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ABSTRACT

THREE ESSAYS ON THE USE OF SPATIAL DATA TO INFORM ENVIRONMENTAL AND

RESOURCE MANAGEMENT

This dissertation consists of three essays that use of spatial data to inform trade-offs related

to environmental and resource management. The first essay explores how a spatially targeted dif-

ferentiated payment design can reduce the social cost of achieving a given level of ecosystem

service (ES) provisions. Performance comparisons between uniform payments and differentiated

payments for ecosystem services help to identify the context under which differentiated payments

offer the largest advantage relative to a uniform payment. A mathematical programming model

is developed to explore the performance of different payment schemes and to derive generalized

lessons from simulations. Then generalized lessons are evaluated with two case studies related to

water quality management. It is found that the simulations and case studies align with each other in

terms of the total cost reductions, but they diverge in the payment rate choice due to the underlying

distributional differences. The findings suggest that a higher payment rate for parcels that sys-

tematically provide higher levels of ES can reduce the social cost of providing the ES of interest,

particularly for cases where the mean ES provision benefits across land types are different and ES

provision targets are relatively low. In the second essay, I examine whether China’s pilot carbon

emission trading system (ETS) has the co-benefit of reducing local PM2.5 levels. Two ETS pilot

provinces are selected to be the treated group, while the control group is constructed with institu-

tional knowledge. Static and dynamic difference-in-differences designs are adopted and compared

to reveal the ETS treatment effect. The spatial and temporal variation in the ETS pilot areas allows

me to adopt a dynamic two-way fixed effects model to estimate heterogeneous treatment effects

on the treated areas. I find that the ETS improves the local air quality in Hubei but not in Guang-

dong. A further analysis suggests that a sector-standards based allowance allocation mechanism
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can cause local air quality to deteriorate. The third essay revisits the groundwater resource value

question in the Ogallala aquifer through estimation of an econometric model of agricultural land

prices that includes fixed effects, with the repeated transactions from the ZTRAX data product.

Saturated thickness is used to present the groundwater availability and the study includes irrigated

parcels only. Heterogeneous responses in land values to groundwater stock changes are found

across Colorado and Nebraska. The marginal value of groundwater stock is highest at low levels

of groundwater availability, which implies that additional groundwater depletion in Colorado is

more costly than depletion in Nebraska.
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Chapter 1

Differentiated Payments for the Provision of

Ecosystem Services

1.1 Introduction

Payment for ecosystem service (PES) programs provide incentives for voluntary participation

in ecosystem service (ES) supply and have been widely used for environmental management. To

achieve cost-effective ES provision, it is necessary to enroll ES providers with the highest envi-

ronmental benefits and lowest provision costs. However, lack of disaggregated cost and benefit

information leads to information rent and efficiency loss. For example, a uniform payment scheme

will tend to enroll providers with the lowest provision costs, without regard to the heterogeneity in

benefits that are provided. More complex PES designs such as procurement auctions and screening

contracts could alleviate information asymmetry and reduce information rents [8]. However, the

greater implementation costs and administrative efforts of a complex PES design can also reduce

a PES program’s participation rate and cost-effectiveness [61]. Therefore, an appropriate PES de-

sign requires a careful balance between the effectiveness of the PES program and the complexity

of implementation.

A cost-effective PES would ideally pay for the outcome rather the action. A spatial targeting

PES design incorporates the correlation between parcel attributes and ES provision outcome, and

therefore can help the program pay more for the outcome. Ezzine-de Blas et al. [28] studied 55

PES programs worldwide and found that design factors such as spatial targeting and payment

differentiation positively contribute to the efficiency of PES.

To balance the program simplicity and efficiency, we propose a simple differentiated payment1

scheme for ES provision that offers a higher payment rate to parcels with identifiable spatial at-

1It might also be referred as a targeted payment or fixed payment with targeting in other literature.
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tributes that are correlated with higher ES provision, and investigate its performance empirically

with simulations and case studies. Examples of attributes that could be used for targeting pay-

ments include land slope class, management practice and distance to waterways. For land slope,

we would expect the land profitability to decrease and environmental impact to increase as the

land slope increases. Therefore, it could be cost-effective to conserve land with greater slope.

The Grain for Green program in China is a land conservation program targeting on sloping land

[80]. Different management practices can affect land profitability as well as environmental impacts

from agricultural activities. USDA conservation programs offer financial and technical supports

to promote a wide range of management practices, including conservation tillage, terraces, and

nutrient management plans. Riparian buffers are conservation practices addressing water quality

that involves distance to waterways, where land located immediately adjacent to and parallel to a

water body and/or seasonal stream and wetland are eligible for higher compensations. Currently,

the USDA Conservation Reserve Enhancement Program provides additional 20% rental rate in-

centives for riparian buffer zones compared with average fields [82]. In these three examples of

observable attribute choices, the slope and the distance to waterways are exogenous attributes,

while management practices are endogenous attributes. It should be noted, however, that if the

cost of management practice adoption is smaller than payment differences, payment differentia-

tion on endogenous attributes might stimulate behavior changes that deteriorates a conservation

program’s cost-effectivess.

The objective of this paper is twofold: (1) to identify scenarios when a differentiated payment

scheme offers the greatest advantages relative to a uniform payment scheme, and (2) to identify

optimal differentiated payments for ES provision. We combine optimizations and hypothetical

simulations to develop generalized lessons and then use results from a Soil and Water Assessment

Tool (SWAT) model to conduct water quality management case studies of two watersheds in the

states of Colorado and Iowa.

Both hypothetical simulations and case studies suggest that cost-effectiveness of a PES pro-

gram can be significantly increased by a differentiated payment design when the difference in

2



mean ES provision benefits across land types is large and a low ES provision is desired. Further,

the case study in Iowa reveals that when the benefit-cost ratio and ES provision cost have a pos-

itive correlation, payment differentiation can yield a desired ES outcome at a lower social cost

compared with a uniform payment rate.

1.2 Literature Review

Over three decades of development has yielded numerous PES programs designed for the pro-

vision of different ESs, implemented across the world. Engel [27] and Wunder et al. [90] pro-

vide comprehensive reviews of PES designs to generate guidance for PES effectiveness. Both

papers conclude that PES design should be based on a careful understanding of specific ecologic-

economic context.

It is well recognized that asymmetric information causes efficiency loss in PES programs, and

solutions have been proposed for various ES objectives. Mason and Plantinga [55] focused on

additionality under asymmetric information, and they proposed a contract design to mitigate the

impact of asymmetric information. Despite the fact that auction schemes and screening contracts

are theoretically appealing, empirical evidence of these mechanisms in practice is limited. Cur-

rently, the Conservation Reserve Program (CRP) is the largest scale governmental program that

applies an auction mechanism to conserve ES [51]. Ferraro [30] also pointed out that screening

contracts are difficult to implement in the field as it requires adequate knowledge of land distribu-

tion and sophisticated calculations of incentive compatibility by the conservation practitioners.

Wunder et al. [90] reviewed 70 worldwide PES programs and found that administrative burden

is one reason why many sophisticated and theoretically informed schemes are practically unpopu-

lar. However, policy simplification can lead to efficiency loss. Armsworth et al. [2] calculated the

cost of policy simplification and found that common policy simplification can result in significant

biodiversity loss due to the lack of consideration of biodiversity provision cost variation. Lundberg

et al. [51] demonstrated that context matters for PES design. They compared the performance of

a uniform payment scheme to a procurement auction under various scenarios to identify the im-

3



pact of baseline compliance, correlation between benefit and cost distribution, and budget sizes

on the effectiveness of different payment designs. It is shown that uniform payments are more

effective with a high baseline compliance (voluntary ES provision without payment) and positive

correlation between benefit and cost. Therefore, an effective PES design requires balancing the

implementation complexity and effectiveness and accounting for the context.

Engel [27] summarized conditions when alternative payment schemes are favorable. According

to Engel, a differentiated payment scheme is favorable when there are (1) significant heterogene-

ity in provision cost and/or ES provision across sites and (2) available estimates of differentiating

criterion. For example, differentiating criterion could be observed parcel attributes like distance

to surface water and/or soil type. In addition, benefit targeting is preferred to a uniform pay-

ment scheme when ES benefit varies significantly across sites and data on ES benefit is available.

Armsworth et al. [2], Wunder and Albán [89] and Ezzine-de Blas et al. [28] have demonstrated that

targeting sites with higher expected ES benefit or lower expected provision cost can significantly

increase the ES outcome with a given budget. Palm-Forster et al. [61] applied a farmer behav-

ioral model with SWAT outputs to simulate and compare phosphorous reductions under a reverse

auction, as well as targeted and un-targeted uniform payment programs. The results revealed that

when the transaction cost of applying a reverse auction is twice the cost of the uniform payment

program, the uniform payment is more cost-effective. Wünscher et al. [92] examined eight spatial

targeting PES schemes and found efficiency improvements in all of them compared to a uniform

payment scheme. It is recognized in the paper that spatially targeted PES based on attributes can

boost the PES efficiency. In most cases, it is costly to estimate the site-level provision cost or ES

benefit data. Therefore, Wünscher et al. [92], Wünscher and Engel [91] and Engel [27] suggested

the use of observable site characteristics as a proxy for the cost or benefit as a low cost approach

to spatial targeting.

This study, while similar to Lundberg et al. [51] in examining the performances of alternative

PES payment designs under various contexts, differs in two aspects: (1) we investigate how differ-

ent underlying distributions of provision cost and benefit affect the PES performance with different
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payment schemes, while Lundberg et al. [51] only tests on one set of normal distributions of ES

provision cost and benefit; (2) our conceptual PES has an ES provision target while Lundberg et al.

[51] set a budget target for their conceptual PES program; Particularly, we are able to identify the

impacts of (1) the first moments of cost and benefit distributions, (2) correlation between ES bene-

fit and provision cost, and (3) provision targets on the PES performance and optimal payment rate

choices. In addition, we incorporate SWAT models calibrated with observational data to construct

water quality management cases, to which we apply our generalized lesson from the simulations.

1.3 Methods

To evaluate the performance of alternative PES schemes under various contexts, we adopt

simulations to generalize policy insights. This section describes the model development and simu-

lation procedures. We adopt mathematical programming to search for the minimum social cost of

achieving specific ES targets under three payment programs: efficient, uniform and differentiated

payment. It is assumed that there are two observable parcel types A and B, and type B parcels have

some observable attributes that leads to higher ES supply on average. Policy makers are assumed

to be aware of the distributions of the costs and benefits for the two types of parcels, but don’t

know specific parcel-level cost and benefit values. We compare the performance of three types of

PES payment schemes: uniform payment, differentiated payment and the efficient payment. Table

A.1 summarizes the comparisons among three PES payment schemes. In practice, some PES pro-

grams are publicly funded, while others are privately funded. According to Ezzine-de Blas et al.

[28], 35% of PES programs in Latin America and 85% of PES in Africa are privately funded.

While in Asia, Europe and North America, about 70% of PES are publicly funded. With a publicly

funded PES, the policy makers may be more likely to seek to minimize the social cost of achieving

an ES outcome. In this paper, we focus on the total social cost. In future research, we can also

include the analysis where policy makers seek to minimize expenditures2, or rather to maximize

benefits subject to a budget constraint.

2Min Expenditure = λ
∫ λ

0
fc(c)dc = λFc(λ), where fc(c) is the PDF of opportunity cost c.
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A uniform payment program offers one payment rate for enrolled parcels, regardless of the

parcel type. It is assumed that the owner of a given parcel will participate (enroll) as long as the

payment rate is greater than or equal to their opportunity cost. In this setting, the social planner

chooses a minimum uniform payment rate that would enroll enough parcels to provide a given

level of ecosystem services.

When costs and benefits are continuously distributed, the expected total social cost given a

uniform payment rate λ can be expressed as equation 1.1:

E(TC) =

∫ λ

0

cfA
c (c)dc+

∫ λ

0

cfB
c (c)dc (1.1)

Define fA
c (c) and fB

c (c) as the probability density functions of opportunity costs (c) for type A and

B parcels, respectively.

Given a uniform payment λ, the expected ES provision is defined in equation 1.2:

E(ES) =

∫ λ

0

∫

V

vfA
cv(c, v)dvdc+

∫ λ

0

∫

V

vfB
cv(c, v)dvdc (1.2)

Define fcv(c, v) as the joint pdf of cost (c) and benefit (v) variables, with superscripts denoting

parcel types. V denotes the domain of the parcel-level benefit variable.

A cost-minimizing social planner chooses a uniform payment rate to achieve an ES provision

target:

Min
λ

∫ λ

0

cfA
c (c)dc+

∫ λ

0

cfB
c (c)dc (1.3)

s.t.

∫ λ

0

∫

V

vfA
cv(c, v)dvdc+

∫ λ

0

∫

V

vfB
cv(c, v)dvdc ≥ τM (1.4)

where M is the maximum possible ES provision level, e.g., when every parcel is enrolled; τ , the

ES provision target, which ranges from 0% to 100%. The left-hand side of equation 1.4 represents

expected ES provision3 greater than the desired level τM .

3
∫

V
vfcv(λ, v)dv = E(v|λ), which is the conditional mean of benefit given the payment rate λ.
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A differentiated payment program offers different payment rates for different types of parcels.

Within a specific parcel type, the payment rate is uniform across parcels. The social planner is

assumed to choose the differentiated payment rates to minimize the total cost of ES provision to

achieve a desired ES target, while the enrollment decision at the parcel level is determined by the

magnitude of the payment rate and the opportunity cost. With continuously distributed costs and

benefits, the problem of choosing the differentiated payment program that minimizes the expected

social cost, subject to meeting an ecosystem service target, is presented below:

Min
λA,λB

∫ λA

0

cfA
c (c)dc+

∫ λB

0

cfB
c (c)dc (1.5)

subject to

∫ λA

0

∫

V

vfA
cv(c, v)dvdc+

∫ λB

0

∫

V

vfB
cv(c, v)dvdc ≥ τM (1.6)

where all notation is similarly and separately defined as above for type A and B parcels, indicated

by the subscripts. The decision variables, λA and λB here are the payment rates for type A and

type B parcels.

The efficient payment scheme selects the parcels with the highest benefit-cost ratio and offers

a payment higher than the enrolled parcel’s opportunity cost. Under this scheme, parcels with the

highest ES benefit-cost ratio are enrolled until the ES provision target is achieved. The efficient

payment scheme serves as a theoretical optima, while it’s unlikely to be achieved in practice, it

provides an important comparison that illustrates the upper bound of what a PES program could

achieve with perfect information.

To develop a general understanding of the variation in optimal differentiated payments, and the

potential cost savings associated with a differentiated payment compared to a uniform payment

program, we carry out simulations as described below.

Hypothetical Simulations

To execute the simulations, we first draw random samples from cost and benefit coefficient

distributions for type A and type B parcels, respectively. Meanwhile, the correlation between cost

and benefit variables is kept to be ρ for both types. c and v denote the cost and benefit variables,
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with cA ∼ N (µ, σ2), and cB ∼ N (µ + kσ, σ2); vA ∼ N (η, ξ2) and vB ∼ N (η +mξ, ξ2). In the

simulation, we assume the variance of each variable is the same across the two types of parcels.

We specify the differences in mean cost and mean benefit between the two types of parcels by k

and m times of the standard deviation, respectively. Positive m implies that type B parcels are

associated with a higher mean ES benefit. Due to the discrete nature of the simulation setting, the

optimization results with extreme ES provision targets might not provide much policy insights, we

therefore constrain the results to ES provision targets between 20% and 80%. Due to the discrete

nature of the simulation, the continuous problems are transformed to discrete optimizations, and

N = 10 randomly selected coefficient realizations are used for each scenario.

Parameters used for simulations are summarized as below. We randomly draw 500 type A and

500 type B parcels for each scenario. All parcels are assumed to be the same geographic area.

Type A parcels have a mean cost and standard deviation of µ = 150 and σ = 30, respectively;

type A parcels have a mean benefit and standard deviation of η = 150, and ξ = 10, respectively.

m ∈ {0, 1, 2, 3, 4} and various m values allow different mean benefits between type A and B

parcels. Also, k ∈ {−1, 0, 1} permits lower, same and higher mean cost of type B parcels. To

reduce the probability of getting negative cost coefficient values from random draws, we set σ = 30

to make sure three standard deviations from the mean is non-negative for all k values. With ξ = 10,

we model a case where the variance in benefit is smaller than the variance in the cost. Positive m

and k gives higher mean benefit and cost of B parcels, respectively. When m and k are 0, the mean

benefit and mean cost of the two types of parcels are the same. Table 1.1 summarizes the cost and

benefit means of type B parcels under all scenarios. The simulations assume that parcel owners

are rational and enroll parcels when the payment rate is at least as high as their opportunity costs.

The correlation between the cost and benefit coefficients are taken from the set ρ ∈ {−0.5, 0, 0.5}.

In total, the simulations consider 45 sets of distribution parameters for each P0, Figure 1.1a plots

out 45 sets of ES provision benefits and costs of hypothetical parcels used in the simulations. The

joint distributions of benefit and cost of type A and type B parcels overlap less as the absolute value

of m and k increases. Figure 1.1b plots the benefit-cost ratio of 45 scenarios across type A and B

8



Table 1.1: Summary of Benefit and Cost Parameter Scenarios

Mean Cost of Type B
k = 1 k = 0 k = -1

Mean Benefit of Type B

m = 0 150, 180 150, 150 150, 120

m = 1 160, 180 160, 150 160, 120

m = 2 170, 180 170, 150 170, 120

m = 3 180, 180 180, 150 180, 120

m = 4 190, 180 190, 150 190, 120

Note: Type A mean benefit and mean cost is (150, 150) in all scenarios.

(a) Benefit and Cost (b) Benefit-Cost Ratio Density

Figure 1.1: Plots Coefficients under Various Scenarios
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parcels. Define the relative mean benefit difference and the relative mean cost difference between

A and B as mξ

η
and kσ

µ
, respectively. We observe that the more mξ

η
deviates from kσ

µ
, the more the

benefit-cost ratio distributions of A and B deviate from each other. When mξ

η
is greater than kσ

µ
,

the mean ratio of type A is smaller than the mean ratio of type B, and vice versa. The variance of

ratio distributions decreases as the benefit-cost correlation ρ increases.

1.4 Results and Discussion

We first run simulations under parameters listed above to better understand the performance of

differentiated payments in a variety of contexts. Then we evaluate case studies in which SWAT

model outputs help to define the case.

1.4.1 Results of Hypothetical Simulations

The benefit-cost ratio is a key factor that determines optimal enrollment, since it is more cost-

effective to enroll parcels with a higher benefit-cost ratio. When type A and B parcels have similar

benefit-cost ratio distributions, we would expect the enrollment rate of both types of parcels to be

close to 50%; when the ratio of distributions diverge from each other, the optimal enrollment should

consist of more parcels of one type than the other. Our hypothesis is that a significant departure

between the ratio distributions of the two types of parcels underscores the value of differentiated

payments.

In practice, the social planner may be aware of the first two moments of the benefit and cost

distributions, but is unlikely to know the parcel-level benefit and cost coefficients. Therefore, we

randomly draw N = 10 realizations of cost and benefits coefficients for each scenario, and identify

the optimal solution that minimizes the expected total cost of providing an expected ES no less than

the target across the 10 realizations.

To investigate the main research question of this paper, we define the following outcome vari-

ables: Payment Difference Rate (PDR), Total Cost (TC) and Total Cost-effectiveness Improve-

ment (%) (TCI):
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PDR(%) = 100 ∗
λB − λA

λA

(1.7)

TCI(%) = 100 ∗
TCunif − TCdiff

TCeff

(1.8)

where the λA and λB denote payment rates for type A and B parcels, respectively; TCunif and

TCdiff are the total cost of achieving specific ES provision targets with a uniform payment and

differentiated payments, respectively. TCeff denotes the total cost with the efficient payment

scheme.

Figure 1.2: Payment Difference Rate under Various Scenarios

Figure 1.2 plots the PDR against the ES provision target τ for various mean benefit difference

(m), mean cost difference (k) and benefit-cost correlation (ρ) settings. From Figure 1.2 we observe

that PDR increases as m increases, while PDR is not sensitive to K in general; since conservation

program should pay for ES benefit, when m increases, more type B parcels should be conserved,

and larger PDR helps to conserve more type B parcels. When combining Figures 1.2 and 1.1b,
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we conclude that (1) the impact of ρ on PDR is positive when the relative mean benefit difference

is greater than the relative mean cost difference, and vice versa. Based on 1.1b we know that when

relative mean benefit difference is greater than relative mean cost difference, the mean ratio of type

B is greater than type A, which suggests positive PDR. When ρ increases, the variance of the ratio

distribution decreases, and the ratio distributions overlap less between A and B, which underpins

larger PDR. So in this case, as ρ increases, PDR increases. On the other hand, when the relative

mean benefit difference is smaller than the relative mean cost difference, it’s a flipped case where

the mean ratio of type B is smaller than type A, which suggests negative PDR, and as ρ increases,

PDR decreases. For example, subfigures (m:0, k:1) and (m:0, k:-1)4, subfigures (m:1, k:0) and

(m:2, k:1)5 present vertical mirroring pattern. We also conclude that (2) the average PDR of each

scenario equals to the relative mean benefit difference: PDR ≈ 100 ∗ mξ

η
, which aligns with the

previous finding that PDR increases as m increases. Generally, the PDR results suggest that in

practice PDR should target the relative mean benefit difference between type A and B parcels.

The efficient payment scheme reveals a theoretical cost-effective program that achieves a given

ES provision target with the lowest social cost. We compare the total social cost from a uniform

payment program and a differentiated program with the efficient payment program to evaluate

how much cost-effectiveness improvement can be achieved by adopting payment differentiation

compared with a uniform payment.

Figure 1.3 plots the TC difference rate between the efficient payment and the uniform payment6

and shows that the social cost of a uniform payment can be as much as 8% higher than the efficient

payment in general, and the total cost differences are larger when ES provision target τ is lower

and when Type B parcels have higher mean benefits compared to Type A parcels.

The simulations present a case where a uniform payment rate can have relatively high cost-

effectiveness. In practice, it is unlikely that the uniform payment rate will be chosen optimally, as

4when m = 0, k = 1, mξ
η

− kσ
µ

= −30; when when m = 0, k = −1, mξ
η

− kσ
µ

= 30;

5when m = 1, k = 0, mξ
η

− kσ
µ

= 10; when when m = 2, k = 1, mξ
η

− kσ
µ

= −10;

6TC difference rate = 100 ∗
TCunif−TCeff

TCeff
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it is in the simulations. We plot the benefit-cost ratio (ES provision ratio) against the ES provision

cost in Figure 1.47 to further explore the results. As the benefit-cost ratios (ES provision ratios) are

negatively correlated with the ES provision cost in the simulations as shown in Figure 1.4, parcels

with lower cost have higher benefit-cost ratios, in which case a uniform payment rate can achieve

a similar result as the efficient payment rate.

Figure 1.3: Total Cost Difference Between Efficient Payment and Uniform Payment

Next, we evaluate the TCI of the simulation. Figure 1.5 presents a clear positive impact of m

on TCI with a negative impact of ES provision target τ on TCI . As m increases, when holding k

and ρ the same, the benefit-cost ratio between A and B increases, which leads to higher TCI . As

τ increases, the number of enrolled parcels increases, and it is inevitable that most parcels from

both A and B need to be enrolled to achieve an ES provision target at 80% level or above. An

7Locally weighted smoothing across parcels is presented in the Figure
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Figure 1.4: Benefit-Cost Ratio against Cost
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extreme case is where all parcels need to be enrolled to achieve 100% ES provision target, and in

this case, all three payment schemes exhibit the same social cost. Therefore, the higher τ is, the

larger number of enrolled parcels across land types which implies lower TCI . The results suggest

that in a case where the mean ES benefit difference between land types is high and the ES provision

target is low, payment differentiation generates a larger advantage in terms of reducing the social

cost in percentage compared with a uniform payment program. The comparisons of absolute value

of social costs can be found in Figures A.1, A.2 and A.3. In absolute value terms, the social cost

reduction of the differentiated payment relative to a uniform payment tends to be highest for the

mid-range targets (around 60%).While TCI in the presented simulations ranges from 1% to 7%,

which is relatively small, we should focus on the direction rather than the actual magnitude of the

impact.

Figure 1.5: Total Cost-effectiveness Improvement under Various Scenarios
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The response of TCI to k can be explained by Figure 1.4. Under the efficient payments, parcels

with highest benefit-cost ratio are enrolled first. If the relationships between benefit-cost ratio and

cost are quite different from the aggregate distribution versus the individual land type distribution,

the payment differentiation could increase TCI . From Figure 1.4, we observe that (1) when m

is small, the ratio-cost curves are highly overlapped, and therefore TCI curves show a similar

pattern; and (2) the aggregate ratio-cost curves for the k:0 group from both A and B group deviate

more than that in the k:1 group, and therefore TCI with k = 0 is generally higher than TCI with

k = 1. As to k = −1, there are type B parcels providing high ES outcomes with very low cost.

Therefore, a very low uniform payment rate can achieve a similar result as payment differentiation

when k = -1 and the ES provision target is low. This is why we observe the lowest TCI with

k = −1 in most scenarios.

1.4.2 Analysis with SWAT-based Case Studies

To illustrate specific applications of our findings, we consider a PES program that seeks to

improve water quality. The spatial attribute we propose to use to differentiate the payments to

participation is the presence of agricultural tile-drainage. Agricultural tile-drainage systems, per-

vasively installed in the U.S. Midwest, serve to transport excess water from the soil. Literature has

revealed that tile-drainage systems have significant impacts on the underground transportation of

nutrients, and tiled-fields tend to have higher nutrient run-off for a given time period [74, 35, 7].

We have a Soil and Water Assessment Tool (SWAT) model calibrated for the Lower Arkansas River

Basin in southeast Colorado and the South Fork Watershed in central Iowa. While only the 66th

sub-basin of the Lower Arkansas River basin contains tiled parcels, the South Fork Watershed

overall is heavily tiled. Case studies for these two watersheds provide an opportunity to evalu-

ate how a differentiated payment program would work under very different underlying tile-drain

installment cases.
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SWAT is a model that incorporates agricultural activities8, soil characteristics, weather and

groundwater information to simulate the environmental impact of land management practices and

climate change. SWAT is widely used in assessing soil erosion, non-point source pollution and

watershed management. A watershed is first divided into several subbasins and each subbasin

possesses one reach segment. A subbasin is then divided into Hydrological Response Units (HRUs)

which are portions of a subbasin that possess unique land use and soil attributes. An HRU is

the basic analysis unit of SWAT, and HRUs are assumed to be independent in terms of nutrient

loadings, which means a given HRU’s nutrient loading is not impacted by its neighbor HRUs’

activities Arnold et al. [3]. SWAT provides HRU-level crop yield (ton/ha) and nutrient loading of

nitrate and phosphorus for a given realization of weather outcomes over a year.

We conduct case studies on the fields in each study area with major economic crops. The ES

provision in the case study is nitrate loading reductions, and land owners are assumed to reduce

nitrate loading by switching from planting commodity crops to pasture. We run SWAT simula-

tions under crop and pasture land uses to obtain corresponding annual nitrate loading (kg/ha) at

HRU level, then combined with HRU-level area, total annual nitrate loading mass (kg) are calcu-

lated. The HRU-level nitrate loading mass difference between crop and pasture land uses serves

as HRU-level ES provision benefit estimate. The ES provision cost is the opportunity cost of

switching a commodity crop to pasture. SWAT simulated crop yields, crop budgets in Colorado9

[Colorado State University] and Iowa10 [Iowa State University] along with crop price from USDA

NASS [83] are used to calculate parcel level ES provision costs, measured in US dollar.

Colorado: Lower Arkansas River Basin (LARB)

The LARB SWAT model is calibrated with observational streamflow data from 2015, and the

HRU boundaries account for homogeneous soil attributes as well as actual field boundaries in

the LARB SWAT. Therefore, in the LARB case study, the HRU boundaries are identical to field

8For example, crop planting, irrigation, fertilization, tillage and harvesting.

9https://abm.extension.colostate.edu/enterprise-budgets-crop/

10https://www.extension.iastate.edu/agdm/cdcostsreturns.html#summaries
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Table 1.2: Summary Statistics of LARB Case Study

Grid-level Non-tiled (A) Tiled (B)

Number 1002 822

Correlation 0.31 0.43

Mean ES Provision Benefit (g) 61.60 1718.41

Standard Deviation of Beneift 97.60 2354.63

Mean ES Provision Cost ($/acre) 255.20 323.03

Standard Deviation of Cost 171.42 207.66

Mean ES Provision Ratio 0.26 4.87

Standard Deviation of Ratio 0.31 6.20

boundaries, and we use field as the unit of analysis. The calibrated SWAT for sub-basin 66 has

been found to provide satisfactory simulation for streamflow with Percent bias11 (PBIAS) smaller

than 10% and Nash Sutcliffe Efficiency12 (NSE) greater than 0.6 for both scheduled and automatic

irrigation scenarios [88].

In sub-basin 66, there are 160 fields in total. We focus on the fields that planted corn, alfalfa,

winter wheat and sorghum in 2015 and had positive crop yield, and we are left with 91 fields,

consisting of 29 tiled fields (type B) with total area of 1110 hectares and 62 non-tiled fields (type

A) with total area of 1238 hectares. As the field area is different, we transform a given field to

multiple homogeneous 1-acre grids, and all 1-acre grids in a field share the same field-level cost

and benefit coefficients, which inevitably results in clusters in grid-level coefficients. To avoid

outliers’ contamination on the outcomes, we further trim the data by excluding grids with benefit-

cost ratio larger than the 90% percentile value or smaller than the 10% percentile value by parcel

type, and we end up with 822 tiled grids (type B) and 1002 non-tiled fields (type A). Table 1.2

summarizes statistics of the LARB case study, and Figure 1.6 provides the geographical context.

By switching the actual crop planted in 2015 to pasture in the SWAT model for each field,

we obtain the nutrient reduction with a conservation action (land fallowing) for each field. The

11Percent bias (PBIAS) measures the average tendency of the simulated values to be larger or smaller than their

observed ones. Absolute value of PBIAS < 10% indicates very good simulation performance.

12The Nash-Sutcliffe efficiency (NSE) measures the relative magnitude of the residual variance compared to the mea-

sured data variance. NSE ranges from 0 to 1, and a larger NSE indicates better model goodness-of-fit.
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Figure 1.6: Study Area of LARB case: Sub-basin 66

822 tiled grids in total reduce a maximum of 1.41 ton of nitrates, while the 1002 non-tiled fields

in total only reduce 0.06 ton of nitrates. The mean benefit of tiled parcels is more than 27 times

that of the non-tiled parcels, while the cost of tiled parcels is not significantly different from the

non-tiled parcels. In other words, there is a huge difference in nutrient loading between the tiled

and non-tiled fields.

Figure 1.7 summarizes the TCI , TC and PDR of the LARB case. We observe in Figure

1.7a that TCI decreases as ES provision target increases, which aligns with the findings from

the simulations presented in the previous section. Due to the large difference in the mean benefits

across tiled and non-tiled grids, payment differentiation offers significant social cost saving ranging

from 100% to 900%. From Figure ??, we observe that TC of a uniform payment program is always

greater than that of a differentiated payment program. The TC difference between the uniform

payment program and the differentiated payment program does not change significantly. This is

mainly due to the discrete and clustering nature in the coefficient. An increase in payment rate

could result in large increase in enrollment and therefore overshoot for the ES provision target.

PDR curves in Figure 1.7b look different from the simulation-derived pattern. This is mainly
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(a) Benefit and Cost (b) Benefit-Cost Ratio Density

Figure 1.7: Colorado Case Study Results

due to the significant difference in the mean benefits across parcel types. When non-tiled grid’s

standard deviation of ES benefit is used, m is about 17. Such a large m means that most nitrate

loading reduction are provided by tiled grids, and therefore, the tiled-grids enrollment rate is 97%

on average across ES provision targets. Therefore, non-tiled grids enrollment remains low while

tiled-grids enrollment grows to achieve increasing ES provision target, which leads to increasing

PDR as ES provision target increases. In addition, the clustered nature of the grid-level benefit

and cost coefficients results in a large number of grids to be enrolled with an increase in payment

rate, which leads to the stair-step pattern in realized PDR outcomes. For example, offering $35

per acre for non-tiled grids and $358 per acre for tiled grids would enroll 10 grids of non-tiled grids

and 453 tiled grids, and collectively provide 37% of the nitrate reduction capacity. Therefore, we

observe the same realized PDR when τ ranges from 20% to 37%. If we keep the payment rate

for non-tiled grids the same, and increase the payment rate for tiled grids to $459 per acre, then

579 tiled grids in total would enroll to the program and jointly provide 68% of nitrate reduction

capacity. This is why we observe that the PDR remains around 1200 for most τ between 38% and

68%.
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The LARB case study suggests that the conclusion about the TCI from the simulation holds in

general, while the PDR patterns are affected by the ES provision shares across land types which

is not considered in the previous simulations.

Iowa: South Fork Watershed

SWAT+, a revised version of SWAT, is used for the case study of the South Fork Watershed

(SFW) in Iowa. SWAT+ was released on Apr 15th 2021, and the HRUs have not been transformed

based on the field boundaries. Differences in the data preparation between Iowa and Colorado case

studies are described below.

Unlike the LARB, tile-drainage systems were extensively installed in the SFW, and therefore

the actual locations of tile-drainage in this area are not available. The tile-drainage information is

provided at the grid level in SWAT+. If the grid’s soil permeability is poor, the grid is assumed to

be tiled13. Figure 1.8 provides the distribution of grid-level tile-drainage.

Figure 1.8: Distribution of Grid-Level Tile Flag in the South Fork Watershed

13Tile Flag = 1 if tiled, otherwise, 0
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SWAT+ provides HRU-level crop yield (ton/ha) and nitrate loadings (kg/ha) which contribute

to calculate HRU-level ES provision cost and benefit. Fields are the desired units of economic

analysis, so the next step is to obtain field-level ES provision cost and benefit. We first obtain

grid-level data based on the connection between HRU and grid14, and then aggregate grid-level

data to the field level with the field boundaries from the land use shapefile15. Last, we keep only

fields planting corn or soybeans in the case study. Figure 1.9 shows the locations of agricultural

use fields. The percentage of area with tile-drainage system is calculated for each field, and a field

is defined as tiled if the it has over 75% of its area is tiled. Since area varies across fields, we

investigate the cost, benefit and ratio coefficients at a 1-hectare grid level rather than the field level.

We trim the decision units to fields with over 80% of their area planted in either corn or soybeans.

After excluding fields with extreme ratio values larger than the 90% percentile value or smaller

than 10% percentile value, we end up with 514 non-tiled fields with total area of 15,468 hectares

and 709 tiled-fields with total area of 26,598 hectares. Correlations between cost and benefit are

both positive for tiled and non-tiled fields. Figure 1.10 summarizes the density plots of the SFW

case.

Table 1.3: Summary Statistics of SFW Case Study

Grid-level A B

Number 15476 26598

Correlation 0.49 0.52

Mean ES Provision Benefit (g) 1470 1639

Standard Devision of Benefit 1139 991

Mean ES Provision Cost ($/acre) 293 294

Standard Devision of Cost 13.3 14.6

Mean ES Provision Ratio 4.94 5.49

Standard Devision of Ratio 3.75 3.19

14SWAT+ developer delineates SFW to 59,490 grids where most grids are 1-hectare, except ones on the edge of the

SFW boundary. Then HRUs are created based on hydrological characteristics and soil properties. We obtain the

grid-HRU connection information from SWAT+ developer and identify what grids fall into each HRU. Grids fall

into a given HRU share the HRU-level coefficients.

15SWAT+ developer share HRU-level land use shapefile with us, which help us to generate grid-level land use data.
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Figure 1.9: Fields with Corn or Soybeans in the South Fork Watershed

Note: AGRL: corn-soybeans rotation; AGRR: soybean-corn rotation

Figure 1.11 summarizes the TCI , TC and PDR in the SFW case, where m and k are not

significantly different from 0. The SFW case results show that (1) the TCI shows a decreasing

trend against the ES provision target, as suggested by the simulations, (2) the total cost difference

between a differentiated payment program and a uniform payment program decreases as the ES

provision target increases, and (3) PDR varies across ES provision target, which is different from

what is suggested by the simulations.

Though the TCI trend against the ES provision target aligns with the simulation results, the

TCI level is significantly larger than what we find in the simulation results when m = 0. To

investigate this divergence, we plot the benefit-cost ratios (ES provision ratios) against the ES

provision costs in the SFW case (Figure 1.12) and compare them with Figure 1.4. We find the

following differences: (1) there are three groups of parcels with different cost rangesCost groups

in SFW case are due to different crop choices and rotations in the SFW case in 1.12a, and (2) there

is a clear negative correlation between benefit-cost ratio and cost in Figure 1.4 for both types of

parcels while in Figure 1.12b the correlation is positive.
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(a) Cost (b) Benefit (c) B-C Ratio

Figure 1.10: Density Plots of Coefficients: South Fork Watershed

Note: Dashed lines represent mean values of the variable across two types of fields

(a) TCI (b) Total Cost (c) PDR

Figure 1.11: Iowa Case Study Results

To test whether the cost range groups lead to the high TCI levels in the SFW case, we assign

grids to three groups based on cost ranges . Grids with ES provision cost less than 290 $/acre fall

into low cost group, and grids with ES provision cost greater than 305$/acre fall into high cost

group, and the rest are considered as medium cost group. Results for individual subgroups are

summarized in Figure 1.13, in which all TCI in subgroups present a decreasing trend against the

ES provision target, while the TCI levels still remain high relative to the simulation results.

Therefore, we conclude that the relationship between benefit-cost ratio (ES provision ratio) and

ES provision cost plays the major role in determining TCI levels. In the simulation, benefit-cost

ratios decrease as costs increase, where enrolling parcels with lower cost means enrolling parcels
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(a) By Cost Range (b) By Land Type

Figure 1.12: ES Provision Ratio against ES Provision Cost

with higher ratio, and therefore we observe that the performance of a uniform payment rate is

close to that of efficient payment rate (Figure 1.3), and therefore the performance improvement

of payment differentiation adoption is trivial and low TCI is observed. In the SFW case, the

correlation between ratio and cost is positive in general, while we don’t observe a significant

difference in ES provision ratio nor in ES provision benefits between tiled and non-tiled grids.

Therefore, when the underlying distributions of the ES provision benefit and cost for the area of

interest are similar, positive correlations between ratio and cost results in relative high TCI levels.

As to the PDR, PDR levels are sensitive to the ES provision target. Again, we test whether the

trimodal distributional form of the ES provision cost leads to this result. Figure 1.14 summarizes

the PDR results for different cost subgroups. Though the PDR levels vary across ES provision

targets, the PDR levels in all medium cost and high cost subgroups fluctuate around 0, which

aligns with what suggested in simulation that average PDR ≈ 100 ∗ mξ

η
= 0.
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(a) Low Cost (b) Medium Cost (c) High Cost

Figure 1.13: TCI Results by Subgroup

(a) Low Cost (b) Medium Cost (c) High Cost

Figure 1.14: PDR Results by Subgroup

Collectively, the LARB case and the SWF case provide two examples for the simulation sce-

narios, where the LARB has a large m and k = 0, and the SWF is a case where m = 0 and

k = 0. As suggested from the simulations, when m is large, a higher TCI is achieved, and the

TCI decreases as the ES provision target raises. While the findings about the PDR from the

case studies diverge from that in the simulations, the divergence can be partially explained by the

different functional forms of the cost distributions in the case study.

Generally, the ES provision benefit and cost distributions are quite different from the ones used

in the simulations. Therefore, we don’t see tight alignment between simulation lessons and the case

study performance, which underpin extensions of the simulation settings. In future study, using
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copulas to describe the joint distributions of ES provision benefits and costs with other marginal

distributions, such as beta and gamma distributions with a wide range of benefit-cost correlations

may better describe a scenario similar to the case studies. Comparisons between simulations and

case studies reveal that choices of different payment rates across land types would require addi-

tional knowledge, besides the benefit-cost correlation, mean and variance of benefit and cost across

land types.

1.5 Conclusions

This paper aims to evaluate the performance of a differentiated payment scheme compared

with a uniform payment scheme under various contexts, and identify when the differentiated pay-

ment scheme creates total cost reductions associated with achieving specific ES provision targets.

The contributions of this study is (1) exploring the performance of payment differentiation under

various distributions of the ES provision benefits and costs; and (2) then taking advantage of hy-

drological modeling to conduct case studies on two watersheds with quite different agricultural

and watershed characteristics.

Based on the simulation results, we conclude that when the cost and benefit distribution of dif-

ferent types of parcels are normally distributed (1) cost-effectiveness of a PES program increases as

the mean benefit difference across land type increases, and (2) the cost-effectiveness improvement

of a PES program decreases as the ES provision target increases. These two findings are reiterated

by two SWAT-based case studies. Therefore, it is particularly beneficial to adopt a differentiated

payment program with low ES provision targets and high mean benefit differences between land

types.

While the simulations and case studies agree on the general conclusions, the simulation has

limited power to describe PDR in the case studies, and the reasons are: (1) the simulation results

are based on normally distributed costs and benefits across parcel types, while the case studies

reveal skewed and/or multi-modal distributions for costs and benefits across parcel types; (2) the

parcels in the simulations have the same area, while in the case studies, field areas are naturally
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different. Though we have transformed the field-level data to uniform grid-level data to maintain

identical size across decision units, we cannot avoid clusters in both coefficients and results. This

is particularly obvious in the LARB case.

We recognize some limitations of our study, and we suggest future studies to extend this re-

search by introducing other types of distributions, such as beta and gamma distributions which are

closer to the distributions revealed in the case studies, and using copula methods to construct the

joint distributions of ES provision benefit and cost. In addition, case studies based on other en-

vironmental issues can be addressed by applying different payment rates on other land attributes,

such as land classification on land slope to address soil erosion issues. Future studies can also

include administrative cost and try to explore the cost-effectiveness of adopting more than two

payment rates in a PES program. Other transformations of payment differentiation may also be in-

teresting to explore. For example, a PES program in which enrollment eligibility is based on land

attributes. All these extensions would provide useful insights on PES practices under different

contexts.
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Chapter 2

Greenhouse Gas Emissions Trading System and Air

Quality: Evidence from China

2.1 Introduction

China committed under the Paris Agreement to reduce carbon intensity (CO2/GDP ) by 60%

to 65%, compared to 2005 levels by 2030. One significant move China has made to reduce carbon

intensity is to establish the carbon Emission Trading System (ETS). Seven ETS pilot areas were

formally announced in October 2011 and later started operation between 2013 and 201416. The

seven pilots together cover geographic areas that make up 18% of China’s total population and

27% of China’s GDP. Figure 2.1 presents a time trend of the proportion of total CO2 emissions in

pilot areas relative to China’s total CO2 emissions [53, 72].

It has been recognized in previous studies that CO2 reduction activities can help to reduce local

air pollution.Cheng et al. [18] adopted a Computable General Equilibrium (CGE) model to simu-

late the air pollution flow caused by the ETS in Guangdong province of China, and found that the

ETS not only reduced carbon emissions, but also helped to reduce the emissions of SO2 and NOx.

Dong et al. [25] examined the correlation between CO2 emissions and aggregate PM 2.5 emis-

sions in China with data collected from previous literature and the National Bureau of Statistics

of China, and they found that CO2 reduction activities can reduce PM 2.5 levels. Therefore, the

carbon ETS, a system driven by carbon emission control, has the potential co-benefit of reducing

local air pollution.

Air pollution has negative impacts on health outcomes [70], life expectancy [26, 37], school

attendance [22] and could raise household averting expenditures [93]. Recent studies also reveal

air pollution’s impact on labor supply. Chang et al. [15] found negative impacts of air pollution on

16ETS operation staring time: Shenzhen, June 2013; Beijing and Shanghai, November 2013; Guangdong and Tianjin,

December 2013; Hubei, April 2014; Chongqing, June 2014
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Data Source: Shan et al. [72]

Figure 2.1: Total CO2 Emission Percentage of Pilot Areas

work productivity with China’s calling center data. Fan and Grainger [29] focused on the impacts

of long-term exposure to PM 2.5 on labor supply and found a negative impact of air pollution

on hours worked in China. He et al. [41] investigated short-term air pollution’s impact on hours

worked and found an insignificant response to concurrent PM 2.5 levels and a modest negative

impact on lagged air pollution in China. The synergistic impacts of ETS through air pollution

reductions motivate me to evaluate the impact of China’s ETS on local air quality.

As a pilot program, each ETS pilot has its own operation timeline and regulations which im-

plies the potential for heterogeneous treatment effects across pilots. Therefore the widely used

two-way fixed effect (TWFE) model does not necessary provide meaningful average treatment ef-

fect estimates. I follow Steigerwald et al. [75] to estimate the heterogeneous treatment effects with

dynamic two-way TWFE model as well as individual TWFE models. The results suggested that

ETS does not reduce the PM 2.5 level in Guangdong while it does in Hubei. A further analysis fo-

cusing on the allowance allocation mechanism suggested that a sector-standards based mechanism

can provide incentive for regulated facilities to expand their output which can lead to increases in

overall emissions.
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The contributions of this paper are twofold: (1) This paper contributes to an active literature on

obtaining robust inference from two-way fixed effects models with multiple treatment timings, by

introducing an empirical study for China ETS’s impact on local air quality.; (2) I examine how the

ETS allowance allocation mechanism affects the treatment effect associated with the ETS.

2.2 Literature Review

Before China’s ETS pilot programs, the European Union (EU) launched the first large-scale

cap-and-trade program in 2005, and the U.S. implemented the Regional Greenhouse Gas Initiative

(RGGI) in 2009. Previous studies have adopted different methods to evaluate both the ex-ante and

ex-post impact of programs in the EU and the U.S. Chan and Morrow [14] use a difference-in-

differences (DD) approach to estimate the casual effect of RGGI on pollutant emission and the

associated damages. Manion et al. [52] and Perera et al. [63] identify public health improvements

from RGGI by connecting the health impact from ambient PM2.5 changes due to pollutant emis-

sion reductions. In their studies, COBRA17 and BenMAP18, impact assessment models developed

by EPA, are used to quantify the air quality changes and accompanying health impacts. DD ap-

proaches have also been used to estimate the EU ETS’s impacts on firm-level employment [13]

and patenting behavior [11]. Chan et al. [13] find the EU ETS does not deteriorate firm’s com-

petitiveness during the first phase (2005-2007), and Calel and Dechezleprêtre [11] argue that the

EU ETS increases low-carbon patenting by 36.2%. Verde [85] collects and summarizes 20 studies

addressing the EU ETS’s impact on firm competitiveness and carbon leakage. 11 out of 18 studies

that evaluate ETS’s impact on firm competitiveness use a DD design. While ETS program could

have many consequences and co-benefits, our work focuses on the effect of ETS program on local

air quality, which is not explicitly targeted by the program.

Due to the lack of random assignment of ETS, quasi-experiment designs often serve as the

second best choice to evaluate policy performance. DD is a quasi-experimental design widely

17CO-Benefits Risk Assessment Health Impacts Screening and Mapping Tool

18BenMAP: Environmental Benefits Mapping and Analysis Program
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adopted in the ETS impact assessment literature. A canonical DD design consists of two groups

(treated and control) and two periods (before and after treatment). With parallel trends and exoge-

nous treatment, the canonical DD provides consistent estimates of the Average Treatment effect on

the Treated group (ATT ). Many studies are motivated by the canonical DD and increasing data

availability to adopt a two-way fixed effect model to estimate the ATT , in hopes of accounting for

unobservable time invariant attributes with unit fixed effects and to account for common nonlin-

ear effects over time with time fixed effects. However, many studies deviate from the canonical

DD due to the staggered adoption of policy, where units receive treatment in different time peri-

ods. In a staggered adoption case, the traditional two-way fixed effect (TWFE) model implicitly

uses the units that receive the treatment earlier as a control group for the units that receive the

treatment later, as in the later time period, the treatment status of the earlier unit does not change.

The traditional TWFE provides treatment effect estimates equal to a linear combination of hetero-

geneous treatment effects, and the weights associated with some heterogenous treatment effects

could be negative [36, 46, 75]. Since negative weights can generate a misleading summary of the

heterogeneous treatment effect, the literature concludes that a traditional TWFE does not provide

insightful estimates of interest, and suggests in this case to (1) conduct pair-wise 2 by 2 canonical

DD with the same untreated19 group and calculate a weighted average treatment effect based on

institutional knowledge20, or (2) to adopt a dynamic TWFE model to estimate the heterogeneous

treatment effects.

The dynamic specifications also have been used to provide statistical tests on the parallel trends.

Though the parallel trend assumption during the treatment periods is not testable, parallel trends

in the pre-treatment periods can still provide some support with arguments about why the parallel

trends would continue after the policy implementation [48]. The literature also explores violation

of the parallel trend assumption. Callaway and Sant’Anna [12] proposed an estimator when parallel

19All of or a subset of the untreated units serve as the common control group

20The research question itself provides hints on the weight calculation. Sample size, and related variables can be used

to calculate the associated weights for each group. In this paper, since the ETS affects local air pollution through

economic activities, the pilot-level GDP can be used to calculate the weight associated with the pilot-specific ATT.
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trends holds after conditioning on observed covariates, and Rambachan and Roth [65] develop

an estimator that imposes restrictions on possible trend differences between treated and control

groups.

The other widely adopted quasi-experimental empirical method is Regression Discontinuity

(RD). The surge of RD application is due to its relatively milder assumption compared to other

quasi-experiment methods, which can make it closer to a randomized trial. While the natural RD

is based on a continuous running variable which determines the treatment, such as test score [78]

and distance [16], the ªRegression Discontinuity in Time" (RDiT) takes time as a running variable,

and has been applied to assess the response of air quality to driving restrictions [23, 33], gasoline

content regulation [4] and urban rail transit [17]. However, the "Regression Discontinuity in Time"

(RDiT) is only appropriate under certain contexts: (1) relatively large sample size within a short

time period. The nature of RD design implies a high internal validity around the chosen threshold

of the running variable. Including more observations that are far away from the threshold does

not benefit the RD design. However due to the concern of the sample size and statistical power,

many studies include a long time period when using RDiT. (2) Appropriate control for covariates.

In the natural RD, the treatment is as good as a random trial within a narrow bandwidth, therefore

few controls are needed. However, since treatment of time is generally not randomly assigned,

appropriate controls for covariates are critical when using RDiT to mitigate causal identification

concerns. China’s ETS pilots are implemented at the province level, so the cross-sectional dimen-

sion is very limited. The ETS allowance quota is assigned annually. As a result, to obtain an

adequate sample size, I would have to include a long time period, which goes against the require-

ments of a valid RD estimate. Therefore, I don’t use RDiT for this analysis.

2.3 Emission Trading System (ETS) in China

The ETS program is proposed to achieve the goal of reducing carbon intensity and the growth

rate of total carbon emissions. Seven ETS pilots were announced in 2011 and they started ETS op-
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eration at different times between 2013 and 2014. Figure 2.2 summarizes when the ETS operation

started in each pilot area.

Figure 2.2: ETS Operation Timeline by Pilot

These seven pilots consist of four municipalities, one sub-provincial city and two provinces

(Figure 2.3). Table 2.1 provides a summary of GDP, population and the cap for CO2 emissions for

each pilot in the first year of ETS pilot operation, and Table B.1 (in the Appendix) summarizes each

ETS pilot’s coverage in terms of regulated sectors and enrollment threshold. Regulated facilities

are the major participants of trading within each ETS pilot area, and allowances for a given pilot

should be used for the compliance within the pilot. Allowances can be used for compliance across

sectors within a pilot, but cannot be traded across pilot areas. The local government of each pilot

area has some allowances reserved for market adjustments.
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Table 2.1: Statistics of Pilots in Early Stage of ETS Pilot Period

Pilots Administration
2013 Population

(millions)

2014 GDP

(trillions US$)

CO2 under cap

(%)

CO2 under cap

(Million Ton)

Shenzhen sub-provincial city 10.4 0.26 40 33

Beijing municipality 20.7 0.35 49 57

Shanghai municipality 23.7 0.38 57 160

Tianjin municipality 14.7 0.25 60 160

Chongqing municipality 29.7 0.23 30 125

Guangdong province 106.4 0.84 54 388

Hubei province 58 0.45 44 324

Data Source: Margolis et al. [53]

Figure 2.3: Location of China ETS Pilots
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The structural hierarchy of the administrative divisions of China, from top to bottom, are

provincial level, prefectural level, county level, township level and basic level autonomy. Figure

2.4 briefly presents the first two levels that are involved in this study. The first level is provincial-

level, which consists of 23 provinces, 5 autonomous regions, 4 municipalities and 2 special admin-

istrative regions. The second level is prefectural level, which consists of 293 prefectural cities21, 7

prefectures, 30 autonomous prefectures and 3 leagues.

This paper focuses on estimating the ETS treatment effect in the Hubei and Guangdong ETS

pilots. Due to the administrative and economic specialty of the municipalities: Beijing, Shanghai,

Tianjin, Chongqing are not included in the analysis. Shenzhen, known as the Silicon Valley of

China, is a sub-provincial city in Guangdong province. However, Shenzhen has its own ETS

regulation and operational timeline, therefore Shenzhen is excluded from Guangdong province in

the analysis.

Figure 2.4: The Administrative Divisions of China

2116 out of 293 prefectural are also classified as sub-provincial cities due to their critical economic role and large

population
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2.3.1 Description of Emission Trading System Pilots

The central government determines the annual total carbon emission allowances for each ETS

pilot area based on the national carbon intensity reduction goal and provincial economic growth

plans. Then each pilot’s annual allowances are further distributed to sectors and sub-regions within

the pilot. Finally each regulated facility receives individual emission allowances. Three general al-

lowance allocation schemes are used to determine the facility-level allowance allocation in China’s

ETS pilot: historical emission level, historical emission intensity and sector standards. Facilities’

responses towards alternative allowance mechanisms are assumed to be different, and Figure 2.5

summarizes possible responses.

Regulated facilities that emit more carbon emissions than allowances they receive can purchase

allowances through the ETS market within the pilot for the compliance. On the other hand, facil-

ities who receive more allowances than their actual emissions can save the allowance surplus for

future compliance or sell them through the ETS market. Compliance failure can result in penalties

that are documented in Table B.2 (in the Appendix).

Figure 2.5: Alternative Response of Regulated Facilities to Different Allowance Mechanisms
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1. Allowance based on historical emission level (A1)

Each regulated facility i in year t receives emission allowance Ait based on the benchmark22 his-

torical emission,Eis, and a carbon emission regulation coefficient ft:

Ait = (
1

3

t−3
∑

s=t−1

Eis) ∗ ft (2.1)

where i denotes facility and t denotes year. Guangdong and Hubei consider emissions in the last

three years as historical emissions. The regulation coefficient, ft ≤ 1, is non-increasing as t

increases. Under this allowance mechanism, the total emission level of regulated facilities would

decrease as ft decreases over time.

2. Allowance based on historical emission intensity23 (A2)

Each regulated facility i receives emission allowance Ait in year t based on the output level Pit,

the benchmark historical carbon intensity Iis and a regulation coefficient ft:

Ait = Pit ∗

∑t−3

s=t−1
IisPis

∑t−3

s=t−1
Pis

∗ ft (2.2)

where the regulation coefficient ft ≤ 1 and is non-increasing as t increases. Under this allowance

mechanism, regulated facilities don’t have incentives to reduce their output level as the allowance

are based on carbon intensity and output level. If a facility has a production function such that

marginal carbon emissions do not increase with output, then the facility can achieve the target car-

bon intensity by expanding its output level. Though this mechanism provides little incentive on

output reduction, regulated facilities would achieve cleaner production through technology inno-

vation, in the long term, as ft continues to decrease.

22Usually use the average of CO2 emissions of previous years. Guangdong and Hubei use a rolling period (last three

years). While some pilots use a fixed period to calculate the historical average: Beijing (2009-2012). Since the

analysis focuses on Hubei and Guangdong, the formula is based on designs in Hubei and Guangdong

23Carbon intensity is calculated as carbon emission divided by the level or market value of output
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3. Allowance based on sector standards (A3)

Each regulated facility i in sector k receives emission allowance Ait, in year t, based on the output

level and a sector-specific carbon intensity in year t, Skt:

Ait = Pit ∗ Ik ∗ fkt = Pit ∗ Skt (2.3)

where Skt = Ik ∗ fkt
24, and Ik denotes sector-specific time-invariant intensity and sector-specific

regulation coefficient fkt ≤ 1 is non-increasing as t increases. Under this mechanism, regulated

facilities have incentives to reduce their carbon intensity to gain an allowance surplus. However,

the allowances granted to the sector could be larger than the total emission level of the sector. For

example, in Hubei the sector standard of a sector in year t is based on the sector’s 50 percentile

(median) carbon intensity value in t−1. If the sector’s median carbon intensity value is higher than

the mean carbon intensity, then it is possible that the granted allowance to the sector is more than

the total emissions of the sector. In this way, an allowance surplus is granted and ETS is expected

to have little effect on the sector’s total emission and might also reduce the ETS’s effect on other

sectors through inter-sector allowance trade.

While A1 impose a conventional cap on carbon emission level directly, A2 and A3 are based

on carbon intensity instead. Allocations of allowances under A2 and A3 consist of two steps in

both Guangdong and Hubei. First, an initial allowance25 to a facility in year t is allocated at the

beginning of year t’s ETS operation; Second, at the end of year t, the final allowance is calcu-

lated with the actual facility-level output in year t. Regulated facilities receive (return) additional

allowance if the initial allowance is less (more) than the final allowance.

In general, A1 and A2 tend to reduce carbon emission for regulated sectors and could therefore

be expected to improve local air quality, while A3 does not necessarily reduce carbon emissions

24Some pilots release the Skt while others release Ik and fkt

25Initial allowance to facility i in year t = facility i’s output level in year (t− 1) × the sector-standard of year t
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due to a possibility of creating allowance surplus. Therefore, I empirically investigate how A3

affects the ETS’s impact on the local air quality in section 6.1.

ETS Pilot in Guangdong

Guangdong province is a coastal province in South China, with GDP of 10.77 trillion CNY

(1.66 trillion USD) and population of 115.21 million in 2019. The first ETS transaction of Guang-

dong province (Shenzhen excluded) happened on December 2013. The ETS in Guangdong province

has covered steel, power, cement and petrochemical since 2014, while paper production as well

as civil aviation entered the ETS from 2017. Allowances to facilities in steel and cement sectors

are mostly based on sector standards while a small portion are based on historical emission levels.

Allowances to facilities in the power sector are mainly based on sector standards. There are a small

portion of facilities with allocations based on historical emission levels before 2017 and historical

emission intensity after 2017. The paper sector mainly bases allocations on sector standards, while

a small portion uses historical intensity. Civil aviation adopted a sector-standards mechanism in

2017, and uses the same system as the paper sector afterwards. Table 2.2 provides a detailed sum-

mary of the allowance allocation approach assigned to each ETS regulated sector in Guangdong

over time.

ETS Pilot in Hubei

Hubei province is a landlocked province in the central China, with GDP of 4.58 trillion CNY

and population of 59.27 million in 2019. The first ETS transaction was launched in April 2014.

Hubei adopted the sector-standard approach to allocate allowances for the power and cement sec-

tors from 2015, while the remaining industries were based on the historical emission levels method

since 2015. The rolling baseline level used in the historical method is calculated with emission

levels from the very last three years. Table 2.3 provides a detailed summary of the allowance

allocation approach assigned to each ETS regulated sector in Hubei.

Generally speaking, the pilot ETS in Hubei province covers more sectors than that in Guang-

dong, while Hubei has a lower A3 adoption share across sectors than Guangdong. Therefore, I
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Table 2.2: ETS Coverage and Allowance Allocation Approach in Guangdong

Approach

Industry Subsector 2014 2015 2016 2017 2018 2019

Power

Fossil Fuel Power Station: Gas A3 A3 A3 A3 A3 A3

Fossil Fuel Power Station: Coal A3 A3 A3 A3 A3 A3

Fossil Fuel Heat Station: Gas A3 A3 A3 A3 A3 A3

Fossil Fuel Heat Station: Coal A3 A3 A3 A3 A3 A3

Combined Heat and Power A1 A1 A3 A3 A3 A3

Others A1 A1 A1 A2 A2 A2

Cement

Raw material mining A1 A3 A3 A3 A3 A3

Kilning A3 A3 A3 A3 A3 A3

Clinker grinding A1 A1 A1 A1 A1 A1

Others A1 A1 A1 A1 A1 A2

Iron & Steal
Long-process steel making A3 A3 A3 A3 A3 A3

Other steel making A1 A1 A1 A1 A1 A1

Petrochemical Petrochemical A1 A1 A1 A1 A1 A1

Paper
Normal paper products / / / A3 A3 A3

Special paper products / / / A2 A2 A2

Civil aviation
Primary civil aviation / / / / / A3

Other civil aviation / / / / / A2

Summarized by the author; Source: http://drc.gd.gov.cn/qtwj/content/post_844376.html

A1: Allowance based on historical emission level

A2: Allowance based on historical emission intensity

A3: Allowance based on sector standards

hypothesize that (1) the pilot ETS has a stronger effect on reducing air pollution in Hubei than

Guangdong due to larger sector coverage and lower A3 adoption rate, and (2) the pilot ETS in

Guangdong might not have significant impact on the local air quality due to high A3 adoption rate

across sectors.

2.4 Method

The goal of this study is to identify the extent to which the ETS pilot program affects local air

quality in terms of PM 2.5 concentration. Ideally, a random selection of ETS pilots would serve as

a natural experiment for ETS impact assessment. However, Chinese government select ETS pilots

based on baseline pollution level, economic performance and environmental regulation investment
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Table 2.3: ETS Coverage and Allowance Allocation Approach in Hubei

Approach

Industry subsector 2015 2016 2017 2018 2019

Power

Fossil Fuel Power Station: Gas A3 A3 A3 A3 A3

Fossil Fuel Power Station: Coal A3 A3 A3 A3 A3

Fossil Fuel Heat Station: Gas A3 A3 A3 A3 A3

Fossil Fuel Heat Station: Coal A3 A3 A3 A3 A3

Combined Heat and Power A3 A3 A3 A2 A2

Cement

Raw material mining A3 A3 A3 A3 A3

Kilning A3 A3 A3 A3 A3

Clinker grinding A3 A3 A3 A3 A3

Others A3 A3 A3 A3 A3

Glass Glass A1 A2 A2 A2 A2

Ceramics Ceramics A1 A2 A2 A1 A1

Paper Paper A1 A1 A1 A2 A2

Machinery

Manufacuring

Machinery

Manufacuring
A1 A1 A1 A1 A2

Others Others A1 A1 A1 A1 A2

Water supply Water supply / / / A1 A2

Summarized by the author; Source: http://sthjt.hubei.gov.cn/fbjd/zc/zcwj/sthjt/ehf/202008/t20200819_

2807965.shtml

Others include iron & steel, vehicle manufacturing, petrochemical, textile, food & drink, medical and non-

ferrous metals

A1: Allowance based on historical emission level

A2: Allowance based on historical emission intensity

A3: Allowance based on sector standards

[87, 45] of different provinces and cities. Therefore, carefully constructing the control group in the

DD design is critical.

Matching is a common approach to build comparable control group. The goal of matching

is to maximize the covariate balance between treated and control groups and the matched sample

size. Ferraro and Miranda [31] demonstrate that a DD design with matched data can approximate

random control trials and perform better in treatment effect estimates. Commonly used match-

ing approaches are Propensity Score Matching (PSM), Mahalanobis Distance Matching (MDM),

Coarsened Exact Matching (CEM). The first two methods fixed the size for matched data and hope

to get sufficient covariate balance between treated and control group, while the CEM approaches
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fix the level of imbalance and hope the resulted matched sample size is sufficiently large. Wang

et al. [87] and Huang et al. [45] suggest a list of factors that contribute to ETS pilot choice in

China, including economic development, industrialization, foreign investment, technology, educa-

tion, pollution and pollution abatement.

Though I managed to obtain city-level economic indicators that can present the level of these

factors, the dataset has a significant amount of missing values. It is unlikely to obtain a balanced

matched data with sparse city-level economic indicator data. Matching analyses based on time

series of different combinations of available economic indicators are conducted for both PSM and

CEM. Log transformation and classification of raw economic indicator data have been conducted,

yet the matching analyses don’t generate balanced covariates between pilot and selected control

cities. Also, the parallel pre-trend does not hold with the matched outcome. Therefore, I choose to

utilize institutional knowledge to carefully build the control group. Due to the diversity in geology,

economy, climate and resource endowments across provinces of China, it is not appropriate to

treat all the non-pilot areas as the control group. I choose cities from three provinces26 around and

between Guangdong and Hubei as a control groups. Figure 2.6 shows the location of the control

cities.

Due to the flexibility of ETS regulation designs across ETS pilot areas, I expect heterogeneous

treatment effects across locations. I also expect the treatment effect vary over time as (1) sector

coverage changes over time and (2) carbon-efficient technology are likely to evolve over time.

The empirical analysis begins with a static two-way fixed effect (TWFE) model, assuming time-

invariant treatment effects, for each pilot province. Next, I adopt the dynamic TWFE method to

allow heterogeneous treatment effects across time and locations. Results from both methods are

compared to see if the treatment effect estimates are robust across different specifications.

26Adjacent provinces of Guangdong and Hubei include Shaanxi, Henan, Anhui, Hunan, Guangxi, Jiangxi and Fujian.

Shaanxi, Henan and Anhui provinces are excluded as they are in the north of China and have different heating policy.

Almond et al. [1] discussed the impact of China’s Huai River policy on local air pollution. Guangxi is excluded as it

is an autonomous region whose economy relies heavily on agriculture and tourism.
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Figure 2.6: Treated and Control Cities

2.4.1 Static Two-Way Fixed Effects Model

In a static TWFE model, shown as equation 2.4, the Average Treatment effect on the Treated

group (ATT ) is assumed to be constant across pilots and time.

PM2.5it = α✐ + λt + δETSit +X ′γ + ϵit (2.4)

PM2.5it is the annual average of PM2.5 level of city i in year t. ETSit, is a binary indicator

of ETS operation and equals 1 if city i has ETS in operation in year t; otherwise, 0. X denotes

a matrix of control variables, and γ is the associated coefficient estimate vector. δ is a weighted

average of ATTs of all possible two-period two-group canonical DD from the dataset. The static

TWFE model assigns negative weights to individual canonical DD estimates, and therefore leads
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to a misleading27 estimate of δ that does not necessarily summarize a meaningful ATT of interest

[36, 46, 76]. Unobservables are allowed to be correlated within a province, and therefore I cluster

the standard errors at the province level.

2.4.2 Dynamic Two-Way Fixed Effects Model (Event Study)

The dynamic Two-Way Fixed Effects (TWFE) model, sometimes referred as the event-study

model, is adopted to allow the ATT to vary across pilots and time. A dynamic TWFE model where

some units remain untreated through all time periods is specified as equation 2.5:

PM2.5it = αi+λt+

(

−2
∑

e=−L+1

δe · ✶{t−Gi = e}+
K
∑

e=0

δe · ✶{t−Gi = e}

)

·Piloti+X ′γ+ ϵit

(2.5)

where Gi denotes the year city i enters ETS, ✶{t − Gi = e} is the binary indicator of whether

calendar year t is e years away from the Gi, and Piloti is the binary indicator for whether a city

falls in the ETS pilot area. L and K are positive integers, and denotes the largest lags and leads

from the dataset. In this study, I trim the data to make sure the panel data is balanced in L and

K. To avoid collinearity, two lags need to be dropped, and in the equation 2.5 the lag e = −1

and e = −L are dropped. It is a common practice to use insignificant δe<−1 to support the parallel

trend assumption [40]. However, it’s been recognized that pre-trend tests are often underpowered,

and are not sufficient to eliminate concerns related to pre-trends [32, 65, 66]. By only including

observations in one pilot province and selected controlled cities, the province-specific time-variant

treatment effect is obtained. If including all treated and selected control observations, then the

average time-variant treatment effect is generated.

27For example, consider a setting with two treated groups that receive the treatments in different time periods and

one control group that never receives the treatment. If individual DD estimates for both treated groups are positive,

however, the weight assigned by the static TWFE to the later treated group is negative, then the resulting static

TWFE estimate, a weighted average of the DD estimates, could be negative. In this case, the static TWFE estimate

is misleading.
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2.5 Data

Relevant data are obtained from various resources. Monitored air quality data of mainland

China is publicly available after 201428 which does not cover the pre-ETS period. In addition,

[34] has demonstrated that China’s official daily air pollution data does not behave well, which

suggests there is potential data manipulation. In this research I use the dataset by van Donkelaar

et al. [84], which provides China’s air quality data back to 2000 using interannual changes between

ground-measured and satellite derived data. Though this dataset has a resolution of 0.1◦ by 0.1◦

(∼ 10 km by 10 km). van Donkelaar et al. [84] suggest that this dataset is intended to aid in large-

scale studies due to influences from the coarser resolution of information sources. In this research,

I calculate the city annual mean PM 2.5 based on the annual grid-level PM 2.5 data. Figure 2.7

shows that annual PM 2.5 levels across China in 2006, 2011, 2016 and 2018. Lighter shaded areas

are associated with lower PM 2.5 levels. On average, southeastern China are associated with lighter

colors in 2018 compared with 2016, and in 2016 compared with 2011. This indicates a decreasing

trend of PM 2.5 in China. The National Statistic Bureau of China provides city-level annual GDP

and population.

The MERRA2 system provides annual weather data, including relative humidity indicator,

temperature and wind with a spatial resolution29 of 0.5◦ by 0.625◦ (∼ 55 km by 60 km). City-level

annual average values of weather variables are calculated based on the annual grid-level raster data.

As to other related air quality policy, China adopted a new National Ambient Air Quality

Standard (NAAQS) which set stringent standards for various air pollutants, including PM 2.5. The

NAAQS was implemented in different phases. The first phase of implementation was finished by

December of 2012 in 66 cities including provincial capitals, municipalities, cities in Jing-Jin-Ji

(JJJ), Yangzi River Delta (YRD) and Pearl River Delta (PRD) economic area. The second phase of

28Data can be found at http://beijingair.sinaapp.com/ over mainland China. These data are captured by individuals

from instantaneous data records on the website of the Chinese EPA.

29The corresponding area of the spatial unit varies across the location. Distance due to a latitude change ∆y =
2πRe

∆latitude
360◦

, and distance due to a longitude change ∆x = 2πRecos(latitude)
∆longitude

360◦
, where Re is the

radius of the earth. In the very south of China, a spatial unit of 0.5◦ by 0.625◦ approximately covers 55km by

66km, and in the very north of China, the coverage is around 55km by 42km.
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(a) 2006 (b) 2011

(c) 2016 (d) 2018

Figure 2.7: City-Level Annul PM 2.5 in 2006, 2011, 2016 and 2018

implementation was completed by December of 2013 in an additional 116 cities. The third phase

added another 177 cities before 2015. After 2015, all prefecture cities were required to comply

with the NAAQS.

China releases Five-Year Plans every five years to provide fundamental guidelines for social

and economic development, and the Eleventh (2006-2010) for the first time explicitly list green-

house gas control in the plan. Therefore, the study period is 2006 and afterwards. Due to data

availability, I trim the study period to end in 2018. Table 2.4 summarizes the variables used in the

analysis.
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Table 2.4: Summary Statistics

Guangdong: 17 cities N Mean St. Dev. Min Max

Year 221 2012 3.8 2006 2018

PM2.5 221 33.6 7.4 19.2 52.3

Temperature (C) 221 21.2 1.4 17.5 24.5

Wind (m/s) 221 5.0 0.4 4.1 6.1

Humidity 221 13.1 0.9 11.1 15.2

AAQS 221 0.0 0.0 0 0

Industrial Electricity (BKWh) 210 10.3 14.2 1.1 58.0

Hubei: 15 cities N Mean St. Dev. Min Max

Year 195 2012 3.8 2006 2018

PM2.5 195 53.9 17.4 8.7 85.4

Temperature (C) 195 16.0 1.9 10.3 18.4

Wind (m/s) 195 4.3 0.7 2.8 5.4

Humidity 195 9.1 0.8 7.2 10.7

AAQS 195 0.0 0.0 0 0

Industrial Electricity (BKWh) 156 4.7 5.5 1.1 28.0

Control Area: 33 cities N Mean St. Dev. Min Max

Year 429 2012 3.7 2006 2018

PM2.5 429 40.7 13.1 17.7 74.8

Temperature (C) 429 17.5 1.1 14.5 21.0

Wind (m/s) 429 4.5 0.6 3.1 6.8

Humidity 429 10.8 0.8 8.8 13.6

AAQS 429 0.0 0.0 0 0

Industrial Electricity (BKWh) 415 3.7 4.1 0.05 34.0

2.6 Results and Discussion

This section summarizes results from different model specification and further exploration of

presented outcomes. Figures 2.8a and 2.8b compares the estimates from two similar static TWFE

models (equation 2.4) where one controls for industrial electricity consumption and the other does

not. Both figures show insignificant treatment effects when two provinces’ data are combined.

Table 2.5 summarizes the results for the individual static TWFE models (equation 2.4) of

Guangdong and Hubei. While ETS operations in Guangdong does not have a significant effect

on air quality in Guangdong, having ETS operations is found to reduce PM2.5 levels by 4.31
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µg/m3, which represents an 8% reduction in Hubei on average. As the pooled static ETS estimate

is a weighted average from the individual static TWFE, I observe generally no significant effects

in Figure 2.8.

Table 2.5: Results for Individual Static TWFE Methods

City-Level PM2.5 (µg/m3)

Guangdong Hubei

ETS 1.69 −4.31∗∗

(2.09) (2.02)

Industrial Electricity (BKWh) 0.13 0.37∗∗∗

(0.18) (0.09)

AAQS −2.12∗∗ −2.13∗∗

(0.87) (0.89)

Temperature (C) −0.46 −0.43

(1.15) (1.98)

Wind (m/s) −4.02∗ −3.95∗

(2.37) (2.39)

Humidity −4.16∗∗∗ 0.50

(0.57) (1.60)

Constant 125.41∗∗∗ 85.80∗∗∗

(15.79) (15.54)

Observations 625 571

R2 0.95 0.96

Adjusted R2 0.95 0.95

Residual Std. Error 2.72 3.38

F Statistic 177.17∗∗∗ 177.64∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

As Guangdong and Hubei started ETS operations in different years, dynamic TWFE results

are presented next. Figures 2.9 and 2.10 plot the estimates of a dynamic TWFE following Sun

and Abraham [76], where time-specific average treatment effect across groups are estimated and

two periods indicators are dropped to avoid multicollinearity. The common practice is to drop the

closest lead and a far lag. Estimates in Figure 2.9b are from a model in which lead1 and lag4 are

dropped, while estimates Figure 2.10b are from a model in which lag0 and lag4 are dropped. Figure
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2.9b suggests a possible anticipation effect within two years before the treatment. In general, the

ETS treatment doesn’t show a significant impact on PM 2.5 levels after the ETS operation, and the

estimates are not significantly different across specifications and are therefore robust to the choices

of dropping periods.

(a) Control for Industrial Electricity (b) No Control for Industrial Electricity

Figure 2.8: Estimates from Static TWFE Models

(a) Control Variables (b) Treatment Effects

Figure 2.9: Estimates from Dynamic TWFE Models: Drop Lead1 and Lag4
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(a) Control Variables (b) Treatment Effects

Figure 2.10: Estimates from Dynamic TWFE Models: Drop Lag0 and Lag4

(a) No Anticipation (b) Two-year Anticipation

Figure 2.11: Group-Time Specific Treatment Effects: Never Treated Units as Control

Note: Group 2013 denotes Guangdong; Group 2014 denotes Hubei
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Figure 2.11 plots the estimates of ETS treatment effect following Callaway and Sant’Anna [12]

in which group-time specific treatment effects are estimated. Group 2013 represents Guangdong

and Group 2014 represents Hubei. Figure 2.11b plots estimates with a same ETS treatment timing

but allow a two-year anticipation, in which case regulated facilities are assumed to be able to take

actions two years before ETS operations due to anticipation. While allowing two-year anticipation

does affect the treatment effect estimates, the group-time specific estimates are not significantly

different from zero.

In general, the estimated ETS treatment effects from a dynamic TWFE specification is not

significantly different from 0. The insignificant estimates might be due to (1) limited statistical

power with a relative small sample size; (2) a carbon-intensity targeted ETS program with output-

based allowance assignment mechanisms (A2 and A3) has limited impact on production levels and

the air quality.

2.6.1 Allowance Allocation Mechanism

As discussed in section 3.1, the allocation mechanism based on sector-standards provides the

least incentive, on average, for regulated facilities to reduce output. Therefore, it is reasonable

to assume that air quality in cities with more facilities that receive emission allowances based on

sector-standards mechanism have smaller or even positive responses to the ETS program. The

Guangdong and Hubei local governments release annual allowance allocation plans as well as

the name of regulated facilities for each sector and cities. I use this information to calculate the

number of regulated facilities (Number) and percentage of facilities that are associated with the

sector-standards mechanism (Ratio) in each city and year.

PM2.5it = α✐ + λt + ϕETSit + λNumberit + δRatioit +X ′γ + ϵit (2.6)

Table 2.6 shows how PM 2.5 responses to different ETS designs. In column (1), the coeffi-

cient of ETS covers all different designs across locations and time, and does not show a significant

impact on PM 2.5 level. Significantly negative estimate of Number in the column (2) indicates
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Table 2.6: PM 2.5 Response to ETS Design

Dependent variable:

PM2.5

(1) (2) (3) (4)

ETS −1.11 0.93 −5.39∗∗∗ −6.52∗∗∗

(0.93) (1.03) (1.64) (1.41)

Ind. Elec 0.23∗∗∗ 0.26∗∗∗ 0.21∗∗∗ 0.21∗∗

(0.08) (0.08) (0.08) (0.08)

Number −0.14∗∗∗ −0.03

(0.04) (0.04)

Ratio 7.64∗∗∗ 9.74∗∗∗

(1.49) (1.24)

Power −0.41∗∗

(0.18)

Steel −0.07

(0.11)

Petro 0.27

(0.47)

Cement 0.03

(0.09)

Paper 0.44∗∗∗

(0.09)

Temperature −0.62 −0.70 −1.22∗∗ −1.38∗∗

(0.55) (0.54) (0.54) (0.56)

Wind −3.13∗∗ −2.57∗ −2.99∗∗ −3.03∗∗

(1.54) (1.53) (1.47) (1.43)

Humidity −1.89∗∗ −1.63∗ −2.04∗∗ −1.66∗∗

(0.79) (0.85) (0.85) (0.78)

AAQS −1.18 −1.10 −1.86∗∗ −2.09∗∗∗

(0.85) (0.84) (0.79) (0.79)

Constant 109.52∗∗∗ 105.52∗∗∗ 121.52∗∗∗ 120.96∗∗∗

(11.32) (11.96) (10.65) (10.00)

Observations 781 781 780 780

R2 0.95 0.95 0.95 0.96

Adjusted R2 0.95 0.95 0.95 0.95

Residual Std. Error 3.37 3.32 3.24 3.22

F Statistic 173.26∗∗∗ 176.45∗∗∗ 183.52∗∗∗ 177.62∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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that when more facilities are regulated under ETS, better air quality is achieved. The estimate of

ETS remains insignificant as the allowance allocations are not distinguished. Ratio is included

in column (3), and as expected, a positive coefficient on Ratio and a negative estimate on ETS

are observed, which indicates that ETS implementation in general reduces the PM 2.5 level, but

adoptions of A3 allowance allocation mechanism would offset this reduction. The results in col-

umn (4) include the numbers of regulated facilities from 5 common regulated sectors in Hubei and

Guangdong. The significantly negative estimate of the coefficient for the Power variable indicates

that the regulation on the Power sector tends to reduce the PM 2.5 level. The positive estimate

on the Paper sector might due to the late Paper sector coverage in Guangdong. The Paper sector

in Guangdong started to be regulated by ETS from 2017 which leads to higher Paper value after

2017. Therefore, the positive estimate of Paper could pick up the PM 2.5 difference before and

after 2017. Generally, the larger the number of enrolled facilities, the more PM 2.5 reduction can

be achieved. Positive estimates of the Ratio variable implies that adopting A3 in an ETS program

can increase city-level PM 2.5. After different ETS designs are controlled, ETS operations are

found to reduce city-level PM 2.5 by 6.52 µg/m3 on average.

In Section 2.3.1, I hypothesize the sector-standard ETS design encourages industrial output,

I further regress the industrial electricity consumption on the ETS and control variables to em-

pirically investigate production responses to different ETS designs. Table 2.7 summarizes the

outcomes. Column (1) shows an insignificant impact from the ETS on industrial electricity con-

sumption, which aligns with previous treatment effect estimates when different designs of ETS

are not considered. The positive coefficient on Ratio indicates that the sector-standard ETS design

motivates regulated facilities to expand their production on average. When number and sector-

standard regulated percentage of enrolled facilities are controlled, ETS implementations reduce

industrial production.
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Table 2.7: Industrial Electricity Consumption Response to ETS Design

Dependent variable:

Industrial Electricity Consumption

(1) (2) (3) (4)

ETS 0.57 −0.45 −3.25∗∗∗ −3.45∗∗∗

(0.73) (0.73) (0.98) (0.77)

Number 0.07∗∗∗ 0.11∗∗∗

(0.03) (0.03)

Ratio 3.34∗∗ 2.42∗∗

(1.33) (1.08)

Power 0.64∗∗∗

(0.13)

Steel 0.02

(0.17)

Petro 0.67

(0.69)

Cement 0.02

(0.14)

Paper 0.25∗∗

(0.12)

Temperature 0.94∗∗ 0.97∗∗ 0.72∗∗ 0.69∗∗

(0.39) (0.38) (0.35) (0.34)

Wind −1.72 −1.97∗∗ −2.10∗∗ −1.74∗

(1.05) (0.99) (1.00) (1.01)

Humidity −0.79 −0.91 −1.03 −0.83

(0.64) (0.64) (0.64) (0.61)

AAQS 2.14∗∗∗ 2.06∗∗∗ 1.70∗∗∗ 1.30∗∗

(0.68) (0.68) (0.65) (0.61)

Constant 1.09 3.06 9.43 6.65

(7.91) (7.74) (6.90) (6.22)

Observations 781 781 780 780

R2 0.94 0.94 0.94 0.95

Adjusted R2 0.93 0.94 0.94 0.94

Residual Std. Error 2.26 2.24 2.22 2.11

F Statistic 144.59∗∗∗ 145.17∗∗∗ 146.20∗∗∗ 154.58∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2.6.2 ETS and Public Health

Literature has shown how PM 2.5 impacts mortality around the world [24, 9, 42, 68]. Therefore,

when ETS reduces PM 2.5, the co-benefit of ETS is not only to improve air quality, but also

to improve public health. According to Shang et al. [73], every 10 µg/m3 increase in PM 2.5

introduces an increase of 0.38% in total mortality in China, while Li et al. [50] suggest a hazard

ratio of 1.08 which indicates an increase of 8% in total mortality per 10 µg/m3 increase in PM 2.5.

Hammitt et al. [39] report the Value of Statistical Life (VSL) in China from 22,000 USD in 2005

to 550,000 USD in 2016. Taking the estimates for Hubei in Table 2.5, where ETS implementation

reduces city-level PM 2.5 by 4.31 µg/m3, and combining estimates from Shang et al. [73] and Li

et al. [50], then the mortality reduction ranges from 0.164% to 3.448% in Hubei.

Based on reported annual death rates from 2006 to 2018, the average annual death rate in Hubei

is 0.0634%. After ETS operations, the average death rate falls between 0.0612% to 0.0633% in

Hubei. The reported average annual population in Hubei is 57.89 million. Hence, the implemen-

tation of the ETS is estimated to reduce premature mortality by 57 to 1,273 lives in Hubei, which

generates annual social welfare increases ranging from 3.135× 107 to 7.002× 108 USD per year.

2.7 Conclusions

This research is designed to assess the treatment effect of China’s ETS pilot on local air quality.

The designs as well as various allowance allocation mechanisms adopted by ETS pilots in Hubei

and Guangdong provinces are described. Due to the flexibility of the ETS designs across pilot

areas, heterogeneous treatment effects are expected. I compare estimates from static and dynamic

two-way fixed effects models, and provide evidence for heterogeneous effects. I further investigate

how the ETS designs contributes to the heterogeneous effects.

The empirical analysis shows that the ETS pilot program on average does not have a significant

impact on local air quality, which is mainly due to the ETS design. The current ETS is carbon-

intensity targeted rather than targeted on total carbon emissions. Carbon intensity programs do not

necessarily provide sufficient incentives for output reductions. Especially with a sector-standards
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mechanism (A3), the ETS can grant total emission allowances more than the total emission from a

sector and provide incentives for more efficient facilities to expand their output. China’s ETS can

help to reduce carbon intensity, but it is not necessarily as beneficial in terms of improving local

air quality. As reductions in PM 2.5 can improve public health, future ETS designs might consider

constraining the adoption of A3 in the emission allowance allocation process.

China announced a nation-wide ETS for the electricity sector in 2017 and started the operations

to July 16th 2021 due to the pandemic. The nation-wide ETS grants emission allowances using a

sector standard mechanism30 (A3) which implies that the nation-wide ETS is also carbon intensity

targeted. Though the nation-wide ETS and ETS pilot programs are both carbon intensity targeted,

estimates from this research have limited external validity in predicting the performance of the

national ETS for several reasons: (1) during the ETS pilot period, the ETS design within each pilot

changed over time, which made it hard for the regulated facilities to make long-term decisions; (2)

the analysis includes only Hubei and Guangdong as the treated group, though these two provinces

have a good representation of the southeastern China, they are quite different from the northwestern

provinces in China; (3) the nation-wide ETS is targeted at the electricity sector while the ETS pilots

cover many other sectors.

With the nation-wide ETS in the electricity sector, future studies can take advantage of relative

more available electricity output data to empirically test whether China’s ETS results in output

reductions. In addition, future studies might want to include other environmental policies related to

carbon emission control to see how the ETS in combination with other policies jointly affect local

air quality. When better city-level economic indicator data is available, more detailed matching

methods could potentially improve the precision of the estimates.

30https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202012/t20201230_815546.html
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Chapter 3

The Market Value of Water in the High Plains

Aquifer: An Update

3.1 Introduction

The High Plains Aquifer (HPA), the largest groundwater resource of the United States, sup-

ports about 27% of the US irrigated lands [56]. Groundwater irrigated acreage in the High Plains

increased from 2.1 million acres in 1950 to 13.9 million acres in 1997 and reached 15.5 million

acres in 2005 [57]. Intensive irrigation demand raises overexploitation concerns for the HPA.

McGuire [58] summarizes the water-level and recoverable water in storage changes from prede-

velopment to 2015. The HPA on average has experienced a 15.8 foot decrease in water-levels

from 1950 to 2015. Scanlon et al. [69] point it out that depletion of the HPA is highly localized

and the current depletion and recharge rates would result in groundwater shortage for 35% of the

southern High Plains within the next two decades. Besides threatening future crop productions,

low groundwater stock also has negative impacts on aquatic ecosystems [64]. In addition, under

climate change, the High Plains are expected to face more competing water demands among resi-

dential, industrial and agricultural uses. Therefore, it is critical to maintain sustainable use of the

HPA.

To develop efficient policy that achieves groundwater resource sustainability while maintain-

ing sufficient food and energy production, reliable estimates of groundwater resource value is

necessary. Higher groundwater resource values underpin groundwater conservation actions and

encourage irrigation technology innovations. Due to the lack of competitive market, it is diffi-

cult to directly observe groundwater’s value. Common approaches used to estimate the value of

natural resources include optimization based approaches, stated-preference methods and hedonic

analyses. An optimization based approach identifies the marginal value of the natural resource
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through a profit-maximizing or cost-minimizing model given varying levels of resource availabil-

ity [54]. When survey data is available, the stated-preference method can be adopted to evaluate

total economic value of groundwater stock increase, including non-market values of the resource

[77].

This paper aims to estimate the marginal values of HPA groundwater resources with a hedonic

analysis. Specifically, we analyze repeated transactions of groundwater irrigated land in Colorado

and Nebraska to estimate the responses in real land values to the changes in groundwater satu-

rated thickness levels. The contribution of this paper is threefold: (1) to utilize the ZTRAX data

products from Zillow to obtain transactions involving agricultural land across multiple states over

a long time period; (2) to provide more accurate hedonic estimates by estimating econometric

models that include parcel level fixed effects with repeated transactions; (3) while most previous

studies focus on a single state, our paper takes the advantage of rich temporal and spatial variations

in groundwater availability to update the value of water for Colorado and Nebraska since [79]. Re-

sults suggest positive marginal effects of groundwater availability on irrigated land value when

groundwater stocks are sufficiently low. In general, additional units of groundwater are more valu-

able in Colorado than in Nebraska. The marginal effect of groundwater resources are also found

to be responsive to drought pattern. Taken as a whole, the results also imply losses in economic

value associated with current depletion behaviors.

3.2 Literature Review

Though hedonic methods were initially used to reveal consumer’s marginal willingness to pay

(MWTP) for residential property amenities, it has also been widely used to address the value of

various environmental attributes of agricultural land, including scenic views [5], wildlife recre-

ation [43], erosion control and drainage use [62]. Due to data availability, earlier studies tend to

adopt pooled cross-sectional data and control for as many covariates as possible to reduce omitted-

variable bias. Torell et al. [79] collect farm sales data from Farm Credit Services and control for

different farm attributes for irrigated land and dryland. They estimate the value of groundwater
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stock existence by comparing price differentials between irrigated and dryland farm sales, and

estimate the marginal value ($/acre-foot) of additional saturated thickness by dividing the price

differentials ($/acre) by the state average saturated thickness (feet). They find that irrigated land

on average has higher land value, and impacts of saturated thickness on land value vary from

$1.09/foot in Oklahoma in 1986 to $9.5/foot in New Mexico in 1986.

When omitted-variable bias is of big concern, simple functional forms such as linear and log-

log are shown to outperform more flexible nonlinear models Cropper et al. [21]. With increasing

data availability, it has become a standard practice to add spatial fixed effects and to utilize quasi-

experiments to account for unobservable time-invariant heterogeneity. Kuminoff et al. [49] demon-

strate, using Monte Carlo methods, that flexible functional forms, such as the quadratic Box-Cox

model, with spatial fixed effects provide more accurate estimates than traditional linear models that

previously dominate hedonic studies.

To obtain robust estimates through a hedonic model, the Law of One Price needs to hold, which

means that identical properties are sold for the same price through the market. The definition of

market consists of two dimensions: time and location. It’s common for hedonic analyses to define a

market as a single metropolitan area over a few years. As data availability expands, the spatial and

temporal extent of the analysis can also increase, which challenges the assumption of one market

in hedonic analyses. In this case, allowing for an evolving hedonic price is necessary. Adding

interactions between time and spatial dummies with the price function parameters can help to

mitigate this challenge [6]. Von Graevenitz [86] also addresses this issue by adopting a piecewise

linear function, which allows marginal effects of road noise exposure on property value vary across

noise ranges.

Theoretically, including fine scale spatial fixed effects in hedonic analyses can help to control

for the unobservables and mitigate omitted variables bias. With increasing data availability, it is

possible to include finer scale spatial fixed effects. However, only a few empirical studies have

utilized repeated parcel sales data to estimate the value of water resources. Buck et al. [10] collect

land transactions in eight California counties between 2001 and 2008 to recover the marginal
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value of surface water. After filtering out high turnover parcels, non-crop parcels, parcels with

bedrooms, a sample with 292 observations for 140 parcels are used for the hedonic analysis. Their

results present an average capitalization value of $3723 for an additional acre-foot of surface water.

However, due to the limited sample size, their results have limited relevance outside of the study

area. Sampson et al. [67] applied hedonic models to repeated sales datasets and estimate the value

of groundwater in Kansas. The authors allow for different value functions for irrigated and non-

irrigated parcels. They collect arms-length transactions for parcels grater than 40 acres in Kansas

from 1988 to 2015. The long time period provides them 2,269 parcels with repeated sales. They

find that irrigated land on average has 53% higher land value than non-irrigated land, and that

groundwater is capitalized in the land value with average marginal values ranging from 3.41$/acre

to 15.86 $/acre with an additional foot increase in saturated thickness. Buck et al. [10] focuses

on surface water, and Sampson et al. [67] address the value difference between irrigated and non-

irrigated land. We focus on irrigated land value only and explore the heterogeneous impact of

groundwater availability on land values across various groundwater endowments. Including parcel-

level fixed effects helps to avoid bias from omitting parcel attributes that are correlated with the

groundwater availability at a cost of losing some statistical power due to a smaller dataset. We

compare results from various specifications to explore how groundwater availability impacts the

value of irrigated land.

3.3 Method

Lack of competitive markets makes it difficult to observe the value of groundwater resources,

and assessing agricultural land value’s marginal response to groundwater availability is a common

alternative to evaluate the shadow value of groundwater. To measure the marginal value of ground-

water resources, we focus on groundwater irrigated parcel transactions only. The land value of a

particular parcel represents the current value of expected rent flows:

Pirr =

∫

∞

t=0

e−rt(Rirr(t,X) + v(t))dt
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where Pirr denotes the observed irrigated land price per acre with a discount rate r. Rirr(t) is

the rental rate for groundwater irrigated land, and v(t) captures value due to other influences,

such as price shocks and urbanization. Rirr(t) is a function of aquifer characteristics X such as

saturated thickness, hydraulic conductivity and specific yield, as well as soil attributes and climate

characteristics. We begin by estimating a simple linear model without parcel-level fixed effects, as

equation 3.1.

Pit = αSTit + βST 2

it + γST 3

it + τZi + δj + λt + ϵit (3.1)

where Pit denotes the real price 31 of per acre of parcel i at time t. STit denotes the saturated

thickness, and we allow the marginal effect of ST on land value to vary by including the quadratic

and cubic form of ST. Zi denotes other observable attributes of a parcel, such as distance from

bedrock to land surface, soil type32, specific yield and conductivity and climate attributes. The

climate attributes consist of 30-year normals of annual precipitation, mean temperature, max tem-

perature and min temperature. δj is a spatial fixed effect that controls for unobserved time invariant

attributes at a spatial scale larger than the parcel, for example, a county or a state. λt denotes the

year fixed effect.

We also estimate a model with parcel-level fixed effects as in equation 3.2 :

Pit = αSTit + βST 2

it + γST 3

it + δi + λt + ϵit (3.2)

where δi denotes the parcel-level fixed effect, and the rest of the notation is defined the same as in

equation 3.1 .

As hedonic analyses can be sensitive to functional forms, we also adopt a piece-wise linear

function to allow for the estimation of more flexible, heterogeneous marginal effects of ST as

equation 3.3:

Pit = αSTit + η(STit −M)Bit + δi + λt + ϵit (3.3)

31The real price is in 2015 US dollars

32Table ?? describes soil types included in the analysis
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where Bit = 1 if STit is larger than the threshold M meters, otherwise, Bit = 0. The choices of

M are based on the mean ST in Colorado and Nebraska.

We expect to estimate α, β and γ that yield a positive first derivative and negative second

derivative of land value with respect to ST , due to the diminishing returns of groundwater to

agricultural production. Similarly, we also expect negative η for a positive but decreasing marginal

effect of ST in areas where groundwater resources are constrained. The empirical analysis is

conducted with combined data including both Colorado and Nebraska.

Since we hope to take advantage of wide coverage of time and space in the ZTRAX data, we

might violate the Law of One Price which is the fundamental assumption for hedonic analysis.

To obtain valid estimates from hedonic analysis, properties with the same attributes should sell

for the same price, and therefore a well-defined market is required to maintain a unique hedonic

price function. When the analysis involves large variation in time and space, allowing an evolving

hedonic price function is appropriate. Therefore, we propose the specification as equation 3.4:

Pit = αSTit + βST 2

it + γST 3

it + αDSTitDt + βDST
2

itDt + γDST
3

itDt + δi + λt + ϵit (3.4)

where Dt = ✶(t > D). The choice of drought inflection point D is driven by the historical drought

data in Colorado and Nebraska. Our assumption is that severe and continuous droughts would shift

the demand of groundwater and eventually shift the implicit function of groundwater. As shown

in Figures 3.1 and 3.2, both Colorado and Nebraska started to experience severe and frequent

droughts since 2000, we estimate equation 3.4 with D ranging from 2000 to 2005 to check the

robustness. We expect higher marginal effects of groundwater on real land value after D.

3.4 Data

To conduct a hedonic analysis evaluating how land value responds to groundwater stock, land

transactions and groundwater availability data are required. The ZTRAX dataset from Zillow pro-

vides property transaction information. The ZTRAX data product consists of separate assessment
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Note: Figure from NOAA NIDIS: Drought.gov

Figure 3.1: Drought Index in Colorado from 1970 to 2017

Note: Figure from NOAA NIDIS: Drought.gov

Figure 3.2: Drought Index in Nebraska from 1970 to 2017

(ASMT) data and transaction (TRANS) data. ASMT provides comprehensive parcel attributes.

The following attributes are useful for our study: property full address, geographic coordinates,

building area, transaction date, lot size, sale price, land use and property use. Data processing

details can be found in the Appendix.

For the empirical analysis, ASMT and TRANS data are combined to generate a comprehensive

land transaction data set. When a parcel exists in both ASMT and TRANS, the sale price amount

and the parcel coordinates are obtained from TRANS, while attributes related to the building area

and number of rooms are from ASMT. Land use from ASMT and TRANS are used to identify

agricultural parcels. To expand the sample size, parcels with lot size greater than or equal to 30

acres and without specified land use are also included as agricultural parcels.
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We use documentation type and intra-family transfer flag to rule out non arms-length transac-

tions33, and exclude transactions with nominal sale price amount lower than $100. As our study

area is the Ogallala aquifer, we also drop parcels outside of the aquifer boundary. We further

trim our data based on irrigation practice. Colorado’s Decision Support Systems (CDSS) provide

irrigated land GIS data for multiple years, and the Nebraska Department of Natural Resources

(NDNR) provides Pivot Irrigation GIS data for 2005. We take advantage of these GIS data sources

to identify groundwater irrigated parcels in Colorado and Nebraska. Due to these GIS data only

being available in specific years, it is acknowledged that we might miss some groundwater irri-

gated parcels. Some parcel coordinates are derived based on the property address, and the derived

coordinates describing the street may not necessary lie within the parcel. Therefore, rather than

checking if the parcel coordinates fall into the groundwater irrigated polygons, we create artificial

square-shape parcel boundaries based on the ZTRAX parcel coordinates and lot size. When a par-

cel’s artificial boundary intersects with any CDSS/NDNR groundwater irrigated land parcel, the

ZTRAX parcel is considered as a groundwater irrigated parcel. Figure 3.3 presents the study area

of this essay. Due to the data availability of ZTRAX land transactions data, we limit our analysis

to Colorado and Nebraska groundwater irrigated land.

Haacker et al. [38] provides annual saturated thickness (ST) data for the entire Ogallala aquifer

from 1970 to 2016. We extract point values of ST as a parcel’s ST based on the parcel’s coordinates,

rather than calculating the average ST for the artificial boundary. The assumption here is that

the saturated thickness does not vary much within a parcel. To include more recent property

transactions, we use 2016 ST to approximate ST from 2017 to 2019. The assumption here is

that the ST does not vary much through a short time period. This approximation could bias the

estimates if many repeated transactions happen between 2016 and 2019. Fortunately, less than 1%

of the repeated transactions happens after 2016, which reduces concerns about the approximation.

Schloss and Buddemeier [71] argue that ST level greater than 30 feet34 is required for high-volume

33Details of data cleaning process can be found in the appendix.

3430 feet equal 9.144 meter.
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pumping. Therefore, to reduce the risk of violating the Law of One Price, we drop the observations

with ST levels smaller than 9 meters.

Figure 3.3: Study Area

The final data used in the analyses are further trimmed by excluding observations with real

land value ($/acre) lower than the 12.5% percentile value or larger than the 87.5% percentile value

in each state. We obtain a raster data of soil type for the study area from Global Soil Regions

Map [81], then we extract the soil type information to each ZTRAX parcel of interest. We obtain

long-term climate information from the PRISM 30-Year Normals data product [60], including

precipitation, mean temperature, max temperature and min temperature. Tables 3.1, 3.2 and 3.3

present the summary statistics of parcel related variables for combined data of two states, as well

as individual data for Nebraska and Colorado.
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Table 3.1: Summary Statistics for All Transactions: CO & NE

All Transactions N Mean St. Dev. Min Max

Year 4,336 2,008.70 6.74 1,976 2,019

Saturated Thickness (ST) (m) 4,336 61.07 45.84 9.00 223.48

ST > 30m 4,336 0.70 0.46 0 1

ST > 70m 4,336 0.31 0.46 0 1

Nominal Land Value ($/acre) 4,336 2,798.63 2,156.09 498.88 9,638.45

Real Land Value ($/acre) 4,336 2,954.33 2,249.88 462.21 18,747.73

Argids 4,331 0.001 0.03 0.00 1.00

Xerolls 4,331 0.01 0.10 0.00 1.00

Ustolls 4,331 0.75 0.43 0.00 1.00

Udolls 4,331 0.10 0.30 0.00 1.00

Orthents 4,331 0.14 0.34 0.00 1.00

Conductivity 4,336 116.34 82.64 25 550

Specific Yield 4,336 26.34 4.99 5.00 42.50

Mean Bedrock to Surface (m) 4,336 101.03 71.15 12.16 1,114.14

Precipitation (mm) 4,336 597.82 116.56 369.31 824.51

Average Temperature (C) 4,336 10.11 0.59 8.45 12.43

Max Temperature (C) 4,336 17.24 0.97 15.26 20.81

Min Temperature (C) 4,336 2.97 0.82 0.62 4.91

Repeated Transactions N Mean St. Dev. Min Max

Year 753 2,009.34 6.20 1,985 2,019

Saturated Thickness (ST) (m) 753 68.13 50.65 9.90 220.59

ST > 30m 753 0.74 0.44 0 1

ST > 70m 753 0.36 0.48 0 1

Nominal Land Value ($/acre) 753 2,851.55 2,138.03 500.00 9,606.99

Real Land Value ($/acre) 753 2,959.68 2,161.88 506.51 11,346.81

Argids 753 0.003 0.05 0 1

Xerolls 753 0.01 0.09 0 1

Ustolls 753 0.77 0.42 0 1

Udolls 753 0.06 0.24 0 1

Orthents 753 0.16 0.37 0 1

Conductivity 753 106.76 75.73 25.00 550.00

Specific Yield 753 26.16 4.68 12 35

Mean Bedrock to Surface (m) 753 104.63 64.02 15.06 681.14

Precipitation (mm) 753 595.67 111.28 412.90 789.24

Average Temperature (C) 753 10.03 0.62 8.77 12.40

Max Temperature (C) 753 17.20 1.05 15.48 20.80

Min Temperature (C) 753 2.87 0.76 1.04 4.73
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Table 3.2: Summary Statistics for All Transactions: NE

All Transactions N Mean St. Dev. Min Max

Year 3,059 2,008.83 6.51 1,976 2,019

Saturated Thickness (ST) (m) 3,059 73.66 48.25 9.00 223.48

ST > 30m 3,059 0.84 0.36 0 1

ST > 70m 3,059 0.41 0.49 0 1

Nominal Land Value ($/acre) 3,059 3,021.17 2,168.20 498.88 9,638.45

Real Land Value ($/acre) 3,059 3,174.02 2,235.34 462.21 18,747.73

Argids 3,057 0.00 0.00 0.00 0.00

Xerolls 3,057 0.01 0.12 0.00 1.00

Ustolls 3,057 0.73 0.44 0.00 1.00

Udolls 3,057 0.14 0.35 0.00 1.00

Orthents 3,057 0.11 0.32 0.00 1.00

Conductivity 3,059 108.85 91.74 25 550

Specific Yield 3,059 25.95 5.28 5.00 42.50

Mean Bedrock to Surface (m) 3,059 108.52 82.55 12.16 1,114.14

Precipitation (mm) 3,059 660.00 77.58 369.31 824.51

Average Temperature (C) 3,059 10.01 0.64 8.45 11.30

Max Temperature (C) 3,059 16.82 0.80 15.26 19.17

Min Temperature (C) 3,059 3.21 0.84 0.62 4.91

Repeated Transactions N Mean St. Dev. Min Max

Year 561 2,010.03 5.83 1,987 2,018

Saturated Thickness (ST) (m) 561 80.90 52.12 10.58 220.59

ST > 30m 561 0.87 0.33 0 1

ST > 70m 561 0.47 0.50 0 1

Nominal Land Value ($/acre) 561 3,108.22 2,148.50 500.00 9,606.99

Real Land Value ($/acre) 561 3,186.58 2,153.64 506.51 11,346.81

Argids 561 0.00 0.00 0 0

Xerolls 561 0.01 0.10 0 1

Ustolls 561 0.77 0.42 0 1

Udolls 561 0.09 0.28 0 1

Orthents 561 0.14 0.34 0 1

Conductivity 561 96.39 80.29 25.00 550.00

Specific Yield 561 25.66 4.80 12 35

Mean Bedrock to Surface (m) 561 111.74 71.89 15.06 681.14

Precipitation (mm) 561 646.57 79.57 415.28 789.24

Average Temperature (C) 561 9.91 0.64 8.77 11.03

Max Temperature (C) 561 16.80 0.88 15.48 19.10

Min Temperature (C) 561 3.02 0.80 1.04 4.73
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Table 3.3: Summary Statistics for All Transactions: CO

All Transactions N Mean St. Dev. Min Max

Year 1,277 2,008.41 7.26 1,982 2,019

Saturated Thickness (ST) (m) 1,277 30.92 16.45 9.01 95.29

ST > 30m 1,277 0.37 0.48 0 1

ST > 70m 1,277 0.05 0.22 0 1

Nominal Land Value ($/acre) 1,277 2,265.54 2,030.70 499.36 9,629.72

Real Land Value ($/acre) 1,277 2,428.07 2,197.57 469.31 12,794.09

Argids 1,274 0.004 0.06 0.00 1.00

Xerolls 1,274 0.00 0.00 0.00 0.00

Ustolls 1,274 0.81 0.40 0.00 1.00

Udolls 1,274 0.00 0.00 0.00 0.00

Orthents 1,274 0.19 0.39 0.00 1.00

Conductivity 1,277 134.27 50.77 62 250

Specific Yield 1,277 27.27 4.06 12.50 35.00

Mean Bedrock to Surface (m) 1,277 83.09 20.18 14.71 124.00

Precipitation (mm) 1,277 448.87 16.23 403.62 487.78

Average Temperature (C) 1,277 10.33 0.35 9.53 12.43

Max Temperature (C) 1,277 18.26 0.44 17.49 20.81

Min Temperature (C) 1,277 2.40 0.35 1.24 4.08

Repeated Transactions N Mean St. Dev. Min Max

Year 192 2,007.33 6.78 1,985 2,019

Saturated Thickness (ST) (m) 192 30.83 16.14 9.90 82.44

ST > 30m 192 0.36 0.48 0 1

ST > 70m 192 0.05 0.21 0 1

Nominal Land Value ($/acre) 192 2,101.61 1,924.74 500.00 9,555.56

Real Land Value ($/acre) 192 2,296.69 2,051.68 601.46 10,037.00

Argids 192 0.01 0.10 0 1

Xerolls 192 0.00 0.00 0 0

Ustolls 192 0.77 0.42 0 1

Udolls 192 0.00 0.00 0 0

Orthents 192 0.22 0.41 0 1

Conductivity 192 137.04 49.41 62 250

Specific Yield 192 27.62 3.97 20 35

Mean Bedrock to Surface (m) 192 83.83 19.95 25.37 117.32

Precipitation (mm) 192 446.95 18.72 412.90 486.19

Average Temperature (C) 192 10.39 0.39 9.72 12.40

Max Temperature (C) 192 18.35 0.54 17.51 20.80

Min Temperature (C) 192 2.43 0.34 2 4
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We observe no significant differences between all transactions and repeated transactions for

any variable in either table, which implies that, on average, parcels sold only once are similar to

parcels sold more than once. Based on the mean ST in Colorado and Nebraska, we choose 30 and

70 meters of saturated thickness as the break points of piece-wise function in equation 3.3.

Table 3.4 summarizes the year gap and ST changes across parcel transactions. For the repeated

sales, the year gap and ST changes between transactions of a given parcel are larger in Colorado

compared with Nebraska on average.

Table 3.4: Year Gap and ST Changes for Repeated Transactions

Repeated sales CO NE

Min year gap between transactions 1 1

Min ST changes between transactions (m) 0 0

Max year gap between transactions 20 26

Max ST changes between transactions (m) 9.762 8.255

Mean year gap between transactions 6.45 4.59

Mean ST changes between transactions (m) 1.714 1.279

3.5 Results and Discussion

This section summarizes the regression results for different datasets with various specifications.

Tables summarizing the estimates across different specifications can be found in the Appendix.

Figures 3.4c, 3.5c and 3.6c plots estimates from columns 3, 5 and 6 in Table C.2, respectively.

Figures 3.4a, 3.5a and 3.6a present estimates from columns 3, 5 and 6 in Table C.3, respectively.

Figures 3.4b, 3.5b and 3.6b are based on columns 3, 5 and 6 in Table C.4.

Figures 3.4a and 3.4b present point estimates of the marginal effect of saturated thickness (ST)

from equation 3.1 for all transactions and repeated transactions, respectively; while Figure 3.4c

plots marginal effects of ST from equation 3.2. The red and blue dashed lines denote the mean ST

for Colorado and Nebraska, respectively. When ST levels are lower than the mean ST of Nebraska,

all figures show a decreasing marginal effect of ST as ST level increases. Marginal effect of ST
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(a) Pooled OLS: All (b) Pooled OLS: Repeated (c) TWFE

Figure 3.4: Marginal Effect Estimates of Models with Polynomial Specification

is positive when ST level is sufficiently low. Table 3.5 summarizes the marginal effect of ST at

the mean ST for Colorado and Nebraska. Pooled OLS estimates of ST at mean ST levels are

significantly positive and an additional meter in saturated thickness could introduce $13.81/acre in

Colorado and $5.66/acre in Nebraska on average. Pooled OLS with repeated transactions yields

higher marginal effect estimates than that with all transactions, where an additional one meter

increase in saturated thickness raises the land value by $26.94/acre in Colorado and $22.14/acre in

Nebraska, which implies that values of parcels transacted more than once are more responsive to

the ST levels. Though TWFE estimates show similar higher marginal effects with lower ST levels,

estimates are not significantly different from 0 at mean ST levels. Our estimates of of the marginal

effects are per meter increase in saturated thickness. To compare our results with estimates from

Torell et al. [79], we transfer our estimates to land value change per foot increase in saturated

thickness in Table 3.6. Our estimates from the pooled OLS with repeated transactions are similar

to those from Torell et al. [79] whereas the estimates from the pooled OLS with all transactions are

smaller than those in Torell et al. [79].

Figures 3.5a and 3.5b present point estimates of ST marginal effects from a piece-wise linear

function similar to that in equation 3.3 that controls for soil types and climate attributes with

county fixed effects for all transactions and repeated transactions, respectively; while Figure 3.5c

plots marginal effects of ST from a TWFE model identical to that provided in equation 3.3. The

estimated marginal effects of ST at Nebraska’s mean ST level in Figure 3.5 are similar to those

71



Table 3.5: Marginal Effects of ST at Mean ST Levels with the

Polynomial Specification

CO Mean ST

30.8 m

NE Mean ST

72.9 m

Pooled OLS

All Transactions

13.8053∗∗∗ 5.6621∗

(3.5172) (3.1482)

Pooled OLS

Repeated Transactions

26.9373∗∗∗ 22.144∗∗

(7.2861) (9.8535)

TWFE
84.2023 -44.7245

(170.4008) (62.8313)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3.6: Marginal Value of Saturated Thickness Comparison

$/acre Increase in Land Value

per Foot of ST Increase
CO Mean NE Mean

Pooled OLS

All Transactions
4.21 1.73

Pooled OLS

Repeated Transactions
8.21 6.75

TWFE 25.66 -13.63

Torell et al. (1990)
5.45 (North CO)

2.99 (South CO)
2.89

Torell et al. (1990) in 2015 $
11.44 (North CO)

6.51 (South CO)
5.97

in Figure 3.4. Though estimates show different patterns across the three figures, the estimates of

different ST ranges are not significantly different from each other. Therefore, we don’t observe

evidence for different land value responses to different ST range groups based on the piece-wise

linear functions. We notice in Figure 3.5b that the marginal effect of ST is significantly larger than

0 when ST is greater than 70 meters, while it is not significantly different from 0 in Figure 3.5a.

This reiterates that values of parcels transacted more than once are more responsive to ST levels.

Figure 3.6 plots estimates with drought reflection specification. Here we show results with

a drought reflection point choice of D = 2004. Red dots are marginal effects of ST after 2004,

and green dots are marginal effects of ST before 2004. Blue and purple dashed lines denote the
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(a) Pooled OLS: All (b) Pooled OLS: Repeated (c) TWFE

Figure 3.5: Marginal Effect Estimates of Models with Piece-wise Specification

mean ST of Colorado and Nebraska, respectively. While all three subfigures show higher average

marginal effect of ST after 2004 when frequent and severe droughts started to hit the study area,

the functional form of the marginal effect of ST in Figure 3.6c looks different from those in Figures

3.6a and 3.6b. Differences in the estimated functional form of marginal effect could due to omitted

parcel attributes correlated with ST level in the pooled OLS specification. Table 3.7 summarizes

the marginal effects of ST at mean ST levels across states. Marginal effects of ST at mean ST

levels from pooled OLS show that land values are more responsive to the ST levels after 2004

when drought frequency increases. Again, estimates from the TWFE model are not significantly

different from 0 due to limited degree of freedom.

(a) Pooled OLS: All (b) Pooled OLS: Repeated (c) TWFE

Figure 3.6: Marginal Effect Estimates of Models with Drought Reflection Specification
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Table 3.7: Marginal Effects of ST at Mean ST Levels with the Drought Reflec-

tion Specification

CO Mean ST

30.8 m

NE Mean ST

72.9 m

Pooled OLS

All Transactions

Before 2004
-6.3289 2.8999∗

(6.6007) (6.1683)

After 2004
19.5268∗∗∗ 6.8722∗∗∗

(4.4197) (3.5944)

Pooled OLS

Repeated Transactions

Before 2004
9.6538 34.1281∗∗

(24.546) (9.8401)

After 2004
29.4495∗∗∗ 21.5735∗

(8.2374) (9.6616)

TWFE

Before 2004
12.2042 -21.7194

(135.3913) (52.8578)

After 2004
46.0987 -15.2692

(157.6412) (53.0938)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For a robustness check, we also use different drought reflection point D choices from 2000 to

2005. Figure 3.7 summarizes the marginal effect of ST at mean ST levels with different D choices.

In the pooled OLS models, the marginal effect at the mean is not sensitive to the choice of D. In

the TWFE models, while the marginal effect at mean varies with respect to D, it’s not significantly

different from 0. Therefore, the results are robust to different choices of D.

Hrozencik et al. [44] demonstrated that land profitability in the Republican River Basin of

Colorado increases as well capacity increases, till well capacity reaches approximately 600 gallons

per min (gpm). The profitability of land does not change significantly with well capacity greater

than 600 gpm across land types. To justify why the marginal effect of ST drops as ST level

increases, we use reported well capacity in Colorado [19] to estimate the relationship between

ST and well capacity35. Applying the estimated relationship between ST and well capacity to the

observations in Colorado shows that observations with ST greater than 25.17 meters have well

capacity larger than 600 gmp, while the median ST level in our Colorado sample is 26.17 meters.

35The estimated well capacity is a function of ST , ST 2 and ST 3. The estimates for ST , ST 2 and ST 3 are -4.591,

0.3576 and ± 0.002626, respectively. All estimates are statistically significant at a significant level of 0.05
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(a) Pooled OLS: All (b) TWFE

Figure 3.7: Marginal Effect Estimates at Mean ST across Different D Choices

Therefore, higher ST levels are not contributing to the land profitability to at least half of the parcels

in our Colorado sample, which underpins the insignificant marginal effect of ST when ST levels

are high in our results.

According to McGuire et al. [59], saturated thickness in Colorado and Nebraska declined 5.136

feet and 2.4 feet37 from 2000 to 2009, respectively. Assuming the depletion behaviors in both states

remain the same, and the estimated real land value losses every 10 years due to groundwater level

loss in Colorado and Nebraska are 159.17 $/acre and 30.10 $/acre on average, which accounts for

6.6% and 0.95% of the mean real land values for Colorado and Nebraska, respectively38. In our

dataset, the HPA irrigated land area is 494,819 acres in Colorado and 636,569 acres in Nebraska,

365.1 feet = 1.55448 meters

372.4 feet = 0.73152 meter

38Estimates from equation 3.2 are used for this calculation. Based on the column (3) in Table C.2, Price =
238.79ST − 2.92ST 2 + 0.01ST 3. Therefore, marginal effect (ME) of ST on land price = 238.79 − 5.84ST +
0.03ST 2. We use parcel-level ST in 2016 to calculate the parcel-level ME of ST and then combined with estimated

10-year ST decline in Colorado and Nebraska from McGuire et al. [59] to calculate the parcel-level land value de-

creases from 2016 to 2025 with the current depletion pattern. The average land value reductions in Colorado and

Nebraska are 159.17 $/acre and 30.10 $/acre.
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and these HPA irrigated areas collectively lose an estimated $97,921,127 in land value every 10

years based on our estimates. Therefore, conservation programs and land use management prac-

tices that can improve groundwater use efficiency and maintain groundwater availability in HPA

could be welfare increasing if the total social cost is smaller than the estimated land value loss.

3.6 Conclusions

The High Plains aquifer plays a vital role in U.S. crop production and local aquatic ecosys-

tems. To achieve sustainable exploitation of the largest groundwater resource in the U.S., water

conservation is necessary. Reliable estimates of groundwater value contribute to efficient water

conservation design. Due to the lack of competitive market, it is difficult to observe the value of

groundwater directly, and therefore we adopt the hedonic method to reveal its value through the

groundwater irrigated land market.

With modern ZTRAX data products from the Zillow corporation, we are able to obtain re-

peated agricultural land transactions to control for parcel-level, time-constant unobservables. The

regression outcomes reveal that (1) including parcel-level fixed effects to control for parcel-level

time-constant attributes does not necessarily provide different outcome from pooled OLS models

with county fixed effects; (2) groundwater irrigated land value is higher on average in areas with

higher groundwater stock; (3) when the groundwater resource is constrained, the marginal value

of ST decreases with high ST levels; (4) when the groundwater stock is abundant, the marginal

value of ST on land value is not different from zero. Our estimates from pooled OLS with repeated

transactions are comparable to Torell et al. [79], while estimates from a TWFE model are not.

The estimates of groundwater value from this research can contribute to cost-benefit analysis of

facilities and policies aiming to conserve the groundwater resource. Higher values of groundwater

imply greater benefits related to resource conservation and therefore can justify higher implemen-

tation costs of facilities and policies.

Identifying whether a parcel is groundwater irrigated and where the parcel is located are critical

for this analysis. In this study, some parcel transactions do not provide clear land use descriptions
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but are larger than 30 acres are classified as agricultural land. A larger minimum parcel size

filter can be used in future studies. In addition, the to avoid mislocating a parcel, parcels without

coordinates can be excluded from the future studies. Pooled OLS models in future studies can

also account for soil type as well as climate characteristics. Interactions between ST and soil type

might also be helpful. Though we hope to provide an update for the groundwater resource value

for the entire HPA, we are constrained by the land transactions data across states. Since the south

HPA is expected to be more constrained by groundwater stock declines, it would be beneficial for

future studies to carry out a similar analysis of irrigated land transactions in Texas, Oklahoma, and

New Mexico.
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Figure A.1: Total Cost Difference between Uniform Payment and Efficient Payment
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Figure A.2: Total Cost Difference between Differentiated Payments and Efficient Payment
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Figure A.3: Total Cost Difference between Uniform Payment and Differentiated Payments
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Table A.1: Conceptual PES Program Comparison

Payment Design Payment Rate Enrollment Selection ES Targeting

Uniform Same across parcels
Enroll all parcels with ES provision cost

smaller than or equal to the payment rate
No

Differentiated
Same within a parcel type,

different across parcel types

Enroll all parcels with ES provision cost

smaller than or equal to the payment rate

Target on

land attributes

Efficient
No less than parcel’s

opportunity cost

Rank parcels based on ES provision benefit and cost ratio,

and enroll until the ES provision target is fulfilled

Target on

ES provision
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Table B.1: Coverage of Each ETS Pilots

Emission

reduction target

(intensity-based)

Emission

compliance

threshold

Cap coverage
Baseline

years

Beijing
18% over

2010 levels

+ 5,000 tonnes

CO2 per year as

the average

from

2009 to 2011

50% of the city’s

total emissions:

Around 1000

companies from

heat supply,

power generation,

cement, petrochemical,

car manufacturing,

and public buildings

2009

to

2011

Continued on next page
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Table B.1 – continued from previous page

Emission

reduction target

(intensity-based)

Emission

compliance

threshold

Cap coverage
Baseline

years

Shanghai
19% over

2010 levels

+ 20,000 tonnes

CO2 per year for

industrial sectors

in 2010 or 2011,

>10,000 tonnes

per year for

other sectors

57% of the city’s

total emissions:

191 entities are listed

(steel, petrochemical,

chemical, power,

non-ferrous metal,

building materials,

textile, paper, rubber,

and chemical fibre)

2009

to

2011

Guangdong
19% over

2010 levels

+ 20,000 tonnes

CO2 per year

from

2010 to 2012

42% of the

province’s total energy

consumption:

242 firms are listed (

power, cement, steel,

ceramics, plastics,

petrochemical,

non-ferrous,

and paper)

2011,

2012

Continued on next page

94



Table B.1 – continued from previous page

Emission

reduction target

(intensity-based)

Emission

compliance

threshold

Cap coverage
Baseline

years

Shenzhen
15% over

2010 levels

+ 3,000 tonnes

CO2 per year and

any building

>20,000 m2

635 entities listed

from 26 sectors

which cover various

forms of industry

in addition to power,

gas, and water supply.

Participation is open to

any financial institution,

197 public-use buildings

2009

to

2011

Tianjin

15% over

2010 levels,

<0.169 CO2/GDP

(kg/CNY)

+ 20,000 tonnes

CO2 per year in

any year

since 2009

60% of the city’s

total emissions:

114 entities including

iron and steel, chemicals,

electricity, heat,

petrochemical,

oil and gas mining,

and civil construction

2009

to

2013

Continued on next page
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Table B.1 – continued from previous page

Emission

reduction target

(intensity-based)

Emission

compliance

threshold

Cap coverage
Baseline

years

Hubei
17% over

2010 levels

+ 60,000 tonnes

coal consumption

for major sectors

in 2010 or 2011

35% of the province’s

total carbon emissions:

138 entities are listed

(steel, chemical, cement,

automobile

manufacturing,

power generation, glass,

paper, non-ferrous metals)

2010,

2011

Chongqing
20% over

2010 levels

+ 20,000 tonnes

CO2 per year

from

2010 to 2014

125 million allowances

were issued to

242 companies in the

electricity, aluminum,

iron and steel,

cement, and

other industrial sectors

2010

to

2014

Source: Margolis et al. [53]
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Table B.2: Summary of China ETS Pilots Penalty Mechanism

Pilots
Penalty Penalty

(Fine) (Quota Debit)

Shenzhen Shortfall × 3P6 Shortfall × 1

Beijing Shortfall × 3 to 5Pa /

Shanghai 50,000 to 10,0000 /

Tianjin / /

Chongqing / /

Guangdong 50,000 Shortfall × 2

Hubei Shortfall × 3Pa ≤ 150,000 Shortfall × 2

Note: Type P6 = Average allowance price over last 6 months; Pa =

Average allowance price (no time period specified); Shortfall = Reported

emissions − surrendered allowance. The information presented in this

table are from Margolis et al. [53] and official governmental documents.
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Chapter 3: Supplemental Material

C.1 ZTRAX Data Processing Details

The original ZTRAX data are organized by the date. Each date folder includes individual zip

file for each state. In each state zip file, two folders for ZAsmt and ZTrans are included. ZAsmt

folder includes 22 data files, and 3 of them are used to generate our dataset: ZAsmtMain, ZAsmt-

SaleData, and ZAsmtBuidling. ZTrans folder consists of 20 table files, and 2 of them contribute

to our final dataset: ZTransMain and ZTransPropertyInfo The following are detailed data process

step, taking Colorado for example. RowID is the common identifier across all ZAsmt data prod-

ucts, and each RowID identifies a property within a parcel. Therefore, an ImportParcelID can be

associated with multiple RowIDs. TransId is the common identifier across all ZTrans data prod-

ucts, and each TransId represent a transaction. As multiple parcels can be transacted within a

transaction. Therefore, a TransId can be associated with multiple ImportParcelIDs. On the other

hand, a parcel can be transacted multiple times across the years, and therefore one ImportParcelID

can be associated with multiple TransIds.

C.1.1 ZAsmt Data Product

ZAsmtMain is first read in with 3,502,340 observations, and I keep 1,035,781 unique obser-

vations that (1) are within the aquifer boundary, (2) are with positive ªLotSizeAcreº values, (3) at

least have valid ªPropertyFullStreetAddressº or coordinates input. To remove duplicated inputs,

I change all string to lower case and remove extra blanks between strings. ªPropertyFullStree-

tAddressº is ªzzzzº or ªnullº are treated as no address input. Ideally, each of these 1,035,781

observations would have a unique RowID. However, this is not the case. Therefore, I group the

data by RowID and rewrite the coordinates with the group mean coordinates, which reduces the

data to 1,020,541 unique observations. By this point, there are still 1639 RowIDs are associated

98



with more than 1 observation and have different ªLotSizeAcreº. To avoid linking wrong ªLot-

SizeAcreº to transactions, I drop the observations with those 1639 RowIDs, and get 1017263

unique observations with 1,017,263 RowIDs.

Then ZAsmtBuilding is read in with 3,977,632 observations. I keep 696,450 observations

with explicitly agricultural land use or with no land use specified. I further remove duplicated

observations and get 213,715 unique observations with 213,715 RowIDs.

To select transactions for agricultural land, I merge ZAsmtMain and ZAsmtBuilding, and keep

141,441 observations with either agricultural land use (141170 observations) or ªLotSizeAcreº

greater than 30 acres with no land used specified (271 observations).

The last but not the least is the ZAsmtSaleData which provides transaction price and time

information. The original data file reads in 17,965,663 observations. I keep 5,973,896 unique ob-

servations (1) with ªSalesPriceAmountº > 100, (2) with valid transaction year information since

1970, (3) not likely to be non arm-length transaction. Observations with a ªDocumentTypeStnd-

Codeº in the list of ªAFDT, BFDE, CVDE, DEDB, GFDE, GRDE, INTR", JTDE, PRDE, PTDE,

QCDE, SVDE, TFDD, TRFC, RCDE, BSDE, COCA, DELU, EXDE, AFDV, FCDE" are treated

as non arm-length transaction. Observations with ªSalesPriceAmountStndCodeº in the list of ªNA,

QU, ST, BL, RA" are also treated as non arm-length transactions. Ideally, each RowID and year

combination is associated with only one ªSalesPriceAmountº input. If a RowID and year combi-

nation consists of more than one transaction inputs, I drop the associated observations. After these

filtering processes, I end up with 5,604,801 unique observations.

Then I merge the ZAsmtSaleData with selected agricultural parcels and get unique observa-

tions at RowID level. As the analysis is conducted at ImportParcelID level, I group the data by

ImportParcelID and (1) rewrite the ªLotSizeAcreº and ªSalesPriceAmountº with the group sum,

(2) rewrite the coordinates with group mean, (3) rewrite the ªPropertyFullStreetAddressº with the

longest input within the group.

While many observations come with coordinates of the transacted parcel, the rest of observa-

tions have full street address. To assign the saturated thickness value to each parcel, coordinates
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for each parcel is required. To maintain a decent sample size, I adopt Google geocode service to

transfer ªPropertyFullStreetAddressº into coordinates, rather than dropping observations without

coordinates. Robustness check can be conducted with different datasets.

C.1.2 ZTrans Data Product

ZTransMain is first read in 2,770,630 observations and I keep 426,412 unique observations,

at TransId level, (1) within the aquifer boundary, (2) with positive ªSalesPriceAmountº, (3) not

likely to be non arm-length transaction, and (4) with valid transaction year information. Obser-

vations with a ªDocumentTypeStndCodeº in the list of ªAFDT, BFDE, CVDE, DEDB, GFDE,

GRDE, INTR", JTDE, PRDE, PTDE, QCDE, SVDE, TFDD, TRFC, RCDE, BSDE, COCA,

DELU, EXDE, AFDV, FCDE" are treated as non arm-length transaction. Observations with a

ªSalesPriceAmountStndCodeº in the list of ªNA, QU, ST, BL, RA" are also treated as non arm-

length transactions. In addition, ZTransMain provides ªIntraFamilyTransferFlagº, I also drop ob-

servations with the flag.

Then ZTransPropertyInfo is read in 11,531,559 observations and I keep 319,975 unique ob-

servations (1) within the aquifer boundary, (2) with valid ImportParcelID and ªLegalLotSizeº,

and (3) at least have valid ªPropertyFullStreetAddressº or coordinates input. I drop observations

with square feet as the unit of theªLegalLotSizeº variable, as it is not likely for agricultural land

measured in square feet.

I merge the ZTransMain and ZTransPropertyInfo by the TransId, then I keep unique observa-

tions with either agricultural land use or ªLotSizeAcreº greater than 30 acres with no land used

specified. I further aggregate the TransId level data to ImportParcel level. As some of the observa-

tions come with ªPropertyFullStreetAddressº but no coordinates, I adopt the geocoding transfor-

mation again.

ZTRAX suggests to use ZTrans data product when available, I therefore only include ZAsmt

inputs when the ImportParcelID does not exist in the ZTrans data product.
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Table C.1

Soil order Characteristics Suborder Discription

Mollisols

Soft, thick and dark,

one of the most

fertile soils on Earth.

Ustolls
subhumid

climate

Udolls
humid

climate

Xerolls
Mediterranean

climate

Aridisols

Soils containing CaCO3

in arid regions,

irrigation is required for

agricultural production,

and productivity is

generally low

Argids

Mostly used as

rangeland or

wildlife habitat.

Some are used as

irrigated cropland

Entisols

soils of unstable

environments and

productivity varies widely

Orthents

Commonly on recent

erosional surfaces.

Mostly used as

rangeland, pasture,

or wildlife habitat.
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Table C.2: Estimates of TWFE: Repeated CO & NE

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

Saturated Thickness (ST) 38.32∗∗∗ 75.01∗∗∗ 238.79∗∗∗ 89.73∗∗∗ 82.27∗∗∗ 60.12

(6.87) (10.18) (19.96) (12.95) (14.88) (53.86)

ST2 −0.25∗∗∗ −2.92∗∗∗ −0.94∗

(0.03) (0.26) (0.56)

ST3 0.01∗∗∗ 0.003∗∗

(0.001) (0.002)

PieceWise(30) −36.19∗∗∗ −35.86∗∗∗

(9.39) (10.17)

PieceWise(70) 4.90

(5.70)

ST: After 2004 62.10

(61.63)

ST2: After 2004 −0.51

(0.65)

Continued on next page
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Table C.2 – continued from previous page

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

ST3: After 2004 0.001

(0.002)

Constant −2,482.21∗ −2,986.61∗∗ −4,576.63∗∗∗ −3,059.80∗∗ −2,925.17∗∗ −1,473.60

(1,337.45) (1,437.60) (1,415.57) (1,317.13) (1,349.27) (2,285.17)

Parcel FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Observations 753 753 753 753 753 753

R2 0.76 0.76 0.76 0.76 0.76 0.76

Adjusted R2 0.48 0.48 0.48 0.48 0.48 0.48

Residual Std. Error 1,560.49 1,562.32 1,562.08 1,558.24 1,560.18 1,561.72

F Statistic 2.73∗∗∗ 2.72∗∗∗ 2.71∗∗∗ 2.73∗∗∗ 2.72∗∗∗ 2.70∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.3: Estimates of Pooled OLS with Climate and Soil Factors: All Transactions CO & NE

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

Saturated Thickness (ST) 5.60∗ 17.11∗∗∗ 20.90∗∗∗ 2.37 1.37 −18.22

(2.94) (3.70) (7.72) (9.12) (8.87) (15.85)

ST2 −0.07∗∗∗ −0.12 0.23

(0.01) (0.10) (0.21)

ST3 0.0002 −0.001

(0.0003) (0.001)

Conductivity 0.32 0.53 0.56 0.33 0.33 0.57

(0.60) (0.60) (0.62) (0.63) (0.63) (0.59)

Storability −1.39 −0.51 −0.42 −1.52 −1.63 −0.30

(11.77) (11.63) (11.50) (12.02) (11.91) (11.66)

Bedrock to Surface 0.07 0.20 0.22 0.09 0.07 0.31

(0.44) (0.42) (0.42) (0.44) (0.45) (0.44)

PieceWise(30) 2.81 3.19

(6.65) (6.37)

Continued on next page
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Table C.3 – continued from previous page

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

PieceWise(70) 0.55

(1.49)

ST:After 2004 49.59∗∗∗

(14.00)

ST2: After 2004 −0.44∗∗

(0.18)

ST3:After 2004 0.001∗

(0.001)

Soil (Xerolls) 1,827.35 1,418.49 1,384.85 1,796.35 1,778.51 1,248.72

(1,379.64) (1,284.38) (1,304.53) (1,409.98) (1,404.16) (1,343.31)

Soil (Ustolls) 1,923.62 1,510.17 1,484.32 1,895.10 1,875.11 1,296.24

(1,308.80) (1,229.20) (1,240.93) (1,335.25) (1,331.42) (1,285.54)

Soil (Udolls) 1,573.43 1,173.08 1,152.53 1,546.98 1,526.02 944.20

(1,339.42) (1,263.07) (1,272.01) (1,364.88) (1,360.90) (1,315.28)

Continued on next page
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Table C.3 – continued from previous page

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

Soil (Orthents) 1,770.29 1,388.14 1,364.94 1,745.27 1,722.70 1,190.06

(1,293.84) (1,207.90) (1,218.26) (1,312.76) (1,307.48) (1,263.71)

Precipitation −3.98 −1.70 −1.31 −3.80 −3.88 −1.75

(3.72) (3.63) (3.77) (3.84) (3.84) (3.70)

Mean Temperature 16,657.96 17,198.95∗ 17,326.78∗ 16,754.04∗ 16,745.76∗ 17,017.35∗

(10,219.98) (10,264.39) (10,308.75) (10,164.18) (10,173.23) (10,212.07)

Max Temperature −8,617.03∗ −8,786.35∗ −8,826.34∗ −8,645.13∗ −8,650.69∗ −8,745.57∗

(5,144.23) (5,118.52) (5,129.41) (5,110.15) (5,107.81) (5,099.50)

Min Temperature −7,519.49 −7,959.77 −8,049.04 −7,571.16 −7,558.79 −7,839.21

(5,159.12) (5,201.13) (5,230.72) (5,129.13) (5,139.88) (5,183.50)

Constant 6,006.26 3,292.53 2,676.06 5,622.11 5,849.43 5,469.03

(4,655.52) (4,311.97) (4,200.98) (4,346.64) (4,421.39) (4,769.23)

County FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Continued on next page
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Table C.3 – continued from previous page

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

Observations 4,329 4,329 4,329 4,329 4,329 4,329

R2 0.16 0.16 0.16 0.16 0.16 0.17

Adjusted R2 0.14 0.14 0.14 0.14 0.14 0.14

Residual Std. Error 2,092.71 2,089.84 2,090.02 2,092.87 2,093.10 2,085.36

F Statistic 6.18∗∗∗ 6.25∗∗∗ 6.20∗∗∗ 6.14∗∗∗ 6.09∗∗∗ 6.25∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note:

Argids soil type is left out as the reference

5 observations are dropped due to missing soil type data

2 observations are dropped due to invalid soil type (water)
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Table C.4: Estimates of Pooled OLS with Climate and Soil Factors: Repeated Transactions CO & NE

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

Saturated Thickness (ST) 19.25∗∗∗ 33.82∗∗∗ 29.13∗ 16.67 6.93 −25.79

(7.20) (9.59) (16.19) (12.89) (15.37) (50.91)

ST2 −0.09∗∗∗ −0.03 0.70

(0.03) (0.23) (0.53)

ST3 −0.0002 −0.003∗

(0.001) (0.002)

Conductivity 0.07 0.40 0.35 0.08 0.03 0.14

(1.60) (1.72) (1.72) (1.61) (1.59) (1.79)

Storability −6.73 −5.40 −5.78 −6.60 −7.23 −4.78

(25.76) (25.93) (25.51) (25.98) (25.59) (25.78)

Bedrock to Surface 1.47 1.38 1.37 1.47 1.54 1.27

(1.85) (1.74) (1.75) (1.84) (1.86) (1.71)

PieceWise(30) 2.23 5.79

(9.72) (10.94)

Continued on next page
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Table C.4 – continued from previous page

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

PieceWise(70) 5.40

(5.73)

ST: After 2004 61.62

(58.89)

ST2: After 2004 −0.80

(0.62)

ST3: After 2004 0.003

(0.002)

Soil (Xerolls) 7,268.69∗∗∗ 6,908.72∗∗∗ 6,947.32∗∗∗ 7,229.25∗∗∗ 7,226.65∗∗∗ 6,966.91∗∗∗

(987.92) (1,004.70) (1,039.84) (959.72) (956.59) (1,084.68)

Soil (Ustolls) 11,779.73∗∗∗ 11,404.67∗∗∗ 11,491.04∗∗∗ 11,734.57∗∗∗ 11,759.26∗∗∗ 11,468.58∗∗∗

(2,267.63) (2,203.60) (2,271.96) (2,254.64) (2,212.40) (2,307.71)

Soil (Udolls) 10,930.34∗∗∗ 10,566.98∗∗∗ 10,648.78∗∗∗ 10,892.47∗∗∗ 10,882.93∗∗∗ 10,619.02∗∗∗

(2,310.53) (2,257.96) (2,324.09) (2,295.22) (2,262.11) (2,372.31)

Continued on next page
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Table C.4 – continued from previous page

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

Soil (Orthents) 11,310.45∗∗∗ 10,917.91∗∗∗ 11,004.05∗∗∗ 11,263.65∗∗∗ 11,261.65∗∗∗ 10,984.76∗∗∗

(2,070.43) (2,039.58) (2,101.77) (2,063.19) (2,006.25) (2,135.30)

Precipitation −21.46∗∗∗ −20.02∗∗∗ −20.42∗∗∗ −21.35∗∗∗ −22.05∗∗∗ −20.69∗∗∗

(3.16) (3.41) (3.85) (3.25) (3.27) (3.86)

Mean Temperature 1,457.77 765.05 872.50 1,535.03 1,693.37 1,710.43

(25,044.48) (24,895.88) (25,031.74) (24,987.15) (25,033.65) (25,304.27)

Max Temperature −140.96 246.46 183.71 −171.84 −297.33 −263.52

(12,571.91) (12,463.91) (12,549.08) (12,549.16) (12,591.91) (12,684.16)

Min Temperature 2.69 182.61 145.60 −42.09 −99.83 −212.70

(12,606.51) (12,497.55) (12,541.04) (12,568.92) (12,576.08) (12,661.09)

Constant −6,408.06 −7,869.98 −7,431.48 −6,552.47 −4,986.77 −5,744.93

(9,562.61) (10,114.27) (9,856.13) (9,791.24) (9,860.78) (10,608.01)

County FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

Continued on next page
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Table C.4 – continued from previous page

Dependent variable: Deflated Land Price

(1) (2) (3) (4) (5) (6)

Observations 753 753 753 753 753 753

R2 0.34 0.34 0.34 0.34 0.34 0.34

Adjusted R2 0.25 0.26 0.26 0.25 0.25 0.26

Residual Std. Error 1,866.65 1,862.84 1,864.13 1,868.00 1,867.77 1,864.41

F Statistic 4.06∗∗∗ 4.07∗∗∗ 4.02∗∗∗ 4.00∗∗∗ 3.97∗∗∗ 3.91∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note:

Argids soil type is left out as the reference


