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ABSTRACT

DEFINING PERSISTENCE DIAGRAMS FOR COHOMOLOGY OF A COFILTRATION

INDEXED OVER A FINITE LATTICE

Persistent homology and cohomology are important tools in topological data analysis, allowing

us to track how homological features change as we move through a filtration of a space. Original

work in the area focused on filtrations indexed over a totally ordered set, but more recent work

has been done to generalize persistent homology. In one avenue of generalization, McCleary and

Patel prove functoriality and stability of persistent homology of a filtration indexed over any finite

lattice. In this thesis, we show a similar result for persistent cohomology of a cofiltration. That

is, for P a finite lattice and F : P → ∇K a cofiltration, the nth persistence diagram is defined

as the Möbius inversion of the nth birth-death function. We show that, much like in the setting of

persistent homology of a filtration, this composition is functorial and stable with respect to the edit

distance. With a general definition of persistent cohomology, we hope to discover whether duality

theorems from 1-parameter persistence generalize to more general lattices.
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Chapter 1

Introduction

Persistent homology and cohomology aim to answer the following question: how do the ho-

mological features of a topological space change as we move through a filtration? For example,

in topological data analysis, one can turn a discrete set of data points into a simplicial complex by

constructing the Vietoris-Rips or Cêch complex [1]. However, this construction relies on the choice

of radius. Persistent (co)homology provides us with the ability us to consider various choices of

radii and track when (co)cyles appear and disappear.

Original results in persistence theory focused primarily on 1-parameter filtrations [2–4]. Ample

research has been done, and continues to be done, to understand persistence and its applications

in the 1-parameter setting. However, one other avenue of current research is in generalizing per-

sistence diagrams. For example, one may wish to consider multidimensional filtrations [5–7], or

consider filtered chain complexes with coefficients in certain "nice" categories [8].

In this thesis, we are interested in persistent cohomology specifically. Persistent cohomology

is of interest in topological data analysis for various reasons: for one, the persistent cohomology

algorithm is faster than the persistent homology algorithm [4, 9]. Further, cohomology allows one

to find circular coordinates for data when applicable [9]. Finally, the ring structure on cohomology

allows for one to define richer invariants, such as the persistent cup-length [10]. These uses for

cohomology inspired us to apply generalizations of persistent homology to persistent cohomology.

This thesis will be organized as follows: in Chapter 2, we introduce important preliminary

information. Specifically, we will introduce basic ideas from category theory, lattice theory, and

homological algebra, all of which will help us discuss previous work done in persistence theory and

generalized persistence diagrams. In Chapter 3, we will define the category of cofiltrations. The

definitions from Chapter 3 will allow us to define the persistence diagram arising from cohomology

of a cofiltration in Chapter 4 and prove that it is functorial and, in Chapter 5, stable with respect to

the edit distance. Finally, in Chapter 6, we will outline potential future directions for research.
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Chapter 2

Preliminaries

Generalized persistent homology and cohomology utilize tools from various fields of math,

including category theory, combinatorics, and algebraic topology. We will include brief introduc-

tions to these fields and the definitions and propositions utilized in our formulation of persistent

cohomology of a cofiltration indexed over a finite lattice.

2.1 Category Theory

We begin by introducing basic tools and terminology from category theory. Category the-

ory, initially developed by Eilenberg and Mac Lane, provides a coherent language and theoretical

framework with which to describe various different areas of mathematics. This is particularly help-

ful when studying algebraic topology, as we will wish to translate between topological spaces and

maps to algebraic structures and homomorphisms.

Definition 2.1.1. (Definition 1.1.1 in [11]) A category C consists of (1) a collection of objects C0,

and (2) a collection of morphisms C1 with domain and codomain objects in C. For f ∈ C1, we

write f : X → Y , where X is the domain and Y is the codomain of f . These collections are

subject to the following conditions: for f : X → Y and g : Y → Z, there exists a composite

gf : X → Y → Z. This composition must be associative: meaning, if we can compose the triple

f, g, h, then h(gf) = (hg)f . Finally, for every X ∈ C0, there is an identity morphism 1X : X → X

such that, for any morphism f : X → Y , f = f1X = 1Y f .

Examples of categories pertinent to this thesis are as follows:

Example 2.1.1. Any poset P is a category, where the objects are poset elements and there is a

morphism a→ b if a ≤ b in P . We will discuss this example more in Section 2.2.

Example 2.1.2. The category of F-vector spaces, denoted VectF, has as objects F-vector spaces

and morphisms linear maps.
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Example 2.1.3. The catgeory of topological spaces, denoted Top, has as objects topological

spaces and morphisms contiuous maps.

Example 2.1.4. The catgeory of simplicial complexes, denoted Simp, has as objects simplicial

complexes and morphisms simplicial maps. See section 2.3 for more details on these objects and

morphisms.

Example 2.1.5. The category of groups, denoted Grp, has as objects groups and morphisms group

homomorphisms. The category of ableian groups is similar: it is denoted Ab and has as objects

abelian groups ad morphisms group homomorphisms.

For any category, we may "reverse the arrows" and get another category. This notion is formal-

ized in the definition below, and is the philosophy behind duality.

Definition 2.1.2. (Definition 1.2.1 in [11]) For any catgeory C, there exists an opposite category

Cop. The objects of Cop are identical to those of C, but for any morphism f : X → Y ∈ C1, we

have a morphism f op : Y → X .

Now, we move on to discussing certain universal constructions in a category C. These con-

structions are not guaranteed to exist, but often categories with them are "nicer", in a sense.

Definition 2.1.3. (Definitions 3.1.11 and 3.1.23 in [11]) A initial object in a category C is an

object I such that, for any other X ∈ C0, there exists a unique morphism I → X . A final object

in a category C is an object F such that, for any other X ∈ C0, there exists a unique morphism

X → F . A terminal object is either initial or final. If an object 0 ∈ C0 is both initial and final, we

call it a zero object.

Example 2.1.6. VectF has a zero object; namely, the 0 vector space.

Example 2.1.7. In a bounded lattice (see Section 2.2), the top element is the final object and the

bottom element is the initial element.
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Definition 2.1.4. (Definition 3.1.9 in [11]) Given two objects A,B of a category C, their product

(if it exists) is an object A × B ∈ C0 together with morphisms A × B
πA−→ A and A × B

πB−→ B.

Further, A × B must satisfy the universal property of products: for any other Z ∈ C0 and

morphisms Z
f
−→ A, Z

g
−→ B, there exists a unique Z

h
−→ A × B such that the following diagram

commutes:

Z

A A× B B

∃!h

πA πB

f g

Definition 2.1.5. (Definitions 3.1.9 and 3.1.23 in [11]) Given two objects A,B of a category C,

their coproduct (if it exists) is an object A
∐

B ∈ C0 together with morphisms A
ιA−→ A

∐

B and

B
ιB−→ A

∐

B. Further, A
∐

B must satisfy the universal property of coproducts: for any other

Z ∈ C0 and morphisms A
f
−→ Z, B

g
−→ Z, there exists a unique A

∐

B
h
−→ Z such that the following

diagram commutes:

A A
∐

B B

Z

ιBιA

f g
∃!h

Although we will not prove it here, if the product or coproduct of two objects in C exists, then

it is unique up to isomorphism.

Oftentimes, we want to "move from one category to another". Examples of such constructions

are bountiful in mathematics: we move from the category of sets to the category of groups by

creating the free group generated by a set. We move from the category of topological spaces to the

category of groups by constructing the fundamental group. The definition below, that of a functor,

makes this idea mathematically precise:

Definition 2.1.6. (Definition 1.3.1 in [11]) A functor is a map between categories, written F :

C → D such that FX ∈ D0 for each object X ∈ C and Ff : FX → FY ∈ D1 for each morphism

f : X → Y . For any composition gf ∈ C1, FgFf = F (gf), and for any X ∈ C0, F1X = 1FX .
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Functors will play an important role in the definitions and chapters to come.

2.2 Posets and Lattices

Now, we will discuss the combinatorial objects and tools that will help us define generalized

persistence diagrams for cohomology of a cofiltration. Further, we will notice that category theo-

retic language and thinking will be beneficial throughout this (and subsequent) section(s).

Combinatorics plays an important role in persistence theory. Tools from the theories of posets

and, for this thesis specifically, lattices will be beneficial for definitions we make and propositions

we prove in future chapters. In this section, we will introduce posets in general and discuss certain

derivations and examples; namely, the opposite poset, the interval poset, and finite lattices. We

also describe maps between posets and the incidence algebra of a finite poset.

First, however, we start with a definition.

Definition 2.2.1. A partially ordered set, or a poset, is a set P endowed with an order relation

≤. For all a, b, c ∈ P , the order relation ≤ must satisfy the following:

• (Reflexive Law) a ≤ a.

• (Antisymmetric Law) If a ≤ b and b ≤ a, then a = b.

• (Transitive Property) If a ≤ b and b ≤ c, then a ≤ c.

We write (P,≤), or simply P whenever the order relation is clear.

Notice that the three properties above show that P is a category, where the objects are elements

of P and there is a morphism a → b for each relation a ≤ b. As a category, each poset P has an

opposite poset.

Definition 2.2.2. For each poset (P,≤), there is an opposite poset (P op,≥). That is, for each

a ≤ b in P , there is a relation a ≥ b in P op.

Viewing a poset as a category, we may ask about the existence of products and coproducts, or

about the existence of initial and final objects. First, we introduce terminology for these objects
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and provide a definition for when a poset P has all (finite) products and coproducts as well as

terminal objects.

Definition 2.2.3. Let a, b ∈ P . The meet of a and b is the unique maximal element a∧ b ∈ P such

that a ∧ b ≤ a and a ∧ b ≤ b. That is, if z ∈ P such that z ≤ a, b, then z ≤ a ∧ b.

If we think of a poset as a category, then the meet of two elements (if it exists) is their product.

Definition 2.2.4. Let a, b ∈ P . The join of a and b is the unique minimal element a ∨ b ∈ P such

that a ≤ a ∨ b and b ≤ a ∨ b. That is, if z ∈ P such that a, b ≤ z, then a ∨ b ≤ z.

If we think of a poset as a category, then the join of two elements (if it exists) is their coproduct.

If all (finite) meets and joins exist, then there is a nice algebraic structure on a poset P with ∨

and ∧ as binary operations.

Definition 2.2.5. A lattice is a poset with all finite meets and joins. A bounded lattice is a lattice

that has a top and a bottom element, denoted ⊤ and ⊥ respectively. Thinking of P as a category,

these are the final and initial objects. A finite lattice has only finitely many elements (in fact,

any finite lattice is necessarily bounded [6]). We often write (P,⊤,⊥,∨,∧), or just P when the

terminal objects and operations are obvious or implied.

When dealing with multiple lattices, we sometimes write ⊥P , ⊤P , ∨P , and ∧P to clarify that

we are talking about the bottom/top elements or operations for P , specifically.

Definition 2.2.6. (Section 3.1 in [6]) A bounded lattice map is a map α : P → Q between

bounded lattices P and Q such that for any a, b ∈ P , α(a ∨P b) = α(a) ∨Q α(b), α(a ∧P b) =

α(a) ∧Q α(b), α(⊤P ) = ⊤Q, and α(⊥P ) = ⊥Q.

That is, a map between bounded lattices must respect the algebraic structure of the lattices.

Proposition 2.2.1. (Proposition 3.1 in [6]) Let α : P → Q be a bounded lattice map. Then, for

any q ∈ Q, α−1[⊥, q] has a unique maximal element.
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Figure 2.1: A lattice P and its corresponding interval lattice P .

Proof. Since α(⊥) = ⊥, α−1[⊥, q] 6= ∅. Since P is finite, so is α−1[⊥, q]. Take a, b ∈ α−1[⊥, q].

Then, α(a∨ b) = α(a)∨α(b) ≤ q∨ q = q and α(a∧ b) = α(a)∧α(b) ≤ q∧ q = q. By definition,

α(a ∨ b), α(a ∧ b) ≥ ⊥ as well. Thus, α−1[⊥, q] contains all meets and joins, so it is a lattice. As

a finite lattice, it must have a unique maximal element.

2.2.1 Möbius Inversions

Patel first observed that the persistence diagram is closely related to Rota’s combinatorial

Möbius inversion [8]. Thus, in persistence theory, lattices are not only useful for indexing a filtra-

tion (see Sections 2.4 and 2.5), but the theory of the incidence algebra and Möbius inversions are

central to persistence.

For this section, let P be a finite poset.

Definition 2.2.7. For a poset P , denote by P its poset of intervals. That is, for any a ≤ b in P ,

define the interval [a, b] = {c ∈ P | a ≤ c ≤ b}. Then, we define P = {[a, b] | a ≤ b ∈ P}. The

ordering ≤ on P is given as follows: [a, b] ≤ [c, d] ⇐⇒ a ≤ c and b ≤ d in P .

If P is a lattice, then so is P . We define [a, b] ∨ [c, d] = [a ∨ c, b ∨ d], which is unique since

joins are unique in P . A similar argument applies for meets. If P is a finite lattice, then so is P .

After all, the bottom element is [⊥,⊥] and the top element is [⊤,⊤].

7



Proposition 2.2.2. Let α : P → Q be a bounded lattice map. Then, ᾱ : P → Q is a bounded

lattice map, where ᾱ[a, b] = [α(a), α(b)].

Proof. It is clear that ᾱ preserves top and bottom elements. To see that ᾱ preserves joins,

ᾱ ([a, b] ∨ [c, d]) = ᾱ ([a ∨ c, b ∨ d]) = [α(a) ∨ α(c), α(b) ∨ α(d)]

= [α(a), α(b)] ∨ [α(c), α(d)] = ᾱ[a, b] ∨ ᾱ[c, d].

A similar argument applies for meets.

In this thesis, we are particularly interested in integer-valued functions defined on P . For

f, g : P → Z, we may add (f + g) and multiply by scalars (z · f , for z ∈ Z), and the result is

another integer-valued function. We may also define multiplication of f, g : P → Z as convolution

f ∗ g, defined as

f ∗ g[a, c] =
∑

a≤b≤c

f [a, b]g[b, c].

There is a multiplicative identity, δ, defined as follows: δ[x, y] = 0 if x 6= y and δ[x, x] = 1. After

all, notice that f ∗ δ[a, c] =
∑

a≤b≤c f [a, b]g[b, c] = f [a, c]δ[c, c] = f [a, c].

Definition 2.2.8. (Page 344 in [12]) The incidence algebra of a finite poset P is the Z-algebra of

integer-valued functions f : P → Z, with binary operations addition and convolution.

Example 2.2.1. (Page 344 in [12]) The zeta function ζ : P → Z is defined by ζ[a, b] = 1 for all

[a, b] ∈ P .

The zeta function, although very simple, is an important element in the incidence algebra. For

one, it is invertible - see Proposition 1 in [12] for a proof.

Definition 2.2.9. (Proposition 1 in [12]) The inverse of the zeta function, denoted by µ, is the

Möbius function. It is defined inductively as follows:

µ[x, y] = −
∑

x≤z<y

µ[x, z],

8



where the base case is given by µ[x, x] = 1.

Given an integer-valued map f : P → Z defined on a poset P , we may define the combinatorial

derivative of f , otherwise known as the Möbius inversion.

Definition 2.2.10. (Proposition 2 in [12]) Let f : P → Z be an integer-valued function with

domain some finite poset P . Then, the Möbius inversion of f is the unique function σ : P → Z

such that, for all b ∈ P ,

f(b) =
∑

a≤b∈P

σ(a).

Rota proves that, if σ is the Möbius inversion of f , then σ(b) =
∑

a≤b f(a)µ[a, b], connecting

the Möbius inversion of f to the Möbius function (Proposition 2 in [12]).

2.2.2 Metric Lattices

Before completing our discussion on lattice theory, we define a metric lattice. The definitions

and propositions in this section will help us prove stability in Section 5.

Definition 2.2.11. (Section 3.2 in [6]) A finite (extended) metric lattice is a pair (P, dP ), where

P is a lattice equipped with a metric dP : P × P → R≥0 ∪ {∞}. We simply write P when the

metric is clear.

Given a bounded lattice map α : P → Q, we may ask how α distorts the distances dP and dQ,

if P and Q are metric lattices.

Definition 2.2.12. (Section 3.2 in [6]) A metric lattice map is a bounded lattice map α : P → Q

where (P, dP ) and (Q, dQ) are finite metric lattices. The distortion of a morphism α : (P, dP ) →

(Q, dQ) is

||α|| = max
a,b∈P

|dP (a, b)− dQ(α(a), α(b))| .

Example 2.2.2. The most basic example of a metric lattice (P, dP ) is any finite lattice P with

dP (x, y) defined as the length of the shortest path between x and y. That is, if we draw the Hasse

diagram of P , dP (x, y) is the minimal number of edges between x and y. See Figure 2.2.

9
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b c q

a p

P Qα

Figure 2.2: Let dP and dQ be the length of the shortest path between two lattice elements, as in Example

2.2.2. Then, α : P → Q is a bounded lattice map with distortion ||α|| = |dP (a, c) − dQ(α(a), α(c))| =
|1− 0| = 1.

Further, if P is a finite metric lattice, then so is its lattice of intervals P . After all, given dP , we

may define a metric dP on P as follows:

dP ([a, b], [c, d]) = max {dP (a, c), dP (b, d)} .

We know from Proposition 2.2.2 that α : P → Q induces a map ᾱ : P → Q on interval lattices.

We may wonder, how does ||ᾱ|| compare to ||α||?

Lemma 2.2.1. (Proposition 3.4 in [6]) Let α : P → Q be a metric lattice map, and let ᾱ : P → Q

be the induced bounded lattice map on intervals. Then, ||ᾱ|| = ||α||.

See [6] for the proof of Lemma 2.2.1.

2.3 Simplicial (Co)Homology

Now, we begin our discussion on algebraic topology. Specifically, we focus on homology and

cohomology, as they are the algebraic invariants of use in this thesis.

In this thesis, we work with a certain type of topological space called a simplicial complex.

Simplicial complexes are useful for two main reasons: (1) simplicial (co)homology is much easier

to compute than singular (co)homology, and (2) simplicial complexes are particularly useful in

10



topological data analysis, where one may work with a Vietoris-Rips complex or another similar

construction [1].

In this section, we define a simplicial complex and discuss the basics of simplicial homology

and cohomology. For a more in-depth discussion, see [13].

Definition 2.3.1. (Page 103 in [13]) An n-simplex is the convex hull of n + 1 distinct points

v0, v1, . . . , vn in R
n+1 in general position. Given an orientation,1 we denote the n-simplex as

σ = [v0, v1, . . . , vn]. A k-simplex τ = [u0, u1, . . . , uk] is a face of σ if {u0, u1, . . . , uk} ⊂

{v0, v1, . . . , vn}.

Definition 2.3.2. A simplicial complex K is a set of simplicies such that if τ is a face of σ ∈ K,

then τ ∈ K. We also require that if σ1, σ2 ∈ M , then σ1 ∩ σ2 is either empty or a face of both σ1

and σ2.

We may also define a simplicial complex combinatorially, in contrast to the geometric defini-

tion given above.

Definition 2.3.3. An abstract simplicial complex ∆ is a collection of subsets of a set S such that,

if X ∈ ∆ and Y ⊆ X , then Y ∈ ∆. We call Y a face of X . We refer to S as the vertex set.

Because simplicial complexes are given more structure than general topological spaces, maps

between simplicial complexes ought to preserve this structure.

Definition 2.3.4. A simplicial map f : K → J between two simplicial complexes K, J is a map

on the vertex sets of K and J such that simplices are mapped to simplices.

Example 2.3.1. Let K be a subcomplex of J . Then, the inclusion ι : K →֒ J is a simplicial map.

In algebraic topology, we wish to study a topological space (in this case, a simplicial complex)

by studying certain algebraic invariants and descriptors. A popular example is the homology of K,

which we define in this section.

1Usually, the orientation is inherited by the ordering on the indices.
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Definition 2.3.5. (Page 104 in [13]) The nth chain group of K with coefficients in a field F,

denoted Cn(K;F), is the free abelian group generated by the set of n simplices of K.

For every dimension n, there is a boundary map ∂n : Cn(K;F) → Cn−1(K;F). For each n

simplex (that is, basis element) [v0, · · · , vn], we define

∂n([v0, · · · , vn]) =
∑

i

(−1)i[v0, · · · , v̂i, . . . , vn]

and extend linearly. Here, v̂i means we remove the vertex vi, resulting in an n− 1 simplex.

Lemma 2.3.1. (Lemma 2.1 in [13]) For every n, ∂n−1∂n = 0.

Proof. We need only check this on a general basis element. Let [v0, . . . , vn] be an n simplex in K.

Then,

∂n−1∂n[v0, . . . , vn] = ∂n−1

∑

i

(−1)i[v0, · · · , v̂i, . . . , vn]

=
∑

i<j

(−1)i(−1)j[v0, · · · , v̂j, · · · , v̂i, · · · , vn]

+
∑

i>j

(−1)i(−1)j−1[v0, · · · , v̂i, · · · , v̂j, · · · , vn]

= 0.

Since every basis element goes to 0, the composition of boundary maps sends any n-chain to 0.

Definition 2.3.6. (Page 106 in [13]) A chain complex is a sequence of vector spaces Vn and

homomorphisms fn : Vn → Vn−1 such that imfn+1 ⊆ ker fn for all n. This condition is equivalent

to saying fn−1fn = 0.

In particular, Lemma 2.3.1 proves that the sequence of simplicial chain groups with boundary

maps is a chain complex:

· · ·
∂n+2
−−−→ Cn+1(K;F)

∂n+1
−−−→ Cn(K;F)

∂n−→ Cn−1(K;F)
∂n−1
−−−→ · · ·

∂1−→ C0(K;F)
∂0−→ 0.
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Using this exact sequence, we may make the following definition.

Definition 2.3.7. Elements of ker ∂n (often denoted Zn(K;F)) are called n-cycles, and elements

of im∂n+1 (often denoted Bn(K;F)) are called n-boundaries. Since im∂n+1 ⊆ ker ∂n, we define

the nth homology group of the chain complex C•(K;F) as the quotient

Hn(K;F) =
ker ∂n
im∂n+1

=
Zn(K;F)

Bn(K;F)
.

Given a simplicial map f : K → J , there is an induced linear map f̂n : Cn(K;F)→ Cn(J ;F)

for every n. The induced maps commute with the boundary maps; that is, ∂n ◦ f̂n = f̂n−1 ◦ ∂n

for all n. We call a collection of maps that satisfy this property chain maps, and denote them

f# : C•(K;F)→ C•(J ;F). Thus, f induces a chain map f#.

We can go further. Each linear map f̂n : Cn(K;F) → Cn(J ;F) induces a linear map on

homology groups, fn : Hn(K,F)→ Hn(J ;F). We prove this assertion below.

Lemma 2.3.2. A chain map f̂n : Cn(K;F)→ Cn(J ;F) induces a linear map on homology groups,

fn : Hn(K,F)→ Hn(J ;F).

Proof. We need only show that f̂n maps cycles to cycles and boundaries to boundaries. First, let

c ∈ Cn(K;F) be a cycle. Thus, ∂c = 0. Since f# is a chain map, ∂f̂n(c) = f̂n−1∂(c) = 0.

Thus, f̂n(c) ∈ Zn(J ;F). Now, let c ∈ Cn(K;F) be a boundary. Thus, ∃b ∈ Cn+1(K;F) such that

∂b = c. Then, ∂f̂n+1(b) = f̂n∂(b) = f̂n(c). That is, f̂n(c) ∈ Bn(J ;F).

In summary, given a simplicial complex K and dimension n, we may define a vector space

Hn(K,F). Further, for a simplicial map f : K → J , there is a linear map fn. That is, after

checking a couple other properties, we have shown the following:

Theorem 2.3.1. Homology is functorial. That is, Hn(−;F) : Simp → VectF where K 7→

Hn(K;F) is a functor.2

2I have stated the theorem in terms of simplicial homology. It is also true that singular homology is a functor

Hn(−;F) : Top→ VectF.
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Since each Cn(K;F) is a F-vector space, we may look at its vector space dual. That is, we may

consider the vector space of all possible maps Cn(K;F)→ F, denoted Hom(Cn(K;F),F).

Definition 2.3.8. The nth cochain group is Cn(K;F) = Hom (Cn(K;F),F).

The boundary maps between chain groups induce coboundary maps between cochain groups

δn : Cn(K;F) → Cn+1(K;F), given by pre-composition with ∂n+1. That is, for c∗ ∈ Cn(K;F),

δn(c∗) = c∗ ◦ ∂n+1.

Lemma 2.3.3. For every n, δn+1δn = 0.

Proof. Take any c∗ ∈ Cn(K;F). Then, δn+1δn(c∗) = c∗ ◦ ∂n+1 ◦ ∂n+2 = 0 by Lemma 2.3.1.

In fact, by Lemma 2.3.3, the cochain groups equipped with the coboundary maps give rise to a

cochain complex:

· · ·
δn+1

←−− Cn+1(K;F)
δn←− Cn(K;F)

δn−1

←−− Cn−1(K;F)
δn−2

←−− · · ·
δ0

←− C0(K;F)← 0.

Definition 2.3.9. Elements of ker δn (often denoted Zn(K;F)) are called n-cocycles, and elements

of imδn−1 (often denoted Bn(K;F)) are called n-coboundaries. Since imδn−1 ⊆ ker δn, we define

the nth cohomology group of the cochain complex C•(K;F) as the quotient

Hn(K;F) =
ker δn

imδn−1
=

Zn(K;F)

Bn(K;F)
.

We already know that, given a simplicial map f : K → J , there is an induced map on chain

groups f̂n for every n. Thus, f also induces a map f̂n : Cn(J,F) → Cn(K,F) on cochain groups

for every n. After all, given any c∗ ∈ Cn(J,F), define f̂n(c∗) = c∗ ◦ f̂n. These induced maps also

respect the coboundary maps: namely, f̂n ◦ δn−1 = δn−1 ◦ f̂n−1. We call a collection of maps that

satisfies this property a cochain map, denoted f# : C•(J,F)→ C•(K,F).

For each n, f̂n induces a linear map on cohomology fn : Hn(J ;F)→ Hn(K;F).

Again, notice that cohomology assigns to every simplicial complex a vector space and to every

simplicial map a linear map. That is,
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Theorem 2.3.2. Cohomology is a contravariant functor. That is, Hn(−;F) : Simpop → VectF

where K 7→ Hn(K;F) is a functor.

Functoriality of homology and cohomology will play an important role in future chapters.

2.4 Persistence

Homology and cohomology are useful tools for topological data analysis. Of specific interest

is the persistence diagram. In this section, we will discuss the traditional, 1-parameter setting for

persistent homology and cohomology. However, persistence theory is a booming area of research,

and we will only be scratching the surface of the interesting theorems and results in the field.

In this section, we will describe certain landmark findings and definitions in persistence the-

ory; that is, we will describe filtrations, the rank function, and the persistence diagram, focusing

specifically on category-theoretic definitions and the language of posets.

Let K be a simplicial complex. A filtration of K is a nested sequence of inclusions

K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

where each Ki is a subcomplex of K. For those inclined to category theory, a filtration is a functor

as follows. Let [n] denote the category consisting of objects {0, 1, · · · , n} and morphisms i → j

for all i ≤ j. Notice that [n] is a poset (in fact, it is a totally ordered set). Let ∆K denote the

category of subcomplexes of K, with morphisms inclusion maps.

Definition 2.4.1. A filtration of K is a functor F : [n]→ ∆K.3

Now, recall that Homology is functorial. That is, we may choose a field F and desired dimen-

sion n, then compose Hn(−;F) ◦ F . The result is a special case of a more general persistence

module:

3See [14] for how to move from a discrete filtration, which is the definition we provided, to a continuous filtration

indexed over R.
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Definition 2.4.2. (Definition 3.2 in [2]) A persistence module is a family of F-vector spaces

{Vi}i together with linear transformations ϕi,j : Vi → Vj for i ≤ j and ϕi,j ◦ ϕj,k = ϕi,k whenever

i ≤ j ≤ k.

In the special case where we apply homology, each Vi is the homology group of F (i), for

i ∈ [n]. Further, each ϕi,j is the inclusion map F (i)→ F (j) for i ≤ j in [n].

By studying persistent homology, we aim to answer the question "how does the homology of

a space K change as I move through the filtration F "? In other words, we want to track when

homological features appear and disappear as we move through the filtration F . Below, we discuss

the mathematics used to answer that question.

Let F : [n]→ ∆K be a filtration, and recall that Hn(−;F) ◦F sends each step in our filtration

to its corresponding homology group. Because homology is functorial, each a ≤ b in [n] induces

a linear map Hn(F (a);F) → Hn(F (b);F). We denote this map by Hn(F (a ≤ b);F), or simply

Hn(F (a ≤ b)).

Definition 2.4.3. (Definition 2.3 in [14]) Given a filtration F : [n]→ ∆K and persistence module

Hn(−;F) ◦ F , the rank function rk : [n] → Z is defined as follows: for each a ≤ b ∈ [n],

rkn[a, b] = rkHn(F (a ≤ b);F).

Definition 2.4.4. (Theorem 4.1 in [8]) The nth persistence diagram is the Möbius inversion of

the rank function.

Specifically, the nth persistence diagram is also an integer-valued function PHn : [n] → Z.

In the case of 1-parameter filtrations, the Möbius inversion may be computed i 6= j using the

following simple formula for [4, 14]:

PHn[i, j] = rkn[i, j − 1]− rkn[i− 1, j − 1]− rkn[i, j] + rkn[i− 1, j].

Recall that in our general definition of a persistence module the use of homology was not

necessary. We may also define a persistence module using cohomology groups. That is, we may
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define a persistence module where Hn(−;F) ◦ F maps each a ∈ [n] to the cohomology group

Hn(F (a);F), and a ≤ b ∈ [n] corresponds to a linear map Hn(F (b);F) → Hn(F (a);F) (recall

that cohomology is contravariant). Although the arrows are reversed, we may still use the rank

function and the Möbius inversion to obtain the persistence diagram.

In [3], de Silva, Morozov, and Vejdemo-Johansson construct an isomorphism between persis-

tent homology and persistent cohomology.

2.5 Generalized Persistence Diagrams

In the previous section, we briefly introduced persistent homology. Notice that our discussion

on filtrations focused on totally ordered sets. Recently, much research was done to generalize

persistence diagrams, and defining persistence for multiparameter filtrations is one avenue of gen-

eralization.

One solution to establishing a theory of multiparameter persistence was done by Alex Mc-

Cleary and Amit Patel in [6]. We will briefly summarize their findings here, but we refer you to

their paper for in-depth and rigorous discussions of morphisms, stability, proofs of functoriality,

and the like. Many of the proofs in Section 4 will look very similar to the proofs in [6] (in fact, this

is no surprise [3]).

For this section, let P be a finite metric lattice, K be a finite simplicial complex, and ∆K the

category of subcomplexes of K with morphisms inclusion maps.

Definition 2.5.1. (Definition 4.1 in [6]) A filtration of K indexed by P is a functor F : P → ∆K

such that F (⊤) = K. That is, for all a ≤ b in P , F (a), F (b) are subcomplexes of K and there is

an inclusion map F (a)→ F (b).

Definition 2.5.2. (Definition 4.2 in [6]) A filtration preserving morphism is a triple (F,G, α)

where F : P → ∆K and G : Q → ∆K are filtrations and α : P → Q is a bounded lattice map

such that, for all q ∈ Q, Q(q) = F (maxα−1[⊥, q]).4

4maxα−1[⊥, q] is guaranteed to exist by Proposition 2.2.1.
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In [6], the authors show that the composition of filtration preserving morphisms is itself a

filtration-preserving morphism. Thus, we are justified in making the following definition:

Definition 2.5.3. (Definition 4.7 in [6]) Denote by Fil(K) the category of filtrations of a simpli-

cial complex K, with objects filtrations and morphisms filtration-preserving morphisms.

Given a filtration F , we are interested in tracking the birth and the death of homological fea-

tures. We achieve this by defining the birth-death function associated to a filtration. First, however,

we establish the category in which these functions live.

Definition 2.5.4. (Page 9 in [6]) Let P be a finite metric lattice. A monotone integer function is

a function f : P → Z such that, whenever I ≤ J ∈ P , f(I) ≤ f(J).

Definition 2.5.5. (Definition 5.1 in [6]) A monotone-preserving morphism is a triple (f, g, α)

where f : P → Z, g : Q → Z are monotone integer functions defined on interval lattices

and α : P → Q is a bounded lattice map that satisfies the following: for all I ∈ Q, g(I) =

f(maxα−1[⊥, I]).

Again, see [6] for the proof that we may compose monotone-preserving morphisms. Thus, we

may define the following category.

Definition 2.5.6. (Definition 5.5 in [6]) Let Mon be the category of monotone integer functions,

with morphisms monotone-preserving functions.

Definition 2.5.7. (Definition 5.6 in [6]) Take a filtration F : P → ∆K. Its nth birth-death

function is the monotone function fn : P → Z defined by

ZBn[a, b] =















dim (Zn(a) ∩ Bn(b)) if b 6= ⊤

dim (Zn(a)) if b = ⊤.

It turns out that the assignment of each filtration F : P → ∆K to its birth-death function in

functorial. That is,
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Definition 2.5.8. (Definition 5.9 in [6]) The nth birth-death functor ZBn : Fil(K)→ Mon is the

functor that assigns each filtration to its nth birth-death function.

In [6], the authors show that, for 1-parameter filtrations, the birth-death function agrees with

the rank function from Definition 2.4.3.

Just as in Section 2.4, we may use the Möbius inversion of the birth-death functor to define the

persistence diagram. By definition, the Möbius inversion is an integer-valued function (not neces-

sarily monotone); thus, we want to study the category of integer-valued (or, "integral") functions.

To do so, we must first define a morphism of integral functions.

Definition 2.5.9. (Definition 6.1 in [6]) Let P,Q be finite metric lattices, and let σ : P → Z and

τ : Q → Z be two integral functions. A charge-preserving morphism is a triple (σ, τ, α) where

α : P → Q is a bounded lattice map such that for all I 6= [q, q] ∈ Q,

τ(I) =
∑

J∈ᾱ−1(I)

σ(J).

if ᾱ−1(I) = ∅, then we define τ(I) = 0.

A composition of charge-preserving morphisms is again charge-preserving, so we may define

the corresponding category.

Definition 2.5.10. (Definition 6.5 in [6]) Let Fnc be the category of integer-valued functions

with morphisms charge-preserving morphisms.

McCleary and Patel show that the assignment of a monotone integer function to its Möbius

inversion is functorial.

Definition 2.5.11. (Definition 5.9 in [6]) The Möbius inversion functor is the functor MI :

Mon→ Fnc that assigns each monotone integer function its Möbius inversion.

Definition 2.5.12. (Definition 8.1 in [6]) The nth persistence diagram of a filtration F : P → ∆K

is the integral function given by PHn(F ) = MI ◦ ZBn(F ).
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That is, persistence diagrams are given by the following composition of functors:

Fil(K)
ZB∗−−→ Mon

MI
−→ Fnc.

In [6], the authors show that these persistence diagrams are stable with respect to the edit

distance, which we define in Section 5.1.
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Chapter 3

Cofiltrations

Suppose we want to study persistent cohomology by applying the same functorial pipeline as

in [6] and discussed in Section 2.5. That is, let P
F
−→ ∆K be a filtration, and let a ≤ b in P . The

inclusion F (a)
ι
−→ F (b) induces a cochain map ι#:

· · · Cn+1(F (a)) Cn(F (a)) Cn−1(F (a)) · · ·

· · · Cn+1(F (b)) Cn(F (b)) Cn−1(F (b)) · · ·

ι# ι#ι#

δn−1

δn−1

δn

δn

In order to study generalized cohomology, we want to understand what ι# does to cochains

and coboundaries. Unfortunately, unlike in the homology setting, the maps between cochains

and coboundaries are not necessarily injective nor surjective, even when looking at a 1-parameter

filtration. For an easy counter-example, see Figure 3.1. This makes defining a birth-death functor

for cohomology more complicated.

In this chapter, we resolve the issue above by introducing cofiltrations of a simplicial com-

plex K. The tools established in this chapter will allow us to define the persistence diagram for

cohomology of a cofiltration in Chapter 4.

3.1 Category of Cofiltrations

Before defining cofiltrations, we first introduce the notion of a "supcomplex".

Definition 3.1.1. Let σ be an n-simplex. A coface of σ is k-simplex τ such that σ is a face of τ

(this condition implies k ≥ n+ 1).

Definition 3.1.2. Let K be a simplicial complex. A supcomplex of K is an open collection of

simplices that is closed upwards. That is, if K ′ is a supcomplex of K and σ ∈ K ′, then all cofaces

of σ must also be in K ′.
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Figure 3.1: A filtration of the 2-simplex, indexed over the totally ordered lattice on 4 elements, [3]. We then

compute the 0th cocyle group for each F (i). Here, [vi]
∗ denotes the 0-cocyle that maps vi to 1 and vj to 0

for any j 6= i. Notice that Z0(F (1 ≤ 2)) is not surjective, and that Z0(F (0 ≤ 1)) is not injective.

Note that a supcomplex K ′ is not actually a simplicial complex, but |K ′| (the underlying topo-

logical space of K ′) is a subspace of |K|. Denote by∇K the category of supcomplexes of K with

morphisms inclusion maps. That is, if K ′, K ′′ are supcomplexes of K, then there is a morphism

K ′ → K ′′ when K ′ ⊆ K ′′.

Proposition 3.1.1. ∇K is a finite lattice.

Proof. Since K is a finite simplicial complex, there are only finitely many supcomplexes. Further,

⊤∇K = K and ⊥∇K = ∅. The order is given by inclusion. Let K ′, K ′′ ∈ ∇K. Meets are

intersections. The intersection K ′ ∩ K ′′ is, indeed, a supcomplex, since τ ∈ K ′ ∩ K ′′ means all

cofaces of τ are in both K ′ and K ′′, therefore in K ′ ∩ K ′′. Now, suppose ∃J ∈ ∇K such that

K ′ ∩ K ′′ ⊆ J ⊆ K ′, K ′′. Then, τ ∈ J means τ and all cofaces of τ are in both K ′ and K ′′, so

τ ∈ K ′ ∩ K ′′ =⇒ J ⊆ K ′ ∩ K ′′. Thus, K ′ ∩ K ′′ is the unique maximal element such that

K ′ ∩ K ′′ ⊆ K ′, K ′′. Joins are unions. After all, K ′ ∪ K ′′ is a supcomplex, since τ ∈ K ′ ∪ K ′′

means all cofaces of τ are in either K ′ or K ′′, therefore also in K ′ ∪K ′′. Now, suppose ∃L such

that K ′, K ′′ ⊆ L ⊆ K ′ ∪ K ′′. Then, τ ∈ K ′ ∪ K ′′ means τ and all its cofaces are in either K ′
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Figure 3.2: A cofiltration of the 2-simplex, indexed over a lattice P .

or K ′′, and therefore must be in L. So, K ′ ∪ K ′′ ⊆ L, meaning K ′ ∪ K ′′ is the unique minimal

element such that K ′, K ′′ ⊆ K ′ ∪K ′′.

Definition 3.1.3. A cofiltration of K is a functor F : P → ∇K where P is a finite metric lattice

and F (⊤) = K.

From Proposition 3.1.1, we may be tempted to call a cofiltration a bounded lattice map. This is

not necessarily the case: we are not requiring that F preserves meets or joins. After all, in Figure

3.2, F (b ∧ c) = F (a) = ∅ 6= F (b) ∩ F (c).

With a definition of cofiltrations, we now discuss maps between cofiltrations.

Definition 3.1.4. A cofiltration-preserving morphism is a triple (F,G, α), where F : P → ∇K

and G : Q → ∇K are cofiltrations, and α : P → Q is a bounded lattice map such that G(q) =

F (maxα−1[⊥, q]).5

P Q

∇K

F G

α

5We know maxα−1[⊥, q] exists by Proposition 2.2.1.
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Figure 3.3: A cofiltration-preserving morphism (F,G, α), where α is the bounded lattice map as shown

with the blue and red arrows.

Proposition 3.1.2. If (F,G, α) and (G,H, β) are cofiltration-preserving morphisms, then so is the

composition (F,H, β ◦ α).

P Q R

∇K

G
F H

α β

Proof. Since (F,G, α) and (G,H, β) are already cofiltration-preserving morphisms, we have the

following:

G(q) = F (maxα−1[⊥Q, q]) and H(r) = G(max β−1[⊥R, r])

Thus,

H(r) = G(max β−1[⊥R, r]) = F (maxα−1
[

⊥Q, (max β−1[⊥R, r]),
]

)

= F (maxα−1β−1 [⊥R, r]) = F (max(β ◦ α)−1 [⊥R, r]).

To see why the third equality holds, notice first that α−1 [⊥Q, (max β−1[⊥R, r])] and β−1[⊥R, r] are

both finite lattices themselves (Proposition 2.2.1). Particularly, maxα−1 [⊥Q, (max β−1[⊥R, r])]

(the top element) must be mapped to max β−1[⊥R, r].
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Thus, we are justified in making the following definition:

Definition 3.1.5. We denote by CoFil(K) the category of cofiltrations of K, having as objects

cofiltrations and having as morphisms cofiltration-preserving morphisms.
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Chapter 4

Persistent Cohomology of a Cofiltration

In this section, we use the tools described in Chapter 3 to discuss the persistent cohomology

of a cofiltration. In summary, we will (1) define the birth-death functor for persistent cohomology

and (2) apply the Möbius inversion functor. The composition of the two gives us the generalized

persistence diagram.

4.1 Cohomology of Cofiltrations

Let F : P → ∇K be a cofiltration. For every a ∈ P , we construct a chain complex C•(F (a)):

· · ·
∂n+1
−−−→ Cn(F (a))

∂n−→ Cn−1(F (a))
∂n−1
−−−→ · · ·

In the case of supcomplexes, we must slightly adjust the definition of the boundary map as follows.

For [v0, . . . , vn] an n-simplex in F (a), define ∂n[v0, . . . , vn] =
∑n

i=0(−ci)
i[v0, . . . , v̂i, . . . , vn]

where ci = 1 if [v0, . . . , v̂i, . . . , vn] ∈ F (a) and ci = 0 else. Indeed, this "modified" boundary

map does satisfy ∂2 = 0.

Further, for each a ≤ b in P , there is an inclusion map ι : F (a) →֒ F (b). In this section, we

will study the map ι induces on chains and cochains.

First, we look at the induced map on chain groups:

Proposition 4.1.1. The inclusion ι : F (a) →֒ F (b) induces a chain map ι#:

· · · Cn−1(F (a)) Cn(F (a)) Cn+1(F (a)) · · ·

· · · Cn−1(F (b)) Cn(F (b)) Cn+1(F (b)) · · ·

ιn−1 ιn ιn+1

∂ ∂

∂ ∂

∂

∂

∂

∂

Further, each ιn : Cn(F (b))→ Cn(F (a)) is surjective.
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Proof. First, we show that each ιn is surjective. It is sufficient to show that each basis element σ ∈

Cn(F (a)) has a preimage. As a basis element, σ is an n-simplex in F (a). Since ι : F (a) →֒ F (b)

is the inclusion map, σ ∈ F (b) and is thus a generator for Cn(F (b)). Thus, ιn(σ) = σ. Indeed, ιn

is the restriction map: if τ ∈ F (b)\F (a), then ιn(τ) = 0.

Now, I claim that ιn−1 ◦ ∂n = ∂n ◦ ιn for every n. It suffices to show this for a general

basis element of Cn(F (b)). Let σ ∈ F (b), meaning 1 · σ = σ is a basis element of Cn(F (b)).

Suppose first that at least one face of σ is in F (a), call it τ . Since F (a) ⊆ F (b), we have that

τ ∈ F (a) =⇒ τ ∈ F (b). By the supcomplex condition, we know σ must be in both F (a)

and F (b) as well. Thus, ∂n(ιn(σ)) returns a signed sum of the faces of σ that are in F (a). Now,

consider ∂n(σ), which is a signed sum of the faces of σ that are in F (b). The restriction map

ιn−1(∂n(σ)) also returns a signed sum of the faces of σ that are in F (a). Because the orientation

on the simplices does not change throughout a cofiltration, ιn−1(∂n(σ)) = ∂n(ιn(σ)).

Now, suppose the no faces of σ are in F (a). That is, ιn−1(∂n(σ)) = 0. Consider the restriction

ιn(σ). If σ ∈ F (a), then ιn(σ) = σ and ∂n(ιn(σ)) = ∂n(σ) = 0 = ιn−1(∂n(σ)). If σ /∈ F (a), then

∂n(ιn(σ)) = ∂n(0) = 0 = ιn−1(∂n(σ)).

We have shown that ιn−1 ◦ ∂n(σ) = ∂n ◦ ιn(σ) for any basis element σ of Cn(F (b)), and

therefore must be true for any chain.

Now, we will use the fact that ι induces a map on chain groups to show that it also induces a

map on cochain groups.

Proposition 4.1.2. The inclusion ι : F (a) →֒ F (b) induces a cochain map ι#:

· · · Cn−1(F (a)) Cn(F (a)) Cn+1(F (a)) · · ·

· · · Cn−1(F (b)) Cn(F (b)) Cn+1(F (b)) · · ·

ιn−1 ιn ιn+1

δ δ

δ δ

δ

δ

δ

δ

Further, each ιn : Cn(F (a))→ Cn(F (b)) is injective.
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Proof. First, notice that each ιn is injective; let c∗, d∗ ∈ Cn(F (a)) and suppose ιn(c∗) = ιn(d∗).

That is, if ιn is the induced map on chains, c∗ ◦ ιn = d∗ ◦ ιn. Since ιn is surjective, c∗ = d∗. Thus,

ιn is injective.

Now, I claim that ιn+1δn = δnιn for every n. After all,

δnιn(c∗) = c∗ ◦ ιn ◦ ∂n+1 = c∗ ◦ ∂n+1 ◦ ιn+1

= ιn+1(c∗ ◦ ∂n+1) = ιn+1∂n(c∗).

Thus, ι# is a cochain map.

Since we are studying cohomology, we are particularly interested in where ιn maps cocyles

and coboundaries.

Proposition 4.1.3. For every n, ιn restricts to an injective map between n-cocycle spaces,

ιn : Zn(F (a)) →֒ Zn(F (b)).

Proof. First, show that ιn does, indeed, send cocycles to cocyles. Let c∗ ∈ Cn(F (a)) be a cocyle.

That is, δc∗ = 0. Since ιn+1δ = διn by Proposition 4.1.2, διn(c∗) = ιn+1(δc∗) = ιn+1(0) = 0.

Thus, ιn(c∗) is a cocyle. Injectivity follows from injectivity of ιn on cochains.

Proposition 4.1.4. For every n, ιn restricts to an injective map between n-coboundary spaces,

ιn : Bn(F (a)) →֒ Bn(F (b)).

Proof. Again, we first show that ιn maps coboundaries to coboundaries. Let c∗ ∈ Cn(F (a)) be a

coboundary. That is, c∗ = δn−1(b∗) = b∗◦∂n for some b∗ ∈ Cn−1(F (a)). Then, if ιn is the induced

map on chains,

ιn(c∗) = c∗ ◦ ιn = b∗ ◦ ∂ ◦ ιn = b∗ ◦ (ιn−1 ◦ ∂)

= (b∗ ◦ ιn−1) ◦ ∂ = δ(b∗ ◦ ιn−1)

= δ(ιn−1(b∗)).
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Thus, ιn(c∗) is a coboundary. Injectivity follows from injectivity of ιn on cochains.

Specifically, for any a ≤ b ∈ P , we get the following inclusions:

Bn(F (a)) Bn(F (b))

Zn(F (a)) Zn(F (b)) Cn(F (⊤)) = Cn(K).

4.2 Birth-Death Functor for Cohomology

From Section 4.1, we now understand the maps induced by F (a ≤ b) on chain and cochain

groups. In this section, we utilize those results to define the birth-death function associated to a

cofiltration F .

Definition 4.2.1. Let F : P → ∇K be a cofiltration. For an interval [a, b] ∈ P , let

ZBn[a, b] =















dim (ZnF (a) ∩ BnF (b)) if b 6= ⊤

dim (ZnF (a)) if b = ⊤.

where we take the intersection in Cn(K). The nth birth-death function for cohomology of a

cofiltration F : P → ∇K is the map fn : P → Z, where fn[a, b] = ZBn[a, b].

Proposition 4.2.1. Let F : P → ∇K be a cofiltration, and let fn : P → Z be its associated

birth-death function. Then, fn is a monotone integer function.

Proof. Let [a, b] ≤ [c, d] in P . Then, c ≤ a and d ≤ b in P . From Propositions 4.1.3 and

4.1.4, we have ZnF (d) ⊆ ZnF (b) and BnF (c) ⊆ BnF (a). Taking intersections gives us an-

other inclusion ZnF (a) ∩ BnF (b) ⊆ ZnF (c) ∩ BnF (d). Thus, we have shown ZBn[a, b] =

dim (ZnF (a) ∩ BnF (b)) ≤ dim (ZnF (c) ∩ BnF (d)) = ZBn[c, d].

Proposition 4.2.2. Let (F,G, α) be a cofiltration-preserving morphism. Let fn, gn be the nth

birth-death functions for F,G. Then, (fn, gn, ᾱ) is a monotone-preserving morphism.
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Figure 4.1: A cofiltration F : P → ∇K and its corresponding birth-death function for 1-dimensional

cohomology f1 : P → Z.

Proof. For an interval I = [a, b] ∈ Q, let I⋆ = max ᾱ−1[⊥Q, I]. Then, gn(I) = gn[a, b] =

fn([maxα−1[⊥Q, a],maxα−1[⊥Q, b]]) = fn(max ᾱ−1[⊥Q, I]) = fn(I⋆). Thus, (fn, gn, ᾱ) is a

monotone-preserving morphism.

From Propositions 4.2.1 and 4.2.2, we have shown that the birth-death function is functorial.

Definition 4.2.2. Let ZBn : CoFil(K) → Mon be the functor that assigns to each cofiltration its

birth-death function. We call ZBn the nth birth-death functor for cohomology.

4.3 Generalized Persistence Diagram for Cohomology

Let f : P → Z be a monotone integer function. Recall from Section 2.2.1 that the Möbius

inversion of f is the unique integral function σ : P → Z such that

f [a, b] =
∑

[c,d]∈P : [c,d]≤[a,b]

σ[c, d].

Proposition 4.3.1. (Proposition 6.6 in [6]) Let (fn, gn, α) be a morphism of monotone integer

functions. Let σ, τ be the Möbius inversions of fn, gn. Then, (σ, τ, ᾱ) is a morphism of integer

functions.

For the proof, see [6].
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Figure 4.2: A cofiltration F : P → ∇K and its corresponding 1-dimensional persistence diagram σ : P →
Z, which is the Möbius inversion of it’s birth-death function for 1-dimensional cohomology f1 : P → Z.

By definition, the Möbius inversion of a monotone integral function is itself an integral func-

tion. Thus, by Proposition 4.3.1, the Möbius inversion is functorial. That is, MI : Mon → Fnc is

a functor.

Finally, we can define the persistence diagram arising from cohomology of a cofiltration:

Definition 4.3.1. Let K be a finite simplicial complex. For every n ≥ 0 we have the following

composition of functors:

CoFil(K)
ZBn

−−→ Mon
MI
−→ Fnc.

We call this composition the nth persistent cohomology functor, denoted PHn = MI ◦ ZBn.

Given a cofiltration F : P → ∇K, its nth persistence diagram is PHn(F ).

4.4 Comparing Persistence Diagrams

Now, with a general definition for persistent homology of a filtration and persistent cohomology

of a cofiltration, it is natural to ask about the relationship between the two.

The most obvious way to construct a cofiltration from a filtration (or vice versa) is as follows:

given F : P → ∆K a filtration such that F (⊥) = ∅, define G : P op → ∇K by G(p) = K\F (p).

Indeed, G is a cofiltration. However, it turns out that this construction is not functorial. Specifi-
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cally, it does not map filtration-preserving morphisms to cofiltration-preserving morphisms. With

this warning in mind, we are still interested in studying the similarities and differences between F

and G.

There are a few things we expect to happen. Since F (⊤P ) = G(⊤P op) = K is a finite simplex,

and since we are using field coefficients, we will see a bijection between the persistent cycles and

cocyles. However, because the spaces we consider are inherently different (subcomplexes in the

case of filtrations and supcomplexes in the case of cofiltrations), it is possible (perhaps even likely)

that the two diagrams will differ. In this section, we compute the persistence diagrams for both

homology of a filtration and cohomology of a cofiltration and compare the two.

Table 4.1 shows examples of a filtration F : P → ∆K and the cofiltration G : P op → ∇K of

the 2-simplex (denoted K) over a finite lattice P (or, it’s opposite lattice P op). Then, see Table 4.2

to see examples of the corresponding persistence diagrams for n = 0, 1, 2.

First, let’s discuss the 0-dimensional persistence diagram. for F , we see 2 0-cycles born at

F (a) that die by F (b) and 1 persistent 0-cycle born at F (a). For G, we see 1 0-cocyle that is born

at G(⊥) and persists. This matches our intuition. Now, consider 1-dimensional persistence. For

F , we see 1 1-cycle born at F (b) that dies at F (⊤). For G, we see 2 1-cocyle born at G(c) that

die at G(⊥). Overall, there are no persistent 1-cycles or 1-cocyles, again matching our intuition.

Finally, for 2-dimensional persistence, we expect to see no persistent 2 cycles or cocyles: after all,

for F , no 2-cycles are ever present in the filtration. For G, 1 2-cocyle is born at G(b) and dies at

G(a), 1 2-cocyle is born at G(c) and dies immediately at G(c). By G(a), we can see that these

2-cocyles are the same, hence the "-1" at [a, a]. Nonetheless, no 2-cocyles persist.
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Table 4.1: A table showing examples of finite lattices P and P op, the filtrations F : P → ∆K and

cofiltration G : P op → ∇K, and the interval lattices P and P op. We use this information to compute the

persistence diagrams shown in Table 4.2

Lattices F : P → ∆K G : P op → ∇K

P,P op

⊤

b c

a

⊥

⊥

a

b c

⊤

F (P ), G(P op)

P , P op

[⊤,⊤]

[b,⊤] [c,⊤]

[b, b] [a,⊤] [c, c]

[a, b] [a, c]

[⊥, b] [a, a] [⊥, c]

[⊥, a]

[⊥,⊥]

[⊥,⊥]

[a,⊥]

[b,⊥] [a, a] [c,⊥]

[b, a] [c, a]

[b, b] [⊤, a] [c, c]

[⊤, b] [⊤, c]

[⊤,⊤]
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Table 4.2: A table showing the persistence diagrams (for dimensions n = 0, 1, 2) arising from the filtration

F and cofiltration G in Table 4.1.

n PHn(F ) PHn(G)

0

0

0 0

0 1 0

2 0

0 0 0

0

0

1

0

0 0 0

0 0

0 0 0

0 0

0

1

0

1 0

0 0 0

0 0

0 0 0

0

0

0

0

0 0 2

0 0

0 0 0

0 0

0

2

0

0 0

0 0 0

0 0

0 0 0

0

0

0

0

0 −1 0

1 0

0 0 1

0 0

0
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Chapter 5

Stability

Stability of classical persistence diagrams with respect to the bottleneck distance was first

proved by Cohen-Steiner, Edelsbrunner, and Harer in [4]. In [6], the authors show that generalized

persistence diagrams are stable with respect to the edit distance. In this chapter, we prove the same

stability theorem for the persistence diagram admitted by the Möbius inversion of the birth-death

functor for cohomology of a cofiltration.

5.1 Edit Distance

Before making a statement about stability of persistence diagrams, we must first discuss the

edit distance in each of our three main categories: CoFil(K), Mon, and Fnc.

Definition 5.1.1. (Section 7.1 in [6]) A path between two cofiltrations F,G ∈ CoFil(K) is a

finite sequence of morphisms

F ↔
α1

H1 ↔
α2

· · · ↔
αn−1

Hn−1 ↔
αn

G,

where↔ means the cofiltration preserving morphism is in either direction. The length of a path is

the sum of the distortions of the bounded lattice maps,
∑n

i=1 ||αi|| (see Definition 2.2.12).

If the distortion ||αi|| is infinite for some i, then the length of the path is also infinite. Further,

any two cofiltrations are connected by a path, as the cofiltration I : {⋆} → ∇K is the final object

in CoFil(K), where {⋆} is the lattice of one element.

Definition 5.1.2. (Definition 7.1 in [6]) The edit distance dCoFil(K)(F,G) between two cofiltra-

tions F,G ∈ CoFil(K) is the length of the shortest path between F and G.
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Definition 5.1.3. (Section 7.2 in [6]) A path between two monotone functions f, g ∈ Mon is a

finite sequence of morphisms

f ↔
ᾱ1

h1 ↔
ᾱ2

· · · ↔
ᾱn−1

hn−1 ↔
ᾱn

g,

where↔ means the monotone-preserving morphism is in either direction. The length of a path is

the sum of the distortions of the bounded lattice maps,
∑n

i=1 ||ᾱi||.

Given two monotone integer functions f : P → Z and g : Q→ Z such that f [⊤,⊤] = g[⊤,⊤],

there always exists a path between f and g. After all, suppose f [⊤,⊤] = n = g[⊤,⊤], and let

e : {⋆} → Z be the monotone integer function given by e[⋆, ⋆] = n. Then, there is a unique

monotone-integral function from f to e, given by the bounded lattice map that sends all intervals

in P to [⋆, ⋆]. The same is true for g: that is, there is a unique monotone-integral function from g

to e. Thus, we have the following path between f and g: f → e← g.

Definition 5.1.4. (Definition 7.2 in [6]) The edit distance dMon(f, g) between two monotone func-

tions f, g ∈ Mon is the length of the shortest path between f and g. If there are no paths, then set

dMon(f, g) =∞.

Lemma 5.1.1. (Lemma 7.3 in [6]) Let F,G ∈ CoFil(K). Then, for every n,

dMon(ZB
nF,ZBnG) ≤ dCoFil(K)(F,G).

Proof. Let dCoFil(K)(F,G) = ǫ. Then, there exists a path of length ǫ in CoFil(K) between F,G.

Applying ZBn to every morphism in the path gives a path in Mon between ZBnF and ZBnG. By

Lemma 2.2.1, the length of this path is also ǫ. Thus, dMon(ZB
nF,ZBnG) ≤ dCoFil(K)(F,G).

Definition 5.1.5. (Section 7.3 in [6]) A path between two integral functions σ, τ ∈ Fnc is a

finite sequence of morphisms

σ ↔
ᾱ1

θ1 ↔
ᾱ2

· · · ↔
ᾱn−1

θn−1 ↔
ᾱn

τ,
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where↔ means the charge-preserving morphism is in either direction. The length of a path is the

sum of the distortions of the bounded lattice maps,
∑n

i=1 ||ᾱi||.

We also have that any two integral functions σ : P → Z and τ : Q → Z are connected by a

path. After all, let ω : {⋆} → Z be any integral function. From the definition of a charge-preserving

morphism (Definition 2.5.9), we see that ω is terminal in the category Fnc.

Definition 5.1.6. (Definition 7.4 in [6]) The edit distance dFnc(σ, τ) between two integral func-

tions σ, τ ∈ Fnc is the length of the shortest path between σ and τ .

Lemma 5.1.2. (Lemma 7.5 in [6]) Let f, g ∈ Mon. Then, for every n,

dFnc(MI(f),MI(g)) ≤ dMon(f, g).

See [6] for the proof of Lemma 5.1.2.

Theorem 5.1.1. (Stability, Theorem 8.4 in [6]) Given a finite simplicial K and two cofiltrations

F : P → ∇K and G : Q→ ∇K, then

dFnc(PH
n(F ),PHn(G)) ≤ dCoFil(K)(F,G).

Proof. This theorem follows immediately from Lemmas 5.1.1 and 5.1.2.

That is, with respect to the edit distance in the respective categories, the edit distance between

two cofiltrations F and G is an upper bound for the edit distance between the persistence diagrams

PHn(F ) and PHn(G) for any n.
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Chapter 6

Conclusion

In this thesis, we defined cofiltrations of a finite simplicial complex K indexed over a finite

lattice. Then, we discussed the persistence diagram for cohomology of a cofiltration using the

Möbius inversion of the birth-death function. In fact, these functions are functorial and stable with

respect to the edit distance. In summary, we have provided a mathematical framework in which to

study persistent cohomology of a cofiltartion. To finish, we will discuss the usefulness of persistent

cohomology and outline potential directions for future work.

One reason for studying persistent cohomology is the ring structure obtained by equipping

cohomology groups with the cup product. For example, the cohomology groups of the spaces

S
1∨S1∨S2 and T

1 are isomorphic. However, when endowed with the cup product, the cohomology

ring structures of the two spaces are distinguishable. Work has been done to utilize the extra

structure of cohomology in persistence. For example, the authors in [10] define the persistent

cup-length formula and the persistent cup-length diagram. However, this definition requires the

existence of a barcode, which we lose when considering multiparameter persistence. Nonetheless,

we hope there is an analogous notion of the persistent cup-length for our more general notion of

persistent cohomology of a cofiltration.

Further research could also be done in defining different diagrams for persistent cohomology

as well. For example, in [7], the authors define and compare three different diagrams coming from

Möbius inversions of the rank function, kernel function, and the birth-death function. We have

discussed the last diagram in this thesis. Could we prove similar relationships between the three

corresponding diagrams for persistent cohomology of a cofiltration? How would the diagrams

utilizing cofiltrations compare to the diagrams arising from the persistence modules obtained by

applying cohomology to a filtration?
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Finally, it would be interesting to consider duality theorems pertaining to the work in this thesis.

In [3], the authors present various duality theorems for persistent (co)homology in the 1-parameter

setting. Which of these duality theorems, in any, hold in the multiparameter setting?

Overall, persistent cohomology of a 1-parameter filtartion has already been utilized in vari-

ous applications, and there are interesting theoretical results describing the relationship between

1-parameter persistent homology and cohomology. In this thesis, we have defined persistent coho-

mology of a cofiltration indexed over a finite lattice. In the future, we are hopeful that multiparam-

eter persistent cohomology will be useful in applications, and that interesting theoretical results

arise from the definitions we have made.
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