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ABSTRACT 

 

 

 

MANAGING DEVELOPING LANDSCAPES FOR STORMWATER, WATER YIELD, AND ECOSYSTEM SERVICES 

WITH DATA-DRIVEN APPROACHES 

 

 

 

Urban population growth and land conversion are placing immense pressures on natural and 

anthropogenic systems. Urbanization is drastically altering catchment hydrology and producing 

detrimental impacts on streams, waterbodies, ecosystems, and watersheds. Increasing emissions of 

carbon and other greenhouse gases are driving global climate change, and higher value urban and 

industrial water uses are removing water from irrigated agriculture, which is essential for feeding the 

world’s population. Being able to make informed decisions about managing these challenges is critical 

for planetary health. 

The overall objective of this dissertation was to enable better decisions regarding urban 

stormwater management, land use of dried agricultural land, and water management of land use-land 

cover development. To meet this objective four primary questions corresponding to the four chapters 

were addressed: 

Question 1: How can we advance the practice of stormwater management via information sharing and 

cross-jurisdiction communication? 

Question 2: What variables explain the variation in selection of stormwater management approaches in 

various physiographic, climatic, socioeconomic, and federal regulatory settings? 

Question 3: How can more informed decisions, regarding land use and ecosystem services, be made in 

the face of drying agricultural land as water is transferred to urban and industrial uses? 

Question 4: How do various land use-land cover scenarios impact water yield in diverse physiographic 

and climatic settings? 
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To address question 1, stormwater control measure (SCM) inventories were gathered from 23 

United States cities and compiled into a publicly available dataset. Classification of SCMs were explored 

and suggestions were made about how cities should address asset management in the context of 

stormwater and SCMs. Data that would be beneficial to understanding the hydrologic and water quality 

impacts of SCMs and how they vary across spatial scales and regions was highlighted and a call to better 

record information regarding SCM networks, and not just single SCMs was made. 

The data gathered for answering question 1 was further used to address the second question. 

Data regarding physiography, climate, socioeconomics, and federal regulations were gathered to 

understand how those factors have shaped SCM inventories in the United States. Despite climate clearly 

being an important driver of stormwater management, the assemblages of SCMs present in city 

inventories were better explained by physiographic constraints, such as slope, depth to water table, and 

imperviousness, federal regulations related to the Clean Water Act, and socioeconomic variables such as 

population density and housing age – a proxy for development age. While stormwater decisions are 

generally made locally, data suggested that federal regulations have impacted those local decisions. 

Furthermore, this work contextualized the SCM inventories of 23 United States cities such that other 

cities can better understand the settings in which cities are managing stormwater so that they can 

identify cities with more advanced stormwater experience from which to learn. 

To address question 3, a thorough literature review regarding spatially explicit assessment and 

valuation of ecosystem services was performed. Literature review was guided by the need for policy 

makers and environmental managers that are interested in ecosystem services to be able to make easy, 

cheap, and good-enough valuations of various scenarios so that informed decisions can be made. The 

work was highly motivated by the current situation in the South Platte River Basin of Colorado, where 

water rights are being purchased from agricultural irrigators and transferred to municipal uses. This 

process leaves what has been irrigated land permanently dried. Understanding how to best manage that 



iv 

 

land for local and global benefits is of interest to local policy makers. Special attention and effort were 

placed on providing background information regarding climate-related ecosystem services (i.e., carbon 

sequestration) and payments for ecosystem services in general. Important considerations such as 

understanding who pays for ecosystem services, who gets paid, and how that dynamic will affect 

economic inequality were highlighted. A pre- and post-processor application was developed to enable 

easy application of the COMET-Planner tool to scenarios of drying agriculture being transferred to more 

natural land cover. Using Monte Carlo simulations with distributions of valuation variables identified in 

literature, the application produces stochastic estimates of the return on investment in the case of 

irrigated agricultural land drying to more natural grass cover. The application was applied to three areas 

of the South Platte River basin illustrating its utility. 

Lastly, national datasets of climate, hydrologically relevant land use, water use, and 

physiographic data were used to address question 4. Using 2,913 catchments of varying sizes and 

degrees of development from across the contiguous United States, three data-driven predictive models 

were applied to nine ecoregions, as well as to reference catchments only, to non-reference catchments 

only, and to all catchments at once to predict mean annual, annual, and monthly water yield. Models 

performed best on catchments in the eastern half of the country. Performance in the western half of the 

country was mixed, with catchments along the west coast performing adequately, but catchments 

throughout the mountain west performing inconsistently, ranging from poor to good. Climate variables 

were shown to be the most impactful in terms of predicting water yield with the relative impact of 

climate variables increasing as the timescale became finer. Physiographic variables were the next most 

impactful variable type. Anthropogenic alterations to water resources and land displayed varying levels 

of importance and varied across timescales, but especially across regions. Results suggest that 

anthropogenic activities have varying effects depending on the climatic and physiographic setting in 

which they occur. It was also shown that many anthropogenic variables play moderate roles in 



v 

 

predicting water yield across scales and if well performing models of water yield are to be developed in 

heavily impacted catchments, they will require high-dimensional models that include timeseries data for 

anthropogenic variables such as dam and reservoir management and water use.  
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INTRODUCTION 
 

 

 

Globally, urban population is expected to grow from roughly 4.2 billion people in 2018 to about 

6.6 billion in 2050; a 57% increase (United Nations and Social Affairs 2018). Growing urban populations 

will place immense pressure on urban centers to develop more land and secure water resources (Angel 

et al. 2005; Artmann et al. 2019; Bibri et al. 2020; Dozier et al. 2017; Elmqvist et al. 2013; Payne et al. 

2014; Watson and Davies 2011). Development patterns vary but can be broadly characterized as either 

outward expansion (e.g., sprawl) or infill, where already developed areas are reimagined so that 

population density can be increased (Angel et al. 2005; Artmann et al. 2019; Schneider and Woodcock 

2008). Despite the form of urban development, hydrology and ecosystem services are inevitably altered 

(Elmqvist et al. 2013 Haase and Nuissl 2007; Leopold 1968; Poff et al. 2006; Walsh et al. 2005).    

Recent iterations of urban stormwater management attempt to mitigate the numerous negative 

impacts of urbanization on stream and catchment health (Poff et al. 1997; Walsh et al. 2005) by 

managing hydrology at site and catchment scales (Chocat et al. 2001; Delleur 2003; Roy et al. 2008). 

Emphasis has shifted from end-of-pipe solutions towards implementation of smaller stormwater control 

measures (SCMs) that are implemented throughout the catchment to control runoff near the source 

(Askarizadeh et al. 2015; WEF and ASCE-EWRI 2012). As this transition has occurred, adoption and 

innovation has largely occurred at the city scale. This has created an obstacle for communication 

(Fletcher et al. 2015) and a lack of knowledge about how federal regulations requiring management of 

stormwater interact with city-scale physical, climatic, and socioeconomic factors to shape stormwater 

management approaches in different cities. To understand how those factors interact to drive adoption 

of different stormwater management approaches, cross-city comparisons are necessary. However, data 

about SCMs is typically held at the city level making comparisons of approaches in different cities 

difficult. Existing cross-city comparisons only include two to three cities at a time (Hale 2016; McPhillips 
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and Matsler 2018) and those cities are often in similar physical, climatic, and socioeconomic settings. 

There is a need for increased data sharing about local stormwater approaches and more standardized 

SCM terminology and/or record keeping to help with communication, assist in developing more 

standard procedures and designs (Marsalek 2013; Minton 2007; Taira et al. 2018), and to enable cross-

city comparisons (Hale 2016). Chapters 1 and 2 address this need.  

The subsequent work moves from management of stormwater specifically, to more general 

management of land development and two associated ecosystem services. Being able to make informed 

policy decisions will be critical to manage the challenges presented by the continued development of 

land (Angel et al. 2005; Artmann et al. 2019; Bibri et al. 2020) and transfer of water resources out of 

irrigated agriculture to urban and industrial uses (Dozier et al. 2017; Flörke et al. 2018; Rosegrant and 

Ringler 1998). Inclusion of ecosystem services in trade-off analysis is becoming increasingly popular 

when making such decisions (Elmqvist et al. 2013; Fürst et al. 2017; Tallis et al. 2011). Two ecosystem 

services of interest are carbon sequestration (Bagstad et al. 2013; Clerici et al. 2019; Kovacs et al. 2013; 

Krkoška lorencová et al. 2016) and water yield (i.e., how much water is leaving a catchment via 

streamflow over a given amount of time; Lang et al. 2017; Li et al. 2021; Tallis et al. 2011). Chapters 3 

and 4 address these ecosystem services, respectively. While these needs are global, Chapter 3 uses the 

South Platte River Basin in Colorado as a case study. There the Colorado Water Conservation Board 

(CWCB) is actively engaged in decision-making as irrigated agriculture is being dried to other land uses 

(Colorado Water Conservation Board 2015). They are particularly interested in understanding how 

different uses of the dried agricultural land may assist in our fight against climate change by 

sequestering and storing carbon (addressed in Chapter 3).  

There have been extensive efforts to develop general modelling approaches to predicting water 

yield in reference catchments (i.e., minimal human impacts), but approaches that include 

anthropogenically altered catchments are rare (Hrachowitz et al. 2013; Kratzert et al. 2019a; Razavi and 
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Coulibaly 2013; Visessri and McIntyre 2016). A modelling approach that can identify drivers of water 

yield in altered catchments, as well as predict water yield in such catchments, would be of great benefit 

in land-use planning. To improve our understanding of the effects of anthropogenic activities on water 

yield (addressed in Chapter 4), 2,913 catchments across the contiguous United States were used to 

develop statistical and machine learning models that predict water yield. Mean-annual, annual, and 

monthly water yield were predicted in reference and non-reference catchments. Shapley Additive 

Explanations (Lundberg et al. 2020; Lundberg and Lee 2017; Shapley 1953) were used to investigate the 

impact of many variables that potentially affect water yield. 

This dissertation is organized as follows: 

Chapter 1 – A Call to Record Stormwater Control Functions and To Share Network Data: To address the 

need for information sharing about stormwater management and the need for easier communication 

between cities, and between cities and researchers, the following question was addressed: 

How can we advance the practice of stormwater management via information sharing and cross-

jurisdiction communication? 

Chapter 2 – Understanding What Physical, Climatic, Socioeconomic, and/or Regulatory Factors Are 

Driving Selection of Stormwater Controls in United States Cities: To better understand what is driving (or 

constraining) the selection of SCMs in different cities, and to contextualize the SCM inventories of 23 

United States cities so that other cities can better understand the settings in which cities are managing 

stormwater and the approaches taken in those settings, Chapter 2 addresses: 

What variables explain the variation in selection of stormwater management approaches in various 

physiographic, climatic, socioeconomic, and federal regulatory settings? 

Chapter 3 – Estimating Carbon Sequestration Under Various Land-Use Scenarios of Dried Agricultural 

Land in the South Platte River Basin: To enable easier assessment of tradeoffs of potential uses of dried 
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agricultural land to assist stakeholders in making informed land development and policy decisions the 

two following subobjectives were addressed: 

1. Identify needs, traits, and options with respect to policy relevant valuation of ecosystem 

services. 

2. Identify and apply an appropriate methodology for valuating carbon related ecosystem services 

in the case of irrigated agriculture drying to more natural land cover in the South Platte River 

Basin of Colorado. 

Chapter 4 – Predicting Monthly, Annual, and Mean Annual Water Yield in Response to Mixed Land Use-

Land Cover Scenarios and Understanding Drivers of Water Yield: To enable easier assessment of the 

impacts of different land use-land cover scenarios on water yield, to gain insight about drivers of water 

yield and how spatial and temporal scales affect those drivers, and to identify appropriate methodology 

for predicting water yield in highly impacted catchments the following question is addressed: 

How do various land use-land cover scenarios impact water yield in diverse physiographic and climatic 

conditions?  
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CHAPTER 1: A CALL TO RECORD STORMWATER CONTROL FUNCTIONS AND 

TO SHARE NETWORK DATA1 
 

 

 

Introduction 

Urban stormwater is an ongoing contributor to the degradation of the health of many 

watersheds and water bodies. In the United States, federal regulations (e.g., Clean Water Act) require 

monitoring and reporting of relevant water quality metrics in regulated waterbodies to ensure 

standards are being met, but decisions about how to manage urban stormwater are left up to state or 

other local agencies. While this allows for local adaptation and innovation, it has also led to isolated 

holding of implemented stormwater control data at the city level and inconsistent terminology 

surrounding stormwater control measures (SCMs) between cities and regions (Fletcher et al. 2015; 

Minton 2000, 2007; WEF and ASCE-EWRI 2012). Particularly at this time when the types of SCMs are 

shifting to include smaller, distributed SCMs (Chocat et al. 2001; Delleur 2003; Roy et al. 2008; WEF and 

ASCE-EWRI 2012), the isolated management of SCM inventories is a significant missed opportunity to 

 
1 Published in the Journal of Sustainable Water in the Built Environment:  

https://doi.org/10.1061/JSWBAY.0000971 

Benjamin Choat; Graduate Research Assistant, Civil and Environmental Engineering, Colorado State University, Fort 

Collins, CO 80523 (Corresponding Author). E-mail:bchoat@rams.colostate.edu 

Amber Pulido; Graduate Student Researcher, Center of Watershed Sciences, University of California, Davis, CA 

95616 

Aditi S. Bhaskar; Assistant Professor, Civil and Environmental Engineering, Colorado State University, Fort Collins, 

CO 80523 

Rebecca Hale; Assistant Professor, Biological Sciences, Idaho State University, Pocatello, ID 83209 

Harry Zhang; Program Director, The Water Research Foundation, Alexandria, VA 22314 

Thomas Meixner; Professor and Department Head, Hydrology and Atmospheric Sciences, University of Arizona, 

Tucson, AZ 58721  

Lauren McPhillips; Assistant Professor, Civil and Environmental Engineering, Penn State University, State College, 

PA 16801 

Kristina Hopkins; Research Physical Scientist, United States Geological Survey, Raleigh, NC 27607 

Jennifer Cherrier; Professor and Department Chairperson, Earth and Environmental Sciences, CUNY-Brooklyn 

College, Brooklyn, NY 11210 

Chingwen Cheng; Assistant Professor, The Design School, Arizona State University, Phoenix, AZ 85004 

 

https://doi.org/10.1061/JSWBAY.0000971
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improve stormwater management through information sharing between cities, agencies, and 

researchers (Marsalek 2013; Minton 2000; Taira et al. 2018). 

As an increasing number of regulated cities look for solutions to protect environmental 

resources while fulfilling their regulatory obligations, sharing of reliable information is imperative, 

particularly for small and mid-size communities that may lack the resources needed to adequately 

address these issues. Sharing of SCM inventories would allow cities wishing to pursue newer approaches 

to stormwater management to gain insight from cities that have already tried them. Sharing of SCM 

inventories could also enable cross-watershed comparisons to help isolate and understand the effects of 

different SCM approaches at the city or catchment scale (Bell et al. 2016; Hale 2016; Hopkins et al. 2020; 

Jefferson et al. 2017; Marsalek 2013). Furthermore, sharing of SCM inventories could move terminology 

and record keeping practices towards a more universally interpretable format that conveys details about 

SCM form and function (Minton 2000; WEF and ASCE-EWRI 2012), which would lead to more consistent 

sets of design criteria (Minton 2007), and help practitioners select appropriate SCMs and SCM systems 

to meet specific objectives (Taira et al. 2018; WEF and ASCE-EWRI 2012). 

Here, our overall objective was to address the isolated management of implemented SCM 

inventory data, with the hope of improving the communication, decision-making, and evaluation of 

stormwater management across cities. Our overall objective includes two research questions: 1. Are 

cities across the United States or within states using comparable SCM nomenclature?; 2. Is it feasible to 

develop an SCM nomenclature that efficiently and effectively communicates SCM function?  

To meet our overall objective of addressing the need for better SCM information sharing 

(Driscoll et al. 2015; Taira et al. 2018) and to answer our research questions required access to SCM 

inventories from many cities, but such a database does not currently exist. So, first we collected SCM 

inventories from several cities (e.g., geospatial data; Choat et al. 2021). Then, we explored SCM 

terminology in the city inventories and considered function-based nomenclature to address the ability 
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to efficiently and effectively communicate SCM functions (Bell et al. 2019; Fletcher et al. 2015; 

McPhillips and Matsler 2018; Minton 2000, 2007). We used an existing nomenclature (WEF and ASCE-

EWRI 2012) and k-means clustering to see if SCMs cluster differently based the functions of quantity 

control, pollutant control, biological, or other unit processes. 

 

SCM Inventories and Data Sharing 

Background on SCM Network Data Sharing 

Efforts to identify challenges in stormwater management often identify the lack of data sharing 

as an impediment.  For example, nearly all cities implementing new SCM types, sometimes collectively 

known as green infrastructure (GI), agreed that communication of knowledge from other cities 

implementing GI is critical to the development of a GI program (Driscoll et al. 2015). Also, a team of 

transportation drainage experts highlighted the importance of developing and sharing information and 

being clear about definitions for a robust approach to GI implementation (Taira et al. 2018).  

Efforts to share information about SCMs are ongoing, such as the International Stormwater BMP 

database (Clary et al. 2002, 2020), but these efforts are focused on the performance of individual SCMs 

(i.e., site-scale), as opposed to city-scale SCM networks. To achieve all desired outcomes, stormwater 

management should be designed and applied across site-level and watershed scales (Roy et al. 2008; 

Taira et al. 2018; WEF and ASCE-EWRI 2012). Information on existing SCMs at the watershed scale would 

help advance stormwater management to meet watershed goals. Furthermore, to understand 

ecosystem services provided by SCMs and responses in physical and biological integrity to urbanization, 

it is essential to understand the integrated effects of stormwater (e.g., SCM) networks (Hopkins et al. 

2015; Parr et al. 2016; Vogel et al. 2015). 
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Background on SCM Terminology 

When SCM data are available, comparisons between cities are frequently burdened by 

inconsistent and vague terminology (Bell et al. 2019; Fletcher et al. 2015; McPhillips and Matsler 2018; 

Minton 2000; Prudencio and Null 2018). Much of the inconsistency can be attributed to an evolution of 

SCM terms over time and by region, where particular terms may be used in a city or region because they 

have been designated or defined by the regional regulatory agency  (Fletcher et al. 2015). There have 

been calls for a simplified SCM nomenclature based on either function (Minton 2000; Shrestha and 

Brodie 2011; WEF and ASCE-EWRI 2012) or form (i.e., construction materials, SCM sizes, and 

contributing areas) (Bell et al. 2019). Shrestha and Brodie (2011) developed a formal nomenclature 

focused on physical treatment systems capable of receiving and treating high and variable flow rates 

and effective at removing suspended solids to a non-potable water quality. Despite their narrow focus 

on specific SCM types, the proposed nomenclature, including two primary treatment mechanisms and 

up to four sublevels, quickly became complex.  

Others have proposed simpler function- or process-based nomenclature. Minton (2007) 

proposed a naming framework that attempted to reduce the number of names used for SCMs that 

provide the same or similar functions. Minton identified a hierarchy of considerations for naming SCMs. 

The base consideration was what principles an SCM is based on (e.g., chemistry of precipitation and 

sorption of pollutants), followed by unit processes (e.g., sedimentation, filtration, or etc.), unit 

operations (i.e., the “box” in which unit operations occur or SCM form), and systems (i.e., one or more 

unit operations). Based on those considerations, Minton (2007) then placed SCMs into subfamilies and 

families (i.e., groups of systems with common key characteristics) which were to be used as SCM names. 

Minton proposed five families of SCMs including basins, swales, filters, infiltrators, and screens.  

The Water Environment Federation (WEF) and American Society of Civil Engineers’ 

Environmental and Water Resources Institute (ASCE-EWRI) built heavily on Minton’s work in WEF 
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Manual of Practice No. 23 and ASCE Manuals and Reports on Engineering Practice No. 87 (2012). Similar 

to Minton, they produced a nomenclature for SCMs based on the processes provided by them, where 

SCMs were grouped based on similar quantity control, pollutant control, biological, and other unit 

processes (Table 1.1; WEF and ASCE-EWRI 2012). They provided a coarse nomenclature with five groups 

(MOP-coarse) and a finer nomenclature with 21 groups (MOP-fine). Their MOP-coarse nomenclature 

consisted of basins, swales and strips, filters, infiltrators, and gross-pollutant traps, nearly identical to 

the five families of SCMs identified by Minton (2007). 
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Table 1.1. Nomenclature and associated unit processes. Modified from Table 4.2 (WEF and ASCE-EWRI 

2012).  
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Basins 

Wet basins x x     x x x x     x       x x x x x   x x 

Wetlands x x     x x x x     x       x x x x x   x   

Dry basins x x x       x                               

Vaults and swirl 

concentrators x           x x   x                         

Oil Water 

Separators             x x x                           

Forebays             x x                             

Cisterns   x         x                               

Basin Unknown*                                             

Swales and 

Strips 

Swales     x x                     x         x     

Strips     x x     x               x         x     

Filters 

Sand filters x           x x           x   x         x   

Bioretention x x x   x x x x     x x x x x x   x   x x   

Landscaped roofs x     x x           x       x         x     

Drain inlet inserts             x             x                 

Manufactured 

filters             x             x                 

Filter Unknown*                                             

Gravel Wetland*                                             

Infiltrators 

Infiltration Basins x x x       x x     x x x     x   x x x x   

Infiltration Vaults x x x       x       x x x     x   x x x x x 

Trenches x x x       x       x x x     x   x x x x   

Dry Wells x x x       x       x x x     x   x x x x   

Permeable 

pavement x x x               x x x         x x x x   

Infiltration 

Unknown*                                             

Gross 

Pollutant 

Traps 

Screens nets 

baskets racks                                           x 

Hoods               x                             

Gross Pollutant 

Trap Other*                                             

Gross Pollutant 

Trap Unknown*                                             

Disconnecti

on* Disconnection*                       

Other* 

Other*                                             

Stormwater 

Conveyance*                                             

Unknown* Unknown*                                             

Note: Row headings with an * under MOP-coarse and MOP-fine were added to the original table to allow all listed 

SCMs to be placed in a category. Reported unit processes (x) are from the original table 4.2 (WEF and ASCE-EWRI, 

2012).

https://www.zotero.org/google-docs/?ivC3yb
https://www.zotero.org/google-docs/?ivC3yb
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Previous efforts (Minton 2000, 2007; Shrestha and Brodie 2011; WEF and ASCE-EWRI 2012) have 

highlighted the desire for SCM function to be easily communicated. They have also made clear that due 

to overlapping functions between SCMs, it is virtually impossible to use SCM nomenclature alone to 

communicate all of the information that may be of interest to professionals, researchers, or others in 

the field regarding SCMs (Minton 2007; WEF and ASCE-EWRI 2012). Despite the clear challenges created 

by overlapping SCM functions Minton (2007) expressed hope that his proposed naming convention, 

which was largely reiterated by WEF and ASCE-EWRI, would be slowly adopted over time by states, 

provincials, and included in city stormwater manuals. By exploring the SCM inventories we collected, we 

were able to investigate to what extent these proposed naming frameworks have been integrated into 

practice by cities.  

 

SCM Inventory Collection 

We attempted to gather SCM inventories from 32 cities and 3 counties, but some cities and all 

counties never responded to our request, some cities did not maintain an SCM inventory, while other 

cities were unwilling to share their SCM inventories due to security concerns or because their 

inventories were incomplete. Twenty-three cities shared SCM inventories through personal 

communication or via their online access portals (Choat et al. 2021). While we would have preferred to 

have received inventories from more cities, we are only aware of existing SCM database comparison 

studies that include three or less cities at a time (Hale 2016; McPhillips and Matsler 2018), so having 

access to SCM inventories from 23 cities was a large improvement. The cities included in our study were 

from 8 climatic zones (Fig. 1.1; Beck et al. 2018). Nine historically had or currently have combined 

sewers present, and 15 were MS4 phase I cities with city populations ranging from about 37,000 to over 

8 million persons. Seven cities had combined sewers and MS4 phase I permits. We suspected cities in 

different climates may use different SCM types and that cities with combined sewers or MS4 phase I 
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cities may be more incentivized to record and implement SCMs, so we felt confident that our 23 cities 

were reasonably representative of diverse stormwater settings found in cities across the United States. 

 

Fig. 1.1. Map of 23 United States cities. Legend defines Köppen climate zones (Beck et al. 2018) and 

presents how many cities fall within each zone. “NA” represents climate regions that do not contain a 
studied city. 

Of the 23 cities that were able to share their inventories, some had online portals that made 

downloading inventories easy and others had inventories that they were able to send to us. We already 

had some of the inventories in our possession from previous efforts (e.g., Hale 2016; McPhillips and 

Matsler 2018). Most of the inventories we received came as geospatial data while some came as lists of 

SCMs. We did not utilize the spatial attributes of the inventories in this study, but those datasets are 

available online (Choat et al. 2021) for the cities that allowed us to share their data.  
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Analysis of SCM Terms and Types (Question 1) 

Despite the relatively small number of SCM groups identified by Minton (2007) and WEF and 

ASCE-EWRI (2012; i.e., 5 coarse groups or families and ~ 21 fine groups or subfamilies), there were 378 

different terms listed by the 23 cities in their SCM inventories (Table 1.2). Although there were many 

different terms used for SCMs, these had little commonality across cities. The SCM term that appeared 

in the largest number of SCM inventories was rain garden which appeared in 9 of 23 cities. Bioretention 

(Table 1.2), green roof, and unknown appeared in 8 inventories. The inclusion of the surprisingly 

common term unknown implied these cities were aware of some type of facility but did not know what 

type of facility it was. The only other term appearing in 7 or more inventories was dry well. A full list of 

terms included in the inventories is listed in Table S1.1 in supplementary material.  

Table 1.2. SCM types and terms.  

 
Note: MOP-coarse SCMs are bolded and left-aligned. MOP-fine SCMs are listed under the MOP-coarse SCM terms 

to which they belong. For both MOP-coarse and MOP-fine, the number of cities including that SCM, the total 

number of times that SCM was listed, the number of terms used to label that SCM, and the three most common 

terms listed by cities representing that SCM are presented along with the number of cities including that term in 

their inventory 
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Since federal regulation leaves the management of stormwater to state and other local 

agencies, such as state Departments of Environmental Quality, we evaluated whether SCM terms were 

similar for cities within the same state.  There were four states with multiple cities with inventories: 

California, Colorado, Pennsylvania, and Arizona.  In California, Los Angeles’ inventory included 13 terms, 

Sacramento’s included 9, San Diego’s included 11, and San Francisco’s included 33. Out of those the only 

common SCM terms used between cities included vegetated swale which appeared in Sacramento’s and 

San Diego’s inventories and bioretention which appeared in San Diego and San Francisco’s inventories. 

In Colorado, Denver’s inventory included 17 terms and Fort Collins’ included 13. Out of those only 

unknown appeared in both inventories. In Pennsylvania, Philadelphia included 26 terms and Pittsburgh 

included 13. Porous pavement, green roof, and other appeared in both inventories, a small number 

compared to the total number of terms included. The two SCM inventories from Arizona cities had the 

fewest SCM terms and the most similar SCM terms out of cities in the same state, suggesting Arizona 

cities are using a simpler and more standardized nomenclature. Phoenix included 8 SCM terms and 

Tucson included only 4. Three of the four terms included by Tucson also appeared in Phoenix’s 

inventory. Those included detention basin, retention basin, and bioretention.   

It is unclear why the cities in Arizona used similar SCM nomenclature while the other cities from 

a given state did not. We explored three possible explanations. First, we investigated if the terms 

appeared in both Arizona inventories simply because there were few terms included and they were 

rather non-specific, but there was only one other city using all three shared terms (i.e., Washington 

D.C.). Second, we investigated if it was due to both Arizona cities being younger cities that are 

implementing SCMs in areas of new growth, whereas many other cities are retroactively implementing 

SCMs in already developed spaces. The data did not support this though, as Washington D.C. is a much 

older city. The last possible explanation we explored is that common SCM nomenclature is related to 

state-wide and/or regional organizations associated with stormwater. We did not identify any statewide 
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associations or agencies in Arizona however, that may be driving more uniform adoption of SCM terms. 

There it could be that Tucson, being in close proximity to Phoenix (~300 km), has referred to Phoenix 

when making decisions regarding stormwater. Phoenix established the non-profit organization STORM 

(“STORM (STormwater Outreach for Regional Municipalities)” n.d.) in 2002 in response to federal 

regulations. Their focus is on educating the public about protecting the quality of stormwater. It could 

be that the existence of such programs has led to a more uniform SCM nomenclature regionally. Overall, 

we found that different SCM terms are used by different cities, and next examine whether a function-

based nomenclature might be used to group these unique SCM terms.  

 

Exploring Function-Based Nomenclature (Question 2) 

We grouped the terms included in city inventories into broader groups so they can be more 

easily understood and used for cross-city comparison studies (Choat et al. 2021). We did not use all 378 

SCM terms because 35 described types of facilities that were not considered to be SCMs (other; e.g., 

“Green Wall”, “Planting Area”), 19 described stormwater conveyance (e.g., “Culvert”, “Riser”) which we 

did not consider in our subsequent analysis, 17 terms were too vague to properly place under an SCM 

category (unknown; e.g., “Unknown”, “Stormwater Treatment System”), and 8 terms described either 

proposed SCMs or specified that there was no SCM there (none; “Proposed”, “CDA to a shared BMP”). 

Another 9 terms described disconnection of impervious surfaces (e.g., “Impervious Surface Removal”, 

“Depaving”), but such terms were only reported by 4 cities and there were no two cities reporting the 

same disconnection term. After accounting for terms falling into the other, stormwater conveyance, 

unknown, none, and disconnection categories, there were 290 terms placed under the WEF-ASCE 

nomenclature (i.e., MOP-coarse and MOP-fine).  

When it was unclear which group an SCM term should be placed in, documentation from the 

city using that SCM term was referenced, such as web-based sources describing the design of the 



16 

 

SCM. For example, ROW subsurface pipe-broken stone was included by New York City, NY. Here, we 

knew ROW implies it was installed in a right-of-way area, but it was unclear what the function or form of 

the SCM was. After searching the New York City government websites, we found a document (NYC 

Environmental Protection n.d.) that makes clear that this SCM term referred to a perforated pipe with 

broken stone surrounding it which is meant to allow water to infiltrate into the subsurface. So, we 

placed this SCM term in the infiltration basin MOP-fine group and infiltrator MOP-coarse group. For 

proprietary SCMs that were listed we referenced the manufacturers description. In rare cases best 

judgement was used to place an SCM term, but if there was uncertainty about where to place a it, it was 

placed in the unknown category.  

There are many possible ways to group MOP-fine classes into broader SCM groups.  One approach is 

to use the MOP-coarse classes used by WEF and ASCE-EWRI, building on Minton (2007). Other groupings 

may be possible when focusing on specific functions. For example, do SCM groups based on quantity-

focused functions differ from groups based on pollutant-oriented functions? We sought to understand 

how the WEF and ASCE-EWRI classifications may differ when using different unit processes (i.e., quantity 

control, pollutant control, biological control, other, and all).  

To investigate if we could build on the ASCE-WEF nomenclature so that particular functions of SCMs 

are directly communicated, we performed a non-hierarchical and unconstrained clustering using k-

means partitioning based on each of: overall, water quantity, water quality, biological, and other unit 

processes provided by each SCM (Table 1.1; Table S1.2). This resulted in a total of seven function-based 

grouping schemes for SCM terms: the coarse and fine schemes from WEF and ASCE-EWRI (Table 1.1) 

and five k-means clusters based on unit processes. The vegan package (Oksanen et al. 2019) in the R 

statistical programming language (R Core Team 2020) contains pre-programmed tools to assist with 

statistical ecosystem analysis and was used to perform k-means clustering where the simple structure 

index (Dimitriadou 2017) was used to select the optimal number of clusters, k. Using k-means clustering 
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on binary data (i.e., presence/absence data) essentially uses the number of presence values within each 

category considered so can sometimes perform poorly using such data. To ensure the resulting clusters 

were reasonable we inspected them and concluded that they were more similar within clusters than 

between them which is the purpose of k-means clustering. 

There were five groups of SCMs that clustered together regardless of which unit processes (all, 

quantity, pollutant, biological, or other) were used for clustering (Fig. 1.2; Table S1.2). However, these 

groups included other SCMs depending on which functions were considered. For example, infiltrators 

always clustered together, but dry basins clustered with them based on quantity functions, bioretention 

clustered with them based on pollutant functions, sand filters clustered with them based on biological 

functions, and wet basins and wetlands clustered with them based on other functions. The SCM 

classification and nomenclature system differed based on which SCM functions were being considered, 

indicating little possibility that there could be a universal function-based nomenclature for SCMs that 

communicates all SCM functions.  
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Fig. 1.2. k-means clusters based on unit processes provided. The farthest left column is a legend 

indicating how to interpret the other columns. Each of the other columns presents the clusters of SCMs 

resulting from k-means clustering using the unit-processes noted at the top of the column (e.g., 1A). For 

example, boxes 1A-6A present the 6 clusters of SCMs that resulted when using all unit-processes for 

clustering. Boxes with the same shades of gray or fill patterns indicate SCMs that grouped together 

despite which unit-processes were considered. SCMs in boxes by themselves and with gray diagonal 

lines (e.g., Cisterns) were not consistently grouped with each other or other SCMs. Original MOP-coarse 

groups are presented in parenthesis next to each SCM term: (I) = Infiltrators, (S) = Swales and Strips, (B) 

= Basins, and (F) = Filters. Table S1.2 in supplementary material combines Table 1.1 and Fig. 1.2 to easily 

see which unit processes are provided by SCMs in different clusters. 

 

Why is SCM nomenclature still so heterogeneous between cities? 

Despite efforts to develop a simpler and standardized SCM nomenclature (Minton 2007; 

Shrestha and Brodie 2011; WEF and ASCE-EWRI 2012), the SCM inventories we collected have clearly 

shown that those efforts have not been widely received or implemented. As Minton pointed out in 

2007, the existence of duplicative and overlapping terms is common in the early evolution of new fields. 

It is with time that consolidation of terms occurs, as duplicative and poorly defined terms are removed 

from use. Calling stormwater management a new field is far from accurate (National Research Council 

2009), but the field is rapidly evolving (WEF and ASCE-EWRI 2012). This rapid evolution is occurring in 
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the absence of regulatory or institutional incentives that would motivate a more standard approach to 

SCM nomenclature, leaving adaptation and innovation to largely occur at the city level.  

Allowing cities, counties, or other jurisdictions to take custom approaches to stormwater 

management ensures they can implement location-appropriate methods, which in turn can drive more 

diverse approaches and spur innovation. However, being able to communicate the methodology, 

successes, and failures of local approaches to other cities is necessary to support broadscale adoption of 

effective stormwater management. To move towards a more standardized nomenclature we suggest 

the use of a reference such as WEF’s and ASCE-EWRI’s manual of practice (2012) which built directly on 

Minton (2007). For those that do not have access to such resources, the tables and figures presented in 

this article should serve as a good point of reference. Even if we never achieve a fully standardized 

nomenclature, the use of common references should at least reduce the number of terms being used 

over time (Minton 2007). 

However, our exploration of WEF and ASCE-EWRI’s function based classifications, and how they 

grouped based on different types of functions, showed that using a name to effectively and efficiently 

communicate all important details about the form and function of an SCM is not possible. After 

thoroughly exploring the SCM inventories of 23 United States cities, we suggest a shift towards 

standardized record keeping. We propose cities have a common subset of fields for SCM function which 

would enable practitioners and researchers to easily understand the stormwater goals and performance 

in different cities. Using the fields in Table 1.1, the city can notate which functions are intended to be 

fulfilled by each SCM by marking presence or absence of that function. Additional information that 

would benefit future stormwater analysis includes a quantitative estimate of the intended function, 

such as what portion of the water entering an SCM is designed to be evapotranspired, infiltrated, or 

used as water supply, SCM footprint, contributing area, treatment depth, date installed, and 

maintenance regimen.  Moving towards a more standard SCM record keeping approach would allow for 
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locally-appropriate approaches to continue while enabling easy cross-boundary communication about 

the specifics of SCMs being implemented.  

 

Conclusions 

Being able to compare and contrast how different cities are facing the common challenge of stormwater 

management would accelerate the evolution of the field toward effective approaches that result in 

desired site- and watershed-scale performance. To address the isolated holding of SCM data we 

collected SCM inventories from 23 United States cities and explored the SCM terminology used across 

the country and within states. We found that:  

1. Cities are not using comparable SCM nomenclature in the United States or within states. A 

notable exception is that the two SCM inventories we collected from Arizona used several of the 

same terms with 3 of 4 terms used by Tucson also being used by Phoenix. 

2. A function-based nomenclature that efficiently and effectively communicates SCM function is 

not feasible. For all information about SCM form and/or function to be communicated, a 

complex nomenclator, similar to efforts by Shrestha and Brodie (2011), would be required and 

would likely not be adopted. While SCM nomenclature follows a slow evolutionary process 

towards a more simplified and standardized form, we highly encourage those maintaining SCM 

inventories to expand them to include information on function needed to understand the 

intended and observed performance and effectiveness of an SCM or SCM network. 

Information sharing is essential for broadscale adoption of effective approaches that meet the 

multi-dimensional and multi-scale goals now associated with stormwater management (Marsalek 2013; 

Minton 2000; Taira et al. 2018). We hope that the SCM inventories we have collected (Choat et al. 2021) 

and our exploration of function-based SCM nomenclature will motivate more robust SCM data 
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collection, record keeping, and information sharing and will enable cross-city comparison studies that 

are invaluable to hydrology and watershed studies. 

Data Availability  

Some or all data, models, or code generated or used during the study are available in a repository or 

online in accordance with funder data retention policies (Database of Implemented Stormwater 

Controls (DISC); https://tinyurl.com/HUB-DISC). Some or all data, models, or code that support the 

findings of this study are available from the corresponding author upon reasonable request (SCM data 

not found in the DISC and code used for analysis).   
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CHAPTER 2: UNDERSTANDING WHAT PHYSICAL, CLIMATIC, 

SOCIOECONOMIC, AND/OR REGULATORY FACTORS ARE DRIVING 

SELECTION OF STORMWATER CONTROLS IN UNITED STATES CITIES2 

 

 

 

Introduction 

Stormwater management is a necessary practice in every city with heightened investment driven by 

regulatory compliance, increased urbanization, aging infrastructure, and climate change (U.S. EPA 2016). 

In 2012 the U.S. Environmental Protection Agency (US EPA) estimated that an investment of 

approximately $19.2 billion in stormwater management was needed to meet national water quality 

objectives of the Clean Water Act (U.S. EPA 2016). Flood mitigation in urban settings, via water 

conveyance, has been a primary focus of stormwater management since its first implementation 

(Chocat et al. 2001; Delleur 2003; National Research Council 2009). Newer types of stormwater 

infrastructure designed to clean, harvest, infiltrate, detain, or retain storm runoff (referred to here as 

stormwater control measures; SCMs) have been regulated and implemented in U.S. cities for decades 

(Eger et al. 2017; National Research Council 2009; Roy et al. 2008). More recently, it has become clear 
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that to achieve the goals of stormwater management at site- and city-scales, SCM networks must be 

considered in addition to individual SCMs implemented in isolation . Furthermore, cities wishing to 

develop their stormwater plans, especially small and midsize cities, can greatly benefit by learning from 

other cities that already have mature plans (Clary et al. 2002; Driscoll et al. 2015; Taira et al. 2018).  

Understanding broad drivers and constraints of city SCM assemblages would enable cities to make 

more effective city-scale stormwater plans. This is especially true for cities with less mature stormwater 

programs. As opposed to implementing individual SCMs in a piecemeal way, cities may begin with an 

understanding of what types of SCM assemblages have been implemented by cities in similar physical, 

socioeconomic, regulatory, and climatic settings. However, it is not clear if or how federal regulations 

requiring management of stormwater have interacted with city-scale physical, climatic, and 

socioeconomic factors to shape current SCM assemblages.  

Comparison of stormwater management in multiple cities is required to understand what the 

strongest drivers and/or constraints of varying stormwater management approaches are. Yet, few cross-

city comparisons of stormwater management exist, and those that do only compare a few cities at a 

time. For example, three cities in similar social and ecological settings in Utah had different designs and 

densities of implemented SCMs and each city’s stormwater infrastructure varied through time on its 

own trajectory (Hale 2016). While that study only considered storm sewers, detention basins, and 

canals, McPhillips and Matsler (2018) compared eight types of SCMs. They found that types of SCMs in 

Portland, OR; Phoenix, AZ; and Baltimore, MD, have become more diverse over time: evolving from 

SCMs with large footprints and single-purpose functions to more SCMs with smaller footprints and 

multi-purpose functions. Hale (2016) explicitly highlighted the need for cross-city comparison studies of 

stormwater infrastructure with large sample sizes in order to understand the factors driving SCM 

variation between cities. 
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Although there are no studies statistically analyzing SCMs between many cities (e.g., more than 3), 

there has been extensive work to identify important considerations when selecting SCM types. A study 

in the Great Lakes area of the United States interviewed stormwater professionals from across the 

region (Polich 2017). Those interviews highlighted that local considerations such as topography, soils, 

and climate as well as citizen awareness were thought to drive stormwater management decisions. 

Constraints such as tighter rules from state and local regulators, which are often driven by federal 

regulation, and more expensive land required for larger SCMs also drive the adoption of new SCM 

technologies (Polich 2017). A panel of experts in the field of stormwater identified that meeting permit 

compliance in a cost-effective way was the primary driver guiding decision-making for municipal 

stormwater infrastructure projects (Bell et al. 2019). The potential benefits of SCM networks, however, 

are now recognized to go beyond permit compliance. The Water Environment Federation and American 

Society of Civil Engineers (2012) identified, “flood control, stream channel protection, groundwater 

recharge, water quality improvement, protection of public safety, health, and welfare,” and more as 

potential SCM benefits. As such, they suggested considerations when selecting SCMs, including physical, 

construction and maintenance, environmental, social factors, and permitting.  

It is known that local stormwater design and criteria manuals have a strong influence on SCM 

selection at the site scale, but understanding current SCM assemblages using such manuals is 

challenging. For example, most cities have had manuals evolve over time (McPhillips et al. 2021) so 

comparisons with current SCM inventories would require a date of SCM installation in order to associate 

the specific manuals with specific SCMs. This would make it more difficult to obtain a large enough 

sample size (e.g., enough cities that had SCM inventories with date of SCM installation) to reveal 

meaningful statistical relationships. There is also the fact that some cities use multiple manuals 

(McPhillips et al. 2021), as illustrated by the recent work by Grabowski et al. (2022), where they 

investigated 122 plans in just 20 cities to understand how cities define green infrastructure, a type of 
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infrastructure most frequently associated with stormwater management. Furthermore, it is often 

difficult to obtain such documents, even in cities with combined sewers (Hopkins et al. 2018). Even if 

manuals for all cities could be easily obtained, using data directly to reveal statistical relationships 

between SCM inventories and physical, climatic, socioeconomic, and regulatory variables has greater 

potential to gain insight to the underlying drivers and constraints of stormwater management – on 

which, local design and guidance manuals are based. 

Important considerations have been identified for the selection of individual SCMs, but it is not clear 

what factors have actually driven and/or constrained current city-scale SCM assemblages. To compare 

SCM assemblages and understand drivers of assemblages across cities, our goal was to use the database 

of implemented stormwater controls (DISC; Choat et al. 2021) to perform a rigorous statistical analysis 

on SCM assemblages testing a general hypothesis that physical, climatic, socioeconomic, and regulatory 

attributes of cities are governing their SCM assemblages. This hypothesis is predicated upon the idea 

that like species, individual SCMs have niche environments in which they will perform optimally, and 

that like species assemblages, SCM assemblages evolve out of the interplay of environmental drivers 

and constraints. To meet this research goal, we asked the following questions: 

 

1. How do SCM density and assemblages of SCMs differ among U.S. cities?  

2. Which physical, climatic, regulatory, and socioeconomic variables or classes of variables best 

explain differences in SCM assemblages between cities? 

3. Have federal regulatory programs related to the Clean Water Act had quantifiable effects on the 

SCM inventories of U.S. cities?  
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Methods 

To address our research questions, we first collected stormwater control measure inventories 

from as many cities as reasonably possible (Choat et al. 2022). After compiling a list of possible 

explanatory variables based on hypothesized relationships with SCM types and SCM assemblages, we 

collected and analyzed data representing the possible explanatory variables. 

 

1. Data Collection 

We used SCM data from the database of implemented stormwater controls along with data 

from six additional cities for a total of 23 cities (Fig. 2.1; Choat et al. 2022). All SCM data were received 

by the authors as spatial data except for dry-wells in Phoenix, AZ, catch basins in New York City, NY, and 

green roofs, inlets, drains, and catch basins in San Francisco, CA, which came as lists. While we collected 

data for gross pollutant traps (e.g., catch basins) we did not end up using gross pollutant traps in our 

analysis, as discussed in more detail below in next section. Choat et al. (2022) used k-means clustering to 

group SCMs that provide similar processes based on quantity control processes, pollutant control 

processes, biological processes, other processes, and by considering all four groups of processes, 

resulting in five classifications of SCMs in addition to a fine and a coarse resolution classification system, 

for seven total SCM classification systems. Of the 23 cities we collected data for, 15 were MS4 phase I 

cities, 8 were MS4 phase II cities, 9 had combined sewer systems within their boundaries, and 5 were 

under consent decrees with the US EPA (i.e., Baltimore, MD, San Diego, CA, San Francisco, CA, Seattle, 

WA, and Washington D.C.). Of the five cities under a consent decree, all were MS4 Phase I cities and 

three had combined sewer systems. Eight Köppen climate regions (Beck et al. 2018; Köppen 1923) were 

represented by the cities with humid-subtropical being the most prominent (7 cities). With the 

exception of the southeast and north-central parts of the country, most Köppen climate regions of the 

country were represented.  



27 

 

 
Fig. 2.1. Map of 23 U.S. study cities. Legend defines Köppen climate zones (Beck et al. 2018) and how 

many cities fall within each zone. “NA” represents climate regions that do not contain a studied city. 

MS4P-CSO specifies if each city is a MS4 Phase I (I) or Phase II (II) city and if the city has a combined 

sewer present (Y) or not (N). Colors match those in Fig. 2.2.  

 

Possible explanatory variables that were collected (Table 2.1) included physical, climatic, 

socioeconomic, and regulatory variables that were hypothesized, based on anecdotal evidence, to either 

directly affect SCM assemblages or to be indicators of variables that directly affect SCM 

assemblages. For example, we hypothesized that shallow depth to water table would limit the 

implementation of infiltration-based SCMs and that older cities would have a less diverse composition of 

SCMs since available SCMs have become more diverse over time. Examples of indicator variables (Fayers 

and Hand 2002; Haraldsson 2000) used in this study are median housing age which was used as an 

indicator of city and infrastructure age, population density which was used as an indicator of 

development density and type (e.g., compact vs sprawl), and minimum, mean, and maximum depth to 

water table were used to indicate groundwater conditions throughout each city. The only variables we 
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hypothesized would affect SCM assemblages but that we did not include in our analysis were related to 

the subsurface and included soil properties and depth to bedrock. Soil variables were not included 

because there was poor coverage in the study cities from existing national-scale soil databases (e.g., 

SSURGO; Shuster et al. 2021; Wieczorek 2014). For example, SSURGO’s coverage of saturated hydraulic 

conductivity data ranged from 0% to about 59% of city land area with an average coverage of only 28%. 

The only datasets of depth to bedrock that we were able to identify have relatively low accuracy and 

their creators urge caution when applying them (Hengl et al. 2017; Shangguan et al. 2017) so depth to 

bedrock was also not included in our analysis. Despite the exclusion of these subsurface properties, the 

analysis presented herein provides useful insights. The processing steps for each explanatory variable 

and example hypotheses are described in Table S2.1 and the values of the explanatory variables are 

presented in Table S2.2. All spatial data was converted to the North American Datum 1983 (NAD83) 

geographic coordinate system and projected to the USA Contiguous Albers Equal Area Conical projected 

coordinate system. To be consistent between datasets and analyses between cities, all SCM and 

explanatory variable data were clipped to city boundaries when possible (i.e., lists could not be 

clipped).     
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Table 2.1. Explanatory Variables.  

Type of 

Variable Description 

Continuous 
or 

Categorical Data Source 

Physical Impervious Percentage (mean) Continuous (Homer et al. 2012) 

Physical Impervious Area Continuous (Homer et al. 2012) 

Physical Mean slope in the city based on 3dep  Continuous (U.S. Geological Survey 2019)  

Physical Standard dev. of slope in the city based on 3dep Continuous (U.S. Geological Survey 2019)  

Physical Ratio of total withdrawals as groundwater Continuous (Dieter et al. 2018) 

Physical Annual minimum (spatially) depth to water table Continuous (Fan et al. 2013) 

Physical Annual maximum (spatially) depth to water table Continuous (Fan et al. 2013) 

Physical Annual mean (spatially) depth to water table Continuous (Fan et al. 2013) 

Climatic 30 Year Average Precipitation (in.)  Continuous (PRISM Climate Group n.d.) 

Climatic Magnitude of the 2-year, 24-hour precipitation event (in.) Continuous (NOAA n.d.) 

Climatic 30 Year Average Max Temperatures (Deg. F)  Continuous (PRISM Climate Group n.d.) 

Climatic 30 Year Average Mean Temperatures (Deg. F)  Continuous (PRISM Climate Group n.d.) 

Climatic 30 Year Average Min Temperatures (Deg. F)  Continuous (PRISM Climate Group n.d.) 

Climatic 30 Year Average Max Vapor Pressure Deficit (hPa)  Continuous (PRISM Climate Group n.d.) 

Climatic 30 Year Average Min Vapor Pressure Deficit (hPa)  Continuous (PRISM Climate Group n.d.) 

Climatic Aridity Index based on Köppen approach [mm/C] Continuous 

(Beck et al. 2018; Köppen 

1923; PRISM Climate Group 

n.d.; Quan et al. 2013) 

Socioeconomic Population Density (person/mi2) Continuous 

(“U.S. Census Bureau 
QuickFacts” n.d.) 

Socioeconomic Median Household Income (2013-2017) Continuous 

(“U.S. Census Bureau 
QuickFacts” n.d.) 

Socioeconomic Median Housing Age (Years) Continuous (“Census Reporter” n.d.) 

Regulatory 

Percent of lentic waterbody area considered impaired 

(303d) Continuous 

(U.S. EPA n.d.; U.S. Geological 

Survey n.d.) 

Regulatory 

Percent of lotic waterbody length considered 

impaired (303d) Continuous 

(U.S. EPA n.d.; U.S. Geological 

Survey n.d.) 

Regulatory MS4 Phase (I or II) Categorical 

(“Enforcement and 
Compliance History Online” 

n.d.) 

Regulatory Are combined sewers present in the city (Y or N) Categorical 

(“Enforcement and 
Compliance History Online” 

n.d.) 

Regulatory 

Is the city under a consent decree with the USEPA?  

(Y or N) Categorical (U.S. EPA and OECA n.d.) 

Note: The type of each variable is noted in the first column (Type of Variable). A brief description of each variable is 

presented in the second column (Description). If the variable is continuous or categorical is noted in the third row 

(Continuous or Categorical). The citation for each data source is noted in the fourth column (Data Source). 

 

2. Intercity Stormwater Control Measure (SCM) Comparison and Analysis 

To compare SCM assemblages between cities (Question 1), we used the definitions and 

classification systems identified by the American Society of Civil Engineers (ASCE) and Water 

Environment Federation (WEF) in the manual of practice Design of Urban Stormwater Controls (2012) 

(referred to here as Manual of Practice (MOP) and built upon by Choat et al. (2022). Those classification 
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systems included what we considered to be a fine resolution classification system (MOP-fine) that 

contained 27 SCM types and a coarse classification system (MOP-coarse) which contained five SCM 

types (Table S2.3). Our analyses focused on SCMs falling under the four MOP-coarse categories of 

basins, swales and strips, filters, and infiltrators. Simple definitions for these SCMs can be misleading by 

ignoring the diversity of form and functions found within each type (Choat et al. 2022), but for the sake 

of clarity we provide short definitions in Table 2.2 (WEF and ASCE-EWRI 2012) or see Table S2.3 for a 

detailed breakdown of the functions provided by the various SCM types. The fifth MOP-coarse category 

of gross pollutant traps was excluded because they include SCMs such as screens that are simple inline 

treatment devices with limited functionality other than gross-pollutant removal. They can also be 

expected to be found in every city yet were only included in eleven cities’ inventories. In eight of the 

eleven cities’ inventories in which they were listed, they accounted for greater than 80% of the listed 

SCMs and in one case as much as 99.5% of all SCMs. Including gross pollutant traps would have greatly 

skewed our analysis.  

Table 2.2. MOP-Coarse SCM definitions. 

SCM Type Definition (WEF and ASCE-EWRI 2012) 

Basin Unit operations in which water is detained for a period that varies with the type 

of basin and the design requirements. 

Swales and Strips Unit operations with the distinct purpose of conveying stormwater from one 

point to another at very shallow water depths. 

Filters Unit operations where stormwater flows through an engineered porous medium 

and into an underdrain. 

Infiltrators Unit operations in which a design volume is infiltrated to the native soil to 

recharge aquifers.  

 

 

We compared SCM density (total SCM counts per impervious area) and relative SCM abundance 

(count of each SCM type per total SCM count) under each of the classification systems.  An unbiased 

Shannon diversity index, 𝐻′, (Bowman et al. 1971; Hutcheson 1970; Shannon 1948) was calculated as a 

measure of SCM assemblage diversity to better understand which cities listed a greater diversity of 

SCMs and what was driving that diversity. Adapted to our analysis, 𝐻′ was a function of the proportion 
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of SCM type i out of all SCMs in a city, (𝑝𝑖), the number of unique SCM types in that city, (𝑆), and the 

total number of SCMs in that city, (𝑁), so was a useful measure for understanding city SCM assemblages. 

The Shannon diversity index was calculated as, 

Eq. 1  𝐻′ =  − ∑ 𝑝𝑖𝑙𝑛(𝑝𝑖)𝑆𝑖=1 − 𝑆−1𝑁 + 1− ∑𝑝𝑖−112𝑁2 + ∑ 𝑝𝑖−1−𝑝𝑖−212𝑁3  . 
To address our second research question about which explanatory variables or classes of 

variables best explain differences in SCM assemblage, we used four statistical approaches. First, to 

investigate which variables or classes of variables best explain SCM assemblages, where assemblage 

indicates relative abundance of all SCM types (Question 2), we investigated linear relationships between 

classes of explanatory variables and groups of response variables using redundancy analysis (RDA) for 

each of the classification systems, followed by permutation tests for significance. RDA is a constrained 

ordination technique that combines principal component analysis with multiple linear regression to 

reveal linear relationships between groups of explanatory and response variables. It is a technique 

commonly used in ecology to understand species composition in a species assemblage and statistically 

assess the variation explained by environmental variables (Borcard et al. 2018; Legendre and Birks 

2012). Under our general hypothesis that SCM assemblage is governed by external factors (Hale 2016; 

McPhillips and Matsler 2018), RDA has direct application to analyses of SCM compositions of cities. In 

our analysis we analyzed individual SCM types (individual species) that make up SCM assemblages 

(species assemblages) in individual cities (habitats). SCM counts were Hellinger-transformed (square 

root of relative abundance) such that variables with many zeros or very low counts would be given lower 

weight (Legendre and Birks 2012). RDA using Hellinger-transformed SCM counts from each of the seven 

classification systems was applied to compare relative abundance of the different SCMs as opposed to 

total counts of each SCM.  

Combined with RDA, we applied multiple linear regression, a natural extension of RDA, to 

investigate correlations between Hellinger-transformed SCMs and the explanatory variables remaining 
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in the best RDA models. We used forward selection that maximized R2
adj. while minimizing p-values and 

identified and removed collinear explanatory variables (variance inflation factor (VIF) > 10). Explanatory 

variables remaining in the best models produced by RDA that considered only explanatory variables of 

one class were then included in a final RDA producing final models considering physical, climatic, 

socioeconomic, and regulatory variables.  

Our second statistical approach was specifically for MOP-coarse SCMs. Variation partitioning by 

subtraction (Borcard et al. 2018) was performed to identify what portion of the variation in SCMs was 

explained by each class or combination of classes of explanatory variables. The vegan package (Oksanen 

et al. 2019) in R was used for RDA and variation partitioning.  

Our third statistical approach was used to complement findings from RDA and to investigate if 

any single variable explained the observed differences in SCM assemblages.  In this approach, we 

performed non-parametric tests on the Hellinger-transformed MOP-coarse SCMs and each of the 

explanatory variables. For the continuous explanatory variables, we applied Spearman’s correlation 

(Spearman 1987) and to further investigate the effects of regulation, we applied the rank sum test 

(Mann and Whitney 1947; Wilcoxon 1992) to the categorical variables (i.e., combined sewer (CSO) 

presence, if the city is under a consent decree, and MS4 phase). Non-parametric tests were used 

because some of the data did not pass tests of normality (Shapiro and Wilk 1965) and/or equal variance 

(Levene 1961). In our single variate analysis of continuous variables, we included the Shannon diversity 

index as a response variable.  

Lastly, our fourth statistical approach was used for the possibility that some continuous 

variables may show threshold relationships with the SCM assemblages or certain SCM types. For 

example, infiltrators may not be implemented below some threshold in depth to water table (DTWT). 

This is expected to be the case when a single infiltrator is being implemented, and we tested whether 

such thresholds appear when examining city-scale SCM implementation using summary statistics of the 
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explanatory variable (e.g., mean DTWT over a city). Two approaches were taken to test if such 

relationships exist. First, segmented regression was performed to test if regression models produced 

smaller squared residuals with the inclusion of a breakpoint where the data below the breakpoint had 

its own line of best fit and the data above the breakpoint had its own line of best fit. For any regression 

models with improved squared residuals, Spearman’s rank-order correlation (Spearman 1987) was used 

to test if statistical correlation existed between the response variables and the explanatory variables 

falling below the threshold or above the threshold independently. Second, the nonparametric Wilcoxon 

rank-sum test (Wilcoxon 1992) was used to test for statistical differences in medians in the data below 

and above a given threshold. To identify statistically significant thresholds, each explanatory variable 

data point, except for the smallest and largest 5, were tested as thresholds. If more than one statistically 

significant threshold was identified, only the one producing the smallest p-value was retained. 

 

Results  

SCM Assemblages and Density (Question 1)  

We counted the number of SCMs per square mile of impervious area in each city to understand 

how SCM density differed between cities. SCM density varied over orders of magnitude with as little as 

0.74 SCMs per square mile of impervious area in Los Angeles, CA and as much as 505 SCMs per square 

mile of impervious area in Washington D.C. (Fig. 2.2). MS4 Phase I cities and especially those with 

combined sewers had the greatest SCM densities.   



34 

 

 
Fig. 2.2. Stormwater control measures (SCMs) per square mile of impervious area. Fill indicates 

combined sewers overflows (CSOs) as Yes (Y) or No (N) and MS4 phase I vs. II cities. Cities are ordered 

from least to most diverse from left to right based on Shannon Diversity Index scores of MOP-fine SCMs. 

 

To better understand how SCM assemblages differed between cities, we examined the fraction 

of total SCM counts as each SCM type in each city (Fig. 2.3) and calculated the Shannon diversity index 

for MOP-fine SCMs. Diversity in MOP-fine SCMs showed large variability (Fig. 2.3). Pocatello, ID only 

listed one SCM that was considered in our statistical analysis (infiltration basin) and represented the 

lowest MOP-fine SCM diversity out of all cities (Fig. 2.3). Baltimore, MD had the highest MOP-fine SCM 

diversity, listing multiple types of basins, filters, and infiltrators (Fig. 2.3). Overall, basins and infiltrators 

were common even when MOP-fine SCM diversity was low (left of Fig. 2.3) and swales and strips and 

filters drove the greater diversity in cities with high diversity (right of Fig. 2.3).  
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Fig. 2.3. Proportion of Stormwater control measure (SCMs) types as defined by the fine classification 

system established by the Water Environment Federation and American Society of Civil Engineers 

ordered from least to most diverse from left to right based on Shannon Diversity Index scores of MOP-

fine SCMs. SCMs are color coded to represent MOP-coarse SCMs. (Blue-Purple: Basins, Gray: Swales and 

Strips, Orange-Brown: Filters, and Light Green-Dark Green: Infiltrators) 

 

Analysis of Explanatory Variables for SCM Assemblages (Questions 2 & 3) 

RDA, Multiple Linear Regression, and Variation Partitioning 

To better understand which physical, climatic, regulatory, and socioeconomic variables, or 

classes of variables best explain the SCM assemblages, we first performed multivariate statistical 

analyses. SCM abundance across cities was best explained by physical or regulatory conditions, or a 

combination of those variables (Table 2.3). Neither socioeconomic nor, to our surprise, climatic variables 

were retained in the best models except for median household income (MHI) which remained in one 

model (Table 2.3). Using the MOP-coarse classification system, the physical explanatory variables that 

remained after forward selection were impervious percentage, standard deviation of slope, minimum, 

and maximum depth to water table (Table 2.3). These variables were important in describing relative 

abundance of basins, filters, and infiltrators.  
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Table 2.3: Significant RDA results for SCM classifications MOP-Coarse and MOP-Fine with Physical, 

Climatic, Regulatory, Socioeconomic and All explanatory variables.  
Classification 

system 

Explanatory 

Variable Class 

Global 

R2 adj. p-value 

Explanatory 

Variables VIF 

Response 

Variables 

MLR 

R2 
adj. 

MLR p-

value 

MOP-coarse Physical 0.47 ≤ 0.001 

Impervious % 1.42 Basins 0.58 ≤ 0.001 

St.Dev. Slope 2.84 Filters 0.61 ≤ 0.001 

Min. DTWT 1.32 Infiltrators 0.48 ≤ 0.01 

Max. DTWT 2.92       

MOP-coarse Regulatory 0.21 ≤ 0.03 

Impaired Area % 1.28       

Impaired Length % 1.82 Filters 0.41 ≤ 0.02 

CSO (Y or N) 1.76 Swales and Strips 0.41 ≤ 0.02 

CD (Y or N) 

MS4Phase (I or II) 

1.49 

1.29       

MOP-coarse All 0.58 ≤ 0.001 

Impervious % 1.66       

St.Dev. Slope 3.47 Swales and Strips 0.55 ≤ 0.01 

Min. DTWT 1.42 Infiltrators 0.52 ≤ 0.01 

Max. DTWT 4.16 Basins 0.57 ≤ 0.01 

Med. Hh Income 1.24 Filters 0.65 ≤ 0.001 

Impaired Length % 2.00       

MOP-fine Physical 0.45 ≤ 0.01 

Min. DTWT 1.12 Infiltration Basins 0.63 ≤ 0.0001 

Max. DTWT 1.45 Dry Wells 0.63 ≤ 0.0001 

Mean Slope 1.33       

MOP-fine All 0.55 ≤ 0.001 

Min. DTWT 2.00 Infiltration Basins 0.72 ≤ 0.0001 

Max. DTWT 1.17 Dry Wells 0.63 ≤ 0.0001 

MS4Phase (I or II) 1.86 Permeable Pavement 0.55 ≤ 0.01 

Impaired Area % 1.05    

Impervious % 1.33    

Note: Only models with global R2
adj. values greater than 0.2 are presented. Only response variables with goodness-

of-fits (GOFs) greater than 0.4 when considering all RDA axes (i.e., not just the first two) are presented. VIF is the 

variance inflation factor. MLR R2
adj. is the adjusted GOF which is equivalent to the R2

adj. from multiple linear 

regression.  Associated multiple linear regression p-values are presented as well. 

 

All five regulatory explanatory variables (i.e., percent waterbody length impaired (Impaired 

Length %), percent waterbody area impaired (Impaired Area %), presence of combined sewers (CSOY or 

CSON), if the city was under a consent decree (CDY) or not (CDN) and MS4 phase (MS4Phase I or 

MS4Phase II)) were included in the final RDA model relating regulatory variables with MOP-coarse SCMs 

(Table 2.3). Filters and swales and strips were the only MOP-coarse SCM types that were explained with 

these regulatory variables. 

Impervious percentage, standard deviation of slope, minimum and maximum depth to water 

table, median household income, and percent waterbody length impaired remained in the MOP-coarse 

model considering all explanatory variables (Table 2.3). All four groups of MOP-coarse SCMs including 
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swales and strips, infiltrators, basins, and filters were well explained by those variables suggesting they 

are important considerations when understanding SCM assemblages in different cities.  

Infiltrator composition was the only MOP-fine class of SCMs that was well explained in any RDA 

model (bottom two rows of Table 2.3). The two RDA models related to MOP-fine infiltrator types and 

meeting the statistical criteria to be presented were similar to one another. When considering only 

physical explanatory variables, mean slope and minimum and maximum depths to water table were 

significant explanatory variables of infiltrator composition with infiltration basins and dry wells  being 

well explained. When all explanatory variables were included, minimum and maximum depths to water 

table, MS4 phase, percent waterbody area impaired, and impervious percentage remained in the final 

model. Infiltration basins  and dry wells were also well explained by these explanatory variables along 

with permeable pavement .  

To further address explanatory variables, variation partitioning by subtraction was applied such 

that the variation in listed SCMs explained by each class of explanatory variable was quantified while 

controlling for the effects of the other classes. Variation partitioning was applied to the explanatory 

variables in each explanatory variable class (physical, climatic, socioeconomic, and regulatory) remaining 

after forward selection in RDA (Fig. 2.4). In Fig. 2.4, values within a single class of explanatory variable 

(e.g., 0.44 within physical under basins) indicate the unique contribution of that explanatory variable 

class (e.g., physical) to explaining variation in abundance of that SCM group (e.g., basins). Values falling 

within more than one class of variables (e.g., 0.02 within physical and socioeconomic under basins) 

highlights the portion of variation in abundance of that SCM group that is explained by a combination of 

those classes of variables. Larger values in the shared spaces of the Venn diagrams indicate 

intercorrelation between the variable classes. Since forward selection was applied to individual 

explanatory variable classes, some collinearity still existed between classes, but it was not large. Some 

areas of the Venn diagrams are blank because the portion of variation explained is negative, and 
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negative values can be ignored in interpreting the results (Borcard et al. 2018). Therefore, the 

summation of the values within subsets of the Venn diagrams is greater than the variation explained by 

the entire model.  

 
Fig. 2.4: Venn diagrams of variation partitioning for MOP-coarse SCMs. Size of the text of R2

adj. values in 

each partition are scaled by R2
adj. values. R2

adj. values less than 0 can be ignored in interpreting variation 

partitioning so values ≤ 0 are not shown. Peach represents physical variables, purple represents climatic 
variables, yellow represents socioeconomic variables, and green represents regulatory variables. Phys. = 

physical, Socioec. = socioeconomic, and Reg. = regulatory. 
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Based on the results from multiple linear regression, we expected physical and regulatory 

explanatory variables to explain more variation of each MOP-coarse SCM type than climate or 

socioeconomic variables alone. This general trend was observed (Fig. 2.4). The largest portions of 

variation explained by climate and socioeconomic variables were explained in combination with physical 

and/or regulatory variables (e.g., Fig. 2.4d). About 34% of the variation in infiltrators was explained by a 

combination of physical and climatic variables. However, socioeconomic variables alone did explain 

notable portions of basins and swales and strips. The bulk of the explained variation in basin 

implementation (Fig. 2.4a) was described by physical variables such as impervious percentage, slope, 

and groundwater conditions (Table 2.3). Filters were well explained by all four classes of explanatory 

variables, with physical variables being the only class of explanatory variables that explained a 

substantial portion of observed variation on its own (Fig. 2.4b). Swales and strips were not quite as well 

explained by all classes of explanatory variables (Fig. 2.4c) and infiltrators were the least well explained 

by the four classes of variables (Fig. 2.4d).  

 

Single Variate Analysis (Questions 2 & 3) 

To better understand if any single variable was driving the relative abundance of a given MOP-

coarse SCM class, Spearman’s correlation was calculated between Hellinger transformed MOP-coarse 

SCMs and explanatory variables (Fig. 2.5). The variables that showed statistically significant relationships 

with the Hellinger transformed MOP-coarse SCMs that did not remain in the strongest RDA models were 

mean depth to water table, 30-year average maximum vapor pressure deficit, median housing age, 

population, and population density. All of these variables were significantly (p≤0.05) correlated with at 

least one other explanatory variable remaining in the final RDA models. Mean depth to water table was 

correlated with minimum and maximum depth to water table, mean slope, and standard deviation of 

slope (Fig. S2.1). Older cities (greater median housing age) were positively correlated with population, 
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population density, and impervious percentage, and were negatively correlated with minimum depth to 

water table. Impaired area was the only explanatory variable that remained in a final RDA model but 

was not directly correlated with relative abundance of any MOP-coarse SCM type.  

 
Fig. 2.5: Correlogram of Spearman’s correlation coefficients between Hellinger-transformed MOP-coarse 

SCMs, Shannon diversity index (Diversity) of those SCMs, and explanatory variables. Only explanatory 

variables that were significantly correlated with at least one SCM are presented. Explanatory variables 

within the light-blue box are physical explanatory variables, within the dark-blue box are climatic 

variables, within the light-yellow box are socioeconomic variables, and within the orange box are 

regulatory variables. Red represents negative correlations and blue represents positive correlations. The 

size of the circle represents the magnitude of the correlation coefficients (e.g., large dark red circles 

represent strong negative correlations and large dark blue circles represent strong positive correlations). 

*’s specify p-values:  *p≤0.1, **p≤0.05, ***p≤0.01. St.Dev. = Standard deviation, VPD = Vapor pressure 

deficit, Med. Hh = Median household. 
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Cities that were not limited by shallow water tables preferred stormwater infiltrators over 

basins, swales and strips, and filters (Fig. 2.5).  Swales and strips and filters were implemented more 

often in the same cities as one another and their implementation was correlated with the same 

explanatory variables (Fig. 2.5). Impervious percentage, population, and population density were 

correlated with one another, but population density had the largest and most statistically significant 

correlation coefficients with swales and strips and filters. Filters were implemented less frequently when 

maximum depth to water table was deeper, perhaps due to greater implementation of infiltrators which 

can provide some degree of filtration. Filters were implemented more frequently with an increasing 

percentage of regulated waterways considered to be impaired (Fig. 2.5). This can likely be attributed to 

greater implementation of bioretention facilities, which provide the greatest variety of pollutant control 

out of any MOP-fine SCM type (WEF and ASCE-EWRI 2012).  Also, bioretention facilities were the most 

commonly listed MOP-fine SCM type considered to be a filter (Choat et al. 2022). 

Basins were the most frequently listed MOP-coarse SCM type (Table 2.2 in Choat et al. 2022), 

but the relative abundance of basins was only positively correlated with one variable, the 2-yr 24-hour 

design depth, and only when that depth was about 2 inches or greater (Fig. 2.5 and Fig S2). Older cities 

with greater impervious percentage and population density had smaller relative abundances of basins 

and implemented more filters and swales and strips. Of all explanatory variables, basins were most 

strongly and significantly negatively correlated with median housing age followed by imperviousness 

and standard deviation of slope. Overall diversity of MOP-coarse SCMs was positively correlated with 

socioeconomic variables of median household income and population density (Fig. 2.5). 

Wilcoxon rank-sum analysis of categorical explanatory variables indicated that MS4 phase I 

cities listed higher rates of swales and strips than MS4 phase II cities (p≤0.1; Fig. 2.6). Presence of 

combined sewers and consent decrees led to greater differences in MOP-coarse SCM composition and 

diversity. In cities with combined sewers, basins (p≤0.05) were implemented less frequently in favor of 
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swales and strips (p≤0.05) and filters (p≤0.05) leading to greater diversity in cities with combined sewers 

(p≤0.01). Similar trends were observed in cities that were under a consent decree, except basins did not 

show a significant relationship and consent decrees were a more significant predictor of the presence of 

filters (Fig. 2.6). 

 
Fig. 2.6: Boxplots from Wilcoxon rank sum test on categorical regulatory explanatory variables and 

Hellinger-transformed MOP-coarse SCMs and their diversity. Only results with a p-value ≤ 0.1 are 
presented. Asterisks next to the x-axis labels note whether the results are *p≤0.1, **p≤0.05, or 

***p≤0.01 and the p-value is presented at the top of each boxplot. Red dots represent outliers. The 

middle line of each box represents the median value, the top and bottom lines of the boxes represent 

the 25% and 75% quantile, and the whiskers extend to the smallest and largest values or no longer than 

the 25% and 75% quantiles plus 1.5 * the inter-quartile range.  

 

Segmented regression revealed four relationships between SCMs and explanatory variables that 

had smaller squared residuals with the inclusion of a breakpoint compared to without one (Fig. S2.2). Of 

those, the only statistically significant Spearman’s correlation observed was the increasing proportion of 

basins with increasing depth of the 2-year 2-hour design storm, and that relationship was the only 
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significant above a breakpoint of 1.97 in. (Table S2.4).  Several statistically significant thresholds (22 

total; 9 with p≤0.1, 8 with p≤0.05, and 5 with p≤0.01) were identified using the Wilcoxon rank-sum test 

to test if SCM abundance was different below and above a given threshold (Fig. S2.3). Other than 

minimum, mean, and maximum depth to water table, all thresholds were identified in climatic variables 

(e.g., aridity index, temperature, vapor pressure deficit, annual precipitation, and the 2-year 24-hour 

design storm depth). These results generally suggest that infiltrators are favored over the other three 

SCM types in more arid (i.e., warmer and drier) climates that have greater depths to water table. 

 

Discussion  

SCM density and diversity in the study cities’ inventories exhibited large variability between 

cities (Question 1). SCM density (i.e., SCM counts per impervious area) varied over four orders of 

magnitude over our 23 study cities (Fig. 2.2). One city only reported one MOP-fine SCM considered in 

our analysis, some cities reported three or less, while others reported more than ten (Fig. 2.3). These 

results could reflect record keeping practices of cities or actual SCM implementation or both. In an ideal 

world these would be the same, however some cities did not keep inventories of all considered SCM 

types. For example, Fort Collins, CO had a well-organized SCM inventory, but they did not include swales 

and strips in their inventory. Another example of inconsistent record keeping is that some of the cities’ 

inventories did not include privately owned SCMs while others did. It is also possible that other groups 

such as counties, departments of transportation, or sewerage districts sometimes have inventories of 

SCMs, but we were unable to collect such inventories. These limitations create a double zero problem 

common in species composition data; while presence of an SCM clearly says something, the lack of an 

SCM is difficult to interpret. We do not know if an SCM that is not listed is simply not included in that 

city’s inventory or if there actually are not any in the city. We addressed the limitation of the double 

zero problem the same way it is commonly overcome in analyses of species assemblages – by using 
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Hellinger-transformed SCM counts (Legendre and Birks 2012; Michel et al. 2007) instead of comparing 

the overall magnitude of SCMs implemented, except for our analysis of SCM density (Fig. 2.2). Despite 

how representative cities’ inventories were of the full array of implemented SCMs, they highlight SCMs 

that are prioritized within a city.   

Of the continuous explanatory variable classes we considered, physical characteristics of cities 

best explained SCM assemblages (Question 2). Physical explanatory variables as a group were the most 

important drivers of the composition of MOP-coarse SCM assemblages (Table 2.3) and of relative 

abundance of individual MOP-coarse SCMs (Fig. 2.4). However, when explanatory variables were 

considered individually, this was only true for infiltrators (Fig.5). On the other hand, socioeconomic 

variables of median housing age and population density were most correlated with relative abundance 

of basins and swales and strips, respectively, and filters were most correlated with the regulatory 

variable of percentage of regulated waterway length considered impaired (Fig. 2.5). Similarly, based on 

categorical explanatory variables of MS4 phase, presence of combined sewers, and whether a city was 

under a consent decree, infiltrators were the only SCM type that were not well explained by any of the 

three (Fig. 2.6). Identifying the unique contributions of combined sewers and consent decrees is difficult 

based on these results, but results suggest cities under consent decrees are more likely to choose filters 

while cities with combined sewers are more likely to choose a diverse array of SCMs. Although our 

analysis revealed correlations between the single explanatory variables and SCM types, some of the 

explanatory variables were strongly correlated with each other across classes. For example, cities with 

combined sewers tend to be older cities (i.e., older median housing age) and older cities had greater 

impervious percentage and population density, with these relationships being amongst the strongest 

and most statistically significant of all variables considered (Fig. S2.1). The multivariate analyses did not 

produce models with strongly correlated explanatory variables though, since such variables produced 

large variance inflation factors (Table 2.3).  
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Perhaps the most surprising result from our analysis was the lack of explanatory power of 

climatic variables. Climatic variables did not remain in any of the strongest RDA models (Table 2.3). 

Based on variation partitioning (Fig. 2.4) climate variables only showed moderate explanatory power of 

infiltrators, which was explained in combination with physical explanatory variables, and only average 

maximum vapor pressure deficit was statistically correlated with any of the Hellinger-transformed MOP-

coarse SCM types (i.e., filters; Fig. S2.1). However, our analysis of breakpoints and thresholds in the 

relationships between explanatory variables and Hellinger transformed SCMs highlighted that climatic 

variables may be better used as categorical predictors (Fig. S2.3).   

  

Relationship to previous studies 

There are no other rigorous statistical or general comparison studies that we are aware of that 

have compared SCM assemblages between more than three cities. Possible reasons for this are that 

many cities are still developing and refining their databases to store SCM information, and terminology 

differences make such comparisons challenging (Choat et al. 2022). Our results are generally supported 

by McPhillips and Matsler (2018) though, who similarly found that impervious cover, economic activity, 

and changes to policy over time directly influenced the types and rates of SCMs implementation. On the 

other hand, Hale (2016) found that the development of stormwater infrastructure was decoupled from 

impervious cover. However, for Hale’s analysis they included conveyance structures, which could have 

resulted in different conclusions than our study, which excluded traditional conveyance structures. 

Another important consideration highlighted by Hale was that new infrastructure is directly impacted by 

already existing infrastructure. This is a possible constraining factor for SCM implementation that we 

were not able to capture, since we did not consider temporal information on SCM implementation, but 

could help explain some of the variability in SCM implementation that remained unexplained by our 

analysis. Our analysis explained variability in SCM implementation to a large extent, but even our 
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strongest metrics suggest we are only able to explain around 70% of the variability in SCM choice. 

Further work may explore in greater detail the local, regional, and national factors in decisions made in 

cities and across cities for how selection of SCM types is made.  

 

Implications 

Despite significant expenditures by the federal government to help eliminate and/or control 

nonpoint source pollution, the US EPA found that four of 13 stream and river quality indicators showed 

statistically significant decreases between 2009 and 2013, with no indicators showing improvement 

(U.S. EPA 2020). Such data imply that current stormwater management approaches are not adequate to 

prevent adverse downstream impacts. Results from this work suggest that SCM implementation in the 

23 study cities have been influenced by federal regulations related to the Clean Water Act (i.e., 

regulation of cities with combined sewers, larger cities with municipal separate stormwater and sewer 

systems, and the utilization of consent decrees for enforcement). For example, cities with combined 

sewers and/or under consent decrees had greater SCM density and diversity, but it is important to note 

that neither SCM density nor diversity are measures of effectiveness, but rather useful measures for 

comparing SCM assemblages across cities. However, there is potential to provide a broader range of 

functions and system-wide resilience with a more diverse SCM inventory, but there is also the potential 

for greater maintenance time and workforce training requirements with more SCM types. In addition to 

federal regulations factors specific to the cities, especially physical and socioeconomic factors, are also 

important drivers or constraints of SCM composition. While federal regulations are clearly having an 

influence on stormwater management decisions in cities, this does not mean that the magnitude and 

type of SCMs implemented is adequate to reach water quality targets in downstream water bodies. 

As more SCMs are implemented in the U.S. to meet the goals of the Clean Water Act, knowing 

how other cities have approached similar problems under similar constraints can help inform cities 
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planning to implement newer approaches to stormwater management. For example, cities looking to 

develop a stormwater plan can find partner cities in similar settings that have already addressed 

stormwater challenges from whom to learn. While there are numerous factors to be considered when 

developing a stormwater plan and selecting SCMs (e.g., construction and maintenance, environmental 

factors, and permitting; WEF and ASCE-EWRI 2012) this work has provided evidence that important 

indicators exist that may allow for prediction of SCMs in cities, which has implications for modeling and 

stormwater network design. Those same indicators may be used to identify good cities to partner with 

as all cities attempt to deal with the challenge of urban stormwater management. For example, if a city 

has combined sewers and relatively shallow depths to groundwater (e.g., mean DTWT < ~ 7ft), then that 

city may consider partnering with Grand Rapids, MI or Sacramento, CA which are under similar 

constraints. Specifically, our work has shown important indicators of SCM assemblages to be impervious 

percentage, depth to water table, land surface slope, median household income, regulatory factors (e.g., 

MS4 Phase, combined sewer presence, and consent decrees), and thresholds in climatic factors (e.g., 

aridity index, annual precipitation, etc.) are important indicators when identifying partner cities. 

 

Conclusions 

If stormwater management is to reach its potential of meeting site-, city-, and watershed-scale goals 

of not only mitigating the negative effects of urbanization, but also providing additional services that 

improve the environment and quality of life for all, then challenges need to be explicitly addressed at 

each scale. Advancing the practice towards that vision will be greatly accelerated if stormwater asset 

management systems (Green Infrastructure Ontario Coalition et al. 2021) include SCM functions and are 

made available as suggested by Choat et al. (2022). However, stormwater management is not a one size 

fits all practice, so even if data is made available, understanding what factors are driving SCM 

assemblages in different cities will be useful in allowing cities to learn from one another. To advance 



48 

 

towards that goal, we performed robust statistical analyses on SCM inventories from 23 U.S. cities to 

better understand SCM assemblages and what is driving variation in SCM assemblages as we addressed 

our research questions: 

 

1. How do assemblages of SCMs and SCM density differ among U.S. cities?  

SCM assemblages and density varied wildly between cities (Figs. 2 and 3). Some cities listed only one 

or two SCM types while others listed more than 10 (Fig. 2.3). The four cities reporting the largest SCM 

density were each MS4 phase I cities with combined sewers (Fig. 2.2). Cities that implemented a low 

diversity of SCMs tended to be dominated by infiltrators and basins, but as cities implemented a greater 

diversity of SCMs swales and strips and filters were listed more frequently (Figs. 3 and 5). New York City 

was the only city to report swales and strips as their dominant MOP-coarse SCM type. 

 

2. Which physical, climatic, regulatory, and socioeconomic variables or classes of variables best 

explain differences in SCM assemblages between cities? 

Physical variables explained the most variability in SCM types. Minimum and maximum depths to 

the water table remained in all but one redundancy analysis (RDA) model, suggesting depth to water 

table is an important constraint and indicator of SCM assemblages (Table 2.3). Climatic variables were 

shown to be better treated as categorical indicator variables, where cities below and above a given 

threshold implement different SCM types at different rates. The most statistically important 

socioeconomic indicator variable was median household income since population density and median 

housing age were highly correlated with impervious percentage. All federal regulatory variables 

appeared as significant predictors, but the presence of combined sewers and whether a city is under a 

consent decree or not were shown to be especially important indicators in understanding SCM 

assemblages. 
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3. Have federal regulatory programs related to the Clean Water Act had quantifiable effects on the 

SCM inventories of U.S. cities?  

Variables related to federal regulatory programs (i.e., presence of combined sewers, MS4 phase, if 

city is under an EPA consent decree, percent water body length impaired, and percent water body area 

impaired) all showed statistically significant relationships with the SCM assemblages. While federal legal 

processes can take long periods to be implemented, this analysis of 23 SCM inventories suggests that 

federal regulation has helped to shape the SCM inventories in U.S. cities. 

We postulated a general hypothesis that physical, climatic, socioeconomic, and regulatory 

attributes of cities are governing their SCM assemblages. Our results generally support our hypothesis. 

In many cases more than half of the variability in SCM assemblages was explained by the explanatory 

variables we identified. It was surprising to find that climatic variables were perhaps the least important 

in explaining observed SCM assemblages. Their importance was highlighted however, when they were 

considered as categorical predictors of individual SCM types.  

While one can make assumptions about SCM function based on design, it is critical that future 

work further explore implications of SCM assemblages on city- and watershed-scale function. The 

International BMP database (Clary et al. 2002, 2020) is a wonderful resource that has helped aggregate 

information on function of individual SCM types, but there is still a need to further our understanding of 

the emergent functions of SCM assemblages, and understand broader suites of functions beyond the 

core water quantity and quality related functions. This would also help us understand if there is a 

relationship between greater diversity of SCMs and meeting the more diverse goals now common in 

stormwater management. Additionally, future qualitative work could further explore the development 

of SCM design guidelines in cities, which might provide some insight into SCM choices that could not be 

explained here. An important step towards these goals is the collection and aggregation of SCM 
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assemblage data, such as expanding the database of SCMs used in this study (Choat et al. 2021) to 

include more cities and inventories from non-city entities. 

 

Data Availability  

Some data and code generated or used during the study are available in a repository or online in 

accordance with funder data retention policies (Databased of Implemented Stormwater Controls; DISC); 

https://tinyurl.com/HUB-DISC).  
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CHAPTER 3: ESTIMATING CARBON SEQUESTRATION UNDER VARIOUS 

LAND-USE SCENARIOS OF DRIED AGRICULTURAL LAND IN THE SOUTH 

PLATTE RIVER BASIN 
 

 

 

InTERFEWS Required Sections 

 This chapter was developed as a requirement for the InTERFEWS program and the contributions 

to InTERFEWS requirements are summarized below. 

 

Interdisciplinary Considerations 

This report was motivated by an interdisciplinary challenge and utilized an interdisciplinary 

approach to address that challenge. Broadly, the disciplines important to the review and analysis 

presented in this report include economics, policy, natural resources and land management, and 

ecosystem services.  

 

Economic Considerations  

Sustaining rural economies in the face of drying irrigated agriculture was a primary motivation 

for this work. A methodological review and application of benefits transfer and valuation of carbon 

sequestration was performed. Specific methods for spatially explicit scenario analysis and return on 

investment from ecosystem services are suggested based on literature review. For example, I suggest 

caution when applying benefit transfer when needed data is sparce, recommend inclusion of 

uncertainty when developing or using tools for return on investment from ecosystem services, and 

estimate return on investment for three scenarios of conversion of irrigated agriculture to more natural 

land covers in three areas of interest in the South Platte River Basin (SPRB). Those three areas were 

Greeley’s long range expected growth area, Brighton’s South Platte River Heritage Corridor, and 

properties in Weld and Larimer counties that have been purchased by the City of Thornton with the 
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intention of transferring the water from irrigated agricultural to municipal uses. Only application to the 

Thornton Norther Properties is presented in Chapter 3. For applications in other areas of interest please 

see Appendix-Chapter 3. 

 

Policy Considerations  

As the SPRB experiences rapid land conversion due to the drying of irrigated agricultural land, 

policy will help shape the outcomes and experiences for agrarian communities. Therefore, this work 

included multiple policy considerations. A review of payment for ecosystem services schemes with a 

focus on payments for conservation and payments for carbon sequestration is provided. Valuation of 

ecosystem services can help prioritize which irrigated land to keep in production and which to target 

with conservation programs and/or payment for ecosystem services programs, having implications 

for natural resources and land management related policy.  

 

Systems-Thinking Considerations  

The overall motivation for this report originates from a systems-thinking perspective. Specifically, 

growing urban populations are placing pressure on urban water resources, so municipalities are 

responding by purchasing agricultural water rights, drying what was irrigated cropland, and transferring 

the water to urban uses. In response, agrarian economies are likely to be strained due to the loss of 

substantial acreage of irrigated agriculture. This report addresses one potential response to the 

economic damage caused by buy-and-dry water transfers – paying landowners for ecosystem services. 

 

Stakeholder Engagement  

While this work did not specifically include stakeholder engagement as a method, it was 

motivated by work with the Colorado Water Conservation Board (who may be considered a 
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stakeholder). The report also poses the question of whether the landowners in the communities in 

which payment for ecosystem services programs may be implemented have any interest in such 

programs. 

 

DPSIR 

Growing urban populations and reduced commodity prices are driving the transfer of water 

from irrigated agriculture to urban and municipal uses. Cities in the SPRB of Colorado are actively 

securing water supply to meet the demands of growing urban populations and industry and to ensure 

those demands can be met well into the future. With limited opportunities to develop new water 

sources, cities are resorting to the purchase of agricultural water rights with older water rights being in 

greater demand due to the enhanced security they provide.  

Irrigated agriculture has become the cornerstone of many of the rural landscapes and 

economies of the SPRB. As water is transferred away from irrigated agriculture significant pressures are 

being placed on both the landscapes and economies in the agrarian communities. Land that was once 

irrigated is being converted to other land uses such as urban development, non-irrigated agriculture, or 

more natural land cover such as native grasslands. Communities that have come to rely on irrigated 

agriculture will experience loss or alteration of employment opportunities and the local tax base. 

To characterize the situation within the SPRB important states to consider include: 1. The SPRB 

is home to 70% of the Colorado’s population, 2. It demands over 2.5 million acre-ft of water for irrigated 

agriculture annually, 3. There are over 4 million acre-ft of water diverted from surface water sources, for 

all uses, annually, 4. There are another 500,000 acre-ft of groundwater withdrawn annually, 5. There are 

only about 1.4 million acre-ft of native water available annually, 6. Due primarily to the purchase of 

water rights by municipalities from irrigators (i.e., buy-and-dry), a decline of between 131,900 and 

174,000 acres of irrigated agriculture is excepted to be dried by 2050 (~15-20%).  
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While there will be many impacts from the buy-and-dry trend in the SPRB, this document 

focuses on the impacts that local communities and economies which have been built around irrigated 

agriculture will experience as the vital economic driver and core aspect of local culture (i.e., irrigated 

agriculture) is significantly reduced.  

The primary objectives of this document are related to a potential response to ease the impacts 

of buy-and-dry on local economies and communities while also mitigating any negative land use changes 

that may occur as what has been irrigated agriculture is altered to other land uses.  

 

Intellectual Merit and Broader Impacts 

This document is intended to be of practical interest to policy-oriented professionals working in 

the SPRB, that are also interested in climate, buy-and-dry, and ensuring the agrarian communities in the 

SPRB do not experience undue harm as water is transferred away from irrigated agriculture. A thorough 

literature review related to payment for ecosystem services with a focus on climate related ecosystem 

services is presented. Key points, considerations, and open questions are identified and a framework for 

policy-relevant and spatially explicit valuation of ecosystem services is discussed. Furthermore, a review 

of potentially relevant existing web tools is presented as a reference for those seeking easy access to 

relevant analyses. Finally, a web-tool which extends the COMET-Planner tool is presented with three 

example areas of interest within the SPRB. The web-tool enables easy estimates of the return on 

investment from conservation measures present in the COMET-Planner tool, at a property scale 

resolution. The work presented herein is not extremely novel, but rather, synthesizes and extends 

existing knowledge for policy-relevant professionals.  

Introduction 

Growing urban populations are accelerating land-use change (LUC) around the globe, as 

witnessed in the Front Range of Colorado (Angel et al. 2011; Colorado Water Conservation Board 2015; 
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United Nations and Social Affairs 2018). In recent history, we have witnessed LUC exacerbating climate 

change due to disturbed soils, development of greenhouse gas (GHG) producing land uses, and more 

(Houghton et al. 2012). This trend is a product of our approach to land management, however, and is 

not a required feature of human progress. Local decisions determine how LUC manifests with significant 

implications for local livability and the global challenge of climate change.  

 

The South Platte River Basin 

Like many semi-arid and arid regions of the world, the substantial gap between the supply and 

demand of water in the South Platte River Basin (SPRB; Fig. 3.1) is driving competition for water supply 

between economic sectors. The SPRB is Colorado’s most populous, economically diverse, and 

agriculturally productive basin. It is home to 70% of the state’s residents and demands over 2.5 million 

acre-feet of water for irrigated agriculture annually. Municipal and rural stakeholders are in competition 

for water resources in the basin as there are only about 1.4 million acre-ft of native water (i.e., sourced 

from within the basin) available annually while annual water diversions of surface water are around 4 

million acre-ft, with groundwater withdrawals accounting for another 500,000 acre-ft of supply.  
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Fig. 3.1: Map of the Colorado portion of the South Platte River Basin highlighting relevant land cover 

from the 2016 National Land Cover dataset (Homer et al. 2012).  

Of heightened interest in the SPRB is the competition between municipal (e.g., industrial and 

residential) and rural (e.g., irrigated agriculture) water users which has driven the phenomenon known 

as buy-and-dry. Within the doctrine of prior appropriation, which governs water rights in Colorado, a 

water user owns the rights to use water for some beneficial use, such as growing crops or an industrial 

use, but that water user may not use or lease the water for a different use. As the SPRB has witnessed 

rapid urban and industrial growth it has become common for municipalities to purchase water rights 

from irrigated agriculture to secure water supply for the near and long-term future of the municipality. 

While there are ongoing efforts to figure out ways to allow for the transfer of water without 

permanently drying irrigated agricultural land, the buy-and-dry trend is expected to continue through at 
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least 2050 leading to a decline of between 131,900 and 174,000 acres of irrigated agriculture (Colorado 

Water Conservation Board 2019). 

While direct development of land will account for a significant portion (~6-7%) of the expected 

loss of irrigated agriculture coming to the SPRB over the coming decades, the primary driver will be buy-

and-dry. Although urbanization is relatively compartmentalized spatially, its indirect effects will be 

experienced throughout the basin. Many rural areas of the basin rely on irrigated agriculture to support 

their economies. The loss of that economic driver is likely to have significant social, cultural, and 

economic implications for those agrarian communities as the local tax base, employment opportunities, 

and general experience of living in an agricultural area are lost or altered. Of growing importance is the 

question of how to help maintain rural economies in the SPRB that will experience significant declines in 

irrigated agriculture. 

Times of change provide opportunities for innovation, reorientation of goals, and for new 

approaches to be used to reach those goals. In early 2021, Governor Jared Polis’ office in Colorado 

released a roadmap for the state’s goals of reducing greenhouse gas (GHG) production. Within that 

document several steps and important considerations were highlighted that will enable Colorado to 

meet its ambitious climate-change goals. Of particular relevance to this work is the key finding that, 

“protecting, restoring, and enhancing the resilience of Colorado’s natural and working lands is critical for 

sequestering carbon” (Governor Jared Polis’ Office 2021). The Colorado Water Plan (Colorado Water 

Conservation Board 2015) also identified the need for additional incentives to assist basins in 

implementing agricultural efficiency and conservation practices to support the ecosystem services that 

agriculture can provide. By paying private landowners or other relevant stakeholders for providing the 

public good of carbon sequestration by implementing climate-smart strategies on their land, rural 

economies can gain an additional source of revenue. Owners of land that transition from irrigated 

agriculture to another land use can maintain some income while those that are fortunate enough to 
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keep their land in production can add the additional income to their portfolio.  As such, policy makers in 

the SPRB are interested in payments for ecosystem services (e.g., carbon sequestration, water 

purification, pollinator services, etc.) policies that may keep revenue flowing into rural communities in 

the basin while incentivizing land-use practices that benefit society at large. 

The overall objective of this work was to enable easier assessment of the tradeoffs of potential 

uses of dried agricultural land to assist stakeholders and policymakers in the SPRB with making informed 

land development decisions. To meet this overall objective, two subobjectives were addressed: 

1. Identify needs, traits, and options with respect to policy relevant valuation of ecosystem 

services 

2. Perform valuation of carbon related ecosystem services in the case of irrigated agriculture 

drying to more natural land cover in the SPRB 

To achieve these objectives literature review was first performed, exploratory data analysis with 

an existing dataset was undertaken to better understand the role of uncertainty in carbon sequestration 

in agricultural and working lands, and results from literature review were used to identify appropriate 

methodologies and to apply an appropriate methodology to achieve subobjective 2.  

 

Results 

Literature Review 

A Need for Scenario Analysis – Land Use-Land Cover, Ecosystem Services, and Return on Investment 

As the South Platte River Basin evolves as a socio-hydrological system, policy decisions are being 

made that will help determine the future economic, environmental, and societal health of the basin. For 

good decisions to be made, good information must be available. If policy makers and entities that help 

inform them (e.g., the Colorado Department of Natural Resources or the CWCB) require an expert each 

time they need to explore the climate change implications of various LULC scenarios, then cost in and of 
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itself may become prohibitive to desired programs (Paustian et al. 2016; Van Hecken and Bastiaensen 

2010). What is needed is a robust, yet easy to use tool that does not require expertise. Of particular 

interest is the ability to explore various LULC scenarios (e.g., Fig. 3.2) to allow for the prioritization of 

various policies and decisions.  

 

 

 
Fig. 3.2: Four different land-use types in the South Platte River Basin. Images captured with Google 

Earth. (A) Pivot irrigation agriculture, (B) Medium-intensity residential development, (C) Peri-urban low 

intensity development, (D) High-intensity development. Growing populations in urban areas (B-D) are 

drying irrigated land (A). What are the implications of different land-use decisions with regards to water 

management and climate change?  

 

Uncertainty in Estimating Carbon Sequestration and Storage 

There is a vast amount of literature related to GHG production, sequestration, and storage. A 

quick search using the keywords “greenhouse gases” in the Web of Science results in 87,762 results, 

31,707 open access articles, 6,352 review articles, and 1,385 highly cited papers 

(https://www.webofscience.com/wos/woscc/summary/04d67fc8-021b-4fad-8a07-149346d558bb-

0df31403/relevance/1). With respect to carbon sequestration and storage, there is a significant focus on 

https://www.webofscience.com/wos/woscc/summary/04d67fc8-021b-4fad-8a07-149346d558bb-0df31403/relevance/1
https://www.webofscience.com/wos/woscc/summary/04d67fc8-021b-4fad-8a07-149346d558bb-0df31403/relevance/1
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soils (e.g., Alexander et al. 2015; Conant et al. 2017; Entry et al. 2007; Kane et al. 2021; Paustian et al. 

2016, 2019; Smith et al. 2020) due to a few primary reasons. First, within the top meter of soils globally, 

there is an estimated stock of around 5,500 – 8,800 Gt CO2 with the lower range representing about 

three times the total stock of CO2 found in vegetation and twice that found in the atmosphere. Second, 

as a result of cultivation and agricultural management practices, it is estimated soils have lost around 

510 – 550 Gt CO2 since agriculture became popular around 8,000 years ago (Smith et al. 2020). A 2018 

systematic literature review concluded that soil carbon sequestration has the potential to sequester 

about 2 to 5 Gt CO2 annually (Fuss et al. 2018). Lastly, using soil to sequester carbon can improve soils, 

make them more resilient to drought and climate change, and improve overall agricultural productivity 

(Fuss et al. 2018; Kane et al. 2021). Essentially, the literature shows that carbon sequestering agricultural 

practices are likely good for agricultural production and the fact that they sequester carbon is a bonus.  

Although we have a decent understanding of large-scale carbon storage in soils, extreme spatial 

heterogeneity makes it very difficult to generalize carbon storage based on management practice from 

place to place. Soil carbon storage is location specific, depending on climate, previous and current land-

use/management, soils, and other factors (Fig. 3.3; Ramesh et al. 2019). 

Conant et al. (2017) performed an extensive literature review to synthesize experiments that 

have compared soil carbon storage between a control treatment (e.g., traditional irrigated agriculture or 

an ungrazed grassland) with an ‘improved’ or experimental treatment (e.g., cropland transitioned to 

pasture or a grazed grassland). The studies took place over 37 countries representing a wide variety of 

conditions. They found, “improved grazing management, fertilization, sowing legumes and improved 

grass species, irrigation, and conversion from cultivation all tend to lead to increased soil C, at rates 

ranging from 0.105 to more than 1 MgC/ha-yr.” To see if we could learn more from the data used in that 

study, which the authors made publicly available, I performed a brief data analysis. The data included 

observations from 241 papers, with each study comparing two or more treatments. For example, one 
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study may have compared soil carbon in an irrigated crop plot to the soil carbon in a native grassland. 

Values related to soil carbon were reported in terms of storage per acre [tC/ha], although, in the related 

paper the authors present results in terms of carbon sequestration [MgC/ha-yr]. First, I plotted the full 

range of all observed stored carbon as boxplots (Fig. 3.3 – left) and then plotted the same data except 

limited to relatively non-humid areas of the USA (Fig. 3.3 – right) which resulted in data from 10 states. 

Then I plotted the data from the USA with the control treatments and “improved” (i.e., test) treatments 

split (Fig. 3.4 – left). Last, I plotted boxplots of study-wise differences between the control and 

“improved” treatments, with positive values representing better performance by the “improved” 

treatment and negative values representing better performance by the control treatment (Fig. 3.4 – 

right). Boxplots were used because they allow for an easy comparison between treatments.  

The range of values of observed carbon storage per area is larger when studies from around the 

globe are included (Fig. 3.3 – left) compared to studies from more similar climatic and geographic areas 

(Fig. 3.3 – right). This is potentially simply due to fewer datapoints being included in the plot presenting 

observations from non-humid areas of the USA, but the idea that more similar climatic and geographic 

areas store more similar magnitudes of carbon follows reason (Paustian et al. 2016; Ramesh et al. 2019). 

In Fig. 3.3 we also observe that for four treatments (e.g., shift from ag. to pasture or modified grazing 

intensity) the observed carbon storage per area ranged over three orders of magnitude, highlighting the 

uncertainty in such measurements.  
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Fig. 3.3. Boxplots presenting carbon storage per area [tC/ha] based on studies around the globe (left) 

and on studies from the USA with humid regions removed (right). Boxplots represent the 25th and 75th 

percentiles as the edges of the box, the 50th percentile (median) as the line lying within the box, and the 

largest and smallest values falling within 1.5 times the interquartile range above the 75th percentile or 

below the 25th percentile, respectively. (Data from Conant et al. 2017)  

 

Further highlighting the site-specific nature of soil carbon storage, we see that when comparing 

all control treatments with all “improved” treatments (Fig. 3.4 – left) it is very difficult, if not impossible, 

to generalize across locations. On the other hand, if we look at the study-wise differences between 

control and “improved” treatments (Fig. 3.4 – right) the range of observations narrows. For example, 

values of carbon storage per area (Fig. 3.4 – left) for conversion from ag to pasture range from near 0 to 

about 175 tC/ha. In contrast, looking at the study-wise differences of the same treatment (i.e., ag to 

pasture in Fig. 3.4- right) reveals that lands converted from agriculture to pasture almost always increase 

in soil carbon storage. Those differences ranged from about 0 to just over 20 tC/ha, which is nearly an 

order of magnitude smaller than the range observed when looking at carbon stored per area (i.e., 20 

tC/ha vs 175 tC/ha). Looking at the study-wise differences between control and “improved” treatments 

(Fig. 3.4 – right) also shows that many treatments thought to improve (or increase) soil carbon do not 
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always perform as expected. Taking the shift from cropland to pasture as an example, we see that 

sometimes soil carbon is increased and other times it is decreased. This inconsistent behavior is likely 

due to differences in soils, climates, and/or previous management or land uses (Conant et al. 2017; 

Olsson et al. 2014; Pouyat et al. 2006; Ramesh et al. 2019). Overall, the data from Conant et al. (2017) 

show us that the differences in observed soil carbon between locations is greater than the difference 

between management approaches. This highlights the difficulty in generalizing observations in soil 

carbon between locations. To minimize uncertainty in scenario analysis it may be better to use relative 

performance of sequestration instead of an absolute measure.  

 
Fig. 3.4. Boxplots comparing the overall observations of carbon per area [tC/ha] between the control 

and “improved” treatments in all of the reviewed studies (left) and showing the study-wise differences 

between the control and “improved” treatments (right). Note that CRP = conservation reserve program. 
(Data from Conant et al. 2017)  

 

Uncertainty in Valuating ROI from Carbon Sequestration and Storage 

To assist with policy decisions, quantifying the ROI (return on investment) from carbon 

sequestration/GHG mitigation is highly desirable. The vast majority of efforts attempting to so 

consider the ROI to be the social cost of carbon (SCC) avoided. That is to say, if sequestering a 
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ton of carbon today avoids $200 of social damage (e.g., property destruction or loss of national 

or global GDP) then the ROI of sequestering one ton of carbon is taken to be $200. Quantifying 

a value for the SCC includes extensive uncertainty and is a highly debated topic (Drupp et al. 

2015; Interagency Working Group 2013; Pindyck 2019; Plummer 2009; Ricke et al. 2018). There 

are many ways to approach to this challenge. The Natural Capital Project’s InVEST carbon 

model takes a simple but well-accepted approach (Sharp et al. 2020) so I use it as an example 

here.  

 

A Valuation Formulation 

Data requirements for valuating carbon storage and sequestration in the InVEST carbon 

model and many other approaches include price per metric ton of carbon, the market discount 

in price of carbon, and the annual rate of change in the price of carbon (Sharp et al. 2020). Price 

per metric ton of carbon is based on the social damage avoided as discussed above. The market 

discount in price of carbon refers to society’s preference for present benefits over future 

benefits. The annual rate of change in the price of carbon is an input used to capture how the 

value of carbon sequestration may change over time based on the damages caused by climate 

change. Setting the annual rate of change to a value greater than 0% means you assume the 

societal value of carbon sequestered today is greater than the value of carbon sequestered in 

the future (Sharp et al. 2020). For example, it could be argued that sequestration has greater 

value now because sequestration of the same amount of carbon now compared to later may 

have a greater impact on climate change. Discount rates can be considered in different ways 

with some combining the market discount and annual rate of change for example (Pindyck 

https://naturalcapitalproject.stanford.edu/
https://invest-userguide.readthedocs.io/en/latest/carbonstorage.html
https://invest-userguide.readthedocs.io/en/latest/carbonstorage.html


65 

 

2019; Ricke et al. 2018) with others suggesting a dynamic discount rate that changes with time 

(Ricke et al. 2018). Discounting is consistently shown to be one of the largest sources of the 

differences in estimates of SCC (Ricke et al. 2018). Both market discount in the price of carbon 

and the annual rate of change in the price of carbon can be set to 0 in the InVEST model. 

Ultimately, the value of sequestered carbon over time for a given parcel, 𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞𝑥  (i.e., LULC 

pixel) is calculated as,  𝐸𝑞. 1.     𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞𝑥 = 𝑉 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑥𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ∑ 1(1+ 𝑟100)𝑡(1+ 𝑐100)𝑡𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡−1𝑡=0  , 
where 𝑉 is the price per metric ton of elemental carbon (not CO2), 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑥 is the amount of 

carbon sequestered, 𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒 and 𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are the future and current years being simulated, 

respectively, 𝑟 is the market discount in price of carbon or discount rate [%], 𝑡 is the time 

elapsed since the current year being simulated, and 𝑐 is the annual rate of change (or discount) 

in the price of carbon time preference [%]. It is important to note that this approach assumes a 

constant carbon sequestration rate over time but a constant rate is unlikely to be observed in 

reality (Sharp et al. 2020). Due to this assumption however, this formulation of the value of 

sequestered carbon lends itself to accepting outputs such as those provided by COMET-Planner 

(Swan et al. 2018, seqrate; e.g., amount of carbon sequestered per year). By simply replacing, 

𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑥𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡, with the carbon sequestration rate provided by COMET-Planner, 𝑠𝑒𝑞𝑟𝑎𝑡𝑒, we 

arrive at the following formulation of the value provided by scenario being considered 

(𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞; e.g., conversion of irrigated agriculture to native grassland).  𝐸𝑞. 2.       𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞 = (𝑉 ∗ 𝑠𝑒𝑞𝑟𝑎𝑡𝑒 ) ∑ 1(1+ 𝑟100)𝑡(1+ 𝑐100)𝑡𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡−1𝑡=0  , 
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with 𝑡 now being the total number of years to be included in the valuation. For example, if we 

wanted to estimate the value of carbon sequestration provided if 640 acres of land were 

converted from irrigated agriculture to a native grassland today, we must decide how far into 

the future we want to assume the constant sequestration reasonably applies. Lands will 

eventually reach an equilibrium with regard to carbon storage, where the net amount of carbon 

being sequestered is essentially zero (i.e., the amount being sequestered is equal to the amount 

being released; Entry et al. 2007). 

 

Review of Valuation Input Variables  

Deciding how far into the future to consider when estimating the value from carbon 

sequestration or GHG mitigation provided by a LULC scenario is not the only complicating 

factor. Due to sources of uncertainty related to nearly every variable used to quantify the SCC, 

the resulting uncertainty is extreme. Three variables in particular Ricke et al. (2018) estimated 

the global social cost of carbon (GSCC) by considering possible socioeconomic pathways (SSP), 

possible climate futures (i.e., representative concentration pathways-RCP), the potential 

negative impacts of climate change on the economy (i.e., using damage functions), and various 

discounting approaches. The resulting estimates of the GSCC are presented in Fig. 3.5 where 

the extensive uncertainty in the estimates can be clearly seen to range over three, and 

sometimes four, orders of magnitude (color bars represent the 66% confident intervals).   
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Fig. 3.5. Global SCC in 2020 under various assumptions and scenarios. Median estimates and 16.7% to 83.3% 

quantile bounds for GSCC under SSPs 1–5, and RCPs 4.5, 6.0 and 8.5. For each SSP, the darker colors indicate the 

SSP–RCP pairing with a superior consistency. The values displayed assume growth-adjusted discounting with a 

pure rate of time preference of 2% per year and elasticity of marginal utility substitution (μ) of 1.5. Supplementary 

Fig. 3.3 in the original document compares these results with fixed discounting (rate of 3%). Colored bars represent 

the 66% CIs. SSP = socioeconomic pathway scenarios as based on: O’Neill, B. C. et al. A new scenario framework for 
climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2013). 

RCP = Representative Concentration Pathway as accepted by the IPCC. BHM = Burke-Hsiang-Miguel damage 

function (a model used to estimate social cost of carbon). DJO = Dell-Jones-Olken (another model used to estimate 

social cost of carbon). This graph and footnote are taken directly from Ricke et al. (2018). 

 

 

The Interagency Working Group on Social Cost of Greenhouse Gases (IAWG; Interagency 

Working Group 2013) considered 150,000 estimates from 10,000 simulations for discount rates 

of 2.5, 3, and 5 percent. Those estimates were based on average SCC values produced by three 

integrated assessment models and the 95th percentile estimate which assumes an unlikely but 

highly costly scenario (i.e., close to worst-case scenario). The full distribution of the results for 

the three discount rates are shown in Fig. 3.6. Average values of the SCC were $12, $42, $62, 

and $123 for the 5%, 3%, 2.5%, and the close to worst-case scenario, respectively. Like results 

of Ricke et al. (2018) discussed above, these results also show high uncertainty in estimates of 
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the SCC. The range of values estimated by the IAWG is much narrower than those arrived at by 

Ricke et al. likely reflecting their lack of consideration of uncertainty related to factors other 

than discounting. 

 
Fig. 3.6. Frequency distribution of SCC estimates for 2020. “Presents the frequency distribution of the SC-CO2 

estimates for emissions in 2020 for each of the three discount rates. Each of these distributions represents 150,000 

estimates based on 10,000 simulations for each combination of the three models and five socioeconomic and 

emissions scenarios.16 In general, the distributions are skewed to the right and have long right tails, which tend to 

be even longer for lower discount rates. To highlight the difference between the impact of the discount rate on the 

SC-CO2 and other quantified sources of uncertainty, the bars below the frequency distributions provide a 

symmetric representation of quantified variability in the SC-CO2 estimates conditioned on each discount rate. The 

full set of SC-CO2 results through 2050 is available on OMB’s website. This may be useful to analysts in situations 
that warrant additional quantitative uncertainty analysis (e.g., as recommended by OMB for rules that exceed $1 

billion in annual benefits or costs). See OMB Circular A-4 for guidance and discussion of best practices in 

conducting uncertainty analysis in RIAs.” Based on integrated assessment models (IAMs; DICE, FUND, and PAGE) 

which are used by the U.S. gov’t to estimate the social cost of carbon (CO2). (Interagency Working Group 2013) 
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 Pindyck (2019) took a different approach and surveyed 386 experts including 113 

economists and 220 climate scientists with 170 of those experts being from North America, 158 

from Europe and 30 from developing countries. The range of SCC values resulting from the 

expert surveys exhibited large uncertainty and was between that of Ricke et al. (2018) and the 

IAWG (2013) (about one third of responses were between $0 and $100, several were spread 

across $100 and $700, and the mean was $291; Fig. 3.7). The primary source of uncertainty 

though, was related to the potential impacts of climate change and not the discount rate which 

was held constant at 3% for the survey questions. Also seen in Fig. 3.7 is a gamma function fit to 

the data as a probability distribution function (pdf; red line) that best fit the responses of all 

surveyed experts. Using a pdf is one way in which uncertainty may be included in estimates of 

the SCC and ROI from various LULC decisions. There was a marked difference in the values 

provided by economists and climate scientists (Fig. 3.8). Climate scientists tended to suggest 

much higher SCC (average of $316.3) than economists (average of $173.7), but both the 

averages and distributions of estimates from North America and Europe were very similar with 

averages of $284.5 and $284.2, respectively.   
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Fig. 3.7. The social cost of carbon based on an expert survey of 386 experts. (Pindyck 2019)  

 

 
Fig. 3.8. The social cost of carbon based on surveys of economists (left) and climate scientist (right). 

(Pindyck 2019)  
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Estimates of the SCC, discount rates, and time preference rates from various scholarly literature 

are presented in Table 3.1. Estimates of the SCC in the table reflect averages or likely ranges as 

opposed to the full range of estimates found in each study. The range of the SCC was from $12 

to $300. The range of discount rates was 1% to 7% with 2.5, 3, and 5 being the most common. 

Time preference rate ranged from 0% to 6% with values between 1% and 2% being the most 

common. Inclusion of the full range of values presented in Table 3.1 when estimating the ROI 

from climate-related ecosystem services will produce more robust estimates, but the range of 

estimated values will be larger.  
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Table 3.1. Estimates of the social cost of carbon (SCC), discount rate, and time preference for estimates of ROI 

Notes 

Social cost of 

carbon Units 

Discount Rate 

[%] 

 Time Preference 

[%] 

Citation (See articles for 

their references) 

"Conservative estimate" 21 US$/ton CO2 7 0 Bagstad et al. 2012 

"Non-conservative 

estimate" 85 US$/ton CO2 1 6  Bagstad et al. 2012 

India (66% C.I.) 86 ($49-$157) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

U.S.A. (66% C.I.) 48 ($1-$118) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

Saudi Arabia (66% C.I.) 47 ($27-$86) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

Brazil (66% C.I.) 24 (14–41) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

China (66% C.I.) 24 (4–50) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

United Arab Emirates 

(66% C.I.) 24 (14–48) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

USEPA estimate 12 US$/ton CO2 5  1 IAWG 2013 

USEPA estimate 42 US$/ton CO2 3  1 IAWG 2013 

USEPA estimate 62 US$/ton CO2 2.5  1 IAWG 2013 

SCC Survey of 386 

experts 80 - 300 US$/ton CO2 NA NA Pindyck 2019 

SCC Survey w/outliers 

trimmed 80 - 100 US$/ton CO2 NA NA Pindyck 2019 

SCC 121 US$/ton CO2 2.5  0 Pindyck 2019 

SCC 101 US$/ton CO2 3  0 Pindyck 2019 

SCC 81 US$/ton CO2 4  0 Pindyck 2019 

SCC 65 US$/ton CO2 6  0 Pindyck 2019 

Discount rate only NA NA 

1 - 3 (mean = 

2.25, median = 2) 

mode = 0, mean 

= 1.1%, median = 

0.5% Drupp et al. 2015 

 

 

Development of Shiny Application 

 Following the important considerations highlighted so far and after investigating many freely 

available online tools, the COMET-Planner tool (Swan et al. 2018) was identified as the most appropriate 

and applicable to aiding our valuation of carbon sequestration in the scenario of irrigated agriculture 
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drying to more natural grass cover. It has many of the traits desirable for such analysis: 1. It is relatively 

easy to use and does not require an expert, 2. It estimates changes, or relative increases in carbon 

sequestration opposed to estimating values of carbon storage that are attached to some land use, and 

3. It makes place-based estimates of the relative change in carbon sequestration (i.e., estimates vary by 

county). COMET-Planner takes state, county, area (acres), and conservation practice as inputs (Fig. 3.9). 

Many Natural Resource Conservation Service (NRCS) conservation practices are available to choose 

from. Three conservation practices were identified as relevant to the scenario of irrigated agricultural 

drying to more natural land cover: 1. Forage and Biomass Planting conservation practice of Conversion 

of Annual Cropland to Non-Irrigated Grass/Legume Forage/Biomass Crops, 2. Conservation Cover 

practice of Convert Irrigated Cropland to Permanent Unfertilized Grass/Legume Cover, 3. Conservation 

Cover practice of Convert Irrigated Cropland to Permanent Unfertilized Grass Cover. It then outputs the 

approximate carbon sequestration and greenhouse gas emission reductions (tonnes CO2 equivalent per 

year) broken down by contributions from carbon dioxide, nitrous oxide, methane, and total CO2 

equivalents.  

 
Fig. 3.9. Workflow of Shiny application used for pre- and post-processing data related to the COMET-

Planner tool.  
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 To enable policy relevant valuation of the return on investment from climate related ecosystem 

services, an application was developed (Pre-Post-COMET; 

https://liminaleng.shinyapps.io/comet_pre_post_app/) for pre- and post-processing of data for use with 

the COMET-Planner tool. The application was developed using R Shiny (RStudio, Inc 2013). The study 

area of interest includes properties purchased by the City of Thornton, CO (“Thornton Agricultural 

Stewardship” n.d.). Thornton purchased the properties with specific intentions of converting the 

irrigated acres to more natural grass cover and diverting the water from the irrigated land to the city for 

municipal uses.  

First, the application calculates the total acreage of irrigated land by land-owner type (e.g., 

private, municipal, etc.) within an area of interest as defined by a shapefile (Fig. 3.10). This step 

produces an acreage to be used as an input to the COMET-Planner tool. Land ownership data (Colorado 

Natural Heritage Program and the Geospatial Centroid n.d.) and irrigated lands data from 2015 

(“Division 1 - South Platte | Colorado’s Decision Support Systems” n.d.) were used for identifying land 

ownership type and irrigated lands. After retrieving estimates of the tonnes of CO2 equivalents per year 

from the COMET-Planner tool (Fig. 3.11), those estimates are used as inputs into the next and final step 

of the Pre-Post-COMET application (Fig. 3.12) - Valuation. The valuation tab allows user specified inputs 

defining the type of probability distribution to be used for representing the social cost of carbon as a 

random variable. Normal, log-normal, and uniform distributions are available. Normal and long-normal 

distributions are defined using mean and standard deviation as input parameters. Uniform distributions 

are defined by providing the minimum and maximum values. Monte-Carlo simulations are performed by 

sampling the defined distribution 600 times with random draws without replacement. Values of social 

cost of carbon below zero were dropped from consideration. Then discount rate and time-preference 

variables are represented as uniform distributions and are sampled at six equal intervals each. All 

combinations of the 600 draws from the social cost of carbon distribution, and the six discount rate 
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values and six time-preference values are used to calculate a range of potential return on investment 

values. Return on investment is calculated using equation 2. 

 
Fig. 3.10. Application of the Pre-Post-COMET application to the Thornton Northern Properties located in 

Larimer and Weld Counties in the South Platte River Basin, CO. In Step 1, the area of irrigated property 

within the area is calculated.  

 

 
Fig. 3.11. Screenshot of output from COMET-Planner tool. 
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Fig. 3.12. Valuation tab of Pre-Post-COMET application. 

In the example demonstrated in Figures 11-13, it was shown that assuming a normal distribution 

(mean = 42, St.Dev. = 20; Table 3.1; based on Interagency Working Group 2013), a range of possible 

discount rates between 2.5 and 5 and time preference values between 1 and 2 (Table 3.1; Interagency 

Working Group 2013; Pindyck 2019; Ricke et al. 2018), if all of the irrigated land in the Thornton 

Northern Properties was converted to each of the three conservation practices identified in Figure 12, 

then over a 20 year period return on investments are estimated as presented in the boxplot in Fig. 3.12 

as well as in Table 3.2. Even after constraining the valuation variables to the most commonly used values 

and holding the carbon sequestration variables constant even though they could have considerable 
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uncertainty, estimates of the ROI from each conservation practice still range over three to four orders of 

magnitude.  

Table 3.2. Estimates of ROI [million $] using the Pre-Post-COMET application with the COMET-Planner 

tool 

Conservation Practice Min Q25 Median Q75 Max 

1. Conversion of Annual Cropland to Non-

Irrigated Grass/Legume Forage/Biomass Crops 
0.01 

  

3.8 

  

5.49 

  

7.35 

  

16.4 

  

2. Convert Irrigated Cropland to Permanent 

Unfertilized Grass/Legume Cover: 0.01 

  

3.48 

  

5.02 

  

6.72 

  

 

15.04 

  

3. Conservation Cover practice of Convert 

Irrigated Cropland to Permanent Unfertilized 

Grass Cover: 
0 

  

2.47 

  

3.57 

  

4.77 

  

10.67 

  
Footnote: In the Pre-Post-COMET application values presented in this table are displayed as pop-ups when the 

mouse cursor hovers above or around the violin plots. 

 

 The Pre-Post-COMET application explicitly accounts for uncertainty in valuation variables, but 

only indirectly accounts for uncertainty in climate futures, which is also significant. It indirectly accounts 

for uncertainty in climate futures by embedding that uncertainty into the valuation variables. One of the 

reasons there is high uncertainty in estimates of the social cost of carbon and other valuation variables 

is because of the uncertainty in climate futures. For example, if the climate future we end up realizing is 

on the severe side of estimates, then the social cost of carbon is much greater than if the future we 

realize is on the less-severe side of estimates.  

  

Conclusions 

 The overall objective of this work was to enable easier assessment of the tradeoffs of potential 

uses of dried agricultural land to assist stakeholders and policymakers in the SPRB with making informed 

land development decisions. This overall objective was met by accomplishing two subobjectives.  

1. Identify needs, traits, and options with respect to policy relevant valuation of ecosystem 

services: 
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Policy relevant valuation of ecosystem services requires methodologies that are timely, accurate 

enough, actionable, enable comparisons of scenarios, and not requiring an expert. They must be timely 

in that multi-year studies occur on a slower timescale than policy decisions are made so while 

important, are not adequate. ‘Accurate enough’ refers to the need for results that entail enough 

confidence to be trusted. Uncertainty should also be communicated as part of the decision of whether 

the method and/or results are accurate enough. Furthermore, communicating results without 

communicating the uncertainty associated with those results can cause more harm than good over the 

long term (Plummer 2009; Richardson et al. 2015). With respect to policy, the best way to ensure results 

are actionable is to provide estimates of the return on investment in terms of monetary value.  To stay 

cost effective, the method should also enable comparisons of scenarios. If a new original study needs to 

be conducted each time a new scenario is considered, then cost may become prohibitive. Similarly, if an 

expert is required for each study or each analysis, then cost will likely become prohibitive.  

2. Perform valuation of carbon related ecosystem services in the case of irrigated agriculture 

drying to more natural land cover in the SPRB: 

The COMET-Planner tool was identified as the most appropriate tool for estimating the change 

in carbon sequestration in the scenario of irrigated agricultural land being dried to more natural grass 

cover. It does not require an expert, estimates relative change in carbon sequestration opposed to 

assigning absolute estimates of carbon storage to different land uses, and it makes place-based 

estimates of carbon sequestration impacts. To enable easier use of the COMET-Planner tool by non-

experts, an application was developed for pre-processing inputs for the COMET-Planner tool using a 

shape file representing the area of interest. The application also enables post-processing using a 

stochastic valuation module to get from estimates of carbon sequestration to stochastic estimates of the 

return on investment from carbon sequestration. Both tools were used together and applied to an area 
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of interest where estimates of the return on investment were shown to range from $0 to more than $10 

million.  

 Future work should investigate the use of benefit-transfer using custom land use-land cover 

classifications. By working to identify land use-land cover types that are of interest in policy decisions 

and that also allow for differentiation of the value provided by carbon sequestration, estimates of return 

on investment can be calculated and priority data needs can be identified.  There are many other 

important considerations regarding valuation of ecosystem services and policies that pay for ecosystem 

services. For example, it is important to be clear about who pays for the ecosystem services, who gets 

paid, who provides the services, and who benefits from the service. Ensuring that such programs do not 

exacerbate economic inequality should be prioritized (Van Hecken and Bastiaensen 2010). For a more 

in-depth report of the literature review performed in this chapter please see the Appendix where the 

Chapter 3-Full Report is available. 
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CHAPTER 4: PREDICTING MONTHLY, ANNUAL, AND MEAN ANNUAL WATER 

YIELD IN RESPONSE TO MIXED LAND USE-LAND COVER SCENARIOS AND 

UNDERSTANDING DRIVERS OF WATER YIELD 
 

 

 

Introduction 

Growing population and economic forces are driving rapid land conversion (e.g., urbanization) 

across the planet (Angel et al. 2005, 2010, 2011; United Nations and Social Affairs 2018). Land 

conversion can drastically alter catchment water yield (WY; defined here as the total volume of water 

flowing past a point of measurement in a stream over a given time) with significant implications for 

water resources, risk management, water rights, geomorphology, environmental and ecosystem health, 

and more (Haase and Nuissl 2007; Leopold 1968; Poff et al. 1997; Rogger et al. 2017; Sharafatmandrad 

and Khosravi Mashizi 2021; Walsh et al. 2005; Yu et al. 2015). Hydrologic impacts of land conversion and 

urbanization are likely to be exacerbated by climate change (DeWalle et al. 2000; Dow and DeWalle 

2000; Jacobson 2011; Oudin et al. 2018; Tu 2009). In this time of rapid land-conversion and climate 

change, understanding and being able to predict WY under different land use-land cover (LULC) 

scenarios across physiographic and climatic settings is critical for informed decision-making by water 

managers, policy makers, and other relevant stakeholders (Liu et al. 2008; Sharafatmandrad and 

Khosravi Mashizi 2021; Yu et al. 2015).  

The change in WY from different LULC complicates the already challenging practice of modeling 

and predicting WY. Catchments with mixed land uses (i.e., agricultural, urban, peri-urban, industrial, 

etc.) are characterized by extreme spatial heterogeneity (Cadenasso et al. 2007; Liu et al. 2008; Verburg 

et al. 2009), diverse hydrologic flow paths (Aliyari et al. 2019; Bhaskar et al. 2015, 2016a; Meyer 2005; 

Price 2011), and desired explanatory data are often sparce, inconsistent in quality, and held by disparate 

sources (Hrachowitz et al. 2013; Visessri and McIntyre 2016). Decades of efforts (Leopold 1968) to 

understand the impacts of land conversion on catchment hydrology have progressed our knowledge and 
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ability to, with ample effort, predict streamflow response in a given catchment, but many challenges 

remain. One significant challenge is the need for a more generalized approach that applies across 

physiographic, climatic, and LULC scenarios (Beven 1987; Blöschl et al. 2019; Nearing et al. 2021; Rogger 

et al. 2017).  

  There are many methods used to understand and model mixed-land use catchment hydrology 

and to predict WY response to catchment properties such as LULC. Popular approaches include empirical 

and statistical methods (Bell et al. 2016; DeWalle et al. 2000; Oudin et al. 2018), lumped conceptual 

models (Liu et al. 2008; Reed et al. 2004), fully-distributed physically-based numerical models (Aliyari et 

al. 2019; Choat and Bhaskar 2020; Endreny and Collins 2009; Zoppou 2001), simpler methods like the 

semi-empirical Natural Resources Conservation Service Curve Number method (CN; previously known as 

the SCS CN), and more (Zhou et al. 2015). When simpler methods like the Curve Number are used to 

estimate impacts of LULC change, the uncertainty surrounding the parameters chosen for the new 

scenario impedes confidence in predictions (ASCE/EWRI Curve Number Hydrology Task Committee et al. 

2009; Hawkins et al. 2019; Ogden et al. 2017; Puno et al. 2019). Approaches that consider more spatial 

heterogeneity and explicit flow paths require greater parameterization and data, impeding their ability 

to be easily applied to a wide range of scenarios. Despite the method used, however, hydrologic models 

of mixed land use catchments must be trained or calibrated to a given catchment, limiting the 

applicability to other catchments and scenarios.  An approach that captures the physical heterogeneity 

of a catchment while maintaining ease of use is needed. 

Predicting WY response to different LULC is akin to the regionalization problem of predicting WY 

responses in ungauged catchments. In both cases the objective is essentially to predict an unknown WY 

response as a function of relatively static watershed characteristics and dynamic meteorological 

forcings. Regional regression equations that relate climatic and physiographic catchment characteristics 

with WY or other flow statistics have been developed for unregulated and minimally disturbed 
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catchments (Eurich et al. 2021; Ries III et al. 2017). Such approaches are limited in application however, 

due to their exclusion of catchments with anthropogenic alterations, such as mixed land use catchments 

(Ries III et al. 2017).  

Factors driving WY are complex and interactive, but some patterns and trends have been 

identified. WY tends to increase with increasing precipitation and decreasing evapotranspiration (i.e., 

decreasing tree and vegetation coverage and air temperature; Bell et al. 2016; Bhaskar et al. 2016b; 

DeWalle et al. 2000; Hamel et al. 2020; Hopkins et al. 2014; Jacobson 2011; Sun et al. 2019; Tu 2009).  

WY is sensitive to catchment slope, soils (Hopkins et al. 2015), and geologic substrate (Eurich et al. 

2021). Many anthropogenic impacts and activities interact with each other and natural characteristics to 

shape WY. Some anthropogenic impacts and activities include altered LULC and historical LULC patterns 

(Hopkins et al. 2014, 2015; Shi et al. 2015; Sun et al. 2019; Tu 2009), impervious cover (Bell et al. 2016; 

Chang 2007; Jacobson 2011; Oudin et al. 2018), inter-catchment transfers (Bhaskar et al. 2016a; 

Grimmond and Oke 1986; Hopkins et al. 2014), agricultural and landscape irrigation (Aliyari et al. 2019; 

Bhaskar et al. 2016a; Bhaskar and Welty 2015; Grimmond and Oke 1986), aging and leaking water 

infrastructure (Bhaskar and Welty 2012, 2015; Hopkins et al. 2014; Pangle et al. 2022), dams and 

reservoirs (Shi et al. 2015), stormwater infrastructure (Bell et al. 2016; Bhaskar et al. 2016a; b; Bhaskar 

and Welty 2015), and water treatment plant effluent (Meyer 2005; Oudin et al. 2018). Developing any 

model that is applicable across LULC, physiographic, and climatic conditions will require data that 

directly or indirectly (i.e., via indicators) reflects these factors. 

The overall objective of this work was to gain fundamental insight into the important drivers of 

water yield and how they vary with spatial and temporal scale. By meeting this objective, useful models 

for predicting WY were developed, guidance was provided about what important parameters and 

processes need to be captured by a model to predict WY in a wide range of scenarios, and guidance was 

provided as to which factors managers considering WY should give special attention. We hypothesized 
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that statistical and machine learning methods that apply across a broad range of catchment conditions 

would require a larger number of variables than typically considered in regional regression models (e.g., 

under 10).  

To achieve our main objective and to test our hypotheses we asked the following questions: 

1. What are the important drivers of water yield? 

2. How do those drivers vary between monthly, annual, and mean-annual timescales? 

3. How do the important anthropogenic drivers of water yield vary over regions of the U.S. and 

over monthly, annual, and mean-annual timescales? 

4. Which modeling approach is most effective at predicting water yield at different timescales? 

 

Methods 

To identify important drivers of WY across climatic, physiographic, and LULC scenarios, this work 

utilized a variety of statistical and machine learning approaches to model WY in 2,913 catchments across 

the contiguous United States to produce skilled and explainable models. Multiple linear regression, least 

absolute shrinkage and selection operator (LASSO) regression (Tibshirani 1996), and the extreme 

gradient boosting supervised machine learning (XGBoost) algorithm were used in modeling. The most 

skilled models were investigated to understand the importance of the various explanatory variables 

included in them. These simpler methods were chosen over neural networks (e.g., Long Short-Term 

Memory) because interpretability was a priority in this study. To reduce the upfront assumptions about 

appropriate variables to be included or the number of variables to include, over 80 explanatory variables 

were considered, and different variable selection methods were used.  
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Data Collection 

Similar to any statistical or physically-based hydrologic model, the required inputs for the 

models used in this study included catchment characteristics and weather forcings. Streamflow, being 

the target variable in this study, was needed for training, validating, and testing the models. The 

availability of daily USGS streamflow data was used to identify the most appropriate time-period to be 

used in the study. After quantifying how many catchments had continuous daily streamflow records for 

any given 10-, 15-, 20-, and 30-year period, a 15-year period was selected because 4,501 catchments 

had continuous streamflow records for at least one 15-year period and 15 years allowed for 10 years of 

training data and 5 years of testing data. Next, we investigated which 15-year period between 1976 and 

2013 had the greatest number of catchments with complete records and aligned well with the variables 

present in the Geospatial Attributes of Gages for Evaluating Streamflow (GAGES-II; Falcone 2017, 2011) 

dataset. We used USGS mean daily streamflow (cfs). The total volume of water flowing past a gauge in a 

day (i.e., daily WY, ft3) was calculated from mean daily streamflow and monthly and annual WY were 

calculated from daily WY. Area-normalized water yield (ft) was used in the modeling process to control 

for larger catchments having the potential to produce greater volumes of water yield.  

The period from 1998 through 2012 was chosen because it had the second greatest number of 

catchments out of all 15-year periods considered and was best aligned with the GAGES-II variables, 

including the National Land Cover Data (NLCD) which was available for years 2001, 2006, and 2011. 

Catchments that were given a boundary confidence of 6 (Falcone 2011) or less were removed from the 

GAGES-II dataset resulting in 3,214 catchments. Of those 3,214 catchments only two had a dominant 

geology type of anorthositic and only one had a dominant geology type of intermediate, so those three 

catchments were removed. Weather data failed to download for another 298 catchments resulting in 

2,913 catchments being used in the study. We eliminated catchments that experienced the top 5% of 

land cover change based on NLCD during the study period, to not investigate catchments with WY that 
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was in transition during the study period and instead focus on more static LULC during the study period. 

Previous work specifically has investigated streamflow in GAGES-II watersheds with high urbanization 

change and found discharge can be different during rapid urbanization change compared to before or 

after rapid change (Bhaskar et al., 2020).   

The GAGES-II dataset was used for catchment characteristics because it included both reference 

and non-reference catchments (i.e., catchments that have minimal human impacts and catchments that 

have been impacted by human activities), data for 9,322 total catchments (2,047 reference and 7,265 

non-reference), and a wide range of catchment characteristics believed to be suitable to describe the 

hydrology of the included catchments. Fifty-seven variables from the GAGES-II dataset and 24 from the 

GAGES-II time series dataset, were identified for use (Table S4.1) and included climatic, physiographic, 

and anthropogenic variables. GAGES-II time series data were at either five- or ten-year resolution so 

values in between years with observations were interpolated. All variables considered in this study were 

continuous except for the dominant geology variable which was categorical and included six categories 

after removing two of them. To transform the dominant geology variable to a continuous variable it was 

one-hot encoded. One-hot encoding defines each category as a new variable and a 0 or 1 is assigned to 

each new variable. A 0 indicated a catchment’s dominant geology was not represented by that variable 

and a 1 indicated a catchment’s dominant geology was represented by that variable. 

The daily surface weather and climatological summaries (DAYMET) dataset was used for 

weather forcings. Individual datasets of annual (Thornton et al. 2020a) and monthly (Thornton et al. 

2020b) climate summaries and daily weather (Thornton et al. 2020c) were each downloaded directly for 

each catchment using catchment shape files included in the GAGES-II dataset. Annual and monthly 

climate summaries included summaries of five DAYMET variables: minimum and maximum temperature, 

precipitation, vapor pressure, and snow water equivalent. Daily weather data also included shortwave 

radiation and day length. DAYMET data came as 1km2 gridded data. Mean values of the gridded data 
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within each catchment for each variable were used as model inputs. DAYMET data was collected using 

the PyDaymet API from the HyRiver software stack (Chegini et al. 2021) in Python. Variables capturing 

antecedent precipitation and minimum and maximum temperature were also included as explanatory 

variables in annual and monthly models. For annual models, the previous year’s total precipitation, 

average minimum daily temperature, and average daily maximum temperature were included. For 

monthly models, total precipitation, mean daily minimum temperature, and mean daily maximum 

temperature were included from the previous month and previous 12 months. Five variables from the 

DAYMET dataset were used (i.e., precipitation, snow water equivalent, maximum air temperature, 

minimum air temperature and water vapor pressure. 

 

Data Partitioning 

If the models developed in this study were truly capturing the important variables representing 

the most important drivers of water yield, then they should be able to predict water yield in catchments 

in which they were not trained (i.e., prediction in ungauged catchments (PUC)) as well as in catchments 

in which they were trained (non-PUC). Data was partitioned to allow for testing of models in PUC and 

non-PUC scenarios. To ensure that catchments partitioned to training and testing catchments to be used 

in the PUC analysis (training and testing-PUC) were from similar distributions, they were first partitioned 

such that each of the nine aggregated level II ecoregions defined in the GAGES-II dataset had 

proportional representation in each of the partitions. This was done using 10 different random seeds to 

produce 10 different partitions where 70% of the 2,913 catchments (2,039) were partitioned to training 

data, leaving 874 catchments to be used in testing of PUC performance (Fig. 4.4.1).  

Next, for each of the 10 partitions resulting from the 10 random seeds, adversarial validation 

(“Adversarial validation, part one - FastML” 2016; Pan et al. 2020; Qian et al. 2021; Schifferer et al. 2020) 

was used to test whether the variables within each partition were from similar distributions. Adversarial 
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validation assigns a binary variable (i.e., 0 or 1) to two datasets. In this case, for each random seed a 0 

was first assigned to the training partition and a 1 to the rest of the data. The XGBoost algorithm for 

classification (Chen and Guestrin 2016) was then applied using 10-fold cross-validation to the time-

averaged variables for each catchment. The objective was to predict if each catchment was from the 

training partition or from the other 30% of the data to be used for testing-PUC. The resulting metric 

from this analysis is the area under the receiver operating characteristic curve (AUC-ROC) which plots 

the true positive rate against the false positive rate. If the two data partitions being compared were 

from the same distribution, as desired, then the AUC-ROC value would be 0.5, indicating the 

classification algorithm is unable to predict which catchment is from which partition using the variables. 

The partition resulting in mean AUC-ROC values from cross-validation closest to 0.5 was chosen for use 

in the remainder of the study. For the non-PUC analysis, the catchments included in the training 

partition from the PUC-partitioning described above were used. The first 10 years (1998-2007) of the 

continuous 15 years were used for training and the following five years (2008-2012) were used for 

testing. Since we used one year of antecedent precipitation and temperature data the first year of the 

training period could not be used in training, so the models were trained on nine years of data (1999-

2007). Cross-validation (k=10) was applied to identify the best model parameters allowing the full ten 

years of training data and all training catchments to be used for training and validation. Throughout the 

study, k-fold cross-validation with k=10 was chosen because a k=10 has been shown to provide a 

balanced tradeoff between bias and variance across a wide range of practical datasets (Kohavi 1995). 

Mean-absolute error was used to identify the best parameter sets for each predictive model when 

applying cross-validation. 
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Fig. 4.4.1: Location of catchments used in this study including catchments used for training models (top) 

and catchments used for testing model predictions in unseen (ungauged) catchments (bottom). 
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Model Development 

To identify models that offered sufficient predictive skill while maintaining interpretability, both 

of which were important for our research questions, three predictive models were considered: 1. 

Multiple linear regression, 2. LASSO regression and 3. XGBoost regression (Chen and Guestrin 2016).  

The following methods were explored: 1. None (raw data), 2. Data standardization (i.e., subtracting the 

mean from each value and dividing by the standard deviation), 3. Data standardization followed by 

principal component analysis (PCA; Pearson 1901) for dimension reduction,  4. Regionalization using the 

nine aggregated ecoregion-II regions included in the GAGES-II dataset, and 5. Using non-reference 

catchments and reference catchments as ‘regions’ or groups of catchments. Each of these preprocessing 

steps were attempted before multiple linear regression, raw data was excluded for LASSO application 

because standardized data is required, and standardization and PCA were excluded before XGBoost 

because it is capable of internally selecting variables and is not sensitive to non-normal data. Linear 

regression, LASSO regression, and XGBoost were applied using packages in Python (Linear regression 

and LASSO regression from Scikit-Learn, Pedregosa et al. 2011; XGBoost, Chen and Guestrin 2016). We 

used the variance inflation factor (VIF) to identify and eliminate multi-collinearity from the variables. A 

VIF threshold of 10 (Helsel et al. 2020) was used to eliminate multi-collinearity where variables with a 

VIF greater than 10 were eliminated one at a time until VIF for all variables was below 10.  An exception 

to this was made to keep precipitation from being eliminated. 

 

Linear Regression 

For variable selection in multiple linear regression, a forward- stepwise algorithm was implemented 

that allows for variables to be removed during subsequent steps if their removal improves the model 

after the addition of another variable (Ferri et al. 1994; Pudil et al. 1994; Raschka 2018). At each step in 

stepwise regression (i.e., each time a variable was added or removed) 10-fold cross-validation was 
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applied and the average R2 value was used to identify the best combination of variables for each given 

number of variables considered. The number of variables considered in stepwise regression ranged from 

one to the smaller of either two less than the total number of variables or two less than the total 

number of samples. To avoid choosing models that suffered from overfitting, three criteria were 

considered: Akaike Information Criterion, Bayesian Information Criterion (BIC), and Mallows’ Cp. BIC was 

shown to be the most conservative, meaning it selected the fewest number of variables in each 

instance, so it was ultimately used for selecting the number of variables to use in each regression model. 

BIC was calculated as, 

(1) 𝐵𝐼𝐶 = 𝑛 + 𝑛 ∗ ln(2 ∗ 𝜋) + 𝑛 ∗ ln (𝑆𝑆𝐸𝑛 ) + ln(𝑛) (𝑝 + 1), 
where 𝑛 is the sample, 𝑆𝑆𝐸 is the sum of squared residuals, and 𝑝 is the number of variables in the 

model (Helsel et al. 2020). 

 

Least Absolute Shrinkage and Selection Operator 

LASSO regression applies L1 regularization which shrinks small variable coefficients towards zero 

resulting in sparse models, meaning that variable selection is part of the algorithm. The LASSO algorithm 

minimizes: 

(2)   ∑ (𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑗 )2𝑁𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑝𝑗=1  

where 𝑦𝑖  is the 𝑖th observed value, 𝑥𝑖𝑗 are the 𝑗 variables for the 𝑖th observation, Β𝑗  are the 𝑗 regression 

coefficients for the 𝑖th observation, and 𝜆 is a tuning parameter that controls the strength of shrinkage 

applied to the regression coefficients. The case where 𝜆 = 0 is equivalent to ordinary least squares. This 

formulation of LASSO regression assumes variables have been standardized so does not include an 

intercept term. To select the best 𝜆, 10-fold cross-validation was used and the 𝜆 resulting in the best 

validation scores was used in the final model. 
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Extreme Gradient Boosting for Regression (XGBoost) 

XGBoost is a tree boosting algorithm that leverages weak learners (i.e., poorly predicted target 

variables) to efficiently improve predictive skill (Chen and Guestrin 2016). It uses additive functions (i.e., 

trees) to predict an output and stops once a user defined stopping criteria is reached. An output, 𝑦𝑖̂, is 

predicted using K additive functions: 

(3) 𝑦𝑖̂ = ∑ 𝑓𝑘(𝑥𝑖)𝐾𝑘=1 ,  𝑓𝑘 ∈ 𝐹, 

where 𝑓𝑘 is an individual regression tree built with variables 𝑥𝑖. 𝐹 represents the space of all possible 

individual regression trees. The following objective function is minimized to learn the set of functions 

used in the model: 

(4) 𝐿(𝜙) = ∑ 𝑙(𝑦𝑖̂,  𝑦𝑖) 𝑖 + ∑ Ω(𝑓𝑘) 𝑘  

where Ω(𝑓) = 𝛾𝑇 + 12 𝜆||𝑤||2
, 

Here 𝑙 is a differentiable loss function between the predicted value, 𝑦𝑖̂ and the observed value, 𝑦𝑖. Ω is a regularization term that helps avoid overfitting by penalizing the model for complexity. The 

complexity of each leaf is represented by 𝛾. 𝑇  is the number of leaves in each tree, 𝜆 is a trade-off 

parameter that scales the penalty, and 𝑤 is the vector of scores for each leaf. To overcome 

computational challenges the model is trained in an additive manner and uses the first and second order 

gradient statistics (i.e., gradient and Hessian) to optimize the objective function. For an in-depth look at 

the XGBoost algorithm please see Chen and Guestrin (2016) and Ni et al. (2020).  

Other important regularization methods used in XGBoost include shrinkage, where newly added 

weights are scaled by a factor often called the learning rate, 𝜂, after each step and column sampling, 

where a specified ratio of all variables is sampled. These regularization methods were utilized in this 

work to help mitigate overfitting by the XGBoost algorithm. Other parameters considered in this study 

included the number of trees, the maximum tree depth, the 𝛾 complexity parameter, the 𝜆 trade-off 

parameter, and the learning rate, 𝜂. 
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Principal Component Analysis (PCA) 

To understand if there was redundancy in the large number of variables present in the GAGES-II 

dataset, and to see if they could be well represented by their principal components, PCA was applied to 

training data. PCA uses singular value decomposition to identify eigenvalues and eigenvectors. Due to its 

linear nature, the variation in the data described by each component can be quantified.  Multiple linear 

regression and LASSO regression were applied to the principal components describing 95% of the 

variation in the variables. 

 

Parameter Importance and Model Assessment 

Shapley additive explanations (SHAP; Lundberg et al. 2020; Lundberg and Lee 2017) were 

utilized to enable consistent comparison of variables between models. Shapley values were developed 

for application in game-theory to understand the contribution from each player to the game results 

(Shapley 1953). SHAP values quantify partial dependence of each variable by sampling the distribution 

of observations of that variable while assuming no dependence, or explicitly accounting for the 

dependence, from all other variables. The output explains how the prediction was driven from the 

expected prediction when no variables are present or known, to the prediction observed when variables 

are present. Applied to linear regression, SHAP values are roughly equivalent to regression coefficients if 

multicollinearity is not present. SHAP values were calculated for the best performing model in each 

region or cluster of catchments considered using the SHAP package (Lundberg and Lee 2017) in Python. 

The best performing model was taken to be the model with the largest median Nash-Sutcliffe efficiency 

(NSE) for monthly and annual timeseries results or the largest median coefficient of determination (R2) 

for mean annual results. Nash-Sutcliffe Efficiency (NSE; Nash and Sutcliffe 1970)) was used to assess how 

well models performed. NSE is calculated as, 
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(5) 𝑁𝑆𝐸 = 1 − ∑ (𝑄𝑜𝑡−𝑄𝑚𝑡 )2 𝑇𝑡=1∑ (𝑄𝑜𝑡 −𝑄̅𝑜)2𝑇𝑡=1 , 

where 𝑄𝑜𝑡  is the observed water yield at time t, 𝑄𝑚𝑡  is the modeled water yield at time t, and  𝑄̅𝑜 is the 

mean of observed water yields. Possible values of NSE range from -ꚙ  to 1, where 1 represents perfect 

prediction, 0 represents a model where using the mean would perform better.  

 

Results 

Model Performance 

Model performance varied from poor to excellent between different regions  (Fig. 4.4.2). In 

general, the eastern U.S. (e.g., North East and SE Plains) saw better performance than the western U.S. 

(e.g., West Xeric and West Plains). Adapting ratings of model performance based on NSE developed by 

Moriasi et al. (2007) to this work, models with a median NSE when applied to unseen catchments (NSEm) > 0.5 were taken to be satisfactory, NSEm > 0.65 were taken to be good, and NSEm > 0.75 were taken to 

be very good. NSE was not able to be calculated for mean annual water yield, so R2 values were used for 

assessing goodness-of-fit. For mean annual water yield, R2 values ranged between 0.66 (WestPlains) and 

0.94 (reference basins), except for the Mixed Wood Shield (MxWdShld) ecoregion which had a smaller 

sample size and performed poorly for all models. There, the R2 value was 0.08. Best performing mean 

annual models included six XGBoost models, 2 LASSO models, 2 stepwise-multiple linear regression 

models, and 2 simple linear regression models with average precipitation as the only predictor.  
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Fig. 4.4.2: Map of residuals from the model that performed best in each individual catchment at the 

mean annual scale (top) and NSE at the annual (middle) and monthly (bottom) timescales. Shape 

indicates which grouping method produced the best result in each individual catchment. At the mean 

annual time scale, yellow indicates the best performance. At annual and monthly timescales dark blue 

indicates best performance and dark red indicates worst performance.   
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For annual models, of the 12 regions considered (9 ecoregions, reference and non-reference 

catchments, and all catchments together) five had median NSEm below 0.5. NSEm for non-reference 

catchments was 0.49 however, so it was accepted as satisfactory, leaving four catchments with 

unsatisfactory performance (i.e., Mixed Wood Shield, West Mountains, West Plains, and West Xeric; Fig. 

4.4.3). Including the non-reference catchments, five regions had satisfactory performance (0.49 < NSEm ≤ 0.65), one had good performance (0.65 < NSEm ≤ 0.75), and two had very good performance (0.65 < 

NSEm ≤ 1). Three of the poorly performing regions had a NSEm less than 0, indicating that they 

performed worse than simply using mean water yield. XGBoost was the best performing annual model 

across all regions.  

Based on NSEm, monthly models outperformed annual models in all regions except for in the 

East Highlands ecoregion, where models of the two timescales performed similarly. West Xeric and West 

Mountains were the two regions experiencing the largest improvements between annual and monthly 

models. West Xeric’s NSEm improved by 0.41 (-0.23 to 0.18) and in the West Mountains, NSEm improved 

by 0.50 (0.09 to 0.59). The performance of three monthly models was unsatisfactory, two models had 

satisfactory performance, four had good performance, and three had very good performance. No 

models had a NSEm below 0, although NSEm was near zero in the Mixed Wood Shield ecoregion. XGBoost 

was the best performing model for all regions except Mixed Wood Shield, where LASSO regression 

performed best. 
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Fig. 4.4.3: Empirical cumulative distribution functions of (a) absolute value of residuals from mean 

annual predictions, (b) NSE from annual predictions, and (c) NSE from monthly predictions. Metrics are 

presented from each cluster/region modeled and are metrics from the best performing model in each 

region when applied to the unseen catchments. The x-axis is clipped at –1 for easier viewing. 

 

Identifying Drivers of Water Yield 

Variable reduction by removal of multicollinearity and PCA (principal component analysis) 

Many variables played impactful roles in predicting WY. After removing collinearity from all 

explanatory variables for each model, between 17 and 60 variables remained for predicting mean 

annual data, between 29 and 64 variables remained for annual data, and between 31 and 69 for 

monthly data. Furthermore, PCA was not able to capture large portions of the variation in explanatory 

variables. To explain 95% of the variation in mean annual variables used in each model, it took between 

10 and 39 components, for annual data it took between 17 and 40 components, and for monthly data, 

between 18 and 43. PCA was not further considered due to its inability to significantly reduce the 

number of variables. 
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Impacts of classes of variables 

Explanatory variables used in this study were categorized into four classes of variables: climate, 

physiographic, anthropogenic impacts on water resources (AnthroHydro), and anthropogenic impacts on 

land (AnthroLand) (Table S4.1). As expected, climate variables were the most important predictor of WY 

in nearly every scenario (Fig. 4.4). The only exception was that the mean annual model applied in the SE 

Coastal Plains (SECstPlain) region where precipitation, the most impactful climate variable, did not 

remain in the stepwise regression model (Fig. 4.6 (a)). Despite precipitation not being included, that 

scenario had an R2 of 0.70. Physiographic variables were the next most impactful variable type across all 

regions. In the Central Plains region, anthropogenic variables (AnthroHydro + AnthroLand) were as 

impactful as physiographic variables at the mean annual timescale, but not at the other two timescales. 

Generally, the impact from climate variables increased from mean annual to monthly timescales. This is 

likely due to more climate variables being included in annual and monthly models that captured 

antecedent precipitation and temperature.  

 

Fig. 4.4: Relative contributions from each variable type to the overall impact of all variables on 

predictions. 
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The relative sensitivity of WY to physiographic, AnthroHydro, and AnthroLand  variables (Fig. 

4.5), varied between regions. In particular, the Central Plains (CntlPlains) and Southeast Plains (SEPlains) 

were more sensitive to anthropogenic variables at all timescales. Central Plains were most sensitive to 

anthropogenic variables at the mean annual timescale whereas Southeast Plains were most sensitive to 

anthropogenic variables at the annual and monthly timescales. WY in the North East region showed no 

sensitivity to anthropogenic variables at the mean annual timescale, but was the second most sensitive 

at the annual timescale and third most sensitive at the monthly timescale. All catchments considered 

together (All) and non-reference catchments (Non-ref) showed substantial sensitivity to anthropogenic 

variables at all scales and that sensitivity did not vary considerably across timescales. On the other hand, 

reference catchments became less sensitive to anthropogenic variables as the timescale became finer 

(mean annual -> annual -> monthly). The relative contribution from AnthroHydro and AnthroLand 

variables varied extensively between regions and to a lesser extent between timescales. For example, 

AnthroLand variables were much more impactful in the SEPlains regions, especially at the monthly 

timescale, whereas AnthroHydro variables were much more impactful in the NorthEast region.  
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Fig. 4.5: Relative contributions from each variable type except climatic variables to the overall impact of 

all variables on predictions. Note that Mixed Wood Shield and West Mountain ecoregions are not shown 

for mean annual as there were only climate variables in these models.  

 

Impacts of specific variables 

SHAP values were used to understand the impact of individual explanatory variables on 

predictions of water yield. While climate and physiographic variables clearly had large impacts on 

predictions, many anthropogenic variables also impacted predictions of WY. After precipitation, other 

climate variables were the most impactful predictors of WY across timescales. The average of monthly 

maximum number of days receiving measurable precipitation (Mo Max Wet Days), catchment average 

relative humidity (Avg RH), and snow water equivalent (Snow Water Eq) averaged over each respective 

timescale appeared among the most important predictors of water yield across all timescales (Fig 6). 

With few exceptions, the directional relationship between climate variables and water yield was 

consistent across regions (Fig. 4.6). One notable exception was the negative relationship between Avg 

RH and water yield in the SE Coastal Plains (SECstlPlain). This negative relationship was present across 

timescales but was most pronounced for the annual model (Fig. 4.6 (b)) and least pronounced for the 

monthly model (Fig. 4.6 (c)). The maximum temperature (Max Temp) for each time step being predicted 

also had varying importance as a predictor. It did not appear in the 30 most impactful predictors for 

mean annual water yield, only remained in two regions for annual models (Mixed Wood Shield and 

North East), but it was the fifth most impactful variable at the monthly timescale where it had varying 

impacts between catchments. In the West Mountains (WestMnts) region, reference catchments (Ref), 

and all catchments (All) models, Max Temp had a relatively strong and positive relationship with 

monthly WY, while it had a negative to neutral relationship with WY in the other regions. It has an 

especially strong and negative relationship with WY in the North East region at the monthly timescale. 

Similarly, the average percent of precipitation as snow (Snow %) was only impactful in the West 
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Mountains region and there, it was impactful across timescales. It was only impactful in other regions at 

the monthly timescale where it appeared as an important variable for all catchments (All) and non-

Reference catchments (Non-ref). Antecedent weather forcings for annual and monthly WY were also 

impactful predictors. For annual WY, the previous year’s precipitation (Precip-LB1) was the second most 

impactful variable behind the current year’s precipitation (Precip). At the monthly timescale the average 

minimum temperature of the previous month (Min Temp-LB1) was the second most impactful predictor 

behind Precip, and it was immediately followed by the sum of the previous 12 months of precipitation 

(Precip-LB12) and the previous month’s precipitation (Precip-LB1). 

 

 

Fig. 4.6: Heatmaps presenting the direction and magnitude of SHAP values (impact of that variable on 

the model output) for each region/cluster considered, each timescale (a: mean annual, b: annual, c: 

monthly), and the 30 variables with the largest mean absolute value impact. Within the heatmap, blue 

indicates a positive relationship between the variable and water yield and red represents a negative 

relationship. The variable labels are colored by category: Blue represents climate variables, brown 
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represents physiographic variables, black represents land use variables, and red represents 

anthropogenic alterations of hydrology. For clearer interpretation, the limits of the color bar are –0.2 

and 0.2 for mean annual and annual plots, and –0.02 and 0.02 for the monthly plot. White indicates that 

variable was not included in the model. Definitions of variables can be found in Table S4.1. 

Anthropogenic variables varied in their relative impact on WY predictions across timescales and 

especially across regions. Three anthropogenic variables appeared among the five most impactful across 

timescales: Housing Density, area normalized dam storage in 2009 (Dam Storage), and developed-high 

intensity land cover (Dev-High Intensity) (Fig. 4.7). Increased Housing Density resulted in larger 

predictions of WY across regions. The only exceptions were observed in poorly performing models (i.e., 

West Mountains mean annual model and Mixed Wood Shield Annual model). Dam Storage had mixed 

impacts on WY predictions across regions, but the most significant impacts it had were to decrease 

predictions of WY. It was especially impactful in the North East region for annual and monthly timescales 

and in the West Mountains across timescales. Notably, Dam Storage had opposite impacts in reference 

and non-reference catchments. In reference catchments, increased Dam Storage produced greater 

predictions of WY and in non-reference catchments it produced smaller predictions. Greater Dev-High 

Intensity consistently led to greater predictions of WY. Contrasting with Dev-High Intensity, developed-

open space land cover (Dev-Open Space) which was the second, sixth, and third most impactful 

anthropogenic variable at mean annual, annual, and monthly timescales, respectively, had mixed 

relationships between timescales and regions.  

At the mean annual timescale, Dev-Open Space had negative relationships with WY predictions 

for all (All), reference (Ref), and non-reference (Non-ref) catchments but positive relationships for four 

other regions (Fig. 4.7 (a)). At the annual timescale Dev-Open Space had positive relationships with all 

regions when it was included in the best model, except for the North East and Reference regions. At the 

monthly timescale Dev-Open Space had a positive relationship for all regions in which it was included in 

the best model, including the North East region, but not for reference catchments. The percent of 
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stream length coded as “Canal”, “Ditch”, or “Pipeline” in NHDPlus data (% Length as Canal) had strong 

negative relationships with WY across timescales in the West Mountains region. The relationship 

between pasture and hay land cover (Pasture/Hay) and WY was also notable. It was the fourth and third 

most impactful anthropogenic variable at mean annual and annual timescales, but only the ninth most 

impactful at the monthly timescale. It had mixed directional relationships across regions but had a 

consistent negative relationship with WY across timescales. 

 

 
Fig. 4.7: Heatmaps presenting the direction and magnitude of SHAP values (impact of that variable on 

the model output) for each region/cluster considered at each timescale (a: mean annual, b: annual, c: 

monthly) and only including anthropogenic variables. Within the heatmap, blue indicates a positive 

relationship between the variable and water yield and red represents a negative relationship. The 

variable labels are colored by category: Black represents land use variables and red represents 

anthropogenic alterations of hydrology. For clearer interpretation, the limits of the color bar are –0.04 

and 0.04 for mean annual and annual plots, and –0.003 and 0.003 for the monthly plot. White indicates 

that variable was not included in the model. Definitions of variables can be found in Table S4.1. 
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Discussion 

There were clear spatial trends regarding performance of the models. Water yield in the eastern 

United States was much better predicted than the western United States. This could be due to several 

reasons. There was a greater density of catchments in the eastern part of the county which could have 

improved predictions. The areas which performed most poorly also tend to be in drier areas where 

water yield may experience greater impact from anthropogenic activities not well captured by the 

variables used in this study. Specifically, time series variables such as dam and reservoir management 

and water transfers were not well represented but would likely be important. The summary variables 

we have which are related, such as volume of dam storage, and five-year resolution water use still 

showed up as impactful predictors despite not having higher resolution time series data.  

 

Climate, physiography, and many anthropogenic variables impacted predictions of water 

yield 

After removal of collinearity, as well as consideration of PCA, several variables (or components) 

remained. Had there been significant redundancy in the explanatory variables each of these methods 

should have greatly reduced the number of variables considered in the models. That there can be so 

many hydrologically relevant variables that lack multicollinearity demonstrates the dynamic and 

complex nature of hydrology. As such, many variables had impacts on predictions of WY. It is important 

to note that average SHAP values were presented here. It could be that even if a variable showed 

relatively low impact on water yield on average, there could still be time periods in which that variable 

had larger impacts on predictions.  

Climate, and in particular precipitation, were clearly the most impactful variables considered. In 

some cases, antecedent precipitation and temperature variables were nearly as important as climate 

variables for the timestep being predicted. Of the four classes of variables considered, physiographic 
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variables were the most impactful other than climate variables. Variables such as Stream Density, soil 

variables (e.g., Avg Clay Content, Avg Bulk Density), and Avg Slope appeared as impactful variables at 

each timescale.  

Anthropogenic variables were not consistently related to WY across regions, suggesting the 

effects of anthropogenic alterations of land or water resources have varying impacts on WY depending 

on the climatic and physiographic back drop. Neither variables representing anthropogenic alteration of 

land (AnthroLand) nor representing anthropogenic alterations to water resources (AnthroHydro) 

appeared to be consistently more impactful than the other. For example, Dev-High Intensity, Dam 

Storage, Housing Density, and Dev-Open Space appeared in the six variables with the greatest average 

impact on WY predictions among anthropogenic variables across timescales. This points towards the 

difficulty in modeling non-reference catchments where many factors have relatively equal impacts on 

water yield. Some regions did show one or two anthropogenic variables that were clearly more 

impactful than others, again suggesting impacts of anthropogenic activities are variable based on 

climate and physiography. It is possible this was due to inconsistent representation of anthropogenic 

activities in various regions. 

 

Climate has consistent impacts on water yield across regions and timescales 

Agreeing with hydrologic reason and as observed in other studies (e.g., Kratzert et al. 2019b; 

Sun et al. 2019), climate, especially precipitation, was consistently the most impactful class of variable. 

Its impact grew as the timescale became finer as Sun et al. (Sun et al. 2019) observed. This was largely 

due to the strong impact of antecedent precipitation and temperature variables which increased in 

number as the timescale became finer. There was no discernable pattern or trend among the other 

variable classes across timescales.  
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Other variables have inconsistent impacts on water yield across regions and timescales 

Anthropogenic variables had varying levels of impact on WY predictions across regions and 

timescales. Generally, their impact on WY predictions across regions was much less consistent than with 

climate and physiographic variables. For example, in some regions increased dam storage had a strong 

tendency to decrease WY predictions while in other regions it increased them. This could be attributed 

to inter-basin transfers either into or out of the catchment of interest, which we did not have data for. It 

could also be due to higher evaporation from open bodies of water in some regions. Indicators of 

urbanization (e.g., Housing Density, Dev-Open Space, Dev-High Intensity) tended to have positive 

relationships with WY predictions, but there were a few exceptions. One consistent exception was that 

increased development-open space land cover tended to decrease WY predictions in reference 

catchments. The classification of reference versus non-reference catchments by the developers of the 

GAGES-II dataset (Falcone 2017, 2011) were somewhat subjective and did not consist of specific 

quantitative criteria. So, while there was much less anthropogenic activity in reference catchments, it 

was not completely negligible. Results suggest that there may be low thresholds of anthropogenic 

alterations of land and water resources that begin to have an impact on water yield. It is likely that Dev-

High Intensity land cover tends to increase WY because water must be imported to those areas to meet 

water demand. It represents areas with 80-100% impervious cover where people reside or work in high 

numbers (Dewitz 2019a). Like dam storage, other anthropogenic variables representing activities such as 

agriculture, power production, and mining had mixed effects across regions. This also supports the idea 

that the impact of anthropogenic activities on WY varies depending on the climatic and physiographic 

settings in which they occur which has been suggested by others in slightly different context (Hopkins et 

al. 2015; McPhillips et al. 2019).  
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 Model performance – understanding predictions of water yield in unseen catchments 

XGBoost proved to be the most effective model at predicting WY. It best predicted WY in 

unseen catchments in half of the mean annual scenarios, all the annual scenarios, and all but one 

monthly scenario. While the use of many variables in predictive modelling is often discouraged due to 

fear of overfitting, especially with modelling approaches more advanced than linear regression, this 

study showed that there are numerous uncorrelated variables that help with predictions and allow for 

generalization to unseen or ungauged catchments. Despite the inclusion of non-reference catchments 

which is often avoided in studies such as this one, predictive skill was at least satisfactory in the majority 

of regions and scenarios considered, with several scenarios exhibiting good or very good predictions. WY 

in some regions was poorly predicted (e.g., West Plains, West Xeric, and Mixed Wood Shield). Similar 

spatial trends in performance have been observed in similar studies (e.g., Mai et al. 2022). Climate 

variables did not predict water yield as well in the poorly performing regions as in other regions. Those 

regions also had a larger coefficient of variation (i.e., mean/standard deviation) in water yield from year 

to year (Dettinger et al. 2011). Furthermore, there were a fewer number of catchments located in those 

regions compared to the regions that performed well.  

One notable drawback of using XGBoost instead of linear regression is a slight loss in 

interpretability. Where linear regression models have consistent coefficients representing the sensitivity 

of water yield to individual explanatory variables, XGBoost captures non-linearity and interdependencies 

that may exist between variables which linear regression does not capture. Use of SHAP values enabled 

calculation of the average magnitude and directional impact of each explanatory variable and water 

yield, but when applied to boosted decision trees such as XGBoost some detail is lost compared to 

application to linear regression. For example, it could be that a variable sometimes increases water yield 

and sometimes decreases it, depending on the state of other variables.   
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Understanding results within the context of existing literature 

Many of the drivers identified as important in other studies were identified in this study as well. 

Precipitation and variables related to evapotranspiration (e.g., temperature; Bell et al. 2016; Bhaskar et 

al. 2016a; Dow and DeWalle 2000; Hamel et al. 2020; Hopkins et al. 2014; Jacobson 2011; Sun et al. 

2019; Tu 2009) had consistent directional relationships with water yield across temporal scales and 

regions. Slope and soil variables (Hopkins et al. 2015; Kratzert et al. 2019b) were found to be impactful 

across scenarios as well. Catchments with steeper slopes tended to produce greater water yield while 

soil variables had varying directional relationships with water yield between regions. Geologic substrate 

was not identified as an impactful predictor in any region or timescale contrasting with findings from 

Eurich et al. (2021). The proportion of land as irrigated agriculture (Aliyari et al. 2019) showed mixed 

directional relationships with water yield across regions, and became less impactful relative to other 

variables as timescale became finer. At annual and monthly timescales, the proportion of land as 

harvested crops was more impactful than the proportion of land as irrigated crops, perhaps better 

representing the effects of evapotranspiration in the region. While landscape irrigation (Bhaskar et al. 

2016a; Bhaskar and Welty 2012; Grimmond and Oke 1986) in developed regions was not directly 

captured, developed open space land cover was identified as an impactful variable across timescales. Its 

directional relationship with water yield varied across regions, however. Impervious cover (Bell et al. 

2016; Chang 2007; Oudin et al. 2018) did not make it into any of the final models due to multi-

collinearity with other land cover variables such as Dev-High Intensity. Land cover variables were found 

to be impactful (Hopkins et al. 2014, 2015; Shi et al. 2015; Sun et al. 2019). Like Dev-Open Space, Dev-

High Intensity land cover was impactful across timescales. On the other hand, it contrasted with Dev-

Open Space in that it had a consistent positive relationship with water yield.  

This study included some variables which were indicative of the variable at a point in time (e.g., 

Dam Storage was only from 2009) and others that were collected only once every five years (e.g., water 
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use and land cover). Even so, these variables were shown to be impactful on predictions of water yield. 

Although we interpolated between the five-year resolution timeseries variables to produce one-year 

resolution timeseries representation of those variables, these results suggest that finer resolution 

timeseries representations of these dynamic anthropogenic variables could improve predictions of WY 

in poorly performing catchments. For example, Ouyang et al. (2021) found that information about dams 

improved predictions of daily streamflow in catchments with dams and that model performance 

depended not only on presence of dams, but for what purpose the dam was used (e.g., flood control 

and stormwater management, hydroelectric, irrigation). The importance of having finer-scale 

representations of these variables is likely to depend on the temporal scale at which the variables 

change. Land cover changes relatively slowly compared to water use for example, so including fine-scale 

representations of water use is likely to be more important than land cover. It may also be beneficial to 

model performance to provide information not only about water withdrawals, but about the specific use 

for which water withdrawals are occurring (Marston et al. 2022). For example, some uses such as power 

generation, can have low consumptive uses while others such as agriculture have high consumptive use. 

In theory, variables provided along with water withdrawals such as the proportion of land as irrigated 

crops, could allow the model to pick up on patterns such as consumptive use (e.g., Kratzert et al. 2018). 

Even then, providing explanatory variables at the same time scale at which water yield is being 

predicted, or finer, would likely lead to significant improvements in water yield predictions. Such 

datasets are currently lacking at scale, however.   

 There are yet other variables that were not well represented in any form in this study but are 

likely to have notable impacts on water yield. Four variables in particular may be important but were not 

captured by explanatory variables used in this study. 1. Information about aging and potentially leaking 

water infrastructure was not provided, but can have variable impacts on water yield depending on other 

factors such as depth to water table (Bhaskar and Welty 2012, 2015; Hopkins et al. 2014; Pangle et al. 
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2022), 2. Information about inter-catchment transfers was not provided, but has been shown to 

significantly improve predictions of water yield in ungauged catchments in Colorado (Eurich et al. 2021), 

3. Stormwater infrastructure was not represented but is highly variable between cities (e.g., Chapter 2) 

and has been shown to have variable impacts on streamflow (Jefferson et al. 2017), and 4. Water 

treatment plant effluent was not represented and has been shown to increase low to moderate 

streamflow (Bhaskar et al. 2016a; Wang and Cai 2010; White and Greer 2006). 

 While these additional variables would likely improve predictions of water yield in 

anthropogenically altered catchments, this study provides value to similar studies in three important 

ways: 1. It is the first study to our knowledge that has explicitly investigated the relative magnitude and 

direction of the impact that many individual variables have on water yield across the contiguous United 

States and within regions of the United States, 2. It is one of few studies to consider anthropogenically 

altered catchments at all, and 3. Iit is the only study we are aware of that explicitly investigates how 

important predictors of water yield change with temporal scale. Each of these novel contributions is of 

importance to watershed planning and management.  

 

Conclusions 

This study utilized 2,039 catchments from across the contiguous United States to train multiple 

linear regression models with two variable selection methods and XGBoost models to predict mean 

annual, annual, and monthly water yield (WY). Those models were then assessed based on their ability 

to predict water yield in 887 unseen catchments, representing the prediction in ungauged catchments 

challenge. Models were applied to 12 regions or scenarios including nine aggregated ecoregion level-II 

regions, only non-reference catchments, only reference catchments, and all catchments together. After 

exhibiting satisfactory predictive performance, Shapley additive explanations (SHAP values) were used 
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to understand which variables were important in predicting WY and how those variables varied in 

different regions and at different timescales.  

The XGBoost regression algorithm proved to be superior to linear regression in nearly every 

scenario and in all timeseries models but one. Climate variables were the most impactful in predictions 

of WY, followed by physiographic variables, and lastly, anthropogenic variables. Whether water 

resources related anthropogenic variables such as dam storage or water use or land use related 

anthropogenic variables were more important varied significantly between regions and to a lesser 

extent, between timescales. The directional relationship between climate variables and WY tended to 

be consistent across regions whereas other variables showed more variability between regions. While 

climate and physiographic variables explained the greatest portion of WY predictions including 

anthropogenic variables improved predictive performance. No individual anthropogenic variable was 

consistently the most impactful across timescales nor regions.  

Results highlight the complexity that anthropogenic activities introduce to hydrology and 

suggest that when modeling non-reference catchments high-dimensional models that capture many 

aspects of those activities are needed. Results also suggest that in non-reference regions or catchments 

that are less climate driven (e.g., precipitation) timeseries data about anthropogenic activities is needed. 

For example, timeseries data about dam and reservoir releases and water use should improve 

predictions in anthropogenically impacted catchments.  

Future work should explore daily time series to further elucidate how the important drivers of 

WY vary across temporal scales. Such work would likely require more advanced models such as artificial 

neural networks. Inclusion of high-resolution anthropogenic time series variables would also be critical 

at the daily time scale and would greatly improve the operational capacity of the annual and monthly 

time series models developed in this work. 
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OVERALL CONCLUSIONS 

The overall objective of this dissertation was to enable better decisions regarding urban 

stormwater management, land use of dried agricultural land, and water management of land use-land 

cover development. To meet that objective four primary questions corresponding to the four chapters 

were addressed: 

 

Question 1: How can we advance the practice of stormwater management via information sharing and 

cross-jurisdiction communication? 

City SCM inventories showed that record keeping and asset management of stormwater control 

measures (SCMs) varies between cities. Several previous calls have been made to construct a more 

uniform classification that effectively and efficiently communicates SCM form and function, but the 

work presented in this dissertation suggests such efforts are not possible. To effectively communicate 

the various functions and forms of SCMs, classification systems quickly becomes complicated, reducing 

the likelihood that they will be adopted. Instead, this work suggests cities report the specific functions 

being targeted by each SCM they implement. This would allow for clearer record keeping, for analyzing 

whether implemented SCMs are providing the intended functions while enabling hydrologic and water 

quality studies that move towards understanding the effects of networks of SCMs instead of individual 

SCMs. 

 

Question 2: What variables explain the variation in selection of stormwater management approaches in 

various physiographic, climatic, socioeconomic, and regulatory settings? 

Physical characteristics (e.g., depth to water table, variation in slope), federal regulation (e.g., 

MS4-phase, presence of combined sewers), and socioeconomic variables (e.g., median household 

income) best explained variation in SCM assemblages of 23 United States cities. Surprisingly, climate 
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variables explained little of the variation in relative abundance of different SCM types between cities. 

Results suggest all cities are facing challenges of stormwater and water resources management across 

climates and the physical constraints and socioeconomic and regulatory drivers govern the rate at which 

different SCM types are selected. Cities looking to learn from other cities should consider each of the 

factors, including climate, when identifying leader cities to learn from. 

 

Question 3: How can more informed decisions, regarding land use and ecosystem services, be made in 

the face of drying agricultural land as water is transferred to urban and industrial uses? 

Within the context of policy and management decisions regarding land-use, there is a 

divergence in the literature, where policy needs include timely, affordable, and good-enough scenario 

analysis that does not require an expert, and academic efforts focus on long-term, expensive, and 

expert-driven studies. While this approach by academia is needed and may, in the long-term, result in 

applications fit for use in policy and management decisions, a short-term approach is needed that 

addresses the policy needs. Spatially-explicit benefit transfer offers an excellent path forward for 

valuation of ecosystem services, and also for identifying priority data needs. An application was 

developed for pre- and post-processing of data for use with the COMET-Planner tool which was found to 

be the most relevant tool regarding estimating effects of irrigated agricultural land drying to more 

natural grass cover on carbon sequestration. 

 

Question 4: How do various land use-land cover scenarios impact water yield in diverse physiographic 

and climatic settings? 

Climatic and physiographic variables were the most impactful in predicting water yield. 

However, many anthropogenic variables, including land-use variables, and variables representing more 

direct impacts to the hydrologic cycle (e.g., dam storage), had significant impacts as well. Those impacts 
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were spread across several variables though. The relationships between water yield and anthropogenic 

variables are not as generalizable as climatic variables and results suggest that their impact depends on 

the climatic and physiographic settings in which the anthropogenic alterations occur. In some settings 

anthropogenic alteration of land use (e.g., Dev-Open Space, Housing Density) was more important than 

water resources alterations (e.g., Freshwater Withdrawals, % Irrigated Land) at the annual scale, and in 

some settings the opposite was true. Identifying the important predictors in a given region of study is 

critical for modeling water yield in non-reference catchments. 

Despite the tremendous amount of data that has been and is being collected around the world, 

there is still insufficient data for policy and management decisions regarding many pressing issues such 

as land use-land cover change, stormwater management, and ecosystem services. As data becomes 

more integrated across sectors, scales, and available to decision makers, having cohesive and 

standardized application-agnostic plans for generating, reporting, and storing data would be of great 

benefit. Less profit-driven applications (e.g., stormwater management and ecosystem services) can learn 

from the profit-driven data industry which has exploded, to better engage with data. 
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APPENDIX – Chapter 1 

 

 

 

CHAPTER 1 – SUPPLEMENTARY MATERIAL 

Table S1.1.  Terms appearing in cities’ SCM inventories by our coarse and fine classification systems based on WEF and ASCE’s manual of practice 

(2012). Coarse SCMs: SCMs from the coarse classification. Fine SCMs: SCMs from the fine classification. Reported Terms: Terms appearing in 

Cities’ SCM inventories. 

Coarse SCMs Fine SCMs Reported Terms 

Basins 

Wet Basin 
"Detention Pond-Wet", "Water Quality Pond", "Pocket Pond", "Extended Detention Structure-Wet", "Wet 

Detention Basin", "Wet Pond", "Ponds", "Extended Detention Wet Pond", "Retention Pond (Wet Pond)" 

Wetland 
"Constructed Wetland", "Constructed Wetland Pond", "Wetland", "Stormwater Wetland", "Constructed Wetland 

Basin", "Wetland Pond" 

Dry Basin 

"Detention", "Detention Basin", "Underground", "Detention Pond", "Detention Pond-Dry", "Underground 

Detention", "Detention Structure (Dry Pond)", "Extended Detention Structure-Dry", "Micropool Extended 

Detention Pond", "Extended Dry Detention Basin", "Flood Control Basin", "Blue Roof", "Detention System", "Dry 

Pond", "Subsurface Detention Basin", "Surface Detention Basin", "Flood Detention", "Parking Lot Detention", 

"Extended Detention Basin", "Detention Cells", "Detention Structure", "Extended Detention Dry Pond", "Landscape 

Detention Structure", "Regional Extended Detention Basin", "ED", "Underground Storm Detention", "Underground 

Detention Structure", "Underground Deten Pipes-HDPE", "swsDetention Pond", "Detention Tank" 

Vaults Swirl 

Concentrator 

"Storm Vault", "Underground Chambers", "Detention Vault", "Aqua-Swirl", "Aqua-Shield-Swirl", "Swirl Separator", 

"Sedimentation Box", "Sedimentation Manhole", "Hydrodynamic Separation Systems", "HYDSEP", "BMP Vault", 

"Separator Unit", "Separator-Bay Saver", "CDS", "Hydrodynamic-CDS Structure", "CDS Units", "Downstream 

Defender", "Silt Basin", "Sedimentation Chamber", "Water Quality Dynamic Separator", "Hydrodynamic Separator", 

"Vortsentry HS", "W Quality Dynamic Separator-Vortex", "Interceptor", "Baffle Box", "Water Quality Vault", 

"Underground Vault", "Water Quality Manhole", "AquaShield_hydrodynamic" 

Oil Water 

Separator 

"O-W Separator", "Oil Separating Incerts", "Oil-Grit Separator", "Stormceptor Multiple", "Vortechs", "Stormceptor", 

"AquaShield_OWSeparation" 

Forebay "Plunge Pool", "Sedimentation Only", "Forebay", "Sediment", "Sedimentation" 

Cistern 

"Rainwater Harvesting", "Rain Harvesting", "Rain Barrel", "Cistern", "Cisterns for Recycling", "Roof Top Detention", 

"SW-Reuse", "Cistern-Rain Barrel", "Rain Tank", "Rainstore", "Rainstore Water Harvest", "RainStore System", 

"RainTank System", "Rainwater Harvesting-Cistern", "Rooftop Storage" 

Basin Unknown "Basin", "Storage", "Subsurface Storage System" 
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Swales & 

Strips 

Swale 

"Curbcut Bioswale", "Swale", "Grass Swale", "Bio-Swale", "Bioswale", "Dry Swale", "Grass Channel", "Vegetated 

Ditch", "Biofiltration Swale", "Conveyance Swale", "Dry Grass Swale", "Open Channel BMPs", "Vegetated Swale", 

"Water Quality Swale", "Wet Swale", "ROW-Bioswale" 

Strip 
"Vegetated Filter Strip", "Swales-Vegetated Filter Strips", "Vegetative Grass-Turf Cover", "Vegetated Biofilter-

Swale-Strip", "Vegetative Filter Strip", "Filter Strip", "Buffer Strips", "ROW-Greenstrips", "Vegetative Buffer Strip" 

Filters 

Sand Filter 

"Sand Filter Extended Detention Basin", "Perimeter (Sand) Filter", "Sand Filter", "Aboveground Sandfilter", "Delover 

Sandfilter", "Surface Sandfilter", "Open Sand Filter", "Sandfilter", "Manhole Sandfilter", "Single Chamber 

Sandfilter", "Sand Box", "Surface Sand Filter", "Sand Filtration", "SandSeparator", "Bisected CMP Sandfilter", 

"Underground Sandfilter" 

Bioretention 

"Non-infiltrating Bioretention", "Bioretention Basin", "Bio-Retention", "Bioretention", "Micro-Bioretention", 

"Biofiltration", "Biofiltration-Bioretention", "Bioretention-Lined", "Bioretention-Unlined", "Vegetated Filter", 

"Porous Landscape Detention", "Bio-Infiltration Trench", "Planter", "Downspout Planter", "Contained Planter Box", 

"Flow Through Planter Box", "Stormwater Planter", "Engineered Soil Tree Pit", "Filtera-Tree Box", "Tree Trench", 

"Tree Pit", "Stormwater Tree Pit", "Tree Filter",  "Engineered Treepits", "Rain Garden", "Rain Gardens", "ROW Rain 

Garden", "Bayscaping", "Rain Garden-Bioretention", "Residential Rain Gardens" 

Landscaped 

Roof 

"Green Roof", "Combined Blue-Green Roof", "Rooftop Farm", "Green Roof & tree Box", "Vegetated Roof", 

"Ecoroof", "Intensive Green Roof", "Extensive Green Roof" 

Drain Inlet 

Insert 

"Hydro-Kleen Filter System", "Water Quality Inlet Insert", "Drainage Insert", "Fossil Filter", "Catch Basin-

StormFilter", "Inlet with Insert", "Storm-Pure Filtration System" 

Manufactured 

Filter 

"StormFilter System", "StormFilter", "BayFilter", "JellyFish", "Downspout Filter", "Downspout Filtration", "Storm 

Filter-Canister", "AquaShield_Filter" 

Filter Unknown "Filtration Only", "Filtering System", "Filtration", "Media Filter", "Underground Filter" 

Gravel Wetland Submerged Gravel Wetlands 

Infiltrators 

Infiltration 

Basin 

"Bumpout", "Retention Basin", "Infiltration Basin", "Retention Pond", "Infiltration Berms", "Subsurface Detention 

System", "ROW Subsurface Pipe-Broken Stone", "Synthetic Turf Field Storage Layer", "Sythetic Field", "Surface 

Infiltration Basin", "Gravel Storage", "Subsurface Infiltration Basin", "Infiltration-Basin", "Infiltration Planter Box", 

"ROW Infiltration Basin", "ROW Stormwater Seepage Basin", "Stormtech Infiltration Basin", "Infiltrating 

Bioretention", "Storm Bio Infiltration", "Bioinfiltration",  "U-G Detention", "U-G Retention" 

Infiltration 

Vault 
"Leaching Tank", "Storm Chamber System" 

Trench 
"French Drain", "Infiltration Trench", "Infiltration Storage Trench", "Ex-Filtration Trench", "Infiltration-Storage 

Trench", "Trickle", "Soakage Trench", "Storm Infiltration Trench", "Trench" 

Dry Well 
"Dry Well", "Infiltration-Dry Well", "Drywell", "Perforated Pipe Infiltration", "Underground Infiltration", 

"Underground Injection Cell", "Drywell-Aggregate Filled" 
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Permeable 

Pavement 

"Permeable Pavement", "Porous Pavement Detention", "Pervious Pavement", "Permeable Pavers", "Porous 

Asphalt", "Porous Concrete", "Pavers", "ROW Porous Concrete", "Porous Pavement", "Permeable Pavement 

System", "Permeable Pavements", "Grass Pavers", "Permeable Friction Course", "Permeable Paver Friction Course", 

"Permeable Pavement-Standard", "Permeable Paver", "Permeable Surface", "Pervious Asphalt", "Pervious 

Concrete", "Porous Pavers", "ROW Permeable Pavers", "Brickpavers" 

Infiltration 

Unknown 
"Infiltration", "Infiltration BMPs", "Infiltration Basin or Trench" 

Gross 

Pollutant 

Traps 

Screens Nets 

Baskets Racks 

"Trench Drain", "Catch Basin Drain", "Curb Inlet w-Grate", "Grated Inlet", "Bar Screen-Outlet Screen", "MH Inlet: 

Grated Cover", "Netting", "Trash Rack", "Drain Box" 

Hood "Mechanical Separation", "Snout", "Modified Manhole with Snout" 

Gross Pollutant 

Trap Other 
“Debris Basin” 

Gross Pollutant 

Trap Unknown 

"Water Quality Inlet", "Single Water Quality Inlet", "Double Water Quality Inlet", "Triple Water Quality Inlet", "Curb 

Inlet", "Drop Inlet", "Catch Basin", "Inlet" 

Disconnection Disconnection 
"Impervious Surface Removal", "Disconnection of Non-Rooftop Runoff", "Disconnection of Rooftop Runoff", 

"Impervious Surface Elimination", "Depaving", "Grass", "Simple Disconnection to a Conservation Area", "Simple 

Disconnection to a Pervious Area", "Simple Disconnection to Amended Soils"  

Other Other 

"Other", "Sheetflow to Conservation Areas", "Misc Structures", "Envirochamber", "Modified Catchment Manhole", 

"Green Wall", "Naturalized Meadow", "Riparian Buffer-Stream Restoration", “Lakes and Ponds", "Lawn Reseeding", 
"Soil Quality", "Storage Practices", "Naturalized Landscape", "Daylight Ditch", "LID-Other Surface Flow Inlet Point", 

"Water Quality Pretreament Facility", "Tree Planning And Preservation", "Green Alley", "Greenstreets", "Planting 

Area", "Pond", "Regenerative Stormwater Conveyance Technique", "Regenerative Stormwater Conveyance", "Rip 

Rap", "Shade Tree", , "Storm Energy Dissipator", "Stormwater Regenerative Conveyance", "Stream Restoration", 

"Tree Planting", "Tree Preservation", "Irrigation", "Irrigation System", "Riparian Buffer", "ROW Structural Soil", 

"Vegetated Landscape" 

Stormwater 

Conveyance 

Stormwater 

Conveyance 

"Culvert", "Level Spreader", "Scour Hole", "Cleanout", "Culvert Inflow", "Culvert Outflow", "Junction Box", 

"Maintenance Hole", "Area Drain", "Flow Control MH", "Riser", "Riserpipe", "Separator-Low Flow Diversion", 

"Storm Water Inlet Drain", "LID-Other Surface Flow Outlet Point", "Step Pool", "Junction Box with Sump", "Caltrans 

Drain", "Track Drain" 

Unknown Unknown 

"Unknown", "Unregulated", "WQ Treatment Device", "Proprietary Practice", "Proprietary", "Proprietary Devices", 

"Storm Structures", "ROWEB-Unknown", "BaySaver", "BaySaver WQ Structure", "Stormwater Treatment System", 

"Vortechnics", "Filtration System", "Retention-HDPE", "Water Quality Structure", "Retention", "Retention 

Structure" 

Not an SCM None 
"None", "Proposed", "CDA to a Shared BMP", "Rexus D-400 Square, Hinged CB Cover", "Wave House", "Hunters 

Point Shipyard Artists Parcel; Commercial Kitchen", "Potrero Ave Condos", "Psuedo Drain for Model ONLY" 
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Multiple Multiple 

"Multiple GI Components", "Filtration-Detention", "Infiltration-Detention", "Retention-Infiltration", "Retention-

Irrigation", "Sediment-Detention", "Sediment-Filtration-Infiltration", "Sediment-Filtration-Irrigation", "Wet Pond-

Irrigation", "Detention Tank-Irrigation System", "Sediment-Biofiltration-Infiltration", "Sedimentation-Sand 

Filtration", "Bioretention-Bioswale", "Bioretention-Infiltration", "Dual System", "Sand Filter-Infiltration", "Sediment-

Infiltration", "Permeable Paver-Infiltration",  

"Aqua-Shield-Filter", "Aqua-Filter" 
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Table S1.2: k-means clusters based on unit processes provided. SCMs are ordered by groupings based on all listed unit processes and colors 

show SCMs that grouped together regardless of which unit processes were used for clustering. Groups for each unit process column are labeled 

according to that unit process (e.g., group 1A indicates the first group in A or ‘all’ unit processes). SCMs in cells with light gray lines oriented 

diagonally were not consistently grouped with each other or other SCMs. Original MOP-coarse groups are presented as: (I) = Infiltrators, (S) = 

Swales and Strips, (B) = Basins, and (F) = Filters. 
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Infiltration Basins (I) 13 1A 1Q 1P 1B 1O x x x       x x     x x x     x   x x x x   

Infiltration Vaults (I) 13 1A 1Q 1P 1B 1O x x x       x       x x x     x   x x x x x 

Trenches (I) 12 1A 1Q 1P 1B 1O x x x       x       x x x     x   x x x x   

Dry Wells (I) 12 1A 1Q 1P 1B 1O x x x       x       x x x     x   x x x x   

Permeable pavement (I) 10 1A 1Q 1P 1B 1O x x x               x x x         x x x x   

Swales (S) 4 2A 2Q 2P 2B 2O     x x                     x         x     

Strips (S) 5 2A 2Q 2P 2B 2O     x x     x               x         x     

Landscaped roofs (F) 6 2A 2Q 2P 2B 2O x     x x           x       x         x     

Wet basins (B) 14 3A 3Q 3P 3B 1O x x     x x x x     x       x x x x x   x x 

Wetlands (B) 13 3A 3Q 3P 3B 1O x x     x x x x     x       x x x x x   x   

Sand filters (F) 6 4A 4Q 4P 1B 3O x           x x           x   x         x   

Vaults and swirl 

concentrators (B) 4 4A 4Q 3P 4B 3O x           x x   x                         

Oil Water Separators (B) 3 4A 4Q 3P 4B 3O             x x x                           

Forebays (B) 2 4A 4Q 3P 4B 3O             x x                             

Dry basins (B) 4 5A 1Q 2P 4B 3O x x x       x                               

Cisterns (B) 2 5A 4Q 2P 4B 3O   x         x                               

Drain inlet inserts (F) 2 5A 4Q 4P 4B 3O             x             x                 

Manufactured filters (F) 2 5A 4Q 4P 4B 3O             x             x                 

Bioretention (F) 16 6A 3Q 1P 3B 2O x x x   x x x x     x x x x x x   x   x x   
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APPENDIX – Chapter 2 

 

 

 

CHAPTER 2 – SUPPLEMENTARY MATERIAL 

Table S2.1 Explanatory variables, data source, methods, and hypotheses examples 

Type of 

Variable 

Description (Label 

used in figures) Data Source Methods Hypotheses 

Is Hypothesis 

Supported?  

(Y or N 

Phys.-

Cont. 

Impervious 

Percentage (IP) 

(Homer et al. 

2012) 

1. Download NLCD data 2. Project to appropriate coordinate system 

3.Run "zonal statistic as table" tool using city boundaries layer as 

zones. Get mean and st. deviation.  

 With greater IP a greater abundance of SCMs 

with smaller footprints or that can more easily 

be placed in a heavily lined catchment are 

implemented. Less basins and infiltrators and 

more filters and strips 

Y, Fig. 5, Table 

2  

Phys.-

Cont. 

Mean slope in the city 

based on 3dep  

(Mean.Slope) 

(U.S. 

Geological 

Survey 2019) 

1. Define geographic coordinate system and project to appropriate 

projected coordinate system 2. Use "slope (spatial analyst)" to 

produce a slopes raster for 3DEP elevation data 3. Use "zonal 

statistics as table" with city boundaries layer as zones. 4.Get mean 

and st. deviation of slope 

With greater or more variable slope there are 

more smaller footprint SCMs implemented 

(filters and swales & strips).  

N, less Basins,   

Fig. 5,  

Phys.-

Cont. 

Standard dev. of 

slope in the city based 

on 3dep (StDev.Slope) 

(U.S. 

Geological 

Survey 2019) 

1. Define geographic coordinate system and project to appropriate 

projected coordinate system 2. Use "slope (spatial analyst)" to 

produce a slopes raster 3. Use "zonal statistics as table" with city 

boundaries layer as zones. 4.Get mean and st. deviation of slope 

With greater or more variable slope there are 

more smaller footprint SCMs implemented 

(filters and swales & strip).  

N, less Basins 

More 

infiltrators,   

Fig. 5, Table 2 

Phys.-

Cont. 

Ratio of total 

withdrawals as 

groundwater 

(GrnWtr_ratio) 

(Dieter et al. 

2018) 

1. Identify what counties are in or encapsulate the cities of interest 

2.Record total surface water and groundwater withdrawal volumes 

for those counties 3.Take the ratio of total withdrawals that are 

made of surface water and groundwater withdrawals, 

independently 

With greater use of groundwater for water 

supply more infiltrators are implemented. N 

Phys.-

Cont. 

Annual minimum 

(spatially) depth to 

water table 

(min.DTWT) (m) 

(Fan et al. 

2013) 

1. Define geographic coordinate system and project to appropriate 

projected coordinate system 2. Use "Zonal Statistics as Table" tool 

with city boundaries as zones  

More infiltrators are implemented with greater 

min.DTWT. Of those, there are less subsurface 

infiltration (dry wells) with shallower min.DTWT 

Y, Fig. 5, Table 

2, Fig. S2.3 

Phys.-

Cont. 

Annual maximum 

(spatially) depth to 

water table 

(Fan et al. 

2013) 

1. Define geographic coordinate system and project to appropriate 

projected coordinate system 2. Use "Zonal Statistics as Table" tool 

with city boundaries as zones  

More infiltrators are implemented with greater 

max.DTWT. Of those, there are more subsurface 

infiltration (dry wells) with deeper max.DTWT 

Y, Fig. 5, Table 

2, Fig. S2.3 

Phys.-

Cont. 

Annual mean 

(spatially) depth to 

water table 

(mean.DTWT)(m) 

(Fan et al. 

2013) 

1. Define geographic coordinate system and project to appropriate 

projected coordinate system 2. Use "Zonal Statistics as Table" tool 

with city boundaries as zones  

More infiltrators are implemented with greater 

mean.DTWT. 

Y, Fig. 5, Table 

2, Fig. S2.3 
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Clim.-

Cont. 

30 Year Average 

Precipitation  

(AP)(in.)  

(PRISM 

Climate Group 

n.d.) 

1. Download 4 km resolution PRISM data for precipitation, min, 

max, and mean temperature, and min and max vapor pressure 

deficit 2.Use annual data to get representative values for each 

parameter using "Zonal Statistics as Table" tool with city boundaries 

as zones  

There are a greater abundance of basins with 

greater AP.  

N, More 

swales & 

strips and 

filters w/less 

infiltrators, 

Fig. S2.3 

Clim.-

Cont. 

Magnitude of the 2-

year, 24-hour 

precipitation event 

(IDF.2yr.24hr.in)(in.) (NOAA n.d.) 

NOAA14: Go to 

https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html. Enter 

City, St into the "By Address" space and press enter. If the IDF table 

is available it will show up. NOAA2: go to 

https://www.nws.noaa.gov/ohd/hdsc/noaaatlas2.html, Enter the 

latitude and longitude of the city of interest and click submit.  

With greater 2yr-24hr return storm intensity 

there are more basins implemented 

Y, when 

design storm 

depth > 1.97 

in., Fig. S2.2 

Clim.-

Cont. 

30 Year Average Max 

Temperatures 

(AMAT_F)(Deg. F)  

(PRISM 

Climate Group 

n.d.) 

1. Download 4 km resolution PRISM data for precipitation, min, 

max, and mean temperature, and min and max vapor pressure 

deficit 2.Use annual data to get representative values for each 

parameter using "Zonal Statistics as Table" tool with city boundaries 

as zones  

Cities with greater AMAT_F will use more 

stormwater infiltration 

N, Less filters 

at higher 

AMAT_F, Fig. 

S2.3 

Clim.-

Cont. 

30 Year Average 

Mean Temperatures  

(AMET_F)(Deg. F)  

(PRISM 

Climate Group 

n.d.) 

1. Download 4 km resolution PRISM data for precipitation, min, 

max, and mean temperature, and min and max vapor pressure 

deficit 2.Use annual data to get representative values for each 

parameter using "Zonal Statistics as Table" tool with city boundaries 

as zones  

Cities with greater AMET_F will use more 

stormwater infiltration 

N, More 

swales & 

strips with 

with higher 

AMET_F, Fig. 

S2.3 

Clim.-

Cont. 

30 Year Average Min 

Temperatures 

(AMIT_F)(Deg. F)  

(PRISM 

Climate Group 

n.d.) 

1. Download 4 km resolution PRISM data for precipitation, min, 

max, and mean temperature, and min and max vapor pressure 

deficit 2.Use annual data to get representative values for each 

parameter using "Zonal Statistics as Table" tool with city boundaries 

as zones  

Cities with greater AMIT_F will use more 

stormwater infiltration 

N, More 

swales & 

strips with 

higher 

AMIT_F, Fig. 

S2.3 

Clim.-

Cont. 

30 Year Average Max 

Vapor Pressure Deficit  

(AMAVPD_hpa) (hPa)  

(PRISM 

Climate Group 

n.d.) 

1. Download 4 km resolution PRISM data for precipitation, min, 

max, and mean temperature, and min and max vapor pressure 

deficit 2.Use annual data to get representative values for each 

parameter using "Zonal Statistics as Table" tool with city boundaries 

as zones  

Cities with greater AMAVPD_hpa will use more 

stormwater infiltration 

N, More 

Basins and 

less swales & 

strips and 

filters at 

higher 

AMAVPD_hpa

, Fig. S2.3 

Clim.-

Cont. 

30 Year Average Min 

Vapor Pressure Deficit  

(AMIVPD_hpa) (hPa)  

(PRISM 

Climate Group 

n.d.) 

1. Download 4 km resolution PRISM data for precipitation, min, 

max, and mean temperature, and min and max vapor pressure 

deficit 2.Use annual data to get representative values for each 

parameter using "Zonal Statistics as Table" tool with city boundaries 

as zones  

Cities with greater AMIVPD_hpa will use more 

stormwater infiltration 

N, Less filters 

with 

increasing 

AMIVPD_hpa 

Clim.-

Cont. 

Aridity Index based 

on Köppen approach   

(AI)(mm/C) 

(Köppen 1923; 

Quan et al. 

2013; PRISM 

Climate Group 

n.d.) 

Köppen approach (MAP/(MAT + 33)) [mm/C] (Note: lower AI ➔ 

more arid) 

More arid cities (smaller AI) will use more 

stormwater infiltration 

Y, more 

infiltrators 

and less 

swales & 

strips and 
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filters, Fig. 

S2.3 

Soc.-

Cont. 

Population Density 

(DPS_personmi2) 

(person/mi2) 

(U.S. Census 

Bureau 2012)   

With greater population density there are less 

basins and more small footprint SCMs like 

swales & strips, and filters 

Y, Fig. 5, Table 

2 

Soc.-

Cont. 

Median Household 

Income  

(MHI_Dollar) 

(2013-2017) 

(U.S. Census 

Bureau 2012)   

Areas with greater MHI there are more SCMs 

implemented and a more diverse composition of 

SCMs implemented. 

Y, Fig. 5., 

Table 2 

Soc.-

Cont. 

Median Housing Age  

(MHA_yrs)(Years) 

(U.S. Census 

Bureau 2012)   

With greater MHA there are a less diverse 

composition of SCMs  

N, Less basins, 

More swales 

& strips and 

filters, and 

increased 

diversity, Fig. 

5 

Reg.-

Cont. 

Percent of lentic 

waterbody area 

considered impaired 

(303d) 

(ImpairedArea.perc)  

(U.S. 

Geological 

Survey n.d.; 

US EPA n.d.) 

1. Download 303d impaired water data and NHD high resolution 

dataset 2.Merge NHD files and project to appropriate coordinate 

system 3.Clip to city boundaries layer 4. Join NHD and 303d data 

using "Reach Code" field using "Join Field" tool 5.Join 

"attgeo_303dcaussrce" tables data with joined NHD-303d layers 

6.Use "Tabulate Intersection" tool to get cumulative lengths and 

areas by city and contaminant parent description 7. Finish 

processing in R; get percent impaired and predominant 

contaminant.  

With greater impaired area there are more 

filters and less basins implemented N 

Reg.-

Cont. 

Percent of lotic 

waterbody length 

considered impaired 

(303d) 

(ImpairedLength.perc

) 

(U.S. 

Geological 

Survey n.d.; 

US EPA n.d.) 

1. Download 303d impaired water data and NHD high resolution 

dataset 2.Merge NHD files and project to appropriate coordinate 

system 3.Clip to city boundaries layer 4. Join NHD and 303d data 

using "Reach Code" field using "Join Field" tool 5.Join 

"attgeo_303dcaussrce" tables data with joined NHD-303d layers 

6.Use "Tabulate Intersection" tool to get cumulative lengths and 

areas by city and contaminant parent discription 7. Finish 

processing in R; get percent impaired and predominant 

contaminant.  

With greater impaired length there are more 

filters and less basins implemented 

Y, Fig. 5, Table 

2 

Reg.-

Cat. 

MS4 Phase (I or II) 

(MS4P) 

(“Enforcemen
t and 

Compliance 

History 

Online” n.d.)   

MS4 phase 1 cities will have greater diversity 

SCMs 

N, More 

swales and 

strips in MS4 

Phase I cities, 

Fig. 6 

Reg.-

Cat. 

Are combined sewers 

present in the city (Y 

or N) 

(CSO) 

t and 

Compliance 

History 

Online” n.d.)   

Cities with CSOs will have greater SCM diversity 

with more filters and infiltrators 

Y, except no 

evidence for 

swales & 

strips instead 

of infiltrators, 

Fig. 6 
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Reg.- 

Cat. 

Is the city under a 

consent decree with 

the US EPA (Y or N) 

(CD) 

(US EPA and 

OECA n.d.)  

Cities under a consent decree will select for 

water quality SCMs such as filters over other 

SCM types 

Y, Also more 

SCM diversity, 

Fig. 6 

Note: Variable type is denoted in the first column and by the color of the rows. A brief description of the variable is presented in the second 

column along with the acronym used for the variable (Description). The citation of the data source is presented in the third column (Data 

Source). Basic processing steps applied to each explanatory variable is presented in the fourth column (Methods). Example hypotheses are 

presented for each explanatory variable in the fifth column (Hypotheses). If the hypothesis was supported by the analysis or not (Y or N) is 

presented along with figures that support the conclusion.  
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Table S2.2: Values of explanatory variables used in this analysis. 

City State 

Imperv 

% 

Mean 

Slope 

St.Dev. 

Slope 

Grnd 

Wtr 

Ratio 

Min. 

DTWT 

Max. 

DTWT 

Mean 

DTWT 

Avg. 

Precip. 

IDF 

2yr-

24hr  

Avg. 

Max. 

Temp 

Avg. 

Mean 

Temp. 

Avg. 

Min. 

Temp. 

Avg. 

Max. 

VPD 

Avg. 

Min. 

VPD 

Aridity 

Ind. 

Pop. 

Density 

Med. 

Household 

Income 

Median 

Housing 

Age 

Impaired 

Area % 

Impaired 

Length % MS4P CSO CD 

Austin TX 25.79 3.91 5.18 0.1 0.03 75.4 14.65 33.59 4.14 79.33 67.9 56.47 21.11 1.63 14.39 2653.2 63717 33 0 6.36 

Phase 

I N N 

Baltimore MD 46.16 3.87 4.04 0.04 0.02 51.9 13.87 44.84 3.24 65.68 56.07 46.46 13.4 1.79 22.02 7671.5 46641 77 0.95 6.77 

Phase 

I N Y 

Bozeman MT 27.85 1.65 3.01 0.03 0.85 94.6 20.36 17.46 1.17 57.08 43.92 30.75 13.06 1.27 9.45 1950 49217 33 0 6.68 

Phase 

II N N 

Cary NC 16.61 4.25 3.24 0.18 1.39 52.2 16.11 45.92 3.44 70.77 59.61 48.46 15.36 1.06 21.39 2488.4 97755 23 4.64 15.43 

Phase 

II N N 

Denver CO 35.96 2.03 2.43 0.01 0.37 52.7 16.86 16.13 1.83 64.73 50.64 36.54 17.37 2.16 8 3922.6 60098 57 26.97 16.52 

Phase 

I N N 

Fayetteville AR 15.64 3.99 4.34 0.36 1.55 71.5 24.01 47.45 3.94 68.69 57.82 46.95 13.86 1.06 22.58 1336.4 41158 25 67.8 2.13 

Phase 

II N N 

Fort Collins CO 27.32 2.13 3.03 0.01 0.88 33.5 10.12 16.19 1.97 63.48 49.02 34.56 16.09 1.4 8.14 1114.7 60110 32.5 47.53 12.57 

Phase 

II N N 

Grand 

Rapids MI 43.51 2.87 3.47 0.89 0.04 19.6 6.63 36.41 2.58 57.11 47.53 37.95 9.55 0.71 19.7 4235.6 44369 64 0 55.3 

Phase 

II Y N 

Lincoln NE 36.71 2.71 2.77 0.91 0.38 24.3 8.67 30.32 3.02 62.6 51.35 40.11 13.22 1.17 15.4 1240.5 53089 49 1.78 26.45 

Phase 

I N N 

Los Angeles CA 42.95 7.42 10.47 0.38 0.12 223 16.59 17.86 2.77 75.6 64.6 53.6 20.35 2.94 7.93 8092.3 54501 59 33.57 2.8 

Phase 

I N N 

NYC NY 62.04 1.96 2.96 0 0.02 44 6.27 47.33 3.51 62.41 54.64 46.86 11.07 2.1 24.09 27012 57782 71 2.66 7.86 

Phase 

I Y N 

Philadelphia PA 50.9 2.93 3.8 0 0.14 40.2 5.2 46.7 3.26 64.34 55.48 46.62 12.29 1.6 23.27 11380 40649 73 2.64 36.08 

Phase 

I Y N 

Phoenix AZ 31.48 2.92 6.59 0.58 3.72 165 42.56 9.4 1.44 85.47 72.06 58.64 35.71 10.27 3.81 2797.8 52080 38 1.43 0 

Phase 

II N N 

Pittsburgh PA 42.8 9.64 8.49 0.04 1.2 82.2 30.11 37.61 2.35 61.78 51.88 41.99 11.47 1.17 19.28 5521.4 44092 77 0 35.47 

Phase 

II Y N 

Pocatello ID 29.21 4.58 5.77 0.51 4.03 85 36.18 14.05 1.12 59.51 46.68 33.84 15.33 1.84 7.39 1683.8 42979 48 0 16.02 

Phase 

II N N 

Portland OR 43.29 5.08 7.28 0.5 0.16 86.3 18.37 42.81 2.52 62.7 53.13 43.55 10.97 0.81 21.72 4375.3 61532 61 1.37 3.06 

Phase 

I Y N 

Sacramento CA 42.87 1.47 2.29 0.64 0.41 10.8 3.18 19.41 2.16 74.36 61.6 48.84 21.19 1.86 8.72 4764.2 54615 47 5.68 18.04 

Phase 

I Y N 

San Diego CA 33.57 7.47 8.4 0.18 0.2 124 38.76 11.76 1.78 72.74 63.17 53.59 15.03 2.02 5.37 4020.4 71535 43 51.35 12.38 

Phase 

I N Y 
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San 

Francisco CA 58.76 5.66 6.21 0.04 0.35 52.4 21.08 24.08 2.29 63.31 56.91 50.51 8.6 1.41 12.14 17179 96265 77 72.22 64.78 

Phase 

I Y Y 

Seattle WA 30.61 2.99 4.83 0.41 0.34 81.2 27.47 36.71 1.96 59.48 52.52 45.56 8.11 1.01 19.32 7250.9 79565 58 0.68 4.19 

Phase 

I Y Y 

Springfield MO 30.69 1.93 2.39 0.14 0.93 34.9 15.51 40.96 3.6 61.81 51.97 42.14 11.01 0.87 20.99 1951.8 34775 42 2.57 4.26 

Phase 

I N N 

Tucson AZ 26.68 1.97 2.96 0.89 1.22 105 38.38 12.18 1.73 83.55 69.15 54.75 34.3 7.31 5.02 2294.2 39617 41 0 0 

Phase 

I N N 

Washington DC 37.94 4.09 4.49 0 0.03 53.9 16.91 42.93 3.13 66.46 56.72 46.98 13.5 1.54 20.91 9856.5 77649 68 23.06 58.35 

Phase 

I Y Y 

Note: Sources and methods used to arrive at these values are presented in Table S2.1.Imperv = impervious, St. Dev. = standard deviation, Grnd 

Wtr = Groundwater, DTWT = depth to water table, Precip. = precipitation, IDF = Intensity Duration Frequency, Temp. = temperature, VPD = 

vapor pressure deficit, Ind. = index, Pop. = population, MS4P = municipal separate storm and sewer system phase, CSO = combined sewers, CD = 

consent decree 
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Table S2.3. Classification systems and associated unit processes. Modified from Table 4.2 (WEF and 

ASCE-EWRI 2012).  

      Quantity control Pollutant control Biological Other 

MOP-Coarse MOP-Fine 

#
 P
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D
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Sc
re

e
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Basins 

Wet basins 14 x x     x x x x     x       x x x x x   x x 

Wetlands 13 x x     x x x x     x       x x x x x   x   

Dry basins 4 x x x       x                               

Vaults and swirl 

concentrators 4 x           x x   x                         

Oil Water Separators 3             x x x                           

Forebays 2             x x                             

Cisterns 2   x         x                               

Basin Unknown* ?                                             

Swales and 

Strips 

Swales 4     x x                     x         x     

Strips 5     x x     x               x         x     

Filters 

Sand filters 6 x           x x           x   x         x   

Bioretention 16 x x x   x x x x     x x x x x x   x   x x   

Landscaped roofs 6 x     x x           x       x         x     

Drain inlet inserts 2             x             x                 

Manufactured filters 2             x             x                 

Filter Unknown* ?                                             

Gravel Wetland* ?                                             

Infiltrators 

Infiltration Basins 13 x x x       x x     x x x     x   x x x x   

Infiltration Vaults 13 x x x       x       x x x     x   x x x x x 

Trenches 12 x x x       x       x x x     x   x x x x   

Dry Wells 12 x x x       x       x x x     x   x x x x   

Permeable 

pavement 10 x x x               x x x         x x x x   

Infiltration 

Unknown* ?                                             

Gross Pollutant 

Traps 

Screens nets baskets 

racks 1                                           x 

Hoods 1               x                             

Gross Pollutant Trap 

Other* ?                                             

Gross Pollutant Trap 

Unknown* ?                                             

Other* 

Other* ?                                             

Stormwater 

Conveyance* ?                                             

Unknown* Unknown* ?                                             

Note: *’s in row headings under MOP-coarse and MOP-fine notate SCM classes we added to the original table to 

allow all listed SCMs to be placed in a category. Reported unit processes (x) are from the original table (WEF and 

ASCE-EWRI, 2012). 

 

https://www.zotero.org/google-docs/?ivC3yb
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Fig. S2.1: Correlogram of Spearman’s correlation coefficients between Hellinger-transformed MOP-

coarse SCMs, Shannon diversity index (Div) of those SCMs, and explanatory variables. All explanatory 

variables are presented. Red represents negative correlations and blue represents positive correlations. 

The size of the circle represents the magnitude of the correlation coefficients (e.g., large dark red circles 

represent strong negative correlations and large dark blue circles represent strong positive correlations). 

*’s specify p-values:  *p≤0.1, **p≤0.05, ***p≤0.01 
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Figures S2.2 and S2.3, along with Table S2.3, present breakpoints and thresholds that may be considered 

when investigating the effects of climatic variables and depth to water table. It is important to note 

though, that the threshold values identified should not be interpreted within the context of 

implementing a single SCM at a site, but rather, as being indicative of overall conditions within a city.    

 

Breakpoints in Fig. S2.2 were identified using strucchange package (Zeileis et al. 2002, 2003) in R. It 

identifies breakpoints by minimizing the overall ordinary least squares. 

 

 
Fig. S2.2: The four single variate regression relationships between explanatory variables and Hellinger 

that had small overall residuals with the introduction of a breakpoint. The blue lines are the lines of best 

fit.  The vertical dashed redline represents the breakpoint. The breakpoints are: top-left = 1.97 in., top-

right = 52.28 m, bottom-left = 0.15 m, bottom-right = 16.35 m. 
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Table S2.3: Spearman correlation results from Fig. S2.2  
SCM (Hellinger 

transformed) 
Explanatory 

Var 

Data Included in Regression Spearman 𝝆 

p-value 

 

Basins 

 

 

Design 

Storm 

𝐴𝑙𝑙 0.26 0.226 ≤ 1.97 𝑖𝑛, 0.21 0.645 > 1.97 𝑖𝑛. 0.53 0.036 > 1.97 𝑖𝑛. 𝑤𝑖𝑡ℎ 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 0.71 0.003 

 

Basins 

 

 

Max DTWT 

 

𝐴𝑙𝑙 -0.11 0.609 ≤ 52.28 𝑚 0.22 0.576 > 52.28 𝑚 -0.19 0.523 

 

Basins 

 

Min DTWT 

 

𝐴𝑙𝑙 0.10 0.654 ≤ 0.15 𝑚 0.11 0.819 > 0.15 𝑚 -0.06 0.820 

 

Swales & Strips 

 

Mean DTWT 

𝐴𝑙𝑙 -0.09 0.695 ≤ 16.35 𝑚 -0.13 0.723 > 16.35 𝑚 0.06 0.854 
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Fig. S2.3: Boxplots presenting Hellinger-transformed SCMs implemented in cities where the explanatory 

variable is less than or equal to some threshold (<=TH) and greater than that threshold (≤ TH). Only 

results with a p-value ≤ 0.1 are presented. Asterisks next to the x-axis labels note whether the results 

are *p≤0.1, **p≤0.05, or ***p≤0.01 and the p-value is presented at the top of each boxplot. Units of 

explanatory variables are presented in the x-axis titles (e.g.,units of mm/C in AI_mm_C ). See Table S2.1 

for the meaning of acronyms. Red dots represent outliers. The middle line of each box represents the 

median value, the top and bottom lines of the boxes represent the 25% and 75% quantile, and the 

whiskers extend to the smallest and largest values or no longer than the 25% and 75% quantiles plus 1.5 

* the inter-quartile range. Note that aridity increases with decreases AI.  
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APPENDIX – Chapter 3 

 

 

 

CHAPTER 3 – Supplementary Material: FULL REPORT: ESTIMATING CARBON 

SEQUESTRATION UNDER VARIOUS LAND-USE SCENARIOS OF DRIED 

AGRICULTURAL LAND IN THE SOUTH PLATTE RIVER BASIN 

Executive Summary 

Growing urban populations are accelerating land-use change (LUC) around the globe, as 

witnessed in the Front Range of Colorado (Angel et al. 2011; Colorado Water Conservation Board 2015; 

United Nations and Social Affairs 2018). In recent history, we have witnessed LUC exacerbating climate 

change due to disturbed soils, development of greenhouse gas (GHG) producing land uses, and more 

(Houghton et al. 2012). This trend is a product of our approach to land management however and is not 

a required feature of human progress. Local decisions determine how LUC manifests with significant 

implications for local livability and the global challenge of climate change.  

An increasingly common trend in water-scarce regions is the permanent transfer of water from 

irrigated agriculture to municipal uses (i.e., urban and industrial uses), commonly known as buy-and-dry. 

Irrigated agriculture is a key economic driver of many of the more rural communities of the South Platte 

River Basin (SPRB). So, as those irrigated acres are dried, there will be significant economic and societal 

impacts such as the loss or alteration of employment opportunities, the local tax base, and general 

experience of agrarian culture. Of growing importance is the question of how to help maintain rural 

economies that will see significant declines in irrigated agriculture. 

 An ideal option would address both the desire to incentivize local land-use decisions that 

produce positive outcomes locally and globally and the need to maintain rural economies in the face of 

diminishing irrigated agriculture and a changing climate. One such option is for the public to pay private 

landowners for public goods or benefits that have not been historically recognized by the market. For 

example, if the land is used to provide some ecosystem service which benefits the public, such as water 

purification or carbon sequestration, then the landowner may be paid for that service. There can be 

direct payments for ecosystem services or payments via other programs, such as conservation 

easements, which have been used extensively in Colorado. As policymakers in the SPRB make decisions 

that will directly impact which land remains as irrigated agriculture, which land is dried, and which land 

is developed, it is important for them to have good information about the potential implications of 

those decisions.  This report was motivated by the demand for easily performed scenario analysis to 

analyze such tradeoffs.  
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Overview 

Growing urban populations are accelerating land-use change (LUC) around the globe, as 

witnessed in the Front Range of Colorado (Angel et al. 2011; Colorado Water Conservation Board 2015; 

United Nations and Social Affairs 2018). In recent history, we have witnessed LUC exacerbating climate 

change due to disturbed soils, development of greenhouse gas (GHG) producing land uses, and more 

(Houghton et al. 2012). This trend is a product of our approach to land management however and is not 

a required feature of human progress. Local decisions determine how LUC manifests with significant 

implications for local livability and the global challenge of climate change.  

An increasingly common trend in water-scarce regions is the permanent transfer of water from 

irrigated agriculture to municipal uses (i.e., urban and industrial uses), commonly known as buy-and-dry. 

Irrigated agriculture is a key economic driver of many of the more rural communities of the South Platte 

River Basin (SPRB). So, as those irrigated acres are dried, there will be significant economic and societal 

impacts such as the loss or alteration of employment opportunities, the local tax base, and general 

experience of agrarian culture. Of growing importance is the question of how to help maintain rural 

economies that will see significant declines in irrigated agriculture. 

 An ideal option would address both the desire to incentivize local land-use decisions that 

produce positive outcomes locally and globally and the need to maintain rural economies in the face of 

diminishing irrigated agriculture and a changing climate. One such option is for the public to pay private 

landowners for public goods or benefits that have not been historically recognized by the market. For 

example, if the land is used to provide some ecosystem service which benefits the public, such as water 

purification or carbon sequestration, then the landowner may be paid for that service. There can be 

direct payments for ecosystem services or payments via other programs, such as conservation 

easements, which have been used extensively in Colorado. As policymakers in the SPRB make decisions 

that will directly impact which land remains as irrigated agriculture, which land is dried, and which land 

is developed, it is important for them to have good information about the potential implications of 

those decisions.  This report was motivated by the demand for easily performed scenario analysis to 

analyze such tradeoffs.  

For an overview of this report, I suggest visiting Section 5 (Conclusions) and reviewing the 

summary information provided as well as the information provided in the tables and figures throughout 

the report. 

Section 1 (Introduction and Background), discusses the South Platte River Basin, relevant changes it is 

undergoing, the concept of paying private landowners for public goods not traditionally recognized by 

the market, and establishes the need for scenario analysis. 

Section 2 (Climate and Land Use-Land Cover Review) discusses literature related to carbon, natural and 

working lands, soil, and developed lands. 

Section 3 (Carbon Sequestration Valuation) discusses the valuation of carbon sequestration and related 

challenges. 
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Section 4 (Scenario Analysis) discusses methodologies related to spatially explicit scenario analysis 

related to ecosystem services generally and climate-related ecosystem services specifically. 

Section 5 (Conclusions) provides an overarching summary of the report and several bullet points of open 

questions, suggestions, and other take home messages. 

Section 6 (Existing Tools to Assist in Prioritizing LULC) explores eight online tools that may be useful for 

policy making decisions related to LULC and ecosystem services. Of particular interest may be the 

discussion of the COMET-Planner. After extensively reviewing the literature and available tools, I 

conclude that the COMET-Planner tool is perhaps the most relevant tool to understanding the climate-

related ecosystem services related to natural and working lands. In Section 6.1.2, I apply the COMET-

Planner tool to three areas of interest in the SPRB. I then utilize information gathered via literature 

review to expand that analysis so that estimates of ROI are presented.  

Interdisciplinary Considerations 

This report was motivated by an interdisciplinary challenge and utilized an interdisciplinary 

approach to address that challenge. Broadly, the disciplines important to the review and analysis 

presented in this report include economics, policy, natural resources and land management, and 

ecosystem services.  

Economic Considerations  

Sustaining rural economies in the face of drying irrigated agriculture was a primary motivation 

for this work. A methodological review and application of benefits transfer and valuation of carbon 

sequestration was performed. Specific methods for spatially explicit scenario analysis and return on 

investment from ecosystem services are suggested based on literature review. For example, I suggest 

caution when applying benefit transfer when needed data is sparce, recommend inclusion of 

uncertainty when developing or using tools for return on investment from ecosystem services, and 

estimate return on investment for three scenarios of conversion of irrigated agriculture to more natural 

land covers in three areas of interest in the South Platte River Basin (SPRB). Those three areas were 

Greeley’s long range expected growth area, Brighton’s South Platte River Heritage Corridor, and 
properties in Weld and Larimer counties that have been purchased by the City of Thornton with the 

intention of transferring the water from irrigated agricultural to municipal uses.  

Policy Considerations  

As the SPRB experiences rapid land conversion due to the drying of irrigated agricultural land, 

policy will help shape the outcomes and experiences for agrarian communities. Therefore, this work 

included multiple policy considerations. A review of payment for ecosystem services schemes with a 

focus on payments for conservation and payments for carbon sequestration is provided. Valuation of 

ecosystem services can help prioritize which irrigated land to keep in production and which to target 

with conservation programs and/or payment for ecosystem services programs, having implications 

for natural resources and land management related policy.  
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Systems-Thinking Considerations  

The overall motivation for this report originates from a systems-thinking perspective. Specifically, 

growing urban populations are placing pressure on urban water resources, so municipalities are 

responding by purchasing agricultural water rights, drying what was irrigated cropland, and transferring 

the water to urban uses. In response, agrarian economies are likely to be strained due to the loss of 

substantial acreage of irrigated agriculture. This report addresses one potential response to the 

economic damage caused by buy-and-dry water transfers – paying landowners for ecosystem services. 

Stakeholder Engagement  

While this work did not specifically include stakeholder engagement as a method, it was 

motivated by work with the Colorado Water Conservation Board (who may be considered a 

stakeholder). The report also poses the question of whether the landowners in the communities in 

which payment for ecosystem services programs may be implemented have any interest in such 

programs. 

DPSIR 

Growing urban populations and reduced commodity prices are driving the transfer of water 

from irrigated agriculture to urban and municipal uses. Cities in the SPRB of Colorado are actively 

securing water supply to meet the demands of growing urban populations and industry and to ensure 

those demands can be met well into the future. With limited opportunities to develop new water 

sources, cities are resorting to the purchase of agricultural water rights with older water rights being in 

greater demand due to the enhanced security they provide.  

Irrigated agriculture has become the cornerstone of many of the rural landscapes and 

economies of the SPRB. As water is transferred away from irrigated agriculture significant pressures are 

being placed on both the landscapes and economies in the agrarian communities. Land that was once 

irrigated is being converted to other land uses such as urban development, non-irrigated agriculture, or 

more natural land cover such as native grasslands. Communities that have come to rely on irrigated 

agriculture will experience loss or alteration of employment opportunities and the local tax base. 

To characterize the situation within the SPRB important states to consider include: 1. The SPRB 

is home to 70% of the Colorado’s population, 2. It demands over 2.5 million acre-ft of water for irrigated 

agriculture annually, 3. There are over 4 million acre-ft of water diverted from surface water sources, for 

all uses, annually, 4. There are another 500,000 acre-ft of groundwater withdrawn annually, 5. There are 

only about 1.4 million acre-ft of native water available annually, 6. Due primarily to the purchase of 

water rights by municipalities from irrigators (i.e., buy-and-dry), a decline of between 131,900 and 

174,000 acres of irrigated agriculture is excepted to be dried by 2050 (~15-20%).  

While there will be many impacts from the buy-and-dry trend in the SPRB, this document 

focuses on the impacts that local communities and economies which have been built around irrigated 

agriculture will experience as the vital economic driver and core aspect of local culture (i.e., irrigated 

agriculture) is significantly reduced.  
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The primary objectives of this document are related to a potential response to ease the impacts 

of buy-and-dry on local economies and communities while also mitigating any negative land use changes 

that may occur as what has been irrigated agriculture is altered to other land uses.  

Intellectual Merit and Broader Impacts 

This document is intended to be of practical interest to policy-oriented professionals working in 

the SPRB, that are also interested in climate, buy-and-dry, and ensuring the agrarian communities in the 

SPRB do not experience undue harm as water is transferred away from irrigated agriculture. A thorough 

literature review related to payment for ecosystem services with a focus on climate related ecosystem 

services is presented. Key points, considerations, and open questions are identified and a framework for 

policy-relevant and spatially explicit valuation of ecosystem services is discussed. Furthermore, a review 

of potentially relevant existing web tools is presented as a reference for those seeking easy access to 

relevant analyses. Finally, a web-tool which extends the COMET-Planner tool is presented with three 

example areas of interest within the SPRB. The web-tool enables easy estimates of the return on 

investment from conservation measures present in the COMET-Planner tool, at a property scale 

resolution. The work presented herein is not extremely novel, but rather, synthesizes and extends 

existing knowledge for policy-relevant professionals.  
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1. Introduction and Background 

1.1 The South Platte River Basin 

The South Platte River Basin (SPRB; Fig. S3.1) is Colorado’s most populous, economically diverse, 
and agriculturally productive basin. It is home to 70% of the state’s residents and demands over 2.5 
million acre-feet of water for irrigated agriculture annually (Colorado Water Conservation Board 2015). 

Other than agriculture and livestock, its important economic sectors include tourism, recreation, 

manufacturing, service and trade industries, and government services (“NAWQA South Platte River 
Basin Study” n.d.). Municipal and rural stakeholders are in competition for water resources in the basin 

as there are only about 1.4 million acre-ft of native water (i.e., sourced from within the basin) available 

annually while annual water diversions of surface water are around 4 million acre-ft, with groundwater 

withdrawals accounting for another 500,000 acre-ft of supply.  

 Like many semi-arid and arid regions of the world, the substantial gap between the supply and 

demand of water in the SPRB is driving competition for water supply between economic sectors. Of 

heightened interest is the competition between municipal (e.g., industrial and residential) and rural 

(e.g., irrigated agriculture) water users which has driven the phenomenon known as buy-and-dry. Within 

the doctrine of prior appropriation, which governs water rights in Colorado, a water user owns the rights 

to use water for some beneficial use, such as growing crops or an industrial use, but that water user may 

not use or lease the water for a different use. As the SPRB has witnessed rapid urban and industrial 

growth it has become more common for municipalities to purchase water rights from irrigated 

agriculture to secure water supply for the near and long-term future of the municipality. While there are 

ongoing efforts to figure out ways to allow for the transfer of water without permanently drying 

irrigated agricultural land, the buy-and-dry trend is expected to continue through at least 2050 leading 

to a decline of between 131,900 and 174,000 acres of irrigated agriculture (Colorado Water 

Conservation Board 2019). 

While direct development of land will account for a significant portion (~6-7%) of the expected 

land-use change coming to the SPRB over the coming decades, the primary driver will be buy-and-dry. 

Although urbanization is relatively compartmentalized spatially, its indirect effects will be experienced 

throughout the basin. Many rural areas of the basin rely on irrigated agriculture to support their 

economies. The loss of that economic driver is likely to have significant social, cultural, and economic 

implications for those agrarian communities as the local tax base, employment opportunities, and 

general experience of living in an agricultural area are lost or altered. Of growing importance is the 

question of how to help maintain rural economies in the SPRB that will experience significant declines in 

irrigated agriculture.    
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Fig. S3.1: The South Platte River Basin of Colorado. Land Cover is from the 2016 National Land Cover Database 

(Dewitz 2019b). Assigning different values of carbon sequestration and/or return on investment to different land 

cover types is one approach to comparing carbon sequestration and ROI of different land-use scenarios.  

1.2 Change in the SPRB and Opportunities it Presents 

 Not only is the SPRB experiencing growing urban populations and land-use change, but it is also 

dealing with the local effects of global climate change. In the SPRB temperatures are expected to 

increase driving greater atmospheric demand for water, altering the timing of snow-melt which drives 

the hydrology of the basin, and decreasing the volume of water from transmountain sources (e.g., 

Colorado Big Thompson Project) likely exacerbating the supply-demand gap (Colorado Water 

Conservation Board 2019). Each of these changes is expected to amplify the competition for water 

resources and points toward a challenging and complex future with regards to water management in the 

basin. The SPRB will not be alone in facing the challenges that climate change presents. Just as the 

challenges presented by climate change are shared across the globe, so must be the responsibility of 

taking action to mitigate and reverse climate change and its effects.  

Times of change provide opportunities for innovation, reorientation of goals, and for new 

approaches to be used to reach those goals. In early 2021 Governor Jared Polis’ office in Colorado 
released a roadmap for the state’s goals of reducing greenhouse gas (GHG) production. Within that 

document several steps and important considerations are highlighted that will enable Colorado to meet 

its ambitious climate-change goals. Of particular relevance to this work is the key finding that, 

“protecting, restoring, and enhancing the resilience of Colorado’s natural and working lands is critical for 
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sequestering carbon (Governor Jared Polis’ Office 2021).” The Colorado Water Plan (Colorado Water 

Conservation Board 2015) also identified the need for additional incentives to assist basins in 

implementing agricultural efficiency and conservation practices to support the ecosystem services that 

agriculture can provide. By paying private landowners or other relevant stakeholders for providing the 

public good of carbon sequestration by implementing climate-smart strategies on their land, rural 

economies can gain an additional source of revenue. Owners of land that transition from irrigated 

agriculture to another land use can maintain some income while those that are fortunate enough to 

keep their land in production can add the additional income to their portfolio.   

As the basin takes on the challenges of minimizing the water supply-demand gap and addressing 

climate change, there are ample opportunities to synergize those efforts. One of the most obvious 

synergies is the improvement of soil health associated with carbon sequestering practices on crop and 

rangelands. One study found counties in the United States with higher soil organic matter (i.e., stored 

carbon) had greater yields, lower yield losses, and lower rates of crop insurance payouts under drought 

(Kane et al. 2021). Not only should this motivate crop farmers to improve their soil health, but it also 

points towards the possibility of insurance companies offering incentives for farmers to improve their 

soil health. Many such practices are also associated with greater carbon sequestration and/or storage 

(Denef et al. 2011).   

1.3 Paying Private Landowners for Public Goods 

Economic activities such as industrial manufacturing, oil and gas extraction and production, or 

agricultural production often have unintended consequences which can have positive or negative 

impacts on society (i.e., externalities). The concept of paying landowners or other relevant entities for 

goods or benefits not historically acknowledged by the market, such as the positive externalities of 

certain land uses or land management approaches, or for mitigating some negative externality, is not a 

novel idea (Adhikari and Boag 2013; Farley and Costanza 2010; Van Hecken and Bastiaensen 2010). 

Many efforts have worked to encourage different conservation practices, motivated by the 

understanding that healthy land provides many services from which the public benefits.  

During the 2013 fiscal year the United States government spent more than $6 billion to 

encourage voluntary adoption of conservation practices (Claassen et al. 2014). In Colorado, the Great 

Outdoors Colorado (GOCO) and Conservation Easement Tax Credit programs have been utilized 

extensively to incentivize the acquisition of conservation easements which in return, are thought to 

provide significant returns on investment (ROI) to the public via ecosystem services such as water 

purification, air quality improvements, and more (Seidl et al. 2017). These programs offer financial and 

tax incentives for restricting development on private lands. Seidl et al. (2017) found that Colorado’s two 
primary conservation easement programs had conserved nearly 1.5 million acres of crucial habitat, 

300,000 acres of prime farmland, 270,000 acres of elk severe winter range, 4,100 miles of stream, creek, 

or river frontage, and 19% of the Gunnison Sage-Grouse production areas occurring on private land. 

While acknowledging significant uncertainty in the analysis of ROI from ecosystem services, they found 

that Colorado’s investment of about $1.1 billion (in US$2017) had produced a ROI to the public of 

between $5.5 - $13.7 billion (US$2017), a $4-$12 return for each $1 invested. There is clearly substantial 
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uncertainty in these estimates. Nonetheless, these results suggest a clear benefit returned from the 

investments resulting from Colorado’s conservation programs.  

Economic difficulties arise when it comes to paying private landowners for public goods such as 

carbon sequestration and storage causing some to argue against the commodification of ecosystem 

services. For example, for a market to set a price there must be an interplay between supply and 

demand generated by economic providers and consumers. Without this flow of information generated 

by the interaction of supply and demand it can be very difficult, if not impossible, to identify an 

economically efficient price (Farley and Costanza 2010). Other considerations that complicates such 

programs is the concept of additionality – only paying landowners for services that are in addition to 

what they would have been doing without the payment (Claassen et al. 2014), and misalignment 

between the scale at which a service is produced and at which its benefits are realized (Richardson et al. 

2015). There are many other difficulties such as the facts that markets cannot be evaluated without 

existing in an array of informal and formal institutional arrangements which may not currently be 

established, that markets evolve over time, and asking whether the carbon market will act as a force in 

favor of, or against, poverty alleviation. Despite these challenges, such programs have become common 

around the globe (Adhikari and Boag 2013; Farley and Costanza 2010; Michaelowa et al. 2019; Van 

Hecken and Bastiaensen 2010), largely driven by the lack of a clearly-better option.  

1.4 A Need for Scenario Analysis – Land Use-Land Cover, Ecosystem Services, and ROI 

As the South Platter River Basin evolves as a socio-hydrological system, policy decisions are 

being made that will help determine the future economic, environmental, and societal health of the 

basin. For good decisions to be made good information must be available. If policy makers and entities 

that help inform them (e.g., the Colorado Department of Natural Resources or the CWCB) require an 

expert each time they need to explore the climate change implications of various LULC scenarios then 

cost in and of itself may become prohibitive to desired programs (Paustian et al. 2016; Van Hecken and 

Bastiaensen 2010). What is needed is a robust, yet easy to use tool that does not require expertise. Of 

particular interest is the ability to explore various LULC scenarios (e.g., Fig. S3.2) to allow for the 

prioritization of various policies and decisions.  

Since the price paid in payment for ecosystem services programs, such as those that pay 

landowners for carbon sequestration, is largely driven by policy it is essential to have good estimates of 

the return on investment (ROI) from such payouts. In this way, appropriate decisions can be made that 

will both optimize the public’s ROI while allowing for appropriate prices to be set. One example of the 
benefits of such a tool would be to prioritize what land has the greatest potential to sequester carbon in 

the absence of agriculture and which land has the greatest potential to produce valuable crops. Being 

able to understand which land should be prioritized for what use is essential to help direct limited state 

funds to the most impactful conservation projects and would also help direct federal spending. 
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Fig. S3.2: Four different land-use types in the South Platte River Basin. Images captured with Google Earth. (A) Pivot 

irrigation agriculture, (B) Medium-intensity residential development, (C) Peri-urban low intensity development, (D) 

High-intensity development. Growing populations in urban areas (D) are drying irrigated land (A). What are the 

implications of different land-use decisions with regard to water management and climate change?  

 

2. Climate and Land Use-Land Cover Review 

Many of the early actions surrounding GHGs and climate change were motivated by country, 

multiple country, or global scale efforts. As a result, many of the more relevant methodologies that are 

well-established were developed at the same scale. For international agreements and other actions 

taken at the national or global scales it is important to consider GHG emissions and sequestration at 

those same scales, however it provides little actionable insight to local policy and decision makers that 

would like to incorporate relevant considerations into policy and decisions (Gurney et al. 2015). 

Considering an appropriate spatial scale (e.g., a river basin versus national) is also important to 

understand the relative tradeoffs of various scenarios. If decision makers in the SPRB for example, want 

to understand the tradeoffs between two LULC scenarios they may find the difference to be negligible 

when compared to the most impactful land uses and GHG sources globally. Understanding how carbon 

storage in an alternative LULC scenario compares to global observations is of little interest, while 

understanding how the alternative LULC scenario performs compared to the current LULC scenario is 

critical to making informed local decision. Locally based GHG inventories have also been shown to be 

more accurate than global inventories with differences between global and regional inventories of 

anthropogenic carbon emissions differing by about 20% while global and locally-derived inventories 

were between 50% to 250% different (Gately and Hutyra, 2017), highlighting the need for bottom-up 

versus top-down estimates of GHG emissions for local decisions.  
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2.1 Carbon, Natural and Working Lands, and Soil 

There is a vast amount of literature related to GHG production, sequestration, and storage. A 

quick search using the keywords “greenhouse gases” in the Web of Science results in 87,762 results, 
31,707 open access articles, 6,352 review articles, and 1,385 highly cited papers 

(https://www.webofscience.com/wos/woscc/summary/04d67fc8-021b-4fad-8a07-149346d558bb-

0df31403/relevance/1). With respect to carbon sequestration and storage, there is a significant focus on 

soils (e.g., Alexander et al. 2015; Conant et al. 2017; Entry et al. 2007; Kane et al. 2021; Paustian et al. 

2016, 2019; Smith et al. 2020) due to a few primary reasons. First, within the top meter of soils globally, 

there is an estimated stock of around 5,500 – 8,800 Gt CO2 with the lower range representing about 

three times the total stock of CO2 found in vegetation and twice that found in the atmosphere. Second, 

as a result of cultivation and agricultural management practices it is estimated soils have lost around 

510 – 550 Gt CO2 since agriculture became popular around 8,000 years ago (Smith et al. 2020). A 2018 

systematic literature review concluded that soil carbon sequestration has the potential to sequester 

about 2 to 5 Gt CO2 annually (Fuss et al. 2018). Lastly, using soil to sequester carbon can improve soils, 

make them more resilient to drought and climate change, and improve overall agricultural productivity 

(Fuss et al. 2018; Kane et al. 2021). Essentially, the literature shows that carbon sequestering agricultural 

practices are likely good for agricultural production and the fact that they sequester carbon is a bonus.  

While we have a decent understanding of large-scale carbon storage in soils, extreme spatial 

heterogeneity makes it very difficult to generalize carbon storage based on management practice from 

place to place. Soil carbon storage is location specific, depending on climate, previous and current land-

use/management, soils, and other factors (Fig. S3.3; Ramesh et al. 2019). 

https://www.webofscience.com/wos/woscc/summary/04d67fc8-021b-4fad-8a07-149346d558bb-0df31403/relevance/1
https://www.webofscience.com/wos/woscc/summary/04d67fc8-021b-4fad-8a07-149346d558bb-0df31403/relevance/1
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Fig. S3.3. Schematic diagram of the factors influencing carbon dynamics in soil. (From Ramesh et al. 2019)  

Conant et al. (2017) performed an extensive literature review to synthesize experiments that 

have compared soil carbon storage between a control treatment (e.g., traditional irrigated agriculture or 

an ungrazed grassland) with an ‘improved’ or experimental treatment (e.g., cropland transitioned to 
pasture or a grazed grassland). The studies took place over 37 countries representing a wide variety of 

conditions. They found, “improved grazing management, fertilization, sowing legumes and improved 
grass species, irrigation, and conversion from cultivation all tend to lead to increased soil C, at rates 

ranging from 0.105 to more than 1 MgC/ha-yr.” To see if we could learn more from the data used in that 
study, which the authors made publicly available, I performed a brief data analysis. The data included 

observations from 241 papers, with each study comparing two or more treatments. For example, one 

study may have compared soil carbon in an irrigated crop plot to the soil carbon in a native grassland. 

Values related to soil carbon were reported in terms of storage per acre [tC/ha]. Although, in the related 

paper the authors present results in terms of carbon sequestration [MgC/ha-yr]. First, I plotted the full 

range of all observed stored carbon as boxplots (Fig. S3.4 – left) and then plotted the same data except 

limited to relatively non-humid areas of the USA (Fig. S3.4 – right) which resulted in data from 10 states. 

Then I plotted the data from the USA with the control treatments and “improved” (i.e., test) treatments 
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split (Fig. S3.5 – left). Last, I plotted boxplots of study-wise differences between the control and 

“improved” treatments, with positive values representing better performance by the “improved” 
treatment and negative values representing better performance by the control treatment (Fig. S3.5 – 

right). Boxplots were used because they allow for an easy comparison between treatments.  

The range of values of observed carbon storage per area is larger when studies from around the 

globe are included (Fig. S3.4 – left) compared to studies from more similar climatic and geographic areas 

(Fig. S3.4 – right). This is potentially simply due to fewer datapoints being included in the plot presenting 

observations from non-humid areas of the USA, but the idea that more similar climatic and geographic 

areas store more similar magnitudes of carbon follows reason (Paustian et al. 2016; Ramesh et al. 2019). 

In Fig. S3.4 we also observe that for four treatments (e.g., shift from ag. to pasture or modified grazing 

intensity) the observed carbon storage per area ranged over three orders of magnitude, highlighting the 

uncertainty in such measurements.  

 

Fig. S3.4. Boxplots presenting carbon storage per area [tC/ha] based on studies around the globe (left) and on 

studies from the USA with humid regions removed (right). Boxplots represent the 25th and 75th percentiles as the 

edges of the box, the 50th percentile (median) as the line lying within the box, and the largest and smallest values 

falling within 1.5 times the interquartile range above the 75th percentile or below the 25th percentile, respectively. 

(Data from Conant et al. 2017)  

Further highlighting the site-specific nature of soil carbon storage, we see that when comparing 

all control treatments with all “improved” treatments (Fig. S3.5 – left) it is very difficult, if not 

impossible, to generalize across locations. On the other hand, if we look at the study-wise differences 

between control and “improved” treatments (Fig. S3.5 – right) the range of observations narrows. For 

example, values of carbon storage per area (Fig. S3.5 – left) for conversion from ag to pasture range 

from near 0 to about 175 tC/ha. In contrast, looking at the study-wise differences of the same treatment 

(i.e., ag to pasture in Fig. S3.4 - right) reveals that lands converted from agriculture to pasture almost 
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always increase in soil carbon storage. Those differences ranged from about 0 to just over 20 tC/ha, 

which is nearly an order of magnitude smaller than the range observed when looking at carbon stored 

per area (i.e., 20 tC/ha vs 175 tC/ha). Looking at the study-wise differences between control and 

“improved” treatments (Fig. S3.5 – right) also shows that many treatments thought to improve (or 

increase) soil carbon do not always perform as expected. Taking the shift from cropland to pasture as an 

example, we see that sometimes soil carbon is increased and other times it is decreased. This 

inconsistent behavior is likely due to differences in soils, climates, and/or previous management or land 

uses (Conant et al. 2017; Olsson et al. 2014; Pouyat et al. 2006; Ramesh et al. 2019). Overall, the data 

from Conant et al. (2017) show us that the differences in observed soil carbon between locations is 

greater than the difference between management approaches. This highlights the difficulty in 

generalizing observations in soil carbon between locations. To minimize uncertainty in scenario 

analysis it may be better to use relative performance of sequestration instead of an absolute 

measure, similar to the COMET planner tool.  

 

Fig. S3.5. Boxplots comparing the overall observations of carbon per area [tC/ha] between the control and 

“improved” treatments in all of the reviewed studies (left) and showing the study-wise differences between the 

control and “improved” treatments (right). Note that CRP = conservation reserve program. (Data from Conant et 

al. 2017)  

2.2 Carbon and Developed Lands 

Due to the vast land area that agriculture occupies compared to urban areas, urban areas have 

received relatively little attention despite their substantial contribution to global GHG production. One 

study in the northeast U.S.A. found that urban emissions accounted for 25 to 85% of all carbon 

emissions in the 13 study states in the northeast U.S., with on-road transportation being the largest 

emitters at state and city levels (Gately Hutyra). The relative contribution of different sectors (i.e., 

electricity production, on-road vehicle emissions, commercial/industrial, non-road vehicle emissions, 

and residential) varied significantly between cities however, pointing to the need for policy specific to 
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each individual urban area. There is a strong push for compact urban form as a more sustainable 

development option (Artmann et al. 2019), but understanding the climate change implications of urban 

areas requires inclusion of considerations that reach far beyond a city’s boundaries. One study found 
that greater than 70% of CO2 emissions related to goods consumed within the cities of Beijing, Shanghai, 

and Tianjin, China were produced outside of city limits (Feng et al. 2014).  

Other than more technological solutions that can improve efficiency of energy intensive 

processes or directly filter/capture GHG emissions, whether a city is a net source or sink of biogenic GHG 

(e.g., GHG produced to land-use change or sequestered by vegetation) depends on how a city is 

developed and managed. For example, with proper management of greenspaces the emissions 

produced by land-use change can be offset by vegetation and greenery (Milnar and Ramaswami 2020). 

Urban trees can play an important role in managing GHGs in urban areas. A study in 10 U.S. cities found 

carbon storage in urban trees ranged from 46.9 tC/ha in Sacramento to 5 tC/ha in Jersey City and that 

annual carbon sequestration varied from 150 +/- 30 kg/ha to 940 kg/ha (Nowak and Crane 2002). 

Another study across 28 U.S. cities estimated the total tree carbon storage in U.S. urban areas to roughly 

643 million tonnes with an annual sequestration rate of roughly 25.6 million tC (about 0.28 kgC/m2 of 

tree cover) with the most influential factors being tree diameter distribution, tree density, and to a 

lesser extent, species composition (Nowak et al. 2013). Even if the carbon sequestration and storage 

provided by urban areas is relatively small compared to the vast areas occupied by natural and working 

lands, climate change is a problem that will require an “all of the above” approach, so urban areas must 
be considered (Pacala and Socolow 2004; Paustian et al. 2016). 

 

3. Carbon Sequestration Valuation 

 To assist with policy decisions, quantifying the ROI from carbon sequestration/GHG mitigation is 

highly desirable. The vast majority of efforts attempting to so consider the ROI to be the social cost of 

carbon (SCC) avoided. That is to say, if sequestering a ton of carbon today avoids $200 of social damage 

(e.g., property destruction or loss of national or global GDP) then the ROI of sequestering one ton of 

carbon is taken to be $200. Quantifying a value for the SCC includes extensive uncertainty and is a highly 

debated topic (Drupp et al. 2015; Interagency Working Group 2013; Pindyck 2019; Plummer 2009; Ricke 

et al. 2018). There are many ways to approach to this challenge. The Natural Capital Project’s InVEST 

carbon model takes a simple but well-accepted approach (Sharp et al. 2020) so I use it as an example 

here.  

3.1 A Valuation Formulation 

Data requirements for valuating carbon storage and sequestration in the InVEST carbon model 

and many other approaches include price per metric ton of carbon, the market discount in price of 

carbon, and the annual rate of change in the price of carbon (Sharp et al. 2020). Price per metric ton of 

carbon is based on the social damage avoided as discussed above. The market discount in price of 

carbon refers to society’s preference for present benefits over future benefits. The annual rate of 
change in the price of carbon is an input used to capture how the value of carbon sequestration may 

change over time based on the damages caused by climate change. Setting the annual rate of change to 

https://naturalcapitalproject.stanford.edu/
https://invest-userguide.readthedocs.io/en/latest/carbonstorage.html
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a value greater than 0% means you assume the societal value of carbon sequestered today is greater 

than the value of carbon sequestered in the future (Sharp et al. 2020). For example, it could be argued 

that sequestration has greater value now because sequestration of the same amount of carbon now 

compared to later may have a greater impact on climate change. Discount rates can be considered in 

different ways with some combining the market discount and annual rate of change for example 

(Pindyck 2019; Ricke et al. 2018) with others suggesting a dynamic discount rate that changes with time 

(Ricke et al. 2018). Discounting is consistently shown to be one of the largest sources of the differences 

in estimates of SCC (Ricke et al. 2018). Both market discount in the price of carbon and the annual rate 

of change in the price of carbon can be set to 0 in the InVEST model. Ultimately, the value of 

sequestered carbon over time for a given parcel, 𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞𝑥 (i.e., LULC pixel) is calculated as,  𝐸𝑞. 1.     𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞𝑥 = 𝑉 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑥𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡  ∑ 1(1+ 𝑟100)𝑡(1+ 𝑐100)𝑡𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡−1𝑡=0  , 
where 𝑉 is the price per metric ton of elemental carbon (not CO2), 𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑥  is the amount of carbon 

sequestered, 𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒  and 𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡  are the future and current years being simulated, respectively, 𝑟 is 

the market discount in price of carbon [%], 𝑡 is the time elapsed since the current year being simulated, 

and 𝑐 is the annual rate of change in the price of carbon [%]. It is important to note that this approach 

assumes a constant carbon sequestration rate over time but  a constant rate is unlikely to be observed 

in reality  (Sharp et al. 2020). Due to this assumption though, this formulation of the value of 

sequestered carbon lends itself to accepting outputs such as those provided by COMET-Planner 

(seqrate; e.g., amount of carbon sequestered per year). By simply replacing, 
𝑠𝑒𝑞𝑢𝑒𝑠𝑡𝑥𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡, with the 

carbon sequestration rate provided by COMET-Planner, 𝑠𝑒𝑞𝑟𝑎𝑡𝑒, we arrive at the following formulation 

of the value provided by scenario being considered (𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞; e.g., conversion of irrigated agriculture to 

native grassland).  𝐸𝑞. 2.       𝑣𝑎𝑙𝑢𝑒𝑠𝑒𝑞 = (𝑉 ∗ 𝑠𝑒𝑞𝑟𝑎𝑡𝑒 ) ∑ 1(1+ 𝑟100)𝑡(1+ 𝑐100)𝑡𝑦𝑟𝑓𝑢𝑡𝑢𝑟𝑒−𝑦𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡−1𝑡=0  , 
with 𝑡 now being the total number of years to be included in the valuation. For example, if we wanted to 

estimate the value of carbon sequestration provided if 640 acres of land were converted from irrigated 

agriculture to a native grassland today, we must decide how far into the future we want to assume the 

constant sequestration reasonably applies? Lands will eventually reach an equilibrium with regard to 

carbon storage, where the net amount of carbon being sequestered is essentially zero (i.e., the 

amount being sequestered is equal to the amount being released; Entry et al. 2007).  

3.2 Review of Valuation Input Variables  

Deciding how far into the future to consider when estimating the value from carbon 

sequestration or GHG mitigation provided by a LULC scenario is not the only complicating factor. Due to 

sources of uncertainty related to nearly every variable used to quantify the SCC the resulting uncertainty 

is extreme. Ricke et al. (2018) estimated the global social cost of carbon (GSCC) by considering possible 

socioeconomic pathways (SSP), possible climate futures (i.e., representative concentration pathways-

RCP), the potential negative impacts of climate change on the economy (i.e., using damage functions), 
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and various discounting approaches. The resulting estimates of the GSCC are presented in Fig. S3.6 

where the extensive uncertainty in the estimates can be clearly seen to range over three orders of 

magnitude (color bars represent the 66% confident intervals).   

 

 
Fig. S3.6. Global SCC in 2020 under various assumptions and scenarios. Median estimates and 16.7% to 83.3% 

quantile bounds for GSCC under SSPs 1–5, and RCPs 4.5, 6.0 and 8.5. For each SSP, the darker colors indicate the 

SSP–RCP pairing with a superior consistency. The values displayed assume growth-adjusted discounting with a 

pure rate of time preference of 2% per year and elasticity of marginal utility substitution (μ) of 1.5. Supplementary 

Fig. S3.3 in the original document compares these results with fixed discounting (rate of 3%). Colored bars 

represent the 66% CIs. SSP = socioeconomic pathway scenarios as based on: O’Neill, B. C. et al. A new scenario 
framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 

387–400 (2013). RCP = Representative Concentration Pathway as accepted by the IPCC. BHM = Burke-Hsiang-

Miguel damage function (a model used to estimate social cost of carbon). DJO = Dell-Jones-Olken (another model 

used to estimate social cost of carbon). This graph and footnote are taken directly from Ricke et al. (2018). 

 

 

The Interagency Working Group on Social Cost of Greenhouse Gases (IAWG; Interagency 

Working Group 2013) considered 150,000 estimates from 10,000 simulations for discount rates of 2.5, 3, 

and 5 percent. Those estimates were based on average SCC values produced by three integrated 

assessment models and the 95th percentile estimate which assumes an unlikely but highly costly 

scenario (i.e., close to worst-case scenario). The full distribution of the results for the three discount 

rates are shown in Fig. S3.7 and. Average values of the SCC were $12, $42, $62, and $123 for the 5%, 3%, 

2.5%, and the close to worst-case scenario, respectively. Like results of Ricke et al. (2018) discussed 

above, these results also show high uncertainty in estimates of the SCC. The range of values estimated 

by the IAWG is much narrower than those arrived at by Ricke et al. likely reflecting their lack of 

consideration of uncertainty related to factors other than discounting. 
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Fig. S3.7. Frequency distribution of SCC estimates for 2020. “Presents the frequency distribution of the SC-CO2 

estimates for emissions in 2020 for each of the three discount rates. Each of these distributions represents 150,000 

estimates based on 10,000 simulations for each combination of the three models and five socioeconomic and 

emissions scenarios.16 In general, the distributions are skewed to the right and have long right tails, which tend to 

be even longer for lower discount rates. To highlight the difference between the impact of the discount rate on the 

SC-CO2 and other quantified sources of uncertainty, the bars below the frequency distributions provide a 

symmetric representation of quantified variability in the SC-CO2 estimates conditioned on each discount rate. The 

full set of SC-CO2 results through 2050 is available on OMB’s website. This may be useful to analysts in situations 
that warrant additional quantitative uncertainty analysis (e.g., as recommended by OMB for rules that exceed $1 

billion in annual benefits or costs). See OMB Circular A-4 for guidance and discussion of best practices in 

conducting uncertainty analysis in RIAs.” Based on integrated assessment models (IAMs; DICE, FUND, and PAGE) 

which are used by the U.S. gov’t to estimate the social cost of carbon (CO2). (Interagency Working Group 2013) 

 

 

 Pindyck (2019) took a different approach and surveyed 386 experts including 113 economists 

and 220 climate scientists with 170 of those experts being from North America, 158 from Europe and 30 

from developing countries. The range of SCC values resulting from the expert surveys exhibited large 

uncertainty and was between that of Ricke et al. (2018) and the IAWG (2013) (about one third of 

responses were between $0 and $100, several were spread across $100 and $700, and the mean was 
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$291; Fig. S3.8). The primary source of uncertainty though, was related to the potential impacts of 

climate change and not the discount rate which was help constant at 3% for the survey questions. Also 

seen if Fig. S3.8 is a gamma function fit to the data as a probability distribution function (pdf; red line) 

that best fit the responses of all surveyed experts. Using a pdf is one way in which uncertainty may be 

included in estimates of the SCC and ROI from various LULC decisions. There was a marked difference in 

the values provided by economists and climate scientists (Fig. S3.9). Climate scientists tended to suggest 

much higher SCC (average of $316.3) than economists (average of $173.7), but both the averages and 

distributions of estimates from North America and Europe were very similar with averages of $284.5 and 

$284.2, respectively.   
 

 

 
Fig. S3.8. The social cost of carbon based on an expert survey of 386 experts. (Pindyck 2019)  
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Fig. S3.9. The social cost of carbon based on surveys of economists (left) and climate scientist (right). (Pindyck 

2019)  

 

 

 

Estimates of the SCC, discount rates, and time preference rates from various scholarly literature 

are presented in Table S3.1. Estimates of the SCC in the table reflect averages or likely ranges opposed 

to the full range of estimates found in each study. The range of the SCC was from $12 to $300. The range 

of discount rates was 1% to 7% with 2.5, 3, and 5 being the most common. Time preference ranged from 

0% to 6% with values between 1% and 2% being the most common. Inclusion of the full range of values 

presented in Table S3.1 when estimating the ROI from climate-related ecosystem services will produce 

more robust estimates, but the range of estimates values will be larger.  

 
Table S3.1. Estimates of the social cost of carbon (SCC), discount rate, and time preference for estimates of ROI 

Notes 

Social cost of 

carbon Units 

Discount Rate 

[%] 

 Time Preference 

[%] 

Citation (See articles for 

their references) 

"Conservative estimate" 21 US$/ton CO2 7 0 Bagstad et al. 2012 

"Non-conservative 

estimate" 85 US$/ton CO2 1 6  Bagstad et al. 2012 

India (66% C.I.) 86 ($49-$157) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

U.S.A. (66% C.I.) 48 ($1-$118) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

Saudi Arabia (66% C.I.) 47 ($27-$86) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

Brazil (66% C.I.) 24 (14–41) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

China (66% C.I.) 24 (4–50) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 

United Arab Emirates 

(66% C.I.) 24 (14–48) US$/ton CO2 

3, 5, and growth 

adjusted 1, 2 Ricke et al. 2018 
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USEPA estimate 12 US$/ton CO2 5  1 IAWG 2013 

USEPA estimate 42 US$/ton CO2 3  1 IAWG 2013 

USEPA estimate 62 US$/ton CO2 2.5  1 IAWG 2013 

SCC Survey of 386 

experts 80 - 300 US$/ton CO2 NA NA Pindyck 2019 

SCC Survey w/outliers 

trimmed 80 - 100 US$/ton CO2 NA NA Pindyck 2019 

SCC 121 US$/ton CO2 2.5  0 Pindyck 2019 

SCC 101 US$/ton CO2 3  0 Pindyck 2019 

SCC 81 US$/ton CO2 4  0 Pindyck 2019 

SCC 65 US$/ton CO2 6  0 Pindyck 2019 

Discount rate only NA NA 

1 - 3 (mean = 

2.25, median = 2) 

mode = 0, mean 

= 1.1%, median = 

0.5% Drupp et al. 2015 

 

4. Scenario Analysis 

4.1 Important considerations in scenario analysis 

 Scenario analysis is a critical tool for making policy decisions. It can provide an estimate of the 

relative performance of one scenario over another. However, for that comparison to be possible, data 

must be available for all scenarios of interest. Having an estimate for only one of the scenarios does not 

provide actionable insight unless it can be compared to the alternative scenarios. Let’s take two 
scenarios for example. In scenario 1 there are 640 acres of irrigated corn being grown and in scenario 2 

those 640 acres are converted to unirrigated grassland. If we know that scenario 2 will provide roughly 1 

Mg C/ha-yr of carbon sequestration, we still have no idea which scenario provides greater sequestration 

and storage unless we can quantify the carbon sequestration and storage provided by the irrigated corn 

as well. This greatly complicates scenario analysis because in almost all cases, carbon storage can only 

be empirically quantified for the existing scenario while one or more scenarios will always be estimates 

based on various methods, such as process-based modeling. However, even empirical approaches, 

which are typically thought of as the gold standard in environmental sciences, can be as or more 

uncertain than process-based models due to limited spatial and temporal resolution of measurements 

(Paustian et al. 2016). Since both approaches are site-specific though, they are likely to produce more 

certain results than benefit transfer methods which are widely applied (Plummer 2009; Richardson et al. 

2015).  

4.2 Benefit Transfer 

Benefit transfer is a widely applied methodology for assessing how policy decisions may impact 

the value provided by ecosystem services (Johnston and Rosenberger 2009; Plummer 2009; Richardson 

et al. 2015; Troy and Wilson 2006). It refers to the application of existing information for a purpose 

and/or at a location which is different than the purpose or location for which the information was 

originally collected. Here I provide a relatively extensive discussion of benefit transfer methodology 

because it is widely applied in the context of policy, ecosystem services, and valuation due to the 
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relative ease and speed with which it can be applied, and there are highly relevant examples from 

Colorado. 

Example applications of benefit transfer studies applied to LULC and ecosystem services include 

the works of Sargent-Michaud (2009) and Seidl et al. (2017) who estimated the ROI from conservation 

easement programs in Colorado and of The Trust for Public Land (TPL; 2016), who estimated the ROI 

from conservation programs in Virginia. Each of these studies used National Land Cover Dataset (e.g., 

Dewitz 2019) landcover types to delineate ecosystems. Then they performed literature review and 

assigned a value per acre [$/acre] for ecosystem services provided by each ecosystem (i.e., landcover 

type). Once a value per acre was identified, it was multiplied by the acreage of each ecosystem type to 

arrive at an overall estimate of ROI. Benefit transfer methodology has the huge advantage of 

convenience, but also has many potential limitations with respect to accuracy (Plummer 2009; 

Richardson et al. 2015).  

Such studies that do not consider uncertainty in ROI estimates should be interpreted with great 

care. For example, TPL found that for each $1 invested there would be a $4 ROI through 2024. This is an 

overly specific value, and it is not possible that such an uncertain analysis can generate such a specific 

value. The authors (TPL 2016) acknowledge that there can be significant uncertainty in benefit transfer 

studies but conclude that the lack of better options justify the application of the methodology. This gets 

at the core of the state of ecosystem service ROI methodologies – there do not seem to be any great 

options for quantifying ROI with accuracy so those performing such studies are choosing what they 

perceive to be the least-bad option (Johnston and Rosenberger 2009; Plummer 2009; Richardson et al. 

2015).  

Similarly, Sargent-Michaud (2009) arrived at an estimated ROI of $6 for every $1 invested – an 

overly specific estimate. In their work they used work by Ingraham & Foster (2008) for estimates of ROI 

from deciduous forests, evergreen forests, mixed forests, scrub/shrubs, and open water. All but the 

open water ecosystem type were stated as providing carbon sequestration, among other services. 

Ingraham and Foster’s work however, used few studies to arrive at their estimates of carbon 
sequestration and ROI. They state, “We recognize that the number of studies used is small and may 
therefore lead to large errors in our resulting value estimates … The intent of the study was not to 
derive an inarguably accurate or precise value of the ecosystem services provided … rather to offer a 
first approximation to be used as a reference point for policy and management decisions [at the national 

scale], and to demonstrate that the total value is likely much higher than values based solely on 

recreational use.” After extensive literature review, I am not convinced we have moved beyond this 
“first approximation”.  

Where Sargent-Michaud propagated the uncertainties included in the work Ingraham and 

Foster, Seidl et al. included uncertainty in their estimates of ROI from conservation easements, by 

including estimates from both TPL (2016) and Sargent-Michaud (2009) which is undoubtedly better than 

performing an analysis that arrives at an overly specific value of ROI. While uncertainty was included in 

the analysis the use of values from the two previous studies mentioned highlights how uncertainty can 

easily be propagated through subsequent studies that use previously derived values. The values from 
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TPL (2016) were derived specifically for Virginia, most of which is considered to be a humid subtropical 

climate (https://learn.weatherstem.com/modules/learn/lessons/148/07.html) meaning that 

transferring those values to Colorado, which is not a humid subtropical climate (much of the state is 

considered cold semi-arid) is likely to produce poor estimates of ecosystem services. On the other hand, 

using estimates from Sargent-Michaud relies on a source that didn’t include uncertainty, and is based on 
yet another study that also did not consider uncertainty in their estimates. As noted by Sargent-

Michaud, “It is important to note that benefit transfers can only be as accurate as the initial study.” 

Essentially, each of these three efforts represents what should be thought of as rough first 

estimates of ROI from ecosystem services. Such estimates are necessary as the science progresses and 

are not entirely inappropriate for the applications for which they were performed. Specifically, using the 

average of observed/simulated values to estimate the ROI from larger scale areas (e.g., all of conserved 

land in Colorado) is likely to produce more reasonable results than applying the same values to plots of 

agricultural land, assuming the average value was derived from observations across the same or similar 

spatial scale at which the analysis is performed (Richardson et al. 2015). For an individual plot, the actual 

carbon sequestration, for example, may range anywhere from the maximum observed to the minimum 

observed (or beyond). Therefore, when looking to perform scenario analysis at smaller scales (e.g., 100’s 
of acres) to help prioritize what land to conserve or keep in production, finer resolution information is 

needed.  

Furthermore, it is generally important to know who will pay, who will produce the benefit, and 

who will benefit when paying for ecosystem services or performing a benefit transfer in order to better 

understand the socioeconomic implications and appropriateness of the payment or transfer (Johnston 

and Rosenberger 2009; Plummer 2009; Van Hecken and Bastiaensen 2010). With respect to paying for 

carbon sequestration (e.g., via a conservation easements) the taxpayers of the relevant government 

body (e.g., state or federal) are the ones who pay, in the case of working lands the farmers or 

landowners can be thought of as producing the benefit, and the global population is the party that 

benefits. However, if the landowner is using the land to farm, then they too may directly benefit from 

improved production.  

Despite its limitations, the benefits of convenience, speed, and low costs make a benefit 

transfer approach the most appropriate methodology for low-cost and timely estimates of ROI from 

ecosystem services such as carbon sequestration. What is currently missing though, is adequate 

quantification of the services provided by various LULC types (Johnston and Rosenberger 2009; Paustian 

et al. 2016; Plummer 2009; Richardson et al. 2015). Without such values it is not reasonable to expect 

accurate estimates of ROI from climate-related ecosystem services provided by various LULC scenarios. 

Caution should be taken to avoid use of poorly performed benefit transfers. As Richardson et al. (2015) 

state, “Frequent use of highly flawed welfare estimates in the policy process may affect the policy 
relevance of the whole field, which would have adverse consequences for society's wellbeing by 

undermining improved natural resource policy making.” This risk can be avoided if guidelines and 
recommendations for benefit transfer for ecosystem service valuation are followed, allowing benefit 

transfer to continue to make an increasingly important contribution to natural resource management.” I 
have summarized important considerations and basic guidelines for benefit transfer in Table S3.2 below. 

https://learn.weatherstem.com/modules/learn/lessons/148/07.html
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Table S3.2. Considerations in benefit transfers. Table is primarily based on three review papers.  

Important Consideration 

Citation(s) (These are review papers. Please see 

the papers themselves for more specific 

references) 

From an economic perspective, value is not intrinsic to a particular site or ecological system. It must be 

evaluated in the context of specific biophysical and human characteristics. Plummer 2009 

There is a divergence between benefit transfer practices recommended in scholarly literature and those 

applied in policy 

Richardson et al. 2015; Johnston and 

Rosenberger 2010; Plummer 2009 

This divergence may be largely attributed to the scattered nature of relevant literature and to the need 

for decision makers to have quick and cheap methods, while scholarly work is tending towards more 

costly and time-consuming methods in the name of accuracy 

Richardson et al. 2015; Johnston and 

Rosenberger 2010; Plummer 2009 

Poor application of benefit transfer methodologies could undermine the inclusion of ecosystem services in 

policy considerations. Biased estimates can lead to badly misguided policy. Richardson et al. 2015; Plummer 2009 

Benefit transfer is never the best choice, but if original valuation of the site(s) of interest is not possible, 

then benefit transfer is a better option than qualitative judgement. Richardson et al. 2015 

Collection of original data/performance of original valuation is time consuming and expensive inhibiting 

application in policy decision making that requires timely and affordable information 

Richardson et al. 2015; Johnston and 

Rosenberger 2010; Plummer 2009 

Benefit transfer is appropriate in cases where greater precision of estimates would not greatly alter the 

results. Benefit transfer will never be able to replace primary study/data collection. 

Richardson et al. 2015; Johnston and 

Rosenberger 2010; Plummer 2009 

There are three approaches to unit value transfers (e.g., $/ha): 

1. Use an estimate from a single source that is very similar to the one of interest in all ways 

2. Apply an average value from several studies 

3. Use administratively approved values 

An alternative approach is to use a willingness to pay function or a benefit transfer function (but these can 

be much more time and resource intensive) Richardson et al. 2015 
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The more closely the benefit transfer meets the following criteria, the more valid it will be: 

- Based on adequate data 

- Sound economic method 

- Correct empirical technique 

- The nonmarket commodity valued at the study and policy sites (AOI) are identical 

- The populations affected by the nonmarket commodity at the study and policy sites have identical 

characteristics 

- Similarity between sights is of the utmost importance (e.g., populations, resources, markets, and other 

site attributes 

- Assignment of property rights at both sites must lead to the same theoretically appropriate welfare 

measures. 

- Full and consistent reporting of information on the current environmental quality of the sites 

- Use objective, quantitative measures of quality 

- Use consistent definitions and measurements of demographic data 

- When necessary, use average values of study-specific variables 

- Distinguish between intermediate ecosystem services and final ecosystem services for valuation (e.g., 

farmers benefit from increased soil quality and global population benefits from mitigated climate change) 

- Define ecosystem services in benefit specific terms 

- Care should be taken to not double count benefits  

- Particular attention should be given to: 

        · scope (i.e., non-constant marginal value of ecosystem services) 

        · geographic scale (i.e., values estimated at one scale cannot be expanded to another scale via a 

convenient index of area such as hectares or acres) 

        ·  substitutability (i.e., that the value in the policy location can be substituted with value from the 

study location) 

- Transfers of measures of economic value should be based on consideration of the entire original 

valuation study context 

- Temporal components of transfers are important to consider (i.e., comparing studies from very different 

times may be difficult to advances in methodologies and older studies may no longer be appropriate) 

Richardson et al. 2015; Johnston and 

Rosenberger 2010; Plummer 2009 

Use of measures of central tendency (e.g., average) may be preferable to point estimates in two cases: 

1. There are multiple sites meeting the criteria for a valid transfer 

2. No studies meet all criteria for an ideal transfer. Using average values may cancel out some biases of 

individual studies Richardson et al. 2015 

Greater similarity (i.e., correspondence) between the original study site and the policy site of interest 

typically leads to smaller transfer errors. Site characteristics are only one of many considerations though, 

so site similarity in and of itself is not enough to guarantee a valid benefit transfer. 

Richardson et al. 2015; Johnston and 

Rosenberger 2010; Plummer 2009 
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It is the role of both practitioners and policymakers to understand the role and limitations of benefit 

transfer and to communicate what they are. Both should be aware that careless benefit transfers can 

result in highly biased estimates and may hinder the continued integration of natural resources values 

into decision making. Richardson et al. 2015 

Programs such as InVEST and ARIES should be used only as a first-cut, order-of-magnitude value estimate. 

InVEST: 

https://naturalcapitalproject.stanford.edu/soft

ware/invest-models/carbon 

 

ARIES: 

https://aries.integratedmodelling.org/carbon-

sequestration-storage/ 

 

Richardson et al. 2015 

The most effective way to reduce transfer errors is to build a better collection of primary ecosystem 

service valuation studies that lend themselves to benefit transfer. Agencies should strategically fund 

original studies whose purpose is to fill priority gaps in the literature for use in benefit transfer. Richardson et al. 2015; Plummer 2009 

Greater interaction between researchers and policy makers could reduce some limitations in benefit 

transfer Richardson et al. 2015 

Appropriate transfers require an understanding of the underlying quantities and qualities (i.e., definitions 

of non-market goods) at both study and policy sites. 

Richardson et al. 2015; Johnston and 

Rosenberger 2010; Plummer 2009 

Some bias is inevitable in benefit transfers as implicit assumptions are rarely satisfied. Two primary 

implicit assumptions are: 

1. The underlying body of valuation literature is a random, unbiased sample of the population of empirical 

estimates and  

2. Empirical estimates provide an unbiased representation of true, underlying resource values Johnston and Rosenberger 2010 

If biases can be identified, then practitioners should attempt to minimize them or explicitly account for 

them Johnston and Rosenberger 2010 

In identifying the extent of the market for any given benefit transfer, the practitioner must consider two 

related questions: 

1. What population is assumed to have a value for the environmental change in question? 

2. What are the expected patterns of preference or value over the spatial extent of the market (i.e., does 

the willingness to pay change systematically over space?) Johnston and Rosenberger 2010; Plummer 2009 

Benefit transfers over long time horizons are less certain despite inclusion of methods that attempt to 

address them such as discount rates. Johnston and Rosenberger 2010 

There is a recognition that improved reporting, documentation and dissemination of study methods and 

data would provide a means to conduct more valid transfers, but academic incentives are misaligned with 

this need Johnston and Rosenberger 2010 
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4.3 Spatially Explicit Mapping of Ecosystem Services 

Although availability of data is limiting, methodology to allow for spatially explicit scenario analysis 

related to LULC and carbon sequestration and storage (or other ecosystem services) mapping is 

available. For such analysis I recommend referencing Troy and Wilson’s (2006) suggested methodology 

for mapping ecosystem services (Fig. S3.10). Using existing software such as the Natural Capital Project’s 
Integrated Valuation of Ecosystem Services tool (Sharp et al. 2020) along with Troy and Wilson’s 
suggested methodology for mapping carbon sequestration and storage and the value it provides could 

provide a relatively quick and affordable means of performing policy relevant scenario analysis.  

I do highlight again however, that the lack of standardized and reliable data at appropriate spatial 

and temporal scales is a significant barrier. Using the methodologies suggested here without 

appropriate estimates of carbon storage and/or sequestration related to the LULC types of interest in 

the analysis should be avoided. Richardson et al. (2015) wrote, “… In other words, the flip side of ‘some 
number is better than no number’ is that “bad numbers may drive out all numbers.’” I echo their 
cautions – if we abuse the methods presented here, providing flawed estimates of the ROI from climate-

related ecosystem services may permanently damage the confidence that the public and policy makers 

have in our ability to meaningfully include natural resources and ecosystem services in policy decision. 

Such a loss in confidence could undermine the inclusion of such considerations and science-based 

decisions in policy making. The proposed methodology here should further motivate the notion that 

funding agencies should be directing funds to original studies aiming to fill priority knowledge gaps 

related to benefit transfer, which is the largest bottleneck to quickly, easily, and confidently estimating 

the ROI from various LULC scenarios. 
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Fig. S3.10. Suggested methodology for mapping of ecosystem services. Adapted from Troy and Wilson’s (2006) 
Mapping Ecosystem Services Methodology  

1. Define the area of interest. 

a. The area of interest must be carefully defined because sometimes small adjustments to 

the boundaries of the area can have large impacts on the estimated value provided by 

the ecosystem service of interest.  

2. Investigate GIS data of the area of interest to begin developing a LULC typology that is of 

relevance to the analysis.  

a. That is to say, identify LULC types that provide enough detail to perform meaningful 

analysis.  

b. As part of this stage, some preliminary literature review may be conducted to identify if 

needed information is available. Needed information, for example, may include the 

potential carbon storage of a given LULC. 

3. In-depth literature search and analysis.  
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a. Empirical studies from similar contexts are collected and analyzed to extract valuation 

coefficients (e.g., value of the potential carbon storage per area [$/ha]) or other 

relevant coefficients (e.g., potential carbon storage per area [tC/ha]) of the different 

LULC classes. 

b. Suggested data to be collected includes the ecosystem services of interest (e.g., carbon 

sequestration and storage), the LULC type to be valued, the valuation method used, the 

year of the study, and the per area value estimates, among other attributes. 

4. New LULC map creation. 

a. Combine relevant data layers to create a final LULC map. 

5. Total value calculation 

a. Assuming the data was located in step 3, after assigning each mapping unit (e.g., raster 

cell) a LULC type, then the value per area can be multiplied by the area of each mapping 

unit generating an estimated value for each mapping unit. 

b. Similarly, the total value provided by a given landcover type can be calculated by 

summing the values provided by each mapping unit classified as that landcover type. 

c. If the value being transferred is not a monetary value, then following the previous two 

steps (5a and 5b) there will be a need to multiply the transferred value by a unit 

monetary value (e.g., $/tC). 

6. Geographic summaries 

a. Summaries of the results can be aggregated to geographic extents of interest, such as 

towns, counties, watersheds, or other areas of interest. 

7. Scenario analysis 

a. Different LULC scenarios can then be investigated by changing the LULC types associated 

with the mapping units. For example, if an agricultural area is under consideration for 

development, then those mapping units representing the area can be changed to high-

intensity development.  

There may be a need to iterate between steps 2 and 3 in order to arrive at a LULC typology that 

is specific enough to allow for differentiation between carbon sequestration/storage related to the 

different LULC types, while not being too specific such that relevant data is not available. This step also 

provides an opportunity for semi-automating the process by using clustering methodologies (e.g., k-

means clustering) to automatically generate unique LULC types. There would still need to be input from 

the user to ensure the suggested groups are appropriate for the policy analysis.  

 

Of these seven suggested steps there are two that I found to be limiting for the easy 

implementation of such analysis. The first and most significant limitation was my inability to locate 

estimates of the carbon storage potential of different LULC types that were appropriate for benefit 

transfer. This is discussed in more depth in the previous section. The second notable limitation was 

finding good literature about how to value the social benefits of the sequestered and stored carbon. In 

fact, as I performed the literature review, I found these limitations to be a common occurrence for other 

researchers as well (Bagstad et al. 2012; Paustian et al. 2016; Plummer 2009; Troy and Wilson 2006). 
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 It is worth noting that the InVEST carbon model, which lends itself to the methodology 

suggested here, accepts inputs of four carbon pools for each LULC type at the starting and end times of 

the simulation. In the face of such extensive uncertainty this seems like an overparameterization of the 

carbon model, and other than bookkeeping, the four carbon pools do not play an important role in the 

overall carbon sequestration values. As demonstrated by the Conant et al. (2017) data, the uncertainty 

associated with overall carbon storage for a given LULC type is more uncertain than the relative 

improvement in net carbon sequestration as one land use is converted to another. This suggests better 

options may be approaches such as the one taken in the COMET-Planner tool that assumes a constant 

sequestration rate over time as one land use is converted to another (e.g., irrigated agriculture 

converted to grazing grasslands). 

 

5. Conclusions 

  Growing populations in the SPRB are driving growing demands for land and water. With some 

land being developed and other land converting uses due to the transfer of water from irrigated 

agriculture to municipal uses, important policy decisions are being made that will help shape what land 

is conserved, dried, developed, or managed in other ways. For good policy decisions to be made there is 

a need for quick, easy, and reliable assessment of various LULC scenarios and the resulting ecosystem 

services (or disservices) that may occur. This report focused on the ecosystem service of carbon 

sequestration and storage with an emphasis on natural and working lands.  

 There is methodology available that allows for reasonably quick, easy, and reliable LULC 

scenario analysis (e.g., InVEST) but there are significant limitations to said methodology being 

implemented. This methodology depends heavily on benefit transfer - the ability to identify existing data 

that allows certain carbon storages or sequestration rates and their related value to be transferred from 

one scenario (e.g., climate, ecoregion, and LULC type) to another scenario that is of interest to policy 

(e.g., conversion of irrigated agriculture to a native grassland). Benefit transfer is widely applied, but still 

controversial. The methodology is very easy to implement which has led to its applications in 

inappropriate situations. This widespread application to inappropriate conditions has led to calls to use 

extreme caution as to not abuse the methodology and undermine the inclusion of ecosystem services in 

policy making (Plummer 2009; Richardson et al. 2015; Troy and Wilson 2006). 

 Nearly all aspects of quantifying the ROI from climate-related ecosystem services include 

significant uncertainty. The amount of biogenic carbon stored by various land uses is highly variable with 

many factors driving the potential of carbon to be stored. GHG emissions are perhaps even more 

difficult to generalize as they depend heavily on development form, industrial processes, and other 

attributes that are difficult, if not impossible, to generalize. Even if estimates of carbon sequestration, 

storage, and/or emissions are made there is still large uncertainty in estimating the value of a 

sequestered ton of carbon, for example. The ROI or value of sequestered and stored carbon or mitigated 

GHG is typically taken to be the social cost of carbon avoided. While appropriate, this definition leads to 

uncertainty related to the potential effects of climate change and the monetary value associated with it 

https://naturalcapitalproject.stanford.edu/software/invest
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as well as uncertainty related to economic discounting and the overall formulation of value (i.e., what 

variables are included, and which equations are used).  

 Many efforts focusing on climate-related ecosystem services have focused at large scales (e.g., 

state or national). When considering policy decisions at the scale of the SPRB or even smaller areas 

within the basin however, many of the approaches and the data used in analyses at larger scales are 

likely not appropriate. When considering spatially explicit scenario analysis at the plot scale (e.g., 100’s 
of acres or smaller), a higher resolution of temporal and spatial data is needed. Until that data has been 

collected, applying benefit transfer must be advised against. More appropriate methods include those 

used in the COMET-Planner tool. The COMET-Planner tool is based on extensive literature review by 

experts and provides county specific estimates of the relative improvement in carbon sequestration (or 

reduction in GHG production) between two scenarios. By considering the change of one land use type 

(e.g., irrigated agriculture) to another (e.g., natural grassland), variables such as climate, which have 

significant implications for total soil carbon storage, are removed. Furthermore, the COMET-Planner tool 

only considers well documented scenarios related to natural and working lands and does not attempt to 

consider the tradeoffs of converting natural or working lands to developed lands. Comparing the overall 

carbon budgets of natural and working lands with the budgets of developed lands is desirable and 

necessary for robust tradeoff analysis of LULC scenarios, however, the limited data availability and 

inability to generalize the carbon budgets related to developed lands make this inappropriate at this 

time. As more data becomes available then tradeoff analysis will become increasingly easy, accurate, 

and appropriate. 

5.1 Challenges and Cautions 

 There are many challenges and cautions related to understanding the tradeoffs between LULC 

scenarios and the associated climate-related ecosystem services. Here I provide bullet points 

highlighting some of those challenges and cautions.  

• Although technologies to quantify carbon concentrations in soils exist and have been used for 

decades, there is a problematic lack of standardization across measurement efforts, applied 

methods can be expensive and time consuming while results often suffer from inhibiting noise, 

and there is extreme heterogeneity in soil carbon stocks so it is difficult to generalize point 

measurements to landscapes (Paustian et al. 2019).  

 

• There is a critical need to standardize urban carbon monitoring and reporting with perhaps the 

most essential need being operational measurement and monitoring (Gurney et al. 2015).  

 

• Many studies and/or tools looking to perform or enable carbon sequestration scenario analysis 

related to LULC, rely on benefits transfer which can be easily misapplied resulting in invalid and 

erroneous estimates. Abusing benefit transfer by applying it in scenarios where adequate data is 

not available (in quality and/or quantity) may undermine the inclusion of ecosystem services in 

policy decisions (Plummer 2009; Richardson et al. 2015). 
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• The condition of additionality seems to run the risk of paying landowners and/or managers that 

have historically implemented practices that are unhealthy for the land while not paying those 

have implemented practices that are healthy for the land.  

 

• Socioeconomic considerations should be included in scenario analysis related to payments for 

ecosystem services and/or conservation. There is a risk of exacerbating socioeconomic 

inequalities so it should always be asked, “who pays and who benefits” (Van Hecken and 

Bastiaensen 2010). 

 

• Landowners must be included in policy decisions and scenario analysis related to payment for 

ecosystem services or conservation. It is not clear that the agrarian communities of Colorado 

which may stand to benefit the most from such programs, are interested in participating in 

them. 

 

5.2 Relevant Questions, Suggestions, and Take-Home Messages 

 During literature review and exploration of tools related to LULC, ecosystem services, and 

scenario analysis several questions and suggestions were identified. Here I provide bullet points with 

some of those questions and suggestions. This list is by no means meant to be exhaustive. 

5.2.1 Questions 

• If additional trees are planted in urban and peri-urban areas, what are the potential synergies 

and tradeoffs between enhanced GHG sequestration and storage and water resources related 

implications (i.e., water demand and potential changes in recharge)? 

 

• Should water used by trees that were planted for carbon offsets or other ecosystem services be 

considered a consumptive use? 

 

• If a landowner receives revenue for services provided by their land, but less revenue than when 

the land was under agricultural production, how is the local economy affected? For example, 

when the land was under production then it likely created jobs and had other benefits to the 

local economy, whereas payments for ecosystem services provided by land do not necessarily 

create jobs. 

 

• Are the landowners living in the SPRB interested in policy that may pay them for conservation 

and/or directly for ecosystem services?  

 

• What is the overall impression of such policies and programs in the agrarian communities where 

they may be implemented? 
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• With respect to payments for carbon sequestration/storage/mitigation, who pays and who 

benefits? There is a misalignment between those who provide the service (i.e., landowners), 

those who pay for the service (i.e., taxpayers within the relevant area), and those who receive 

the benefits of the service (i.e., global population). This misalignment may lead to increased 

challenges for such programs being accepted by the local population. One notable caveat is that 

farmers who adopt carbon sequestering practices may find improved soil health which can also 

lead to more consistent and resilient production in the face of drought and changing climates. 

 

• If it can be more conclusively shown that the practices that may lead to carbon sequestration 

and storage in working lands also lead to better soil health which in turn, leads to better 

agricultural production and lower risk, is there any opportunity for agriculture and farming 

insurance companies to offer incentives for those practices? 

 

5.2.2 Suggestions and Important Take-Home Messages 

• When looking to direct funds to promote climate-related ecosystem services, funding agencies 

should place an emphasis on original research aiming to close priority knowledge gaps. More 

specifically, the largest bottleneck in the methodology proposed in this report is the lack of 

adequate data for applying benefit transfer. Extensive efforts need to be (and are being) 

undertaken to produce more and better estimates of carbon sequestration and storage and 

GHG production related to various LULC types. As more data becomes available then tradeoff 

analysis will become increasingly easy, accurate, and appropriate. 

 

• Uncertainty associated with overall carbon storage for a given LULC type is more uncertain 

than the relative improvement in net carbon sequestration as one land use is converted to 

another. For example, assuming the carbon storage in an irrigated corn field in a humid climate 

with clayey soils is similar to that in an irrigated corn field in an arid climate with sandy soils 

entails much more uncertainty than assuming either of those fields is converted to a natural 

grassland (i.e., climate, soils, and other factors can have more influence on soil carbon than 

management practice). 

 

• Uncertainty in the ROI of climate-related (or other) ecosystem services increases as we project 

farther into the future. Related policy should avoid making any assumptions far into the future 

and should focus on relative improvements in the near-term (i.e., coming decades). 

 

• Despite its limitations, the benefits of convenience, speed, and low costs make a benefit 

transfer approach the most appropriate methodology for low-cost and timely estimates of ROI 

from ecosystem services such as carbon sequestration. But extreme caution should be taken as 

to not abuse the ease with which such methodologies can be applied. Good data is required but 

hard to come by! 
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• Lands will eventually reach an equilibrium with regard to carbon storage, where the net 

amount of carbon being sequestered is essentially zero. When applying methodologies that 

assume constant sequestration rates over time, caution should be taken to avoid projecting 

those sequestration rates too far into the future. 

 

• One of the most obvious possible synergies between the goals of the Colorado Water Plan and 

Colorado’s climate ambitions is the improvement of soil health associated with carbon 
sequestering practices on crop and rangelands. 

 

6. Existing Tools to Assist in Prioritizing LULC 

This report focused on the ecosystem services of carbon sequestration and/or other actions to 

help mitigate climate change. While an important ecosystem service, it is far from the only one. 

Colorado’s Water Plan also identifies flow regulation, flood attenuation, water purification, erosion 

control, dilution and flushing of contaminants, and habitat protection as ecosystem services. While 

these services were not the focus of this work, here I present seven online tools that may assist 

evaluation and prioritization of land conservation programs based on various ecosystem services. To 

illustrate the outputs and utility of each tool, when possible, I applied them to three areas of interest in 

the SPRB: Brighton’s South Platte River Heritage Program, Greeley’s Long-Range Expected Growth Area, 

and Thornton’s Northern Properties in Weld and Larimer Counties (Fig. S3.11).  

  

https://www.adcogov.org/sites/default/files/South%20Platte%20River%20Heritage%20Corridor%20Plan.pdf
https://greeleygis2017-02-01t212304815z-greeley.opendata.arcgis.com/maps/c3dc21a2e0a740f29cf39c6efb4cedd8/explore
https://www.thorntonco.gov/government/infrastructure/water/Pages/agricultural-stewardship.aspx
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Fig. S3.11. Three AOIs in the South Platte River Basin. Brighton, Greeley, and Thornton are marked by red points. Polygons 

represent three areas of interest to which the tools of interest were applied.  

A general summary of the tools is presented below in Table S3.3.  
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Table S3.3. Overview of 8 tools that provide different data and analysis that are relevant to land use planning with respect to ecosystem services 

Tool 
(Hosting Org) 

Website Suggested Use(s) Data/Analysis 

Available 

Scale of 

Data/Analysis 

Notes 

Resilient Land 

Mapping tool 

 

(The Nature 

Conservancy) 

http://map

s.tnc.org/re

silientland/ 

 

https://ww

w.conserva

tiongatewa

y.org/Cons

ervationPra

ctices/Clim

ateChange/

Pages/Clim

ate-

Resilience.a

spx 

• A starting point for 
conversations with local 

communities, indigenous 

tribes, land trusts, 

agencies, corporations, 

and funders on how to 

coordinate conservation 

efforts to increase our 

collective impact and 

sustain nature.  

 

• Helps identify sites 

(ecosystems) that are 

more likely to be resilient 

against climate change, 

meaning as the climate 

changes more resilient 

sites are likely to sustain 

themselves better than 

less resilient sites. 

• Resilient sites (i.e., 
landscape diversity, local 

connectedness, geology 

and soils, elevation, 

landforms, migration 

space for tidal habitat) 

 

• Resilient and connected 
network (resilient to 

biodiversity loss due to 

climate change, flow of 

species along connected 

corridors, biodiversity) 

 

• Carbon data available as 

Forest Ecosystem Carbon 

(2010 or 2015), potential 

forest ecosystem carbon 

sequestration (2010-

2050), and soil organic 

carbon, but this data does 

not seem to be available 

for download 

• Depends on data. Allows 
project shape files to be 

drawn or uploaded as a 

zipped .shp file. Analysis is 

performed on data falling 

within the polygon drawn 

or uploaded. 

• Forest carbon applies to 
forested 30 m pixels of 

NLCD data.  

• Soil organic carbon is at 
250 m resolution 

resampled to align with 

30 m resolution NLCD 

data and includes 

estimates for the top 30 

cm of soil.  

• Carbon data is not 
available for download. 

• Resilient land mapping tool provides 
a nice output of summary statistics 

including the number of acres in each 

category (e.g., # acres in 'Resilient, 

Diffuse Flow, Recognized 

Biodiversity'). 

 

• Data available for download for USA, 
by state, or by region at: 

http://www.conservationgateway.org

/ConservationPractices/ClimateChang

e/Pages/RCN-Downloads.aspx 

 

• Some carbon data is available as 
'forest ecosystem carbon' and soil 

organic carbon, but this data does not 

seem to be available for download. 

Farms Under 

Threat: The 

State of the 

States 

 

(American 

Farmland 

Trust) 

https://csp-

fut.appspot

.com/ 

 

• Farms Under Threat 
provides actionable 

information on the 

location and quality of 

agricultural land, the 

threats posed by 

development, and state-

level policies that can help 

protect farmland and 

ranchland. 

 

• Map of productivity, 
versatility, and resiliency 

(PVR) values for 2016 

(higher values indicate 

higher suitability for long-

term, intensive crop 

production, especially for 

food crops) 

 

• Map of non-federal 

farmland and rangelands 

• Data appears to be 
based on 30 m resolution 

data, but analysis is only 

available at the state 

scale. 

 

• Data may be requested 
however 

• Downloadable spatial data is only 
available by request, and it may take 

30 days or more to get a reply. Data 

may be requested here: 

https://survey123.arcgis.com/share/3f

8d2e46cec64288b53d235fa7cf7d40 

• It does not seem to be possible to 

get a summary of a user-defined area. 

Summaries are only provided at a 

state level.  

http://maps.tnc.org/resilientland/,%20https:/www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
http://maps.tnc.org/resilientland/,%20https:/www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
http://maps.tnc.org/resilientland/,%20https:/www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://www.conservationgateway.org/ConservationPractices/ClimateChange/Pages/Climate-Resilience.aspx
https://csp-fut.appspot.com/
https://csp-fut.appspot.com/
https://csp-fut.appspot.com/
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• No ability to produce 

report of specified areas 

other than states and the 

entire U.S.A. 

that were converted to 

other land uses between 

2001 and 2016 

 

• Nationally Significant 
agricultural land (2016) 

• Original data sources are listed here: 
https://csp-

fut.appspot.com/downloads/AFT_FUT

_SoS_Appendix%20II.pdf 

• Soil organic carbon for 0-30 cm 

depths is available at: 

https://daac.ornl.gov/cgi-

bin/dsviewer.pl?ds_id=1737 

Carbon 

Reduction 

Potential 

Evaluation 

(CaRPE) 

Tool™ 

 

(USDA-ARS 

and American 

Farmland 

Trust) 

https://car

pe.shinyap

ps.io/Carpe

Tool/ 

 

• In order to evaluate the 
current and projected 

GHG mitigation potential 

we developed the 

interactive Carbon 

Reduction Potential 

Evaluation (CaRPE) 

ToolTM to quantify and 

visualize county-level GHG 

emission reductions 

resulting from the 

implementation of a suite 

of cropland and grazing 

land management 

practices.  

 

• The CaRPE ToolTM is 

designed to provide high 

level estimates (i.e., 

county/state) that can be 

used to generate maps 

and data to inform and 

prioritize conservation 

planning and practice 

implementation. 

• Includes AgCensus data 
every five years between 

1997 and 2017 including: 

• Cropland acres of total 
cropland, commodity-

specific, and fallow/idle 

acres and 

• Grazing land acres 

• There are many 
conservation practices 

available to evaluate the 

impact of those services 

at different levels of 

adoption 

• Many other data from 
the AgCensus 

County, state, region, or 

national level 

The CaRPE ToolTM scales the emission 

reduction coefficients (ERC) extracted 

from the COMET-Planner tool to the 

county level by coupling the 

coefficients with acreages from the 

USDA Census of Agriculture 

(AgCensus). See page 44 (appendix I) 

in the COMET report for details on 

emission reduction coefficients 

(https://planner-prod-dot-comet-

201514.appspot.com/static/media/CO

MET-

Planner_Report_V1Legacy.d4f77ec6.p

df) 

Colorado 

Wetland 

Inventory 

 

(Colorado 

Natural 

Heritage 

Program) 

https://csu

rams.maps.

arcgis.com/

apps/weba

ppviewer/i

ndex.html?

id=a8e4376

0cb934a50

• Intended to assist in 
identifying wetland and 

riparian areas and 

provides only potential 

and approximate 

locations of the features 

mapped.  The data shown 

are not intended for 

regulatory purposes and 

• Information on the 
location, extent and type 

of wetlands in Colorado 

allows land managers and 

state agencies to make 

informed decisions about 

wetland resources.  

 

• Seems there is no built-
in analysis. Rather, the 

data is just presented 

within the state of 

Colorado. 

 

• Tool is good for 
exploring data within the 

state as along as a 

 

https://carpe.shinyapps.io/CarpeTool/
https://carpe.shinyapps.io/CarpeTool/
https://carpe.shinyapps.io/CarpeTool/
https://carpe.shinyapps.io/CarpeTool/
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
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84e89e469

22580cc 

 

do not serve as a 

jurisdictional delineation 

for any local, state or 

federal purposes. 

 

• The Colorado Wetlands 
Inventory Mapping Tool 

displays several datasets 

depicting the location and 

classification of wetlands 

and riparian areas in 

Colorado. 

• CNHP’s Colorado 

Wetland Inventory 

mapping tool shows 

detailed wetland mapping 

created by the CNHP, U.S. 

Fish and Wildlife Service’s 
National Wetland 

Inventory (NWI) program, 

and several other 

partners. 

summary report is not 

desired. 

Colorado 

Watershed 

Planning 

Toolbox 

 

(Colorado 

Natural 

Heritage 

Program) 

https://csu

rams.maps.

arcgis.com/

apps/weba

ppviewer/i

ndex.html?

id=0e2d5ff

b9f1745fbb

e4f92806a

7048eb 

 

• Intended to assist 

wetland managers, 

landowners, and 

enthusiasts with 

incorporating wetlands 

into watershed planning, 

restoring wetlands, to 

improve watershed 

health, and identifying 

opportunities for wetland 

conservation. The data 

displayed in the Toolbox 

are not intended for 

regulatory purposes and 

do not serve as 

jurisdictional delineation 

for any local, state, or 

Federal agency. 

•  A comprehensive 
resource for incorporating 

wetlands and streams into 

watershed planning, 

restoring wetlands to 

improve watershed 

health, and identifying 

opportunities for wetland 

conservation. 

• The Toolbox includes an 
interactive mapping 

platform that allows users 

• Emphasis on upper 
South Platte River Basin 

and upper Arkansas River 

Basin 

• Landscape disturbance 
index 2016, Land 

Management (from 

COMaP v 10), EPA Level IV 

EcoRegions, River basin 

boundaries, County 

Boundaries 

• Other data available, 
but only for limited area 

outside of the South 

Platte River Basin 

• Many Toolbox data 

layers have statewide 

coverage, while some 

more detailed layers for 

wetland functions and 

priority conservation and 

restoration are building 

out from the Arkansas 

and South Platte 

Headwaters Project Area.  

 

•  Reports are only 
produced for the narrow 

area southwest of Denver 

and east of Fort Carson 

and Colorado Springs.  

 

• Can enter location 
name, draw a polygon, or 

upload a zipped shape file 

to get summary 

• Data from available layers is not 
downloadable, and the tool does not 

produce a summary report except for 

a narrow area.  

 

• Loading a shape file does not extract 
any information from the layers as 

expected. 

 

• Generally, I did not find this tool 
easy to use, and it rarely produced 

results as anticipated.  

 

• CoDEX should replace this tool. 

https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=a8e43760cb934a5084e89e46922580cc
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
https://csurams.maps.arcgis.com/apps/webappviewer/index.html?id=0e2d5ffb9f1745fbbe4f92806a7048eb
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to view wetlands, 

streams, likely aquatic 

ecosystem functions, 

ecological stressors, and 

high-priority sites for 

conservation and 

restoration at the 

landscape scale.  

• Along with geospatial 
data, the Toolbox includes 

a gateway to a variety of 

other restoration and 

conservation resources 

via the Working in 

Wetlands web pages. 

Colorado 

Ownership, 

Management, 

and 

Protection 

database 

(COMaP) 

 

(Colorado 

Natural 

Heritage 

Program) 

https://cnh

p.colostate.

edu/projec

ts/comap/    

 

https://co

map.cnhp.c

olostate.ed

u/comap/ 

 

• Primarily provides maps 
of protected lands, 

including both public and 

private lands 

• Conservation 

planning/analyses • 
tourism and promotion  

• land acquisition/land 
exchanges • appraisals 
and land values  

• Threatened and 
Endangered species 

surveys • return on 
investments  

• site assessments • 
priority habitat 

identification  

• conservation easement 

baseline reports • 
optimization tool support  

• emergency services • 
cultural and historic 

preservation planning  

• long-range strategic 

planning • developing 
management goals  

• State's premier map of 

protected lands 

• Find local open spaces, 
natural areas, parks, and 

conservation easements 

• Identify which 
ecosystems or species 

lack adequate protection 

• Analyze patterns, 
identify wildlife corridors, 

or find stakeholders and 

partners 

• Calculate the benefits of 
open space 

• Wetland mapping tool 
• Promote your recreation 
areas or scope out new 

areas to protect 

• If you need information 
to support these tasks and 

more, COMaP is the 

dataset for you 

• Terrestrial Ecological 
System Patches (2011) 

• Species or natural 
communities that are 

currently, potentially, or 

• Depends on data.  

 

• Advertises that it allows 
project shape files to be 

uploaded with 

subscription, but I was not 

able to utilize that 

function. 

• Service is advertised as allowing for 
notes and your own shape files to be 

added to the map, but on testing this, 

I found they are only allowing for 

notes and shape files to be uploaded 

to COMaP, and they do not show on 

the active map.  

 

• COMaP is offered as a service and 
requires a free annual subscription. 

Check out our website at 

https://comap.cnhp.colostate.edu/ 

 

Subscription benefits include: 

    Access to the online interactive map 

where you can load in your Google 

map layers or zipped shapefiles, 

download spreadsheets, and add 

notes to the map 

    A download page to access the 

latest GIS files, with options to host 

your own map service for outward-

facing websites 

    Biannual data update 

 

• CODEX should replace 

https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
https://cnhp.colostate.edu/projects/comap/
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• identifying partnerships 
• identifying linkages and 
corridors  

• permitting •risk 
management • decision 
support  

• wildland fire mitigations 
• future water supply 
options  

• planning for trails • 
outdoor recreational 

planning  

• utility work • grant 
writing • stakeholder 
identification  

• conflict avoidance • and 
more ... 

historically located on 7.5-

minute quadrangles 

• Statewide potential 
conservation areas 

Statewide networks of 

conservation areas 

• Terrestrial Ecological 
System Patches 

Colorado 

Conservation 

Data Explorer 

(CODEX) 

 

(Colorado 

Natural 

Heritage 

Program, 

Colorado 

Parks and 

Wildlife, and 

NatureServe) 

https://cnh

p.colostate.

edu/maps/

codex/ 

 

• Includes a set of tools to 
support conservation 

planning, environmental 

review, evaluation of 

conservation portfolios, 

education, and more.  

 

• It allows users to 
develop project maps and 

run queries, save them 

securely in a personal 

portfolio, and submit 

them for review to 

multiple stakeholders.  

 

• CODEX users will be able 
to access an extraordinary 

range of pertinent data in 

context with project 

boundaries. 

• All of COMAP 
functionality  

 

• During the time of my 
apprenticeship I never 

gained access to this tool, 

so was unable to fully 

explore the data and 

analyses available 

 

• Based on the example 
provided by the kind 

people at CNHP, this will 

be the most useful tool in 

terms of land-use 

planning and estimating 

return on investment 

from various ecosystem 

services which are tied to 

a given land use or land 

cover, although I 

recommend proceeding 

with extreme caution if 

using their values until 

• Analysis should be 
available at any scale 

 

• Once the tool is 
operational the intention 

is to allow for a polygon 

to be drawn or a shape 

file loaded, to define a 

project area and then the 

tool will produce 

estimates of different land 

use/land cover types in 

the project area and the 

associated return on 

investment with respect 

to ecosystem services 

This tool is not yet available 

(10/4/2021) 

https://cnhp.colostate.edu/maps/codex/
https://cnhp.colostate.edu/maps/codex/
https://cnhp.colostate.edu/maps/codex/
https://cnhp.colostate.edu/maps/codex/
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they become further 

refined.  

 

• The methodology being 
used to estimate the 

ecosystem services and 

return on investment do 

not seem adequate to 

provide such specific 

values and little 

consideration of 

uncertainty was included, 

at least in the early stages 

of the tool (as of 

10/4/2021) 

 

• The tool is expected to 
develop over time with 

added functionality and 

improved estimates. 

COMET 

Planner 

 

(USDA-NRCS 

and Colorado 

State 

University) 

http://com

et-

planner.co

m/ 

 

This evaluation tool is... 

• designed to provide 

generalized estimates of 

the greenhouse gas 

impacts of conservation 

practices 

 

• intended for initial 
planning purposes  

 

• Site-specific conditions 

(not evaluated in this tool) 

are required for more 

detailed assessments of 

greenhouse gas dynamics 

on your farm.  

 

• Please visit COMET-

Farm if you would like to 

conduct a more detailed 

analysis 

• Evaluate potential 
carbon sequestration and 

greenhouse gas 

reductions from adopting 

NRCS conservation 

practices 

• Provides regionally 
specific estimates based 

on state and county 

• Conservation practices 

generally include 

'Cropland Management', 

'Grazing Lands', 'Wood 

Plantings', 'Cropland to 

Herbaceous Cover', and 

'Restoration of Disturbed 

Lands' 

•Within each general 
category of conservation 

practices there are several 

more specific options 

• Emission reduction 
coefficients were largely 

derived using a sample-

based approach and 

model runs in COMET-

Farm, which utilizes USDA 

entity-scale greenhouse 

gas inventory methods. 

• Coefficients were 
generalized by multi-

county regions defined by 

USDA Major Land 

Resource Areas.  

• Emissions estimates 
represent field emissions 

only, including those 

associated with soils and 

woody biomass as 

appropriate, and do not 

include off-site emissions, 

such as those from 

transportation, 

The input is simply acreage of the 

conservation practices of interest, so 

this tool may require some 

preprocessing to get those values. 

http://comet-planner.com/
http://comet-planner.com/
http://comet-planner.com/
http://comet-planner.com/
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• After entering an 
estimated acreage for 

each conservation 

practice of interest 

estimates of carbon 

sequestration and 

greenhouse gas emissions 

reductions are provided. 

These include CO2, N2O, 

CH4, and the results of all 

three in terms of CO2 

equivalents (tonnes CO2 

equivalent per year) 

• Also provided are 
emission reduction 

coefficients (tonnes CO2 

per acre per year) 

manufacturing, 

processing, etc. More 

information on 

quantification methods 

can be found in the 

COMET-Planner Report 
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6.1 COMET-Planner 

The COMET-Planner tool was, “designed to provide generalized estimates of the greenhouse gas 
impacts of conservation practices,” and, “is intended for initial planning purposes.” As far as performing 
carbon sequestration and GHG related scenario analysis in working land settings, this is the best tool out 

of those listed here.  

6.1.1 About the Tool 
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6.1.2 Application to Three Areas of Interest 

 Out of the tools investigated, COMET-Planner is the most relevant with respect to comparing 

the carbon sequestration between two scenarios of natural and working lands. Here I present results 

from the COMET-Planner tool applied to three areas of interest. Spatial analysis was performed to 
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identify privately owned irrigated land in the areas of interest (Fig. S3.12) because it is likely the land of 

interest when conservation or payment for ecosystem programs are considered. After identifying the 

total acreage of privately owned irrigated land in each area of interest, the acreage totals were used as 

inputs into the COMET-Planner tool which takes county, area, and alternative land management 

approach as inputs. The output from COMET-Planner is a total annual sequestration rate [tCO2eq/year]. 

Using the values in Table S3.1 and equation 1 (Eq. 1.) I then used the COMET-Planner outputs as inputs 

to derive a range of realistic values for the ROI from the sequestered carbon considering a time of 50 

years into the future (Table S3.4). It is important to note that COMET-Planner tool does NOT include any 

considerations of uncertainty, so the methodology applied here only considers uncertainty related to 

the ROI (i.e., social cost of carbon; SCC). 

 

 
Fig. S3.12. Ownership of irrigated lands within each of the three areas of interest. 

 

To investigate the ROI from the conservation practices listed in Table S3.4, I drew 500 random 

samples from a uniform distribution of SCC ranging from $12 to $300 as representing estimates from 

around the globe as based on the values presented in Table S3.1. Then, using values of 1, 2.5, 3, 5, and 7 

for discount rates and 1, 2, and 4.4 for time preference, I calculated the ROI after 50 years for all 

combinations of those variables along with the three sequestration rates returned by COMET-Planner 

from the three conservation practices being investigated (Fig. S3.13). That resulted in 22,500 total 

estimates or 7,500 for each conservation practice. 
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Table S3.4. Annual GHG (CO2, N2O, CH4) sequestration and/or reduction in emissions in AOI’s if all of the privately 

owned irrigated cropland in the three AOI’s were converted to the three represented conservation practices. All 
GHG reduction/sequestration values are in tonnes of CO2 equivalents per year. ROI values assume 50 years of 

sequestration.  

 Greeley-LREGA 

(Weld County) 

Thornton-NP 

(Weld County) 

Brighton-SPRHCP 

(Adams County) 

Acres of privately 

owned irrigated land 

20,161 16,152* 1,440 

       

Output [units] Seq. Rate 

[tCO2eq/year] 

ROI 

[millions$] 

Mean, SD 

Seq. Rate 

[tCO2eq/year] 

ROI 

[millions$] 

Mean, SD 

Seq. Rate 

[tCO2eq/year] 

ROI 

[millions$] 

Mean, SD 

Conservation Cover 

(CPS 327) – Convert 

Irrigated Cropland to 

Permanent 

Unfertilized 

Grass/Legume Cover 

11,522 32.37, 

21.57 

9,231 26.18, 

16.69 

823 2.26, 1.52 

Conservation Cover 

(CPS 327) – Convert 

Irrigated Cropland to 

Permanent 

Unfertilized Grass 

Cover 

7,833  22.01, 

14.66 

6,275 17.79, 

11.35 

560 1.54, 1.03 

Forage and Biomass 

Planting (CPS 512) – 

Conversion of Annual 

Cropland to Non-

Irrigated 

Grass/Legume 

Forage/Biomass crops 

5,377 15.11, 

10.07 

4,308 12.22, 

7.79 

385 1.06, 0.71 

Footnote: *About 22 of the 16,152 acres of Thornton’s northern properties are located in Larimer County. The 
proportion of property in Larimer County was so small however, that the analysis was performed assuming all 

property was in Weld County.  

 Fig. S3.13 presents the distributions of results for each of the three conservation practices and 

each of the three areas of interest. On the y-axes is the sequestration rate for each of the three 

conservation practices as noted in the second column of Table S3.4. The x-axis of Fig. S3.13 presents the 

return on investment (ROI) in millions of dollars assuming the sequestration rates from COMET-Planner 

are appropriate to apply 50 years into the future. The area of privately owned irrigated land is the most 

apparent driver of total ROI with Greeley producing the greatest ROI and Brighton producing the 

smallest. The conservation practices themselves do make some difference with CPS 327 – Conversion of 

irrigated cropland to permanent unfertilized grass/legume cover producing the greatest ROI, followed 

by conversion with only grass (legumes excluded) and then by the conversion of annual cropland to non-

irrigated grass/legume forage/biomass crops. The value of the SCC in each simulation was the major 

driver of the resulting ROI. It is important to note the extreme uncertainty, and how it grows with the 

area which is being considered (e.g., Greeley included the largest area, and thus sequestration). Average 

values of ROI (Table S3.4) ranged from about $1 million to over $30 million. 
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Fig. S3.13. Probabilities of the ROI based on outputs from COMET-Planner and valuation parameters from literature 

review. The y-axis presents the sequestration rates from COMET-Planner. See Table S3.4 for the related 

conservation practices. The x-axis presents the ROI in millions $.   

6.1.3 Development of Pre- and Post-Processor App for Easily Repeating Analysis 

 While the analysis presented in section 6.1.2 represents uncertainty as presented by estimates 

of the social cost of carbon (SCC) from around the globe, other estimates may be desired, as estimated 

for local areas. To enable easy re-creation of the earlier analysis using different distributions (i.e., 

normal, lognormal, and uniform) I created an R-Shiny application which can be attained via emailing me 

directly (ben.choat@colostate.edu) as well as online. The online version cannot handle large areas 

however, such as the Greeley Long Range Expected Growth Area. 

 The application consists of four pages (Figs. 14 – 17). The first page (Fig. S3.14) is an introduction 

page with some instruction about use. The second page (Fig. S3.15), “1. Area of Interest”, allows you to 
upload spatial files of your area of interest in the South Platte River Basin, or use the three areas of 

interest presented in the previous analysis. The third page (Fig. S3.16), “2. COMET-Planner”, provides a 

mailto:ben.choat@colostate.edu
https://liminaleng.shinyapps.io/comet_pre_post_app/?_ga=2.230569886.361200933.1653412201-1102973945.1651161214
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link to the COMET-Planner website and summarized the acreage within the area of interest by 

landowner type. The fourth page (Fig. S3.17), “3. Valuation”, allows the user to choose between normal, 
lognormal, and uniform distributions to represent the uncertainty of the SCC and allows the user to 

specific the parameters for the chosen probability distribution. After simulating the SCC based on the 

specified distribution and parameters, the user can provide the sequestration rates which are outputs 

from the COMET-Planner tool, how many years into the future the user would like to estimate the ROI, 

as well as maximum and minimum values for the discount and time preference rates. Six values of the 

discount and time preference rates ranging from the minimum to maximum values specified are 

included in simulations.  

 

 

Fig. S3.14. Introduction page of the Pre – Post – COMET application 
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Fig. S3.15. Selection area of interest in the Pre – Post – COMET application 
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Fig. S3.16. Values from the Pre – Post – COMET application to be used in the COMET-Planner tool 
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Fig. S3.17. Estimates of the Social Cost of Carbon and Return on Investment from the Pre – Post – COMET 

application 
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6.2 Resilient Land Mapping Tool 

The Resilient Land Mapping Tool’s primary functions are to provide data about resilient sites, 

local connectedness, and recognized biodiversity. A resilient site is, “an area of land where high 
microclimatic diversity and low levels of human modification provide species with connected, diverse, 

climatic conditions they will need to persist and adapt to changing regional climates.” Local 

connectedness, “refers to the degree of fragmentation and strength of barriers that create resistance to 
movement within a landscape. A highly connected landscape promotes resilience by allowing species to 

move through the landscape and find suitable microclimates where they can persist. In this study, we 

calculate local connectedness by measuring the amount and configuration of human-created barriers 

like major roads, development, energy infrastructure, and industrial farming and forestry land.” To 
quantify recognized biodiversity the nature conservancy, “assembled information on places recognized 
for their biodiversity value (rare species, intact habitat, or exemplary natural communities) in separate 

studies. These include the results of 67 ecoregional assessments completed by The Nature Conservancy 

between 1999 and 2009, which identified sites representing multiple-viable examples of rare species 

and natural communities (Groves 2003). Additionally, we reviewed the results of 48 state wildlife action 

plans, and integrated information from 35 of them, to create maps of conservation opportunity areas 

for species of greatest conservation need. We also include recent information from the Natural Heritage 

Network (and other sources) on high quality species and community occurrences, and protected land 

managed for biodiversity and natural processes (GAP 1). This assessment ensures that the network 

encompasses the footprint of current biodiversity areas while integrating them with representative 

abiotic features which underpin that biodiversity, ensuring that networks of resilient sites are 

distributed across all abiotic ‘stages’ needed to conserve future biodiversity.” See more details below. 

Opposed to recreating the valuable information presented on the Resilient Land Mapping Tool 

website, below are screenshots from the website which provide insight as to how the tool presents 

results and what factors are considered by the tool and shown in the results. 
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6.2.1 Greeley’s long range growth area as an example 
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6.2.2 Thornton North Properties (Larimer and Weld counties) as an example 
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6.2.3 South Platte River Corridor through Brighton as an example 
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6.3 Farms Under Threat: The State of the States 

“Farms Under Threat provides actionable information on the location and quality of agricultural land, 

the threats posed by development, and state-level policies that can help protect farmland and 

ranchland.” For a state of interest, a general overview of nationally significant agricultural lands, 
relevant policies, and the alignment between the two are reported.  

AFT’s State of States tool only produces summary reports at the state level inhibiting its application to 

our areas of interest (i.e., SPR corridor through Brighton, Greeley, and Thornton’s northern properties). 
Reports on land conversion and policy summary can be generated for a selected state. Data can be 

requested from the AFT if finer resolution analysis is desired.  

A state can be selected via a dropdown list or by clicking on the state in the map.  

 

Once a state is chosen the dashboard automatically updates all the statistics to reflect the statistics for 

that state. See the left side of the above image or the image below. 
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A policy scorecard for the state is also available: 

 



219 

 

 

A scoresheet is produced for a selected policy or program type where the states performance can be 

compared to other states. 

 

 

6.4 Carbon Reduction Potential Evaluation (CaRPE) ToolTM 

The CaRPE Tool was created to help quantify and visualize county-level GHG emissions 

reductions resulting from the implementation of a suite of cropland and grazing land management 

practices. Results produced by the CaRPE Tool are based on methodology used to develop the COMET-

Planner tool, and the COMET-Planner tool seems to be more appropriate for scenario analysis.  

The CaRPE Tool executes at the county, state, or regional scale meaning that analysis of our 

selected areas of interest (i.e., South Platte River Corridor in Brighton, Greeley, and Thornton’s north 
properties) is not possible.   
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Area of analysis may include county, state, region (i.e., multiple states), or national scales.  

 
 

For the selected area, different metrics are presented. These include total cropland, irrigated cropland, 

non-irrigated cropland, and area in which the selected conservation practice of interest is being 

implemented. 
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The GHG emissions/carbon sequestration effects of various conservation practices can be investigated.  

 

 

 

 

The percentage of the area of interest incorporating the selected conservation practices can be selected. 
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For the specified scenario, output includes acres of the practice, total CO2 equivalents sequestered or 

mitigated, and the estimated payout based on the EQIP payment schedule. 

 

 

Estimates of payments per acre as provided by the Environmental Quality Incentives Program (EQIP) for 

different conservation practices are provided. The EQIP Conservation Incentives Contract (EQIP-CIC) is a 

new enrollment option created by section 2304 of the 2018 Farm Bill and will be implemented in fiscal 

year 2021. Payment schedules for EQIP are available here. 

 

 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/?cid=nrcseprd1328229
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/?cid=nrcseprd1328426
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6.5 Colorado Wetland Inventory 

The Colorado Wetland Inventory is, “intended to assist in identifying wetland and riparian areas and 

provides only potential and approximate locations of the features mapped… The Colorado Wetlands 
Inventory Mapping Tool displays several datasets depicting the location and classification of wetlands 

and riparian areas in Colorado.” 

This is less of an analysis tool, and more of a data visualization tool. It does not allow for any analysis to 

be executed within an area of interest, but rather shows wetland data for the state of Colorado. 

Therefore, this tool was not applied to the three areas of interest to this project. 

6.6 Colorado Watershed Planning Toolbox 

The Colorado Watershed Planning tool is, “a comprehensive resource for incorporating wetlands and 
streams into watershed planning, restoring wetlands to improve watershed health, and identifying 

opportunities for wetland conservation.” Most of the core data included in this tool and the only data 
that is included in the analysis tool only covers a relatively small area southwest of Denver and West of 

Fort Carson and Colorado Springs (Figure below). There is other statewide data available via the tool’s 
website, but the analysis tool does not utilize it.  
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6.7 Colorado Ownership, Management, and Protection Database (CoMaP) 

The primary function of the CoMaP tool seems to provide maps of protected lands, including both public 

and private lands, as well as the entity that owns and/or manages that land. There is other data 

available for download by request via the CoMaP website, but the CoMaP tool does not use that data.  

There does not seem to be a functioning ability to analyze an area of interest, but by downloading the 

available data, analyses can be performed independently. It seems that once CODEX is operational it will 

make CoMaP obsolete.  

6.8 Colorado Conservation Data Explorer (CODEX) 

The Colorado Conservation Data Explorer (CODEX) tool was not available for use during my 

apprenticeship. It seems as though it will be the best option, out of the tools listed here, with respect to 

performing analysis of various ecosystem services and land use related scenarios. It, “includes a set of 
tools to support conservation planning, environmental review, evaluation of conservation portfolios, 

education, and more.” 
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APPENDIX – Chapter 4 

 

 

 

CHAPTER 4 – SUPPLEMENTARY MATERIAL 

Table S4.1: All variables considered in the modeling process. Alias is what the variable is called in this text, features is what the variable is called 

in the data source and/or in the analysis code, variable classes were categorized in this analysis, and variable description, units, and source are 

also given.  

Alias Features Variable Class Variable Description Units Data Source 

Day Length dayl Climate Day length s/day DAYMET 

Precip prcp Climate Precipitation mm/day DAYMET 

Solar Radiation srad Climate Shortwave radiation W/m2 DAYMET 

Snow Water Eq swe Climate 

Snow water 

equivalent kg/m2 DAYMET 

Max Temp tmax Climate 
Maximum air 
temperature degrees C DAYMET 

Min Temp tmin Climate 
Minimum air 
temperature degrees C DAYMET 

Vapor Pressure vp Climate 
Water vapor 

pressure Pa DAYMET 

Precip-LB12 d12_prcp Climate 

total precipitation 
over previous 12 

months mm DAYMET 

Precip-LB1 d1_prcp Climate 

total precipitation 
over previous month 

or year mm DAYMET 

Max Temp-LB12 d12_tmax Climate 

mean daily 
maximum air 

temperature over 
past 12 months degrees C DAYMET 
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Max Temp-LB1 d1_tmax Climate 

mean daily 
maximum air 

temperature over 
past month or year degrees C DAYMET 

Min Temp-LB12 d12_tmin Climate 

mean minimum daily 
air temperature over 
previous 12 months degrees C DAYMET 

Min Temp-LB1 d1_tmin Climate 

mean minimum daily 
air temperature over 
previous month or 

year degrees C DAYMET 

Drainage Area DRAIN_SQKM Physiography drainage area sqkm GAGESII 

Basin Compactness BAS_COMPACTNESS Physiography 

basin compactness 
area/perimeter^2 * 

100 - GAGESII 

Avg Precip PPTAVG_BASIN Climate 
Average annual 

precipitation cm GAGESII 

Avg Temp T_AVG_BASIN Climate 
Average annual 

temperature degrees C GAGESII 

Avg Max Monthly Temp T_MAX_BASIN Climate 

Average maximum 
monthly air 
temperature degrees C GAGESII 

SD Max Monthly Temp T_MAXSTD_BASIN Climate 

Standard devaiation 
of maximum monthly 

air temperature degrees C GAGESII 

Avg Min Monthly Temp T_MIN_BASIN Climate 

Average minimum 
monthly air 
temperature degrees C GAGESII 
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SD Min Monthly Temp T_MINSTD_BASIN Climate 

Standard deviation 
of minimum monthly 

air temperature degrees C GAGESII 

Avg RH RH_BASIN Climate 
Watershed average 

relative humidity % GAGESII 

Avg DOY First Freeze FST32F_BASIN Climate 
Average day of year 

of first freeze day of year GAGESII 

Avg DOY Last Freeze LST32F_BASIN Climate 
Average day of year 

of last freeze day of year GAGESII 

Avg Annual Wet Days WD_BASIN Climate 

Average annual 
number of days of 

measurable 
precipitation days GAGESII 

Mo Max Wet Days WDMAX_BASIN Climate 

Average of monthly 
maximum number of 

days with 
measurable 
precipitation days GAGESII 

Mo Min Wet Days WDMIN_BASIN Climate 

Average of monthly 
minimum number of 

days with 
measurable 
precipitation days GAGESII 

Potential ET PET Climate 

Mean annual 
potential 

evapotranspiration mm/yr GAGESII 

Snow % SNOW_PCT_PRECIP Climate 

snow percent of 
total annual 
precipitation % GAGESII 

Precip Seasonality PRECIP_SEAS_IND Climate 
precipitation 

seasonality index - GAGESII 
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Gneiss GEOL_REEDBUSH_DOM_gneiss Physiography 

If relevant geology 
type was dominant 

(1 or 0) - GAGESII 

Grantic GEOL_REEDBUSH_DOM_granitic Physiography 

If relevant geology 
type was dominant 

(1 or 0) - GAGESII 

Quarternary GEOL_REEDBUSH_DOM_quarternary Physiography 

If relevant geology 
type was dominant 

(1 or 0) - GAGESII 

Sedimentary GEOL_REEDBUSH_DOM_sedimentary Physiography 

If relevant geology 
type was dominant 

(1 or 0) - GAGESII 

Ultramafic GEOL_REEDBUSH_DOM_ultramafic Physiography 

If relevant geology 
type was dominant 

(1 or 0) - GAGESII 

Volcanic GEOL_REEDBUSH_DOM_volcanic Physiography 

If relevant geology 
type was dominant 

(1 or 0) - GAGESII 

Stream Density STREAMS_KM_SQ_KM Physiography stream density 

km of 
streams per 
watershed 

area GAGESII 

Max Strahler Order STRAHLER_MAX Physiography 

maximum Strahler 
stream order in 

watershed - GAGESII 

Topo Wetness Index TOPWET Physiography 
topographic wetness 

index ln(m) GAGESII 

% Lengths as Canal PCT_NO_ORDER Physiography 

Percent of stream 
lengths without a 
streamorder in 

NHDPlus (typically 
canals, pipelines, 

ditches) % GAGESII 

Number Dams NDAMS_2009 Anthro_Hydro 
number of dams in 

watershed - GAGESII 
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Dam Density DDENS_2009 Anthro_Hydro dam density #/sqmi GAGESII 

Dam Storage STOR_NID_2009 Anthro_Hydro dam storage mealiter/sqkm GAGESII 

Canals % Length CANALS_PCT Anthro_Hydro 

Percent stream km 
as "Canal", "Ditch", 

or "Pipeline" % GAGESII 

Mines % MINING92_PCT Anthro_Hydro 

Percent 1992 
quarries-strip mines-

gravel pits land 
cover in watershed   GAGESII 

Power Generated POWER_SUM_MW Anthro_Hydro 

Sum of MW 
operating capability 

of electric 
generation power 

plants in watershed 
of type "coal", "gas", 
"nuclear", "petro", or 

"water" MW GAGESII 

Basin Fragmentation FRAGUN_BASIN Anthro_Land 

Fragmentation index 
of "undeveloped" 

land - GAGESII 

Lentic Density HIRES_LENTIC_DENS Physiography 

Density of 
lakes/onds + 

Reservoir water 
bodies #/sqkm GAGESII 

Soil Group A HGA Physiography 

Percentage of soils 
in hydrologic group 

A % GAGESII 

Soil Group B HGB Physiography 

Percentage of soils 
in hydrologic group 

B % GAGESII 
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Soil Group A/D HGAD Physiography 

Percentage of soils in 

hydrologic group A/D % GAGESII 

Soil Group C HGC Physiography 

Percentage of soils in 

hydrologic group C % GAGESII 

Soil Group D HGD Physiography 

Percentage of soils in 

hydrologic group D % GAGESII 

Soil Group A/C HGAC Physiography 

Percentage of soils in 

hydrologic group A/C % GAGESII 

Soil Group B/D HGBD Physiography 

Percentage of soils in 

hydrologic group B/D % GAGESII 

Soil Group C/D HGCD Physiography 

Percentage of soils in 

hydrologic group C/D % GAGESII 

Soil Group B/C HGBC Physiography 

Percentage of soils in 

hydrologic group B/C % GAGESII 

Soil Group VAR HGVAR Physiography 

Percentage of soils in 

hydrologic group VAR % GAGESII 

AWC AWCAVE Physiography 

Average value for the 

range of available 

water capacity for the 

soil layer or horizon in/in GAGESII 

Avg Permeability PERMAVE Physiography Average permeability in/hr GAGESII 

Avg Bulk Density BDAVE Physiography Average bulk density g/cm3 GAGESII 
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Avg High Water Table WTDEPAVE Physiography 

Average depth to 

seasonally high water 

table ft GAGESII 

Avg Soil Thickness ROCKDEPAVE Physiography 

Average value of total 

soil thickness in GAGESII 

Avg Clay Content CLAYAVE Physiography 

Average value of clay 

content % GAGESII 

Avg Silt Content SILTAVE Physiography 

Average value of silt 

content % GAGESII 

Avg Sand Content SANDAVE Physiography 

Average value of sand 

content % GAGESII 

Avg Elevation ELEV_MEAN_M_BASIN Physiography 

Mean watershed 

elevation m GAGESII 

Relief Ratio RRMEDIAN Physiography 

Dimensionless relief 

ratio (median) - GAGESII 

Avg Slope SLOPE_PCT Physiography 

mean watershed 

slope % GAGESII 

Avg Aspect ASPECT_DEGREES Physiography 

Mean watershed 

aspect degrees GAGESII 

Housing Density TS_Housing_HDEN Anthro_Land Housing density units/sqkm GAGESII-TS 

Open Water TS_NLCD_11 Physiography open water % GAGESII-TS 

Perennial Ice/Snow TS_NLCD_12 Physiography Perennial Ice/Snow % GAGESII-TS 

Dev-Open Space TS_NLCD_21 Anthro_Land 

Developed, Open 

Space % GAGESII-TS 

Dev-Low Intensity TS_NLCD_22 Anthro_Land 

Developed, Low 

Intensity % GAGESII-TS 

Dev-Medium Intensity TS_NLCD_23 Anthro_Land 

Developed, Medium 

Intensity % GAGESII-TS 

Dev-High Intensity TS_NLCD_24 Anthro_Land 

Developed, High 

Intensity % GAGESII-TS 

Barren Land TS_NLCD_31 Physiography 

Barren Land 

(Rock/Sand/Clay) % GAGESII-TS 

Deciduous Forest TS_NLCD_41 Physiography Deciduous Forest % GAGESII-TS 
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Evergreen Forest TS_NLCD_42 Physiography Evergreen Forest % GAGESII-TS 

Mixed Forest TS_NLCD_43 Physiography Mixed Forest % GAGESII-TS 

Shrub/Scrub TS_NLCD_52 Physiography Shrub/Scrub % GAGESII-TS 

Grassland/Herbaceous TS_NLCD_71 Physiography Grassland/Herbaceous % GAGESII-TS 

Pasture/Hay TS_NLCD_81 Anthro_Land Pasture/Hay % GAGESII-TS 

Cultivated Crops TS_NLCD_82 Anthro_Land Cultivated Crops % GAGESII-TS 

Wood Wetlands TS_NLCD_90 Physiography Woody Wetlands % GAGESII-TS 

Emergent Herbaceous 

Wetlands TS_NLCD_95 Physiography 

Emergent Herbaceous 

Wetlands % GAGESII-TS 

Ag Sum TS_NLCD_AG_SUM Anthro_Land Sum NLCD 81/82 % GAGESII-TS 

Dev Sum TS_NLCD_DEV_SUM Anthro_Land Sum NLCD 21-24 % GAGESII-TS 

Imperviousness TS_NLCD_imperv Anthro_Land Imperviousness % GAGESII-TS 

Population Density TS_Population_PDEN Anthro_Land population density person/sqkm GAGESII-TS 

Freshwater Withdrawals TS_WaterUse_wu Anthro_Hydro 

Freshwater 

withdrawals 

1e6 gal/day-

sqkm GAGESII-TS 

% Land as Crops TS_ag_hcrop Anthro_Hydro 

proportion land as 

harvest crops % GAGESII-TS 

% Irrigated Land TS_ag_irrig Anthro_Hydro 

proportion land in 

irrigated land % GAGESII-TS 

 

 

 


