal 

autocorrelation. 

Our findings highlight the importance of spatially-balanced and temporally-balanced 

cross validation in air pollution studies. These cross validations improve interpretability of the 

model results by showing how the spatial and temporal effects, if not accounted for explicitly as 

was done here, may cause us to overestimate the prediction power of the other variables included 

in the model (i.e., meteorological variables). For example, one study designed to predict forest 

biomass variation found that after spatially-balanced cross validation, their overall model 

performance (r2 = 0.53) was heavily influenced by the spatial variable included (spatially-

balanced cross validation model r2: 0.14). We recommend that future studies using time series 
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data in random forest models apply similar spatially-balanced and temporally-balanced cross 

validations to contextualize the model’s predictive power.  

The poor predictability of the season one model for the season two data was robust to 

sensitivity analyses that included restricting the season two data to observations with 

meteorological values in the range of the season one values, excluding villages that had 

transitioned from coal to electricity-based heating between season one and two, and removing 

the day of year variable (Table S2). These sensitivity analyses were conducted to evaluate if the 

poor predictability of the season one model for the season two data was due to extrapolation, 

changes in energy use, or use of a variable that may not be useful for predicting between years 

(DOY) . The individual and combined sensitivity analyses had small impacts on predictability 

(change in r2: -0.03 - +0.04). Additionally, the season two model outperformed the predictive 

power of the season one model for the spatially and temporally-balanced cross validation. 

Together, these findings provide compelling evidence that the variables used in our model, 

including meteorological variables, were not as good of predictors in the first season compared 

to the second season. The poor predictability of the season one model for the season two data and 

the difference in predictability between the two models demonstrates the limitations of using the 

understanding of meteorological impacts from only one year to the next year. Local meteorology 

is shaped by larger, synoptic patterns (like the East Asian Winter Monsoon in our study setting) 

that can vary considerably year to year. The chemical components of PM2.5 also interact with 

meteorological variables differently (discussed in detail in the section 5.3.), so variations in the 

PM2.5 chemistry between season one and two may be contributing to the differences in 

predictability of meteorological variables in season one compared to season two. Our findings 

indicate that in short-term observational studies, such as the Beijing household coal ban policy 
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under consideration here, in which we have measurements spanning multiple years, the impacts 

of meteorology on ambient PM2.5 should be modeled on a year-to-year basis.  

While we used daily averaged PM2.5 and meteorology values, our models still also have 

some spatial and temporal autocorrelation that can be difficult to account for in observational 

study settings where researchers can be limited by when and where samples are collected. Future 

studies using observational data that are focused on model predictability may consider using 

convolution layers as an additional variable in the random forest model(s) to reduce the effect of 

autocorrelation on model output.125 These layers group data that is highly correlated in space and 

time to improve model performance by reducing spatial and temporal autocorrelation. However, 

previous examples of applications of this approach have found only small improvements in 

model predictability (r2 increases of ~0.02-0.06).100,125 

5.3. Variable importance and partial dependence 

Variable importance is given in Figure 5 as percent increase in mean squared error (MSE) 

from the base model compared to a model where the variable had been randomly permuted. 

Across both seasons, relative humidity was the most important variable by a large margin. 

Boundary layer height and temperature were more important in season two compared to season 

one, whereas wind speed was more important in season one compared to season two. While the 

importance of wind direction, village, and district are low relative to other variables, the increase 

in MSE when these variables was randomly permuted greater than 250%, which indicates that 

they are still important to include in the models.  

Partial dependence plots for the meteorological variables included in the models are 

given in Figure 6. The partial dependence curves for each variable follow a similar trend across 

seasons. Relative humidity (Figure 6A) and temperature (Figure 6B), generally, have a constant 
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relationship with PM2.5 at the tail ends of the values and a positive, monotonically increasing 

relationship in in the middle range of values. Boundary layer height (Figure 6C) and wind speed 

(Figure 6D) were negatively associated with daily PM2.5 at lower values and had constant 

relationships at higher values. 

 The general trend in the relationships observed between boundary layer height, wind 

speed, and wind direction to predicted ambient PM2.5 concentrations observed in the partial 

dependence plots are consistent with the current literature. Boundary layer height and wind speed 

are meteorological variables that influence how well local air pollution can disperse in the 

vertical and horizontal directions respectively, so higher values generally act to lower 

pollution.46,47 One study conducted in the Beijing region has indicated that northeasterly winds 

carry pollution from the Beijing city center and other polluted regions up mountain, increasing 

predicted PM2.5 concentrations. Southwesterly winds bring in air from cleaner regions which is 

associated with lower predicted PM2.5 levels.48 The impacts of wind direction on PM2.5 are 

consistent with our findings (Figure 6E) where higher predicted PM2.5 concentrations occurred 

when the air mass originated from the southwest (approximately 0-200 degrees) and lower 

concentrations occurred when air masses originated from the northeast (approximately 200-300 

degrees). 

The effects of temperature and relative humidity (Figure 6A) on ambient PM2.5 are less 

generalizable and can vary based on season or the physical and chemical properties of air 

pollutants present.126 Some studies have found negative associations between temperature and 

PM2.5 concentrations, citing more dispersion from increased convection as a potential 

mechanism.127 A positive association between temperature and PM2.5, as was observed in our 

study (Figure 6), may be indicative of increased particle formation, or temperature inversions, 
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which limit or prevent the vertical dispersion of the pollution. Associations between PM2.5 and 

relative humidity have also been found to vary in proportionality and linearity, with some studies 

citing negative relationships due to increased particle growth and deposition.44,128 Our study 

observed a positive association between increased relative humidity and predicted PM2.5. Similar 

positive relationships between relative humidity and PM2.5 have been attributed to increased gas-

particle phase partitioning of the organic fraction of coal combustion aerosol as well as increased 

sulfate formation at higher relative humidity levels.45 Since coal combustion is a large source of 

air pollution emissions in our study setting, the increased rate of aerosol chemistry under 

conditions of increasing relative humidity is the most likely explanation for the relationship we 

observed between PM2.5 and relative humidity in this study. 

The utility of the variable importance and partial dependence plots is three-fold. First, the 

plots contribute to the goal of understanding the individual impacts of meteorology on PM2.5 in 

our study by contextualizing our findings from the overall models that show high predictability 

for meteorology in both heating seasons. In addition to understanding the predictability of 

meteorology in our study setting, these plots provide insight into what variables are driving 

prediction, which can directly inform what meteorological variables to incorporate into air 

pollution accountability studies. Because accountability studies aim to understand how a given 

policy is impacting an outcome in addition to determining if it was effective or not, it is vital that 

the confounding effect of factors such as meteorology be isolated from the factors of concern. 

Efforts to more robustly account for meteorology in air pollution intervention studies have only 

recently intensified, and this study makes a meaningful contribution to that emerging literature. 

Second, the variable importance plots inform what variables should be included in the mediation 

analysis and the partial dependence plots show how they should be modeled (objective 2). The 
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variable importance of greater than 250% increase in MSE for our variables indicates they are all 

important predictors of PM2.5 and should be considered for inclusion in a mediation analysis. 

Future studies may consider developing a threshold % increase in MSE value of variable 

importance in the case that it is not immediately apparent which variables are important or not. 

Additionally, the partial dependence plots show that, in a linear model, boundary layer height 

and wind speed could be transformed logarithmically whereas relative humidity, temperature, 

and wind direction could be modeled using splines with various degrees of freedom. Finally, 

comparing the partial dependence plots to air pollution literature in our study region supports our 

hypothesis that the random forest model can accurately model the physical relationships between 

ambient PM2.5 and the meteorological variables we included. In future studies, partial 

dependence plots could be used as measures of model quality assurance and control. For 

example, if the partial dependence plots in future studies do not align with our current 

understanding of the underlying physical processes, additional investigation should be 

undertaken to understand whether the random forest model were producing spurious results.  

5.5. Variable interactions 

The Friedman’s H-statistic for cumulative interaction strength (percent of main effect of a 

single variable explained by interactions of that variable with other variables) and select two-way 

interactions are shown in Figure 7 and Figure 8 respectively. Values of the H-statistic can range 

from 0 to 1, with a value of 0 indicating that none of the main effect of a single variable is 

explained by interactions of that variable with other variables in the model, while a value of 1 

would indicate that all of the main effect of the variable is explained by interactions of that 

variable with all other variables in the model. The interaction strength for all variables included 

in the models except district in season two was greater than 0.15, which indicates there are 
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interactions between spatial (village and district), temporal (day of year) and meteorological 

variables. Relative humidity, wind speed, and boundary layer height were three variables 

selected to evaluate two-way interactions (Figure 8) because of their relative importance in the 

model, as well as their known interactions with other variables. Figure 8A shows a relatively 

strong interaction between relative humidity and boundary layer height in season two (H-statistic 

= 0.21). Other relatively strong interactions include wind speed and day of year in season two 

(H-statistic = 0.18) as well as wind speed and boundary layer height in season one (H-statistic = 

0.17).  

The H-statistic as a measure of interaction strength is useful for understanding what 

interactions, if any, are contributing to the impacts of meteorology on PM2.5 in our study setting. 

Our findings show that 20-30% of the main effect of the village variable, relative humidity, 

boundary layer height, and wind speed in both the season one and two models were due to 

interactions. As previously mentioned, causal claims about the impact and effectiveness of a 

policy requires a robust adjustment for confounding variables. A mediation analyses for this 

study that adjust for the impacts of meteorology on PM2.5 and did not include any interaction 

terms between meteorological variables would be failing to capture a part of the impact of 

meteorology on PM2.5, which could result in inaccurate estimations or conclusions of a treatment 

effect. The two-way interaction strength gives insight into what these specific interactions 

between two variables are, which could potentially be included as interaction terms in linear 

models. Specifically, our results show that we should consider interaction terms among boundary 

layer height, wind speed, and relative humidity. The method we used to evaluate interaction 

strength can be further applied to three-way, four-way, or higher order interactions that could be 

considered for including in linear models with sufficient physical justification. 
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The two-way partial dependence plots contribute to our understanding on the joint 

impacts of meteorological variables on PM2.5 (objective 1). Figure 9 shows the two-way partial 

dependence plots for relative humidity-boundary layer height, wind speed-wind direction, and 

wind speed-boundary layer height from the season two model. The combination of decreased 

vertical dispersion at lower boundary layer height, and increased particle formation at higher 

relative humidity could explain the relatively high interaction strength between these two 

variables (Figure 9A). As previously mentioned, difference in wind direction had an impact on 

predicted PM2.5 concentrations in our study region (Figure 6E). Figure 9B shows how the wind 

direction was most heavily modulated by windspeed at values about ~ 2 m/s in season two. The 

interaction strength between wind speed and boundary layer height in season two was low (H-

statistic = 0.064), so there are fewer extreme effects of wind speed on boundary layer height 

relative to relative humidity-boundary layer height and wind speed-wind direction interactions 

(H-statistic > 0.10).  

The trends observed in the two-way partial dependence plots depicting the relationship 

between predicted daily PM2.5 concentrations and meteorological variables (Figure 9) are 

consistent with the individual trends in the single variable partial dependence plots. The plots are 

additionally useful for understanding how different combinations of variables may contribute to 

conditions favorable, or unfavorable, to ambient PM2.5 concentrations, which directly addresses 

our third objective by providing evidence for how meteorological variables could be represented 

in a mediation analysis. For example, previous work has focused on developing meteorological 

composite indices that can be used to describe the general state of the atmospheric conditions at a 

given time.114,129 These methods involve the construction of similar bi-variate plots, though not 

from machine learning models, to develop cutoff points to classify the atmosphere by sets of 
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conditions that are related to PM2.5 concentrations. The two-way partial dependence plots (and 

their three-way extension) could be used to develop similar indices on a study-by-study basis. 

For example, we could develop an index with four levels for this study that captures 

meteorological effects related to dispersion based on the most predominant colors in Figure 9B 

and 9C (yellow, light blue/green, blue, and dark purple). These indices could then be used in 

health or economic models to adjust for the dispersive effects of meteorology on PM2.5 instead of 

adjusting for wind speed, wind direction, and boundary layer height as individual variables. 

This study was the first to apply random forest models to PM2.5 measurements collected 

in the field as part of an observational study. Features of the study setting that make it unique and 

interesting from an air pollution standpoint are the use of solid fuel for household heating, 

proximity to a large city center, and the mountainous region where the villages were located. 

Given that household solid fuel combustion often occurs in rural regions with complex 

geography and is a frequent target of policy intervention, it is valuable to verify that the tools 

used to evaluate these interventions provide useful information in theses settings. While some 

studies have evaluated outdoor PM2.5 in the rural, mountainous region of Beijing, they tend to be 

limited to only a few villages or rural sampling stations per study.48,130,131 Our study, which 

includes sampling from a ~50 villages across four administrative districts at a high temporal and 

spatial resolution, provides additional data about this region. Further, the non-parametric nature 

of the random forest method allowed us to model the relationships between meteorology 

variables and PM without assuming degree or nature of the relationship.   

There are several limitations to our study. First, we are using a predictive model for 

descriptive purposes. The random forest method, like other machine learning approaches, 

optimizes for out of sample fit instead of in sample fit like descriptive models. However, as 
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previously stated, an advantage of the random forest approach over other machine learning 

methods is that it has outputs (i.e., variable importance and partial dependence) that have similar 

function to descriptive models (i.e., regression coefficients). The meteorology data was gridded 

at ~30 km2 resolution, so villages in the same district tended to have values interpolated from the 

same 4 grid points. Our interpolations also did not take terrain into consideration. Windspeed and 

boundary layer height decrease in areas with more obstacles (i.e., buildings, mountains), so our 

estimation of these values may be different than expected in some villages. The accuracy of the 

interpolated meteorological values could be improved by including land use variables for terrain 

types in the model, using terrain information to adjust the meteorological variables at the 

interpolation stage, or developing correction factors by placing low-cost weather stations and 

comparing the measured to those interpolated ones. While these limitations likely weakened the 

predictability of our models, it is unlikely that they would have changed the fundamental 

physical relationship between meteorological variables and PM2.5 concentrations. For example, it 

is unlikely that addressing all the limitations of our study would lead to increased wind speed 

being associated with an increase in predicted PM2.5 concentrations. However, more accurate 

meteorological values may change the magnitude of the relationship with PM2.5, similar to how 

an effect modification would change the magnitude of a coefficient in a regression model. This 

potential limitation does not greatly impact the outcome of this study, given that two primary 

objectives were to identify which meteorological variables should be included in future 

mediation analysis and to make recommendations on how to model meteorology in our study 

setting, rather than to specify the magnitude of those relationships. 
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6. CONCLUSIONS 
 
 
 

Our findings demonstrated that random forest models can be applied in settings where 

observational studies are underway to gain insight into how meteorology variables influence 

local daily PM2.5 concentrations. By building separate models for each field season, we were able 

to quantify the impacts of meteorology on ambient PM2.5 and identify differences in the 

predictability of meteorological variables between the two seasons. The variable importance 

plots showed that all the meteorological variables included in our analysis (temperature, relative 

humidity, boundary layer height, wind speed, wind direction) were important and should be 

controlled for in a mediation analysis. The partial dependence plots and interaction strength 

further inform how these variables should be treated if included as individual terms in a linear 

model. Here, we found that boundary layer height and wind speed should be transformed 

logarithmically whereas relative humidity, temperature, and wind direction should be modeled 

using splines with various degrees of freedom. We also found that interaction terms among 

boundary layer height, relative humidity, and wind speed should be considered in a linear model. 

The two-way partial dependence plots showed potential for the meteorological impacts 

on PM2.5 to be represented in composite meteorological indices. Meteorological variables (i.e., 

wind speed, boundary layer height) with similar impacts on meteorology (i.e., dispersion) could 

be grouped together and ranges of common values computed for similar PM2.5 concentrations. 

From our plots (Figure 9), we could develop an index with four categories based on the most 

prominent visible colors. A composite meteorological index may be appealing to health 

researchers because it simplifies many meteorological terms into a few index variables. 

However, transforming many variables into an index with a finite number of levels causes some 
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loss of information because levels are often not perfectly discrete. Appropriate caution and 

incorporation of uncertainty surrounding the index levels should be taken when using a 

composite meteorological index for mediation analysis. 

A third option to translate our findings about meteorological impacts on PM2.5 

concentrations is to develop meteorologically-normalized PM2.5 concenrations.132,133 The most 

applied approach involves randomly sampling values for meteorological variables for each 

observation, using the developed model to predict a PM2.5 concentration, and averaging predicted 

values over many runs (~1000 runs). The advantage of this approach is that it requires very little 

additional work after the initial random forest model has been developed and provides an output 

that is ready to be used for inference (meteorologically-normalized PM2.5 concentrations for each 

observation in the model). The work presented in this thesis provides the random forest models 

for the first two seasons of the overall accountability study. The same random forest modeling 

approach could be applied to the remaining two seasons of data collection and subsequently used 

to develop meteorologically-normalized PM2.5 concentrations for each season.  

It is unclear at this time how adjusting for meteorology in each of the three ways 

previously mentioned (terms for each variable, composite meteorological index, meteorological 

normalization) would impact the results of a mediation analysis. Future work for this project 

includes developing a composite meteorological index and the meteorologically-normalized 

values and evaluating how they influence the mediation analysis. Other related  work on methods 

to translate modeled information about the metrological impacts on PM2.5 into ready-to-use 

information for epidemiologists, social scientists, and other non-physical scientists is needed. 
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Figure 1. Map of study area. Villages are red circles and administrative districts are labeled. 
 
 

 
Figure 2. Observed vs predicted daily PM2.5 concentrations from the season one models. A: 
overall (random folds); B: spatial (village split equally among folds); C: temporal (day of year 
split equally among folds) 10-fold cross validation models. 
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Figure 3. Observed daily PM2.5 concentrations for season two random forest model vs daily 
PM2.5 concentrations predicted by the season one random forest model. 

 

 
Figure 4. Observed vs predicted daily PM2.5 concentrations from the season two models. A: 
overall (random folds); B: spatial (village split equally among folds); C: temporal (day of year 
split equally among folds) 10-fold cross validation models. 
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Figure 5. Variable importance given as percent increase in the mean squared error (MSE) of the 
model when the variable was randomly permuted compared to the base model. Larger value 
indicates higher variable importance. 
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Figure 6. Partial dependence plot for the season one and season two models predicting daily 
PM2.5 concentrations for a given variable holding the value of all other variables constant. 
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Figure 7. Interaction strength (Friedman’s H-statistic) for each variable with all other variables 
the season one and two random forest models predicting daily PM2.5 concentrations. 
 

 
Figure 8. Two-way interaction strengths (Friedman’s H-statistic) for (A) relative humidity, (B) 
wind speed, and (C) boundary layer height from the season one and two random forest models 
predicting daily PM2.5 concentrations. 
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Figure 9. Two-way partial dependence plots depicting the relationship between predicted daily 
PM2.5 concentrations and (A) relative humidity-boundary layer height, (B) wind speed-wind 
direction, and (C) boundary layer height-wind speed from the season two random forest model 
predicting daily PM2.5 concentrations. 
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APPENDICES 
 
 
 

 
Figure S1. Violin plot of the Spearman’s correlation coefficient among sensors in the same 
village during season 1 and 2. The width of each violin is scaled to the number values observed 
at a given y. 
 
 
Table S1. The number of villages with 1-3 real-time PM2.5 sensors during each field season 
number of sensors Season 1 (n villages) Season 2 (n villages) 
1 31 6 
2 4 44 
3 4 0 

  

Text S1. Sensor calibration information 

Filter-based PM2.5 measurements were transported from the field to Colorado State 

University for gravimetric analysis. Filters were stored in -20 C freezers while not in use or 

being analyzed. Gravimetric analysis was conducted using the Automated Air Analysis Facility 

(AIRLIFT) described in L’Orange et al., 2021. The AIRLIFT system uses a 6-axis articulating 

robotic arm to weigh samples inside of a temperature and relative humidity-controlled chamber. 

Filters are weighed in triplicate using a microbalance (Mettler Toledo XS3DU, Columbus, OH, 
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USA) with a 1 μg resolution. Samples were equilibrated in the chamber for 24 hours prior to 

weighing and statically discharged with a polonium 210 source (2U500, NRD, Grand Island, 

NY, USA) immediately before weighing. 

In the first season (winter 2018-2019), two sets of the same PM2.5 sensors purchased at 

different times (July 2017 and 2018) were used. Prior to deployment, all sensors were co-located 

with a Thermo Electron Synchronized Hybrid Ambient Real-Time Particulate Monitor (SHARP, 

model 5030, Thermo Fischer) at Peking University for 7-10 days. A linear regression comparing 

the time integrated PM2.5 measurements to the reference monitor are shown in Figure S2. During 

the co-location period, an air pollution episode occurred, during which the meteorological 

conditions rapidly changed and PM2.5 concentrations increased considerably in a short period of 

time. The reference monitor captures PM2.5 concentrations at a one-hour time resolution which 

was not fast enough to capture a continuous range of PM2.5 concentrations during the pollution 

episode. Therefore, we observed a break in PM2.5 concentrations from ~100 μg/m3 to ~160 

μg/m3. PM2.5 sensors were also corrected post-deployment by developing a correction factor with 

filter base measurements. The linear regression comparing filter-based PM2.5 measurements to 

PM2.5 sensor measurements integrated over the same time period that the filter was sampled over 

is shown in Figure S3. 

Two sets of the same PM2.5 sensor that were purchased at different time (July 2018 and 

October 2019) were deployed in the second season. PM2.5 sensors were co-located with the 

SHARP monitor at Peking University for 7 days, and a tapered element oscillating balance 

(TEOM model 1400A; Thermo Fischer) at the University of Chinese Academy of Sciences 

(UCAS) for 10 days prior to deployment (Figure S4). The quality of the TEOM data was 

inadequate, so we instead used data collected at the Beijing Environmental Monitoring Station 
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(Huairou station) over the same time period. After deployment, the sensors were co-located with 

the SHARP monitor at Peking university for 7 days, and the TEOM at UCAS for 10 days (Figure 

S5). Additionally, a linear regression between filter-based measurements and time-integrated 

PM2.5 measurements was applied to develop a correction factor for the sensors (Figure S6). 

 
Figure S2. Linear regression between PM2.5 measured by a reference instrument (TEOM) and 
real-time PM2.5 sensor in season one prior to deployment. The correlation coefficients (rho) are 
spearman correlation coefficients.  
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Figure S3. Linear regression between outdoor gravimetric PM2.5 and time-averaged sensor-based 
PM2.5 in season one. The correlation coefficients (rho) are spearman correlation coefficients. The 
grey shade shows the 95% confidence interval. 
 

 
Figure S4. Correlation between sensor and reference instrument measured PM2.5 at PKU (a) and 
UCAS (b) campus before the field campaign in Season 2. Due to the bad data quality of TEOM 
data from UCAS campus, TEOM data is from the Beijing Environmental Monitoring Station 
(Huairou station) (Same below). 
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Figure S5. Correlation between sensor and reference instrument measured PM2.5 at PKU (a) and 
UCAS (b) campus after the field campaign in Season 2. 

 

 
Figure S6. Calibration curves of indoor (a) and outdoor (b) PM sensors by filter-based 
measurements in season two. The correlation coefficients (rho) are spearman correlation 
coefficients. The grey shade shows the 95% confidence interval. 
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Figure S7. Boxplot of daily average meteorological values by district and season. (A) 
temperature, (B) relative humidity, (C) boundary layer height, (D) wind speed, and (E) wind 
direction. 
 
Table S2. Predictive performance for the random forest sensitivity analyses 

Sensitivity analysis 
original model 

(r2, RMSE) 
new model 
(r2, RMSE) 

Removing DOY from model   
Season one model 0.85, 13.1 0.82, 14.4 

Season two model 0.93, 11.2 0.90, 13.3 

Season one model to predict season two data   
Removing DOY 0.45, 33.8 0.49, 30.7 

Restricting the range of season 2 data to 
include meteorological variables with value in 
the range of the season one data 0.45, 33.8 0.44, 31.7 

Excluding villages that underwent an energy 
transition between season one and two 0.45, 33.8 0.47, 31.3 

Removing DOY, restricting season 2 data 
range, and removing energy transition villages 0.45, 33.8 0.46, 29.5 

 


