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ABSTRACT 

 

 

 

THE SELECTIVE DE-IDENTIFICATION OF ECGs 

 

 

 

Biometrics are often used for immigration control, business applications, civil identity, and 

healthcare. Biometrics can also be used for authentication, monitoring (e.g., subtle changes in 

biometrics may have health implications), and personalized medical concerns. Increased use of 

biometrics creates identity vulnerability through the exposure of personal identifiable information 

(PII). Hence an increasing need to not only validate but secure a patient’s biometric data and 

identity. The latter is achieved by anonymization, or de-identification, of the PII. Using Python in 

collaboration with the PTB-XL ECG database from Physionet, the goal of this thesis is to create 

“selective de-identification.” When dealing with data and de-identification, clusters, or groupings, 

of data with similarity of content and location in feature space are created. Classes are groupings 

of data with content matching that of a class definition within a given tolerance and are assigned 

metadata. Clusters start without derived information, i.e., metadata, that is created by intelligent 

algorithms, and are thus considered unstructured. Clusters are then assigned to pre-defined classes 

based on the features they exhibit. The goal is to focus on features that identify pathology without 

compromising PII. Methods to classify different pathologies are explored, and the effect on PII 

classification is measured. The classification scheme with the highest “gain,” or (improvement in 

pathology classification)/ (improvement in PII classification), is deemed the preferred approach. 

Importantly, the process outlined can be used in many other systems involving patient recordings 

and diagnostic-relevant data collection. 
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Chapter 1 

Literature Review and Goals of the Thesis 

1.1 Introduction 

Biometrics are often used for immigration control, business applications, civil identity, and 

healthcare. Biometrics can also be used for authentication, for monitoring (e.g., subtle changes in 

biometrics may have health implications), and for personalized medical concerns. Increased use 

of biometrics creates identity vulnerability, and greater opportunities for this personal identifiable 

information (PII) to be exposed, exploited, and exported. Hence, there is an increasing need to not 

only validate but secure a patient’s biometric data and identity. This chapter presents an overview 

of the research on biometrics, classification, de-classification, and previous classification methods 

analyzing ECG time series data. The purpose and goals of the research in this thesis, which are 

related to the needs identified in the literature review, are presented at the end of this chapter, with 

the objective of creating a stronger method of protecting patient data. 

1.1.1 What is an ECG, its importance, and applications 

An electrocardiogram, or ECG, is a bioelectrical recording taken from the surface of the 

thoracic cavity. The ECG is associated with the electrical activity of the heart. Electrical signaling 

mediated by the cardiomyocytes (heart cells) controls the timing and location of the heart's beating. 

An ECG records this electrical activity, and it flows throughout the heart. Healthy patients 

typically have normal ECGs, indicating a healthy beating heart. However, patients with diseases 
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or heart muscle damage have abnormal ECGs. Depending on the heart disease or damage, some 

or all parts of the recorded ECG signal can be affected. Patients with related heart health conditions 

logically are expected to have similar ECG anomalies and signals. An ECG is an important tool to 

assess the health of the heart though the detection and diagnosis of possible arrhythmias due to the 

heart beating too slowly, quickly, or irregularly.  

1.1.2 Biometric data and ECG as a Biometric 

Biometric data is used for the identification of an individual based on the physical, chemical, 

or behavioral attributes of the person [1]. Examples of biometric traits that can be used for 

identification are facial features, iris pattern, fingerprints, voice, and keystroke patterns [1]. A 

partial advantage of biometric qualities is that they cannot be inferred unless granted access to 

them. This provides a false sense of security because “they cannot be guessed.” However, once 

access is gained, biometrics become compromised ever after since they are relatively easy to 

replicate and cannot be changed by the individual (acting as a permanent, unchangeable password). 

Thus, biometric identification is a security risk under certain contexts because they have unique 

features associated with the individual that they purportedly identify. An ECG is one example of 

a biometric that is at risk of data piracy and loss of privacy. ECGs have been used by many 

researchers in the biometric identification system, since they have feature types that are unique to 

everyone, such as statistical, morphological, and wavelet features [2]. This leads to biometric 

identification existing in the same continuum as diagnosis by using both AI (artificial intelligence) 

and ML (machine learning) for biometrics and for authentication [2]. Diagnosis of an ECG is 

specific to that certain individual’s reading. For example, the peaks of the ECG {P, Q, R, S, and T 
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waves} or the spatiotemporal attributes of the individuals are altered in identifiably different ways 

in each individual. 

For the purpose of this study, several classification goals are considered to exist in the same 

broad analysis domain, with one (accurate diagnosis and classification) being defined as the 

“good” or intended accurate output and the other (individual identification, or biometric analysis) 

as the “bad” or non-intended output.  

An ECG signal with feature patterns that have been recorded from a patient with ventricular 

escape is likely to match another ECG signal from patient also with ventricular escape in certain 

signal (time series) aspects. Similarities could lie in waveform morphology, wave frequency 

comparison before and after normalization or electrostatic discharge (ESD) of the amplitude from 

the signal. Gregg et al. used two methods to find similar ECGs in a database, the first being pair-

wise template matching and the second being fast query with the use of a “k-dimensional tree 

architecture” along with a feature vector representing a processed rendering of the ECG signal [3]. 

Query methods are different methods to find data from the database. The conclusion was that low 

complexity with fast query could be utilized to search a huge database for 12-lead ECGs that are 

similar. In other words, waveform morphology was the easiest method to be able to compare 

patients with similar ECG readings.  

ECG signals change in measurable and at least partially predictable ways with specific cardiac 

pathologies, allowing individual ECGs to be assigned to relevant clusters in the pathology analysis 

process. It is therefore possible to identify heart diseases and even patients by evaluating ECG 

signal patterns. This is using an ECG as a diagnostic. If, however, the ECG contains idiosyncratic 

information that helps us to identify the specific (named) patient from whom the signal has been 
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recorded, this is using an ECG as a biometric and may constitute a breach of privacy. For the 

purposes of anonymization, diagnostic value is meant to be retained after data collection, while 

biometric identification is meant to be obfuscated (de-identified). 

1.1.3 ECG Classification and Selective De-identification 

The three main types of traditional time series classification methods are model-based, 

feature-based, and distance-based. However, deep learning models are also becoming more 

popular and have been effectively used in the time series classification problem as a result of rising 

interest in graphics processing unit (GPU)-based computing [4]. 

When dealing with time series classification problems, re-mapping, or transformation with 

AlexNet has become a more commonly adopted process. AlexNet is a CNN (convolutional neural 

network). There are two main approaches for time series classification with a CNN. In one 

approach, a traditional CNN approach is modified to accept 1-dimensional time series as input, in 

the other approach, time series are converted into a 2-dimensional image to be used with a 

conventional CNN [5]. In previous studies [4] about time series classification with the use of CNN, 

time series associated with individuals were inserted into various algorithms, such as a 1NN 

classifier with DTW (dynamic time warping), a Cross Translation Error (CTE) process, and a 1NN 

classifier with Euclid distance. The outcomes of these experiments were compared to time series 

classification using fully convolutional neural network (FCN) and Residual network (ResNet) 

approaches. For the majority of the data sets, it was discovered that the 2-dimensional recurrence 

plot representation of input data with a CNN yields a higher classification accuracy than the 1-

dimensional raw time series data with a 1NN classifier and Euclidean distance [4]. De-

identification is the method of removing specific identifiable information from data, i.e., a way of 
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protecting an individual’s identity by clustering their data with that of other individuals in such a 

way as to prevent individual-level identification.  

For this research, the Python programming environment was used to read the ECG signals 

and convert them into images. Next, the pre-existing AlexNet classifier was used to classify the 

ECG signals as 2-dimensional images. A CNN was used so that the output layer and the pre-output 

layers are retrained for the specific ECG problem which is focused on classifying ages and 

pathologies. The end goal of this research is to create “selective de-identification” using a time 

series ECG database. 

1.2 The Literature 

According to a search of the related scientific literature, there is existing work focused on the 

classification of time series data in general, and ECG based time series classification, de-

identification, and anonymization efforts in specific. However, due to the variability and 

individuality of ECG signals, fixed feature classification could not be applied to all patients, 

resulting in faulty performance [6].  

Processing/postprocessing and feature extraction approaches – for example, binarization, 

segmentation, feature selection, normalization, and dimensionality reduction – are likely to affect 

the classification process and cause it to be unreliable for smaller health monitoring devices. 

Binarization is one of the early processing steps in image analysis and is the modification of a 

document image into bi-level document image [6]. Image pixels are separated into dual collection 

of pixels, such as black and white [6]. The primary objective of picture binarization is to separate 

the background from the foreground text in a document. Segmentation is used to process and 

analyze images to extract information. Feature selection often incorporates a process of reshaping 
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a large set of repeating data and turning it into a set of features or feature vectors of reduced 

dimension. Feature selection was used in this research since the optimal features were selection in 

the methods process of maximizing pathology accuracy. Normalization is used to scale the features 

for use together. Lastly, dimensionality reduction is used to reduce the number of input variables 

in training data [6], These concepts were employed in the methods of this research in an attempt 

to anonymize age accuracy while keeping pathology accuracy as high as possible. 

To reduce the limitations mentioned previously, a deep learning ECG classification-based 

system incorporating convolutional neural networks (CNNs) is used. CNNs have become 

increasingly popular for deep learning processes due to their vast capabilities with speech and 

image. They have the capability to identify the important patterns of signals, and in specific 

AlexNet with its ability to use image-based classification [4].  

Extracting features is a key step in ECG classification. The elemental steps of ECG pattern 

classification are preprocessing, feature extraction and classification. There are many methods to 

go about this. A handful of researchers have tested different feature extraction and processing 

approaches for ECG classification. Previous researchers have focused on automatic classification 

and detection of ECG signals leading to a variety of proposed algorithms for individual heartbeat 

pattern classification. The most recent works are those described in the following paragraphs. 

ECG heartbeat classification using an adequate patient adaptable algorithm was found in [7]. 

A linear discriminant classifier was included within this patient adjustable algorithm. This 

classifier, along with an independently working clustering algorithm, was used to remove RR 

interval (the time difference between two consecutive R waves in the ECG) series to perform 

classification and clustering on those features. The algorithm's performance was assessed using 

several ECG databases for comparison purposes and the results showed the algorithm did slightly 



 

 

7 

improve performance for heartbeat classification. The algorithm achieved a mean increase for all 

databases (6.9% for accuracy A, 6.5% for global sensitivity S, and of 8.9% for global positive 

predictive value P +). Heartbeat classification is an important aspect of ECG analysis and the first 

step to identifying arrhythmias; however, there is room for further improvement.  

A different classifier was utilized in an automatic diagnostic system for classification of ECG 

arrhythmias [8]. This classifier, Type-2 Fuzzy Clustering Neural Network (T2FCNN) in 

combination with a neural net, achieved a classification accuracy of 99%. The researchers 

classified ten various types of arrhythmias from the MIT-BIH database, by using a combined fuzzy 

clustering neural networks algorithm. When using the T2FCNN architecture, decisions were made 

in two steps: first, a new training set was created by choosing the optimal arrhythmia for each 

arrhythmia class using T2FCM, and second, classification using a neural network trained on the 

new training set [8]. 

A similar method of fuzzy clustering, specifically, Fuzzy C-means clustering along with 

neutral networks to classify cardiac arrhythmia [9]. The researchers worked with ECG filtering, 

extraction of RR interval using wavelet transform, pre-classification based on fuzzy c-mean 

clustering technique, and a final classification stage based on neural networks. Their output 

classification accuracy range was between 98.5% and 99.6% with average accuracy 99.05% [9]. 

A classification algorithm using the combination of fuzzy and artificial networks for cardiac 

rhythms [10] achieved a classification accuracy of 80 to 85%. Two different feature extraction 

approaches for the classification of ECG beats using a system based upon MLP-NN classifier 

incorporated two approaches: “S-transform based features along with temporal features” and the 

“mixture of ST and WT based features along with temporal features” to classify five classes of 

ECG beats [11]. The mean sensitivity results from the two approaches for the five ECG beat 
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classes: “normal beat (N), ventricular ectopic beat (V), supraventricular ectopic beat (S), fusion 

beat (F), and unknown beat (Q)” are 95.70%, 78.05%, 49.60%, 89.68%, and 33.89%,” respectively 

[11]. The results improved upon previous feature extraction techniques [11].  

To classify ECG cycles, Zidelmal et al. [12] used a support vector machine-based algorithm. 

Zidelmal et al. used the MIT-BIH database to test the algorithm and they achieved a classification 

accuracy of 98.9%. The MIT-BIH arrhythmia database was also used to test the classification of 

ECG signals into normal and arrhythmia groups in Vijayavanan et al. [13]. They used probabilistic 

neural networks, and their accuracy was 96.5%. 

Researchers have used several different feature extraction programs to analyze and classify 

three classes of ECG signals with the use of four different artificial neural networks. The extraction 

programs are Discrete Fourier Transform, Principal Component Analysis, Discrete Wavelet 

Transform, and Discrete Cosine Transform [14]. The most accurate from the list was the Discrete 

Cosine Transform with 98.36% accuracy.  

Further research into classification explores systems meant to classify patients using heartbeat 

data rather than focusing on pathology classification with the same data. This is focused on in Ince 

et al. [15]. The researchers extracted ECG features using wavelet transform and principal 

component analysis (PCA). Using feed forward and fully connected artificial neural networks, 

they also classified the ECG signals.  

A collection of ECG databases, preprocessing techniques, feature extraction methods and 

classifiers is surveyed in [16]. Researchers examined ECG signal preprocessing, heartbeat 

segmentation methods, feature description techniques, and learning algorithms in-depth with a 

focus on current approaches to ECG-based automated abnormalities heartbeat classification. They 

explained some limitations and disadvantages with these techniques.  
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Among all classifiers used for ECG classification, artificial neural networks were found to 

be the most suitable and widely utilized [17]. Artificial neural networks have recently become 

popular due to their strong learning capacity. They produced improved results working with 

applications such as image object recognition [19], face recognition [20], classification [18, 21], 

time series data [22] and medical image analysis [23]. 

The focus of the approach in Kiranzyaz et al. [24] is deep learning for active classification 

of ECGs. The INCART, SVBD and again the MIT-BIH arrhythmia database was used to test the 

evaluation performance. The proposed deep learning methods achieved two objectives: (i) create 

an automatic learning method for suitable feature representation of the ECG data and (ii) inducing 

the DNN (deep neural net) classifier by using AL (active learning) criteria to select the most useful 

ECG beats. The accuracy was improved significantly compared to state-of-the-art methods based 

on shallow architectures and handcrafted features.   

Real time patient specific ECG signal classification based on 1-D convolutional neural 

networks (CNNs) is the method utilized in [25]. The CNN is tested with a common and patient-

specific dataset. Again, the MIT-BIH arrhythmia database was used for evaluation performance of 

the classifier which resulted in higher classification results. This was compared to other state-of-

the-art methods for classification of ectopic beats.  

Utilizing 1-dimensional CNNs for ECG arrhythmia classification in [26] shows that CNNs 

can apply to 1-dimensional ECG signals. This study tests various 1D-CNN configurations on the 

MIT-BIH database to see which one performs the highest at classifying arrhythmias from ECG 

data. The aim of this work was to evaluate the behavior of the neural network as well as the results 

using confusion matrix analysis in relation to the various arrhythmia classifications. The four 

primary 1D-CNN experiment configurations tested were named Net1, Net2, Net3 and Net4, with 



 

 

10 

Net4 being the most complex in terms of set parameters. The test resulted in Net4 achieving the 

highest accuracy of 95% for training and 98% for testing groups with the proposed technique.  

A deep 2-dimensional CNN for ECG arrhythmia classification was introduced in [27]. 

Each ECG beat was turned into a 2-dimensional grayscale image for input data into the CNN 

classifier. They optimized the CNN classifier by various deep learning techniques such as “batch 

normalization, data augmentation, Xavier initialization, and dropout.” Jun et al. compared their 

classifier to AlexNet and VGGNet. They found that the proposed method of data augmentation 

helped the model reach the highest sensitivity average. Again, the MIT-BIH arrhythmia database 

was used for evaluation performance of the classifier. They reached a mean accuracy of 99.05%.  

The researchers tested security and privacy of time series using a k-anonymization 

approach of time series data [28]. The main object with this approach was to anonymize the data 

while minimizing the loss of information caused from this approach. They used the technique 

CATs (Clustered k-Anonymization of Time Series Data). Which clusters the time series data to 

guarantee anonymization while also minimizing the loss of information within venerable utility. 

WEKA and ARX were the anonymization tool used. Results showed that CATs did have loss of 

information that ranged from a “18% to 24%" reduction rate when compared with previous TSA 

(Time Series Anonymization) approaches. [28] 

Lastly, [29] also focused on ECG time series data and its security risks using a k-

anonymization approach to prevent reidentification. The prospective method was focused on an 

algorithm for k-anonymization of Ngram models of time series. Their algorithm updated the 

Ngram frequency to mask Ngrams that have smaller frequency values by inserting void Ngrams 

into a non-k-anonymous Ngram model to increase the frequency of Ngrams [29].  Using this 

algorithm on time series data Zare-Mirakabad et al. found that there was a two percent maximum 
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information loss compared to approaches that suggest algorithms that cluster, classify, or index 

time series without employing quasi-identifier attributes taken from the series. 

1.3 Clusters, Classes, and Categories 

When dealing with data and de-identification, the definitions for clusters, classes, and 

categories must be addressed since they will be used in this thesis. Clusters are groupings of data 

with similarity of content and location and do not need metadata. Metadata is a collection of data 

that labels and/or provide contextual information about other data. Classes are groupings of data 

with content matching that of a class definition within a given tolerance and are assigned metadata. 

Lastly, categories are sets of descriptors, etc. generated by mining data from a class or sometimes 

clusters. These descriptors constitute metadata about the items. Clusters start without derived 

information, i.e., metadata, that is created by intelligent algorithms, and are thus considered 

unstructured. Clusters are then assigned to pre-defined classes based on the features they exhibit. 

For example, clusters, classes, and categories, we view the data as a vector, <a,b>, with 

“a” labeled as pathology, while “b” is ID of patient. The goal is to focus on features that identify 

pathology and ailment only while protecting the patient’s ID. The data is presented with the goal 

of de-identifying channel b. It is grouped into different ailments and then tested to see if identifies 

pathology only, identifies both pathology and ID or only identifies ID only. The goal is to identify 

pathology only, allow for the data to determine or diagnose the protected patient’s ID.  

This will lead to distinguishing which features are relatively useful for classification of a 

patient from those relatively useful for classification of the disorder. There may be other features 

that are not useful for either of these two tasks. Determining feature utility incorporates ratio 

methods to assess relative utility for patient versus disorder identification. 
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1.4 Specific Aims  

This goal of this research is to functionally de-identify ECGs such that they cannot be 

classified with accuracy above random guessing but will still provide diagnostic value similar to 

their pre-anonymized version. The means of assessing the success of this “selective de-

identification” as seen in Equation 1, involves a method in which the gain (change in classification 

accuracy divided by the change in diagnostic value) is optimized based on efforts to obscure 

features of the ECGs that lead to classification (identification) accuracy while not affecting the 

features needed for diagnostics. 

Equation 1: 

Gain = ( Δ Classification AccuracyΔ Diagnostic Value ) 

 

Various approaches will be explored, each focused on these three principles: 

1. Removing features that lead to classification (identification) of the ECG source individual 

2. Retaining and/or accentuating features that lead to diagnostic accuracy (e.g. identify atrial 

fibrillation, ventricular escape, etc.) 

3. “Fuzzing” of the features that are useful for both identification and diagnosis so that they dissuade 

identification but do not harm diagnosis (this is an area for very interesting work) 

The goal of this thesis is to provide privacy in data (literally, in the manner in which the data is 

archived) through selective filtering, amplification and other augmentation of bioelectrical data. 

We introduce the clustering centered definitions of obfuscation, de-identification, and 

anonymization. A visual of each concept is shown in Figure 1.  
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1. Obfuscation: aligns with unstructured data with occasional confusion of pairs of individuals. (Full 

knowledge about individual) 

2. De-identification: aligns with clusters (Partial knowledge individual) 

3. Anonymization: aligns with identification of individuals with similar accuracy to no clustering or 

random classification. It is our objective but is likely unattainable. (No knowledge about the 

individual) 

 

Figure 1: Visualization of obfuscation, de-identification, and anonymization 
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Chapter 2 

Approach: Experimental Procedure and Methods  

  2.1 Methods and Materials 

For this research, the raw signal data that was stored in a compressed format from the PTB-

XL dataset (version 1.0.1) [30] was used. For all signals recorded, a standard set of 12 leads: I, II, 

III, AVL, AVR, AVF, V1, ..., V6 was included with the reference electrode being the right arm. 

Metadata such as age, sex, weight, and height were also collected from each patient. A report string 

created by the cardiologist or automatic interpretation by ECG-device was used to annotate each 

record. This was then transformed into a “standardized set of SCP-ECG statements” [30]. Most 

patients also had their heart axis and infarction stadium recorded. All patient records were 

confirmed “by a technical expert focusing mainly on signal characteristics” along with a second 

cardiologist confirming most of the patient records [30].  

2.1.1 Data Preprocessing 

Wagner et al. [30] performed data preprocessing by labeling the ECGs and patients with 

unique identifiers to be used in place of other patient identifiers. The metadata containing personal 

information was pseudonymized. When data is pseudonymized, the specific markers or 

information that can be used to identify the subject is changed with ““pseudonyms” or identifiers 

[30]. To further state this, all “ECG recording dates were shifted by a random offset for each 
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patient” [30]. The ECG statements utilized for annotating “the records follow the SCP-ECG 

standard” [30]. 

2.2 Data Specifics 

The dataset consists of 18,885 patients with male records comprising 52% of the total and 

female records comprising the residual 48%. The age range is “0 to 95 years” with the median 

being “62” and an interquartile range of 22 [30]. From the group of patients, there were “21,837 

clinical 12-lead ECG records of 10 seconds length” [30].  

The dataset contains 5,158 samples with co-occurring pathologies, as well as a wide 

dispersion of 9,528 healthy control samples. The diagnosis distribution can be seen in Table 1. For 

the sake of simplicity, the diagnostic statements have been collected into “super” classes (i.e., 

closely related classes are pooled together). The sum of statements surpasses the number of records 

due to the possibility of “multiple labels per record” [30]. The numbers in the parentheses indicate 

the number of patients in each class after removing co-pathology patients for the experiments done. 

Table 1: Distribution of diagnosis 

#Records Superclass Description 

9528 (9083) NORM Normal ECG 

5486 (2538) MI Myocardial Infarction 

5250 (2406) STTC ST/T Change 

4907 (1709) CD Conduction Disturbance 

2655 (536) HYP Hypertrophy 

 

The “Normal ECG” class consists of normal patients (no ECG pathologies), while 

myocardial infarction consisted of patients who had experienced heart attacks. For ST/T change 
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patients, anomalies such as ventricular escape or ventricular arrhythmias occurred. Conduction 

disturbance meant AV block while hypertrophy was thickening of the right and left ventricle heart 

muscle. The waveforms were stored in a WFDB format (Waveform Database) with “16-bit 

precision at a resolution of 1μV/LSB and a sampling frequency of 500Hz” [30]. The signals were 

down-sampled to 100Hz, and these 50 Hz Nyquist frequency time series were used for the analyses 

herein. Due to the size of the data set, only the first 10,000 samples were used, 5,825 of which are 

NORM for pathology for each experiment. Age was classified between “young” and “old” with 

65 being the cut off for the groups.  

2.3 Methods 

2.3.1 Signal Noise - Adding Sinusoids 

One of the early methods for classification focused on timing methods to extract features 

relevant to achieving high classification accuracy. It is important to note that, in an effort to reduce 

accuracy, gender accuracy was chosen as the identifying data rather than age accuracy in this initial 

experiment. This process was simply to add noise to the signals by adding sinusoid functions. The 

dataset was read in at 100Hz. Lead 1 was derived from Lead 2 and Lead 3, since two leads can be 

used to generate the missing one, much like the pathogen theorem. Single FFTs, which were 

regarded as features of the signal, were used. Data from the patients was then randomly assigned 

to training and testing sets. They were assessed for balance and cleared of any potential repeat 

patients. However, to ensure that training and testing were equal, the residual data, or the repeated 

patients, were used for validation. Then an objective function J as seen in Equation 2 was 

developed, with 0.2 being the amplitude, phase angle randomly chosen and t(a) as the time. 
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Function J was a mathematical function that added random sinusoids to the raw signal to act as 

“noise.” 

Equation 2: 

J(a) =  J(a) +  0.2 ∗  cos(freq ∗  t(a) +  phase) 

The last step was to identify the best accuracy by running the dataset through various 

classifiers such as: K-Nearest Neighbors (KNN), Gaussian Naïve Bayes (GNB), Decision Tree, 

Random Forest, AdaBoost, Quadratic Discriminant and Neural Net. This technique was repeated 

several times and applied to all the classifiers to accurately identify which classifier produced the 

best accuracy results.  

2.3.2 AlexNet 

The data was low-pass filtered before employing AlexNet. For this experiment, 10,000 

signals were used. Each signal had a frequency of 100Hz and lasted 10 seconds for a total of 1000 

samples per signal. AlexNet requires three color channels and there are three leads in an ECG, so 

each lead was assigned a color channel. Color channel red was assigned to Lead 1, which lies 

between the RA (right arm) and LA (left arm) quadrant. Lead 2, which is between the RA (right 

arm) and LL (left leg) quadrant, was assigned green. Finally, color channel blue was assigned to 

lead 3 which is between the LA (left arm) and LL (left leg) quadrant. This is represented in Figure 

2 A red pixel indicates a large lead 1 component with a low amount of lead 2 and lead 3. The same 

applies for the other color pixels. The value of each sample was then converted to an intensity for 

a certain color. A value of 0 mV leads to a pixel intensity of 128 for an 8-bit color scheme. The 
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ECG voltage of -2 mV was assigned a pixel intensity of 0, and 2 mV assigned to a pixel intensity 

of 255 for the 8-bit color scheme (all ECG voltages were between -2 mV and +2 mV). 

 

Figure 2: Visualization of leads and their assigned color channels 

Once the 1-dimensional signal was turned into a 2-dimensional image, the dataset was 

reshaped into a 32 x 32 image with the last 24 pixels being empty. This is seen as a black line at 

the bottom of Figure 3. Figure 3 represents one patient’s signal. In Table 2 below, starting from 

the upper left, each sample is assigned to a pixel, with the top row containing samples 1 through 

32, the second row containing 33 through 64, etc. Since there are 1000 samples and 1024 pixels in 

an image the last 24 pixels in the bottom row are empty indicated by “N/A.” 
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Figure 3: 32 x 32 image with the last 24 pixels empty (black pixels in lower right). 

Table 2: Pixel Samples Grid 

1 2 3 … 31 32 

33 34 35 … 63 64 

… … … … … … 

969 970 971 … 991 992 

993 994 995 … N/A N/A 

 

The last step for data interpretation was sorting the dataset into balanced testing and 

training sets. All the even samples were sent to training while all the odd samples were sent to 

testing resulting in a simple 50/50 split. Transfer learning on AlexNet was used to classify the 

images. Binary classification using the NORM and MI pathology classes was conducted. The 

training and testing were trimmed/balanced so there was equal representation of class.  
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2.3.3 Feature Defining, Extracting, and Filtering 

For this method, defining, extracting, and filtering the features was employed to anonymize 

the data. The GNB classifier was used and the data for this test was balanced. The median 

frequency of the FFT (Feature 0), and the amplitude of the FTT, which represents the total amount 

of energy in the FFT (Feature 1), were the two features that were extracted from each signal, 

respectively. There was a total of 8 Features.  

The median frequency of the Fast Fourier Transform (FFT) of the ECG was designated as 

Feature 0. The total energy (magnitude) of the FFT was Feature 1. The mean time between R Peaks 

was Feature 2. Feature 3 was the mean time between P Peaks. The typical time between T Peaks 

was Feature 4. Features 5-7 represented the R, P, and T peaks' respective mean amplitudes. The 

features of each signal were filtered to move it 96% of the distance to the centroid of the cluster 

for each pathology. The last step was taking the adjusted FFT and turning it back into a signal and 

attempting to use it for classification.  

 

2.3.4 Feature Extraction and Selection 

For the final process, determining optimal features for improving pathology accuracy while 

minimizing age accuracy was the main objective. There was a total of 8 Features. The features 

used in this methodology were the same set used in the previous extraction and filtering experiment 

and the data for this test was balanced. To determine the optimal features, the features were sorted 

(ranked) starting with the feature that most increased the pathology accuracy.  
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Additional features were sequentially included based on their ranks to see how the accuracies 

would be affected. The sequential feature addition order was [6,1,5,7,0,4,3,2]. When performing 

this test, the data was randomly assigned to training and testing groups using a random seed. There 

was a total of 10,000 samples in this initial exploration, with 5,000 samples in each testing and 

training group. The random seed was set to a constant for debugging because when the random 

seed does not change the data split will not change. Random seed repetition was only used in 

debugging.  

After this was conducted, all the trials incorporated the same final set of features, so the 

next step in the process was removing features rather than adding them to see how the accuracies 

would be affected. For example, a feature set containing [6, 0, 4, 2, 1, 7, 5, 3] can be changed to 

[6, 0, 4, 2, 1, 5, 3] by removing feature “7.” The logic was that, given there were possible 

correlations and interactions between features, removing features from the current set to 

investigate possible further improvement of results through pruning was used. As the number of 

features increases, the odds that removing a feature from a previous iteration may affect overall 

accuracy positively increases since there are more opportunities for interaction. 

Next, pathology accuracy was maximized for the testing and training set and then 

compared. The comparison was done to check for overfitting of the data. Overfitting is when a 

machine learning algorithm memorizes a process of steps to solve a specific problem and then 

applies it to the problem without alteration. In the case of overfitting, the algorithm would 

memorize the input of the training data rather than learning patterns that can be applied to a more 

general data set. If the training accuracy is substantially higher than testing, then it would indicate 
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overfitting. There was no overfitting in the data because the training accuracy was not substantially 

higher than the testing accuracy throughout, (ex. 0.5432 >0.5282). 

After running this test, the optimal features were determined using the GNB classifier again 

for both age and pathology accuracy. The same test was performed with different classifiers such 

as KNN and AdaBoost as well. 

 

2.4 Gain Ratio 

To calculate the gain ratio a baseline for pathology and age was determined first. Afterwards, 

the original pre-classified accuracy was found. This varied from method to method. For instance, 

with the addition of the sinusoid method, the original accuracy was the accuracy prior to adding 

sinusoids. For the AlexNet method, the original accuracy was the accuracy before the signal was 

low-pass filtered. The feature defining, extracting, and filtering method’s original accuracy was 

the pre-filtered accuracy. Finally, for the feature extraction and selection method, the original 

accuracy was the optimal feature accuracy in relation to the optimal feature set. Next was finding 

the maximum accuracy for age and pathology, which again varied for each method. Lastly, 

incremental age and pathology accuracy was found. The ratio was calculated using the gain 

equation that was previously mentioned. 
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Chapter 3 

Results 

3.1  Signal Noise - Adding Sinusoids (10,2) 

Figure’s 4 and 5 represent the mean accuracy in relationship to the number of random sinusoids 

added. The number of samples for this experiment was 2000. The range of sinusoids tested and 

added was between 1 and 10,000 using increments of 5. The graphs conditions were set to a mean 

frequency of 10 with a standard deviation of 2 and a sampling rate of 100Hz. The graphs data 

displays multiple peaks and lows before it eventually asymptotes to guessing.  

As shown, the addition of extra sinusoids did affect accuracy to an extent. Ultimately, adding 

sinusoids should bring gender classification to 0.50 (0.52 if unbalanced) so the classifiers cannot 

differentiate between M or F, and 0.20 for pathologies. However, the AdaBoost classifier 

performed well at this goal compared to the other classifiers. The gender and pathology accuracies 

can be seen in Table 3. The lowest classifier was Neuralnet. The gender and pathology accuracies 

can be seen in Table 4. 
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Figure 4: AdaBoost Mean Accuracy vs. Number of Sinusoids (10,2) 

Table 3: AdaBoost Accuracies (10,2) 

Gender accuracy w/o J func. 

(10,2) 

 Pathology Cluster accuracy w/o J func. 

(10,2) 

0.527 0.226 

 

 

Figure 5: Neuralnet Mean Accuracy vs. Number of Sinusoids (10,2) 
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Table 4: Neuralnet Accuracies (10,2) 

Gender accuracy w/o J func. 

(10,2) 

 Pathology Cluster accuracy w/o J func. 

(10,2) 

0.564 0.299 

 

3.2  Signal Noise - Adding Sinusoids (20, 5) 

Figure’s 6 and 7 represent the mean accuracy in relationship to the number of random sinusoids 

added. The number of samples for this experiment was 2000. The range of sinusoids tested and 

added was between 1 and 10,000 using increments of 5. The graphs conditions were set to a mean 

frequency of 20 with a standard deviation of 5 and a sampling rate of 100Hz. The graphs data 

displays multiple peaks and lows before it eventually asymptotes to guessing.  

As shown, the addition of extra sinusoids did affect accuracy to an extent. Again, ultimately 

adding sinusoids should bring gender classification to 0.50 (0.52 if unbalanced) so the classifiers 

cannot differentiate between M or F, and 0.20 for pathologies. However, the AdaBoost classifier 

performed well again at this goal compared to the other classifiers. The gender and pathology 

accuracies can be seen in Table 5. The pathology accuracy was the same as seen in Table 3. The 

lowest classifier was again Neuralnet. The gender and pathology accuracies can be seen in Table 

6. Table 7 shows the gain ratios for (10, 2) and (20, 5) across all classifiers.  
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Figure 6: AdaBoost Mean Accuracy vs. Number of Sinusoids (20,5) 

Table 5: AdaBoost Accuracies (20,5) 

Gender accuracy w/o J func. 

(20,5) 

 Pathology Cluster accuracy w/o J func. 

(20,5) 

0.527 0.226 

 

 

Figure 7: Neuralnet Mean Accuracy vs. Number of Sinusoids (20,5) 
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Table 6: Neuralnet Accuracies (20,5) 

Gender accuracy w/o J func. 

(20,5) 

 Pathology Cluster accuracy w/o J func. 

(20,5) 

0.556 0.278 

 

Table 7: Gain ratios for (10, 2) and (20, 5) across all classifiers 

Classifiers Gain Ratio (10,2) Gain Ratio (20,5) 

KNN 3.55 3.43 

GNB 15.45 2.09 

DecisionTree 8.88 13.85 

Random Forest 5.32 4.05 

AdaBoost 36.11 19.44 

Quadratic Discriminant 2.49 5.16 

Neuralnet 0.652 0.989 

 

3.3  AlexNet 

Table 8 below represents the age and pathology accuracies at each filter frequency cut off while 

Table 9 shows the gain ratio.  

Table 8: Age and pathology accuracies at each filter frequency 

Frequencies All 30Hz 25Hz 20Hz 15Hz 10Hz 5Hz 4Hz 3Hz 2Hz 1Hz 

Age 

Accuracy 0.635 0.619 0.656 0.579 0.623 0.597 0.587 0.576 0.583 0.581 0.522 

Pathology 

Accuracy 0.734 0.733 0.719 0.732 0.702 0.687 0.686 0.682 0.671 0.670 0.585 
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Table 9: Alexnet gain ratio 

AlexNet Gain Ratio 1.54 

 

3.4 Feature Defining, Extracting, and Filtering 

Each pathology group is represented by a color in Figures 8 and 9 where NORM is black, MI 

is blue, STTC is green, CD is magenta and HYP is red. Figure 8 represents the features before 

filtering the FFT, while Figure 9 represents the features after filtering the FFT. The x-axis 

represents the median frequency (Feature 0), and the y-axis represents the amplitude (Feature 1). 

Table 10 shows the age and pathology accuracy before and after filtering while Table 11 shows 

the gain ratio.  

 

Figure 8: Before filtering FFT 

NORM is black 

MI is blue  

STTC is green 

CD is 

magenta/purple 

HYP is red 
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Figure 9: After filtering FFT 

 

Table 10: Age and pathology accuracy before and after filtering 

  Age Pathology 

Before filtering accuracy 0.607 0.371 

After filtering accuracy 0.559 1.00 

 

Table 11: Gain ratio 

Feature Defining, Extracting and Filtering Gain Ratio 8.48 

 

3.5 Feature Extraction and Selection 

This feature combination, when added sequentially using GNB, was the most successful for 

maintaining high pathology accuracy while keeping age accuracy as low as possible for the testing 

NORM is black 

MI is blue  

STTC is green 

CD is 

magenta/purple 

HYP is red 
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group. As shown in Table 12, the best feature set had an age accuracy of 0.586 while the pathology 

accuracy was 0.388, employing a subset of 5 of the 8 features. This specific feature set contained 

Features: [6, 1, 5, 7, 0]. 

The poorest performing feature set for the testing group had an age accuracy of 0.496 while 

the pathology accuracy was 0.255, out of a set of 8 features to be selected. This specific feature set 

was just Feature 6 by itself. Figure 10 shows the accuracies plotted in relation to the number of 

features added. 

 

Table 12: Testing Group Accuracies for Ranking of Features (GNB) 

Feature set (GNB) Age Accuracy Pathology Accuracy 

[6] 0.496 0.255 

[6, 1] 0.516 0.298 

[6, 1, 5] 0.528 0.311 

[6, 1, 5, 7] 0.592 0.347 

[6, 1, 5, 7, 0] 0.586 0.388 

[6, 1, 5, 7, 0, 4] 0.597 0.382 

[6, 1, 5, 7, 0, 4, 3] 0.601 0.369 

[6, 1, 5, 7, 0, 4, 3, 2] 0.607 0.371 
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Figure 10: Accuracy vs. number of features added for testing group 

Table 13 below represents the optimal feature sets for age and pathology using the GNB, 

KNN and AdaBoost classifiers. For KNN, the feature set [7, 6, 5] was optimal for age while [5, 6] 

was optimal for pathology. For GNB, the feature set [7, 5, 6] was optimal for age while [7, 5, 0, 6] 

was optimal for pathology. Lastly, for AdaBoost, the feature set [7, 6, 5] was optimal for age while 

[7, 5] was optimal for pathology. Table 14 displays the pathology class and age class distributions 

while Table 15 shows the gain ratio across each classifier respectively. 

Table 13: Age and Pathology optimal feature sets 

Classifier Age Pathology 

KNN [7, 6, 5] [5,6] 

AdaBoost [7, 6, 5] [7,5] 

GNB [7, 5, 6] [7, 5, 0, 6] 
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Table 14: Pathology class and age class distributions 

  Young (65>X) Old (65<X) 

NORM 306 47 

MI 142 211 

STTC 144 209 

HYP 163 190 

CD 143 210 

 

Table 15: Feature set gain ratios 

Classifier Feature Set Gain Ratio 

KNN [1, 2, 3] 4.73 

AdaBoost [2, 3, 4, 5, 6] 32.1 

GNB [0, 1, 6] 1.84 

 

3.6  Histogram of Distribution of Features 

Below, Figure’s 11-18 are the balanced histograms for the distribution of features. The x-axis 

represents the value of features, and the y-axis represents the number of signals that have the 

features within that range.  
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Figure 11: Feature 0 histogram 

 

Figure 12: Feature 1 histogram 
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Figure 13: Feature 2 histogram 

 

Figure 14: Feature 3 histogram 
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Figure 15: Feature 4 histogram 

 

Figure 16: Feature 5 histogram 
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Figure 17: Feature 6 histogram 

 

Figure 18: Feature 7 histogram 
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3.7 Gain Ratio 

A baseline accuracy was found by using what percent of samples were from the largest 

class. The baseline for pathology accuracy was 0.200 while the baseline for age accuracy was 

0.500 for this balanced data set. However, for the binary classification with AlexNet, the baseline 

accuracy for both age and pathology was 0.500. The baseline accuracy does not use any features 

and represents what the accuracy would be if every sample was “guessed” to be from the largest 

class pathology (NORM). Table 16 below compares the gain ratios calculated using the various 

methods tested.  

Table 16: Comparative ratios 

 

3.8 Hamming Distances 

The hamming distances between each optimal feature set for age and pathology are shown in 

Table 17 below. 

 

 

Experiment/Classifiers KNN GNB DecisionTree RandomForest AdaBoost 

Quadratic 

Discriminant Neuralnet AlexNet 

Adding sinusoids (10,2) 

Gain Ratio 3.55 15.45 8.88 5.32 36.11 2.49 0.652   

Adding sinusoids (20,5) 
Gain Ratio 3.43 2.09 13.85 4.05 19.44 5.16 0.989   

AlexNet Gain Ratio               1.54 

Feature Defining, 

Extracting and Filtering 
Gain Ratio   8.48             

Feature Extraction and 

Selection Gain Ratio 4.73 1.84     32.1       
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Table 17: Hamming distances 

Classifier Age Pathology Hamming Distance 

KNN  [7, 6, 5] [5,6] 1 

AdaBoost  [7, 6, 5] [7,5] 1 

GNB  [7, 5, 6] [7, 5, 0, 6] 1 
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Chapter 4 

Discussion 

4.1 Signal Noise - Adding Sinusoids  

The results show that the sinusoids were added, but that their presence had little effect on 

the accuracy of the results. Since accuracy tended to fluctuate erratically, there did not appear to 

be a consistent correlation between the number of sinusoids added and accuracy. In several 

instances, the accuracy was slightly improved by the sinusoids, but the effect was minor and 

inconsistent. There was a very minimal decrease in gender accuracy when comparing the accuracy 

results before and after adding the sinusoids, indicating that the addition of sinusoids did alter the 

accuracy results to some extent.  

4.2 AlexNet 

According to AlexNet data, the frequency range that gave the best pathology accuracy 

after applying low-pass filters was between 30Hz and 20Hz. After filtering frequencies over 

30Hz, the maximum pathology accuracy was 0.733 and the lowest age accuracy was 0.619. 

Between 30Hz and 20Hz, pathology accuracy appeared to stay high, suggesting that pathology 

was favored over age. However, after filtering frequencies over 25Hz, the highest age accuracy 

was 0.656, whereas pathology accuracy was still high at 0.719. Throughout all filtering frequency 

values, pathology accuracy remained higher than age accuracy. After filtering out frequencies over 

1Hz, the lowest accuracy values for both age and pathology were 0.585 for pathology and 0.522 
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for age. This relation implies that for each filtering frequency value, age and pathology were 

influenced similarly. 

4.3 Feature Defining, Extracting, and Filtering 

Referencing the results before filtering, a cluster of ECGs of the CD pathology in the median 

frequency range of 130 to 160 was observed. Many of the HYP clusters can be seen in the 180 to 

230 median frequency range along with the other pathology classes. After filtering, CD is farther 

than the other pathology clusters with the main median frequency range being 190 to 195. Stacked 

clustering in the 205 to 207.5 median range frequency for the other pathology classes implies they 

share similar traits with their pathologies. ST/T change and normal would have similar aspects 

since ST/T change is a shifted frequency reading of a normal ECG. Hypertrophy and myocardial 

infarction are similar since typically most patients that have myocardial infarction are seen to have 

left ventricular hypertrophy. This similarity is due to the fact that hypertrophy can lead to 

myocardial infarction. Before filtering, the pathology accuracy was 0.371. However, after 

filtering, it was 1.00, which is unrealistic. Since the signals were down-samples to 100Hz, that 

may have been a reason for lower overall pathology accuracy. However, there is a possibility that 

down-sampling to 100Hz may improve anonymization at the same time.  

4.4  Feature Extraction and Selection 

The optimal feature sets for age across all three classifiers were the same set of features, [7,6,5]. 

This shows that the R, P, and T peaks mean amplitudes are better at distinguishing age than 

pathology. Between the age and pathology optimal feature sets for KNN, the difference was 

Feature 7. This means, by removing Feature 7, pathology can be maximized, whereas by adding 
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Feature 7, age is optimized. For Adaboost, removing the feature allowed for the pathology 

accuracy to increase. With GNB, the addition of Feature 0, median frequency, the pathology 

accuracy was optimized. When removing Feature 0, age accuracy was maximized. Across all six 

feature sets, the main set of reoccurring Features were 5, 6, and 7. However, this is interesting, 

since the histograms suggest that the combination of Features 0, 1, and 5 should be useful for 

classifying pathology classes. The remaining Features (2, 3, 4, 6, 7), based on rank, should be less 

useful for classifying pathologies. The same set of features, except for Feature 1, are also useful 

for age classification. The pathology class and age distributions show that many of the young 

patients were normal while the number of old patients was similar across MI, STTC, and HYP. 

There were very few healthy old patients.  

4.5  Gain Ratio 

When examining the ratio numbers across all methods, the larger the ratio, the more 

successfully the age was de-identified. The starting point of the ratio is one. According to the data, 

age accuracy is approaching fifty as compared to the initial baseline value. The ratios for those 

would therefore be infinite. This means age was able to be fully anonymized while also increasing 

pathology. The ratio for the addition of the sinusoid’s method showed that for both the (10, 2) and 

(20, 5) iterations, the AdaBoost classifier produced the highest gain ratio of 36.11 and 19.44. The 

lowest gain ratio for both the (10, 2) and (20, 5) iterations was using Neuralnet producing a gain 

ratio of 0.652 and 0.989. The second highest ratio for (10, 2) was GNB with 15.45 and for (20, 5) 

it was DecisionTree with 13.85. The gain ratio for the AlexNet approach was 1.54, while for the 

feature filtering technique it was 8.48.  
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Lastly, for the feature selection method, the best ratio was AdaBoost with a ratio of 32.1 while 

the lowest ratio was GNB with 1.84. KNN had a ratio of 4.73. This indicates anonymization was 

achieved sufficiently so that someone may know which pool of people the patient belongs to but 

not identify the actual individual patient. It also shows that the pathology and features were 

improved. Overall, the two highest similar gain ratios achieved across the various methods were 

the addition of sinusoids with the use of the AdaBoost classifier for the (10, 2) iteration and the 

feature selection method using the AdaBoost classifier to find the optimal feature set. This suggests 

that these two methods would be a good metric for the selective anonymization algorithm. This 

ratio allows us to select which types of classification to anonymize and which to selectively 

improve the accuracy of—including age, gender, race, height, pathology, location, diet, exercise 

regime, and any combination thereof. 

4.6  Suggestions for Future Work  

As seen through the results, the process works regardless of not having the perfect set of 

features. ECGs can be difficult to classify since their frequency histograms (FFTs) are bimodal, 

with high frequencies shared regardless of the pathology. Future tests could include shape 

templating so the higher frequencies can be dropped out easier. Instead of AlexNet, using text 

CNN on the time series is also an option. Using other pathology classes for binary classification 

on AlexNet other than NORM and MI to see how the accuracies differ is a possibility. A future 

possibility is investigating feature ratios or impact features on pathology accuracy versus age 

accuracy. 
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Chapter 5 

Conclusion 

Biometrics are often used for immigration control, business applications, civil identity, and 

healthcare. Biometrics can also be used for authentication, monitoring (e.g., subtle changes in 

biometrics may have health implications), and personalized medical concerns. Increased use of 

biometrics creates identity vulnerability through the exposure of personal identifiable information 

(PII). Hence there is an increasing need to not only validate but secure a patient’s biometric data 

and identity. The latter is achieved by anonymization, or de-identification, of the PII. Using Python 

in collaboration with the PTB-XL ECG database from Physionet, the goal of this thesis was to 

create “selective de-identification.”  

A various number of methods were tested, however, the two that successfully worked in 

relation to our objective were the addition of sinusoids with the use of the AdaBoost classifier for 

the (10, 2) iteration and the feature selection method using the AdaBoost classifier to find the 

optimal feature set. These two methods produced the highest gain ratio of 36.11 and 32.1 indicating 

that anonymization was achieved sufficiently so that someone may know which pool of people the 

patient belongs to but not identify the actual individual patient. It also shows that the pathology 

and features were improved. This suggests that these two methods would be a good metric for the 

selective anonymization algorithm.  
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	For this research, the raw signal data that was stored in a compressed format from the PTB-XL dataset (version 1.0.1) [30] was used. For all signals recorded, a standard set of 12 leads: I, II, III, AVL, AVR, AVF, V1, ..., V6 was included with the ref...

