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ABSTRACT 
 
 
 

ABILITY, REPEATABILITY, AND REPRODUCIBILITY OF RAPID EVAPORATIVE 

IONIZATION MASS SPECTROMETRY TO PREDICT BEEF QUALITY ATTRIBUTES 

 
 
 

Tenderness, juiciness, and flavor are beef quality attributes that influence consumer 

satisfaction eating beef. Rapid evaporative ionization mass spectrometry (REIMS) is a novel 

technique that provides chemical information of biological tissues with the potential to predict beef 

quality attributes. Two studies were conducted to evaluate the ability of REIMS to predict quality 

attributes of beef (study I) and to evaluate the repeatability and reproducibility of REIMS in a beef 

matrix (study II).  

In study I, USDA Select or upper two-thirds Choice (n = 42, N=84) striploins and 

tenderloins were collected approximately 36h post-mortem from a commercial beef abattoir. 

Slivers of the longissimus dorsi muscle between the 12-13th rib were collected during grading (GR, 

36h post-mortem) and analyzed using REIMS. Striploins (LM) and tenderloins (PM) were cut into 

portions and assigned to 6 aging periods (3, 14, 28, 42, 56, and 70 days). However, only samples 

aged 3, 14, and 28 days were used to represent industry practices in study I. After aging, portions 

were cut into 2.54-cm steaks to analyze juiciness, tenderness, and 10 flavor attributes with a trained 

sensory panel. In addition, tenderness measures were performed using slice shear force (SSF) and 

Warner-Bratzler shear force (WBF). Samples were categorized by SSF, WBF, and sensory panel 

tenderness (PT) into “tough” and “tender”; by juiciness into “dry” and “juicy”; and by flavor into 

“acceptable” and “unacceptable” classes using a composite score of all flavor descriptors. 

Combinations of three dimensionality reduction methods (principal component analysis [PCA], 
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feature selection, [FS], and a combination of both [PCA-FS]) with 13 machine learning algorithms 

were used to create classification models based on REIMS data for tenderness, juiciness, and flavor 

classes at the three aging periods. The predictive ability of the models was assessed with the overall 

accuracy resulting from 10-fold cross-validation. Among all machine learning algorithms 

evaluated, the maximum classification accuracies for days 3, 14, and 28 were 94, 87, and 83% for 

PT; 86, 85, 92% for SSF; 87, 82, and 95 for WBF; 85, 84, and 86% for juiciness; and 87, 89, and 

81% for flavor classes, respectively. FS performed the best as a dimensionality reduction method 

for all PT, juiciness, flavor, and SSF on day 3 and WBF on days 3 and 14. PCA-FS was the best 

dimensionality reduction method for SSF on days 14 and 28, and WBF on day 28. Extreme 

gradient boosting machine learning algorithm was the highest performing algorithm for all 

juiciness models, flavor model on day 28, PT on days 3 and 14, SSF on days 14 and 28, and WBF 

on days 3. Partial least squared discriminant analysis (PLSDA) performed better for PT day 28 

and flavor day 14, while elastic-net regularized generalized linear model, random forest, and 

support vector machine were the highest performing algorithms for SSF day 3, and WBF days 14 

and 28, respectively. Results demonstrated that the chemical fingerprints obtained with REIMS 

could potentially be used as in situ and real-time technique to sort carcasses by flavor, juiciness, 

and tenderness. However, overlaps between classes affected REIMS results, and unbalanced data 

negatively affected model accuracies. Therefore, exploring the full potential of REIMS will require 

increasing the sample size and developing a sampling method that allows increased separation 

between sensory evaluations. 

Study II was performed with REIMS data from all LM and PM samples from the six aging 

periods (n=1008), two sets of GR samples (n=168, N=84), and quality control (QC) samples 

(n=29) made from homogenized ground beef. Except for the second set of GR samples, REIMS 
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analysis of all samples was performed at Colorado State University (CSU) using a meat probe as 

the sampling device. Analysis of all samples was performed over 5 days, including two batches 

per day. GR samples were evaluated on the first day, and LM and PM data were randomly analyzed 

on the remaining days. QC samples were analyzed at the beginning, middle, and end of each batch. 

The second set of GR samples was analyzed at Texas Tech University (TTU) using different mass 

spectrometry (MS) instruments, technicians, and an iKnife as the sampling device. The stability of 

REIMS data between burns, batches, and days was evaluated with QC data. Day effect and 

robustness of REIMS data were evaluated with data from LM and PM samples, and interlab 

reproducibility was evaluated with data from GR samples. Multiple classification models of 

muscle type and aging were built with LM and PM data to evaluate the robustness of REIMS and 

day-to-day variability. Models to predict sensory attributes of beef were used to assess the 

robustness of REIMS with respect to interlab variability. Coefficients of variation (CV) between 

burns of the mass bins representing 90% of the total ion current were between 0.7 to 0.98, while 

the most relevant mass bins showed CV less than 0.3. Variances between batches and collection 

days were not significant (P < 0.05). PCA of LM and PM showed that data variability by collection 

day was stronger than muscle type and aging time variability. However, data could classify 

samples into muscle types and two distant aging times with accuracies higher than 95.6% and 

91.0%, respectively. PCA of GR samples showed that data collected in both labs differed, and the 

predictive models developed with the CSU data did not appropriately predict the quality classes 

with the TTU data. REIMS collected with the meat probe provides a chemometric profile of beef 

samples with good repeatability and interday reproducibility but low interlab reproducibility. 

Consequently, optimization and standardization of sampling methods will be required to improve 

the interlab reproducibility of REIMS.  
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CHAPTER I: REVIEW OF LITERATURE 
 
 
 

The United States is the largest beef consumer and producer worldwide. In 2020, the US 

produced 27.6 million pounds of beef and exported 10.9% of its production, representing 83.5 

million dollars of the local market and 6.8 million dollars in exports (USDA, 2021). It is estimated 

that the annual consumption of beef is 58 pounds per capita, making it the second most consumed 

animal protein in the US (USDA, 2021). One of the reasons for the success of the beef industry 

has been the development and implementation of the USDA grading system.  

USDA beef grading system 

The USDA beef grading is a voluntary marketing program developed and maintained by 

USDA's Agricultural Marketing Service (AMS). This program includes the USDA yield grade, 

which estimates the percentage of saleable beef in the carcasses, and the USDA quality grade, 

which seeks to predict beef palatability of carcasses (USDA, 2019). Even when the USDA grading 

is not mandatory, around 96% of steers and heifers slaughtered in commercial facilities were 

graded in 2017 (AMS, 2018a). The USDA grading system has been a successful program in the 

beef industry because it facilitates commercial transactions between producers and farmers, and 

consumers recognize it as a symbol of safe and high quality (USDA, 2019). The grading system 

has made it possible to establish a grid price for carcasses that incentivize producers to increase 

beef quality and cattle practices. 

Cutability refers to the amount of edible meat from a carcass. The USDA yield grading 

predicts beef cutability by classifying the carcasses into grades 1, 2, 3, 4, and 5. Yield grade 1 

represents carcasses with the highest yield of saleable beef and grade 5 with the lowest yield. 

Cutability is estimated with a mathematical model that includes the hot carcass weight, an estimate 
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of the percentage of kidney, pelvic, and heart fat, external fat thickness over the ribeye, and the 

ribeye area. Fat thickness and ribeye are measured in a transversal cut of the ribeye muscle between 

the 12th and 13th rib (AMS, 2018b). 

The USDA quality grade attempts to predict palatability (tenderness, flavor, and juiciness) 

of carcasses based on marbling score and animal maturity. From the highest expected palatability 

to the lowest, the USDA quality grades are Prime, Choice, Select, Standard, Commercial, Utility, 

Cutter, and Canner (AMS, 2018b). The final grade results from a combination of marbling score 

and maturity. The marbling score represents the amount of intramuscular fat found in the ribeye 

muscle. This score is assessed with Video Imagen Analysis Systems (VIA) or visual appraisal of 

the lean ribeye. Animal maturity includes classes A for young animals (under 30 months) and B, 

C, and D for animals over 30 months. Maturity A is established by dentition or age documentation, 

and for older carcasses, maturity is determined by skeletal and muscular traits (USDA, 2017). Only 

carcasses with maturity A or B can be classified as Prime, Choice, and Select, which are the grades 

most consumers recognize and consider for food-grade labels. Consequently, most carcasses with 

maturity C or older, less than 1.8% of carcasses harvested in commercial facilities, are sold 

ungraded (Boykin et al., 2017; Ward, 2021). 

Quality grades segregate carcasses by the probability of having a positive eating 

experience, but maturity and marbling scores do not explain great variability in palatability traits 

(Emerson et al., 2013; Acheson et al., 2014; Gredell, 2018). O’Quinn et al. (2018) reported that 

nearly 91%, 87%, 83%, and 75% of consumers that eat Prime, top Choice, low Choice, and Select 

steaks have a positive eating experience, respectively. However, according to Acheson et al. (2014) 

and Semler et al. (2016), there are no differences in palatability scores of striploin from maturity-

A carcasses compared to B-C maturity. Literature has reported that instrumental marbling score 



3 

explains between 24-45% variability in juiciness, 27-40% variability in tenderness, and 34-61% 

overall palatability of longissimus muscle of A-maturity carcasses (Smith et al., 1985; Emerson et 

al., 2013).  

Beef tenderness 

Tenderness is undoubtedly an important attribute that influences consumer satisfaction 

when eating beef. The odds of having a negative eating experience when tenderness is 

unacceptable is more than twice the odds when this attribute is acceptable (O’Quinn et al., 2018). 

Additionally, 80% of consumers would be willing to pay a premium for the guarantee of having a 

tender steak (Miller et al., 2001). Although the current USDA quality grade program seeks to 

predict palatability traits, the criteria for quality grading do not explain great variability in 

tenderness. There are no differences in tenderness in carcasses with maturity A-C, and studies have 

demonstrated that marbling score explains between 40-5% of the variability in tenderness 

(Wheeler et al., 1994; Platter et al., 2003; Emerson et al., 2013; Acheson et al., 2014; Semler et 

al., 2016). 

Tenderness depends on muscle metabolic and structural characteristics, including 

sarcomere length, proteolysis of proteins, marbling, amount of connective tissue, and the cross-

links within collagen molecules (Webb et al., 1964; Purchas, 2014). Sarcomeres are structural units 

of the muscle fibers responsible for contraction. During the conversion of muscle to meat, a series 

of biochemical causes an overlap of myofibrillar proteins and, therefore, sarcomere shortening. A 

greater degree of shortening of the sarcomere is associated with tough meat (Smulders et al., 1990). 

Pre- and post-harvest factors such as storage temperature or animal stress influence the degree of 

shortening. Tenderness increases with aging time due to proteolysis of proteins. Endogenous 

proteolytic enzymes break down muscle structures, increasing meat tenderness (Casas et al., 2006). 
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The extent and rate of proteolysis are influenced by breed, temperature, aging time, and electrical 

stimulation (Casas et al., 2006; Bhat et al., 2018). Meat with a higher concentration of connective 

tissue tends to be tougher, and cooking conditions greatly impact the final tenderness of the meat 

because it affects the solubility of the connective tissue (Purchas, 2014). Higher intramuscular fat 

has been related to higher tenderness. Although the explanations of how fat affects tenderness are 

not clear, some hypotheses establish that fat acts as a lubricant during chewing, influencing the 

perception of tenderness and juiciness; connective tissues are diluted with fat during cooking; or 

that meat with a higher degree of marbling has less probability of shortening before rigor (Ellis et 

al., 1998; Nishimura et al., 1999; Purchas, 2014).  

Since tenderness is affected by multiple factors, including cooking conditions, common 

methods to measure tenderness are based on the biting force on cooked products (Purchas, 2014). 

Warner-Bratzler Shear Force (WBF) and Slice Shear Force (SSF) are mechanical methods for 

measuring the force required to cut cooked muscle fibers perpendicularly. The main difference 

between the two assays is that WBF measures force from cutting cylindrical 0.5-in-diameter cores 

and SSF from a 1x5cm slice (Wheeler et al., 2005). WBF allows measuring shear force from 

different muscles and animal species since only small cores are required, but it is time-consuming. 

On the other hand, SSF was originally developed to measure tenderness in recently cooked beef 

longissimus steaks, and its application in another type of muscle or smaller animal species is 

limited because it requires a sizeable steak (Shackelford et al., 1999). 

SSF is a simpler, faster, more repeatable, and more accurate protocol to measure beef 

tenderness than WBF. The coring process in WBF is done after the steaks are cooked and cooled 

for a firmer texture and to make core extraction easier. While in SSF, slices are cut almost 

immediately after cooking for better results (Wheeler et al., 2005). The SSF has a stronger 
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correlation (r=-0.82) with the tenderness perceived by trained consumers than WBF (r=-0.77, 

Shackelford et al., 1999). Regarding repeatability, SSF explains 89-91% of the variance in 

longissimus tenderness between animals, while WBF explains 53-87% (Wheeler et al., 1996; 

Wheeler et al., 1997; Shackelford et al., 1999). 

Non-destructive methods to measure tenderness from intact carcasses have been tested, but 

none have been implemented so far. The Tendertec Mark III Beef Grading Probe, an instrument 

developed to estimate steaks tenderness from beef carcasses, predicted WBF of steaks from old 

animals cooked at 60 to 65°C (Belk et al., 2001). However, this instrument could not predict the 

tenderness of steaks with a higher degree of doneness and from young animals. Other approaches 

have used video image analysis systems (VIA) to predict beef tenderness with muscle structure 

information (Vote et al., 2003; Wyle et al., 2003; Howard et al., 2010). Vote et al. (2003) evaluated 

the Computer Vision System equipped with a BeefCam, a VIA, to classify carcass into a “tender” 

category from lean color (L*, a* and b* values). Although they got 80% classification accuracy, 

this value was highly despaired by the marbling score. Howard et al. had better results using a new 

generation of VIA (Tenera Technology HighResolution Imaging system) that was able to classify 

tender steaks with 94.7% accuracy. 

Spectroscopy and hyperspectral imaging as tenderness predictors has also been evaluated. 

Spectroscopy provides biochemical information that can be used to predict beef palatability traits. 

Research has found that outputs from Near-Infrared Spectrometry can explain between 53-68% 

variance in tenderness measured mechanically (Mitsumoto et al., 1991; Rosenvold et al., 2009; 

Yancey et al., 2010). Hyperspectral imaging combines biochemical information with a high spatial 

resolution (Konda Naganathan et al., 2016). Since tenderness is affected by the biological structure 

of the muscle and its biochemistry, it was expected that hyperspectral imaging has a better ability 
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to predict tenderness than the other technologies. Predictive models using hyperspectral imaging 

yield between 77.0-86.7% accuracy in classifying carcasses on tenderness categories based on 

mechanical shear force measures (Konda Naganathan et al., 2008; Konda Naganathan et al., 2016). 

Although tenderness is an important factor for consumer satisfaction, the only marketing 

program for tenderness in the United States is not popular among producers. The USDA Certified 

Tender or Very Tender is a voluntary program of the USDA's Agricultural Marketing Service 

(AMS). Producers can include the claims “certified tender” and “certified very tender” to different 

products (e.g., beef loin, tenderloin, butt, defatted) if they validate tenderness WBF or SSF from 

the longissimus dorsi muscle of the carcass using a third-party auditor. The "certified tender” claim 

only applies to products from carcasses with WBF<4.4kg or SSF<20.0kg, and “certified very 

tender” applies when WBF<3.9kg or SSF<15.4kg (ASTM, 2011). Including these claims could 

bring economic benefits to the industry since consumers are willing to pay a premium for a tender 

guarantee (Miller et al., 2001). However, this program is not popular among producers due to the 

high cost since it requires the waste of 1-in-thick steaks (Wheeler et al., 2002). 

Considering that less than 5% of the carcasses in the United States are considered tough 

(Martinez et al., 2017), predicting tenderness represents an opportunity more than a problem. 

Premium beef programs could benefit from excluding carcasses that do not meet tenderness 

requirements for an acceptable eating experience, increasing reputation and consumer trust in the 

brands. Carcasses with low marbling scores receive discounts because they are expected to have 

low palatability (Gredell, 2018). However, many carcasses with low marbling scores are tender 

and have positive sensory performance (Emerson et al., 2013). Therefore, methods that could 

predict tenderness at a low cost and in real-time represent an opportunity to improve beef 

marketability. 



7 

Flavor 

Numerous studies have defined beef tenderness as the most important factor for consumer 

satisfaction (Savell et al., 1987; Miller et al., 1995; Miller et al., 2001). However, when tenderness 

is acceptable, flavor is considered the main factor of beef palatability (Goodson et al., 2002; 

Behrends et al., 2005; Legako et al., 2015). O’Quinn et al. (2018) reported that flavors account for 

49.4% of overall palatability, while tenderness and juiciness accounted for 43.4 and 7.4%. 

Additionally, since more than 95% of the beef carcasses in the United States are considered tender, 

flavor may be the main driver of consumer satisfaction (Hunt, 2013; Martinez et al., 2017). 

Flavor perception results from taste, smell, and touch sensations (Kerth and Miller, 2015). 

Gustatory sensory cells in our tongue perceive the basic tastes, including salty, sweet, sour, bitter, 

and umami. Stimulation of tactile receptors from texture, viscosity, and the astringency of the food 

is part of oral-somatosensation or what we know as “mouth feel” (Spence and Piqueras-Fiszman, 

2016). The olfactory system perceives aromas resulting from the stimulation of olfactory bulbs 

with volatile components (Haggard and de Boer, 2014; Legako et al., 2016).  

Beef flavor development occurs through multiple chemical reactions during cooking. Raw 

meat does not have the meaty flavor we normally find in cooked meat. Instead, raw meat tastes 

salty, metallic, and bloody, with an aroma similar to serum (Wasserman, 1972). Non-volatile 

compounds in raw meat, such as amino acids, peptides, vitamins, nucleotides, and reducing sugars, 

are taste-active compounds and precursors of cooked meat flavor (Legako et al., 2015). During 

cooking, heat induces lipid degradation, Maillard reaction, Strecker degradation, and reactions 

between the Maillard reaction and lipid degradation products (Kerth and Miller, 2015; Legako et 

al., 2016). Volatile compounds products of those reactions determine the aroma and contribute to 

the characteristic flavor of meat (Shahidi, 1994). 
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The sweet flavor of beef is associated with sugars (glucose, fructose, and ribose) and some 

L-amino acids (Macleod, 1994). Sourness is due to some organic acids (lactic, aspartic, and 

succinic acid), amino acids (glutamic acid, histidine, and asparagine), ortho-phosphoric, and 

pyrrolidone carboxylic acids. Inorganic salts and sodium salts of glutamate and aspartate are 

associated with saltiness. Bitterness is caused by hypoxanthine, certain peptides (e.g., anserine and 

carnosine), and various L-amino acids, while the umami taste of beef comes from 5' -guanosine 

monophosphate (GMP), 5'-inosine  monophosphate (IMP), glutamic acid, monosodium glutamate, 

and some peptides (Macleod, 1994). 

Around 1000 volatile compounds have been identified in beef, but only a portion has been 

identified as aroma-active (Macleod, 1994). Volatiles can be classified into chemical groups, such 

as n-aldehydes, Strecker aldehydes, ketones, sulfur-containing compounds, and alcohols, to 

mention some of them. N-aldehydes are the most prominent group resulting from thermal lipid 

degradation and usually are negatively associated with flavor liking (Legako et al., 2016). Strecker 

aldehydes are aroma-active compounds associated with beef flavor that result from the degradation 

of α-amino acids in the presence of α-dicarbonyl compounds. For instance, 3-methylbutanal and 

phenylacetaldehyde are derivates from leucine and phenylalanine with a malty and honey-like 

aroma, respectively (Hofmann and Schieberle, 2000). In the ketones group, 2,3-butanedione and 

3-hydroxy-2-butanone are associated with a buttery flavor (Raes et al., 2003; Machiels et al., 

2004). Foraker et al. (2020) stated that only 2,3-butanediol, 2-methylbutanal, 3-methylbutanal, 

acetic acid, ethanol, phenylacetaldehyde, and toluene are strongly correlated (r ≥ |0.50|) with some 

beef flavor attributes (beef flavor identity, sour, oxidized, nutty, musty, or liver-like attributes). 

Meat flavor is typically evaluated with sensory panels that include trained panelists or 

general consumers. In sensory panels, panelists are asked to evaluate sensory differences between 
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multiple samples or palatability quality traits (tenderness, juiciness, and flavor) of cooked samples 

(Wheeler et al., 2015). Consumer panels involve regular consumers of meat products who are 

usually selected by demographic information and consumer habits. However, this panel type is 

highly variable because it depends on consumer preferences (Di Rosa et al., 2017). Trained panels 

seek to reduce subjectivity by training panelists to detect and evaluate specific flavor traits (Kerth 

and Miller, 2015). Whether trained panelists or consumers are used, both methods rely on the 

human sense of taste and consequently are not objective (Di Rosa et al., 2017). 

Some studies have evaluated electronic tongues and noses as objective methods for flavor 

measure. An electronic tongue contains an artificial lipid membrane that detects tastes via 

electrostatic and hydrophobic interactions with food. Zhang et al. (2015) demonstrated that an 

electronic tongue could differentiate tastes, somatosensations, and proximate composition of beef 

from Wagyu, Angus, and Simmental breeds cattle. Ismail et al. (2020) characterized non-volatile 

compounds of beef cooked with two different sous-vide methods using an electronic tongue. 

Electronic tongues can only detect tastes and somatosensations but cannot detect smells that are 

an essential part of flavor. Electronic noses follow similar principles to the electronic tongue to 

detect smells. Kodogiannis (2017) and Mohammed et al. (2021) demonstrated that an electronic 

nose could accurately differentiate between spoilage and fresh beef samples, but there are no 

current applications to evaluate beef smell attributes. Although the combination of electronic 

tongue and nose could enhance the ability to assess beef flavor, the author has not found studies 

that combine both technologies. 

Juiciness 

It is estimated that juiciness contributes 7.4% to the overall palatability of eating beef steaks 

(O’Quinn et al., 2018). A bad score in juiciness can be compensated with high scores in tenderness 
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and flavor (Liu et al., 2020). However, the probability of having a negative eating experience when 

juiciness is unacceptable is 66% (O’Quinn et al., 2018). Moreover, juiciness highly impacts meat 

texture and influences tenderness perception (Juárez et al., 2012). Initially, juiciness was defined 

as the moisture from food released in the mouth when chewing and moisture from saliva 

(Christensen, 1984). Later studies found that physiological and psychological factors also 

influenced juiciness. This theory brought to the table dividing juiciness into initial and sustained 

juiciness, but later both concepts were combined as one factor (Juárez et al., 2012). 

Antemortem animal stress can cause two quality defects of meat that affect juiciness called 

dark, firm, and dry (DFD) and pale, soft, and exudative (PSE). Water holding capacity (WHC) 

represents the ability to retain water and is usually used as an indicator of juiciness. This property 

is impacted by meat pH. The farter the pH is from the isoelectric point of meat, the higher the 

WHC of meat (Van Oeckel et al., 1999). Muscle of animals undergoing long-term stress contains 

low glycogen levels, resulting in a high muscle pH post-mortem. High meat pH produces DFD 

characterized by dark color, firm texture, and high WHC. On the other side, acute stress before the 

slaughter combined with a low chilling rate produces low meat pH with pale colors, soft textures, 

and low WHC meat (PSE). In beef, PSE is only observed in deep muscles from the hip (Juárez et 

al., 2012). Authors have found that DFD meat is usually juicier because it has a higher WHC 

(Grayson et al., 2016). However, long-term stress can also lead to animal dehydration, impacting 

juiciness negatively (Juárez et al., 2012). 

Process factors such as mechanical tenderization, seasoning, freezing, and cooking affect 

meat juiciness. Blade tenderization reduces juiciness because of a disruption of meat structure that 

leads to a reduced WHC. Similarly, crystal ice formed during freezing damages cell membranes, 

reducing WHC and juiciness (Wheeler et al., 1990). Studies have demonstrated that injection of 
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salt solutions increases juiciness because salt solutions enhance WHC (Juárez et al., 2012). During 

cooking, proteins are denatured, decreasing WHC and increasing water loss by evaporation. 

Therefore, the degree of doneness and cooking rate greatly influence juiciness (Savell et al., 1999). 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) is a novel ambient mass 

spectrometry that can generate a mass spectra fingerprint of biological tissues in real-time, in situ, 

and without tedious sample preparation (Balog et al., 2010). This technique combines two key 

elements: a vaporization sampling device and a time-of-flight (TOF) mass spectrometer (Barlow 

et al., 2021). The purpose of the sampling device is to produce high temperatures on the surface 

of the sample (also called “burns”) and generate an aerosol rich in chemical components (Ross et 

al., 2021). Then, the produced aerosol is sucked through a flexible tube by a venturi pump to the 

mass spectrometry, where the vapor is ionized and transformed into mass spectra (Barlow et al., 

2021). The generated mass spectra can be used as a metabolic fingerprint that can be analyzed to 

assess key attributes of the samples. Current research has demonstrated the ability of REIMS to 

identify animal tissues from different anatomical origins, breeds, and species with more than 97% 

accuracy (Balog et al., 2016); differentiate between beef from two different processing systems 

(straight dry-aged and stepwise dry-age, Zhang et al., 2021); discriminate between tainted, and 

untainted boars with 100% accuracy (Verplanken et al., 2017); classify beef samples into two 

tenderness levels with 90% accuracy (Gredell et al., 2019). 

First applications and most of the studies of REIMS have been carried out using an 

electrosurgical tool best known as iKnife (Schäfer et al., 2009; Balog et al., 2013). The iKnife, a 

term for “intelligent knife,” was developed to detect cancerous tissues during surgical interventions 

(Balog et al., 2013). This device consists of a cutting electrode blade and a return electrode pad 
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connected to an electrosurgical generator (St John et al., 2017). When both electrodes are in contact 

with the sample, a circuit is formed, and a high-frequency alternating current heat the end of the 

blade in contact with the sample (Barlow et al., 2021). Other studies have evaluated CO2 laser, 

bipolar food probes, soldering iron, and bipolar forceps as sampling devices to improve ionization 

or find a more suitable sampling technique for different applications (Strittmatter et al., 2014; Ross 

et al., 2021). Since the iKnife requires that a return electrode is in contact with the sample, its use 

is not appropriate for the meat industry because it can lead to cross-contamination. Therefore, other 

more suitable sampling techniques should be evaluated for meat applications. 

Comparison of REIMS with traditional mass-spectrometry techniques 

Traditional mass spectrometry techniques (MS), such as liquid chromatography/mass 

spectrometry (LC-MS), liquid chromatography/tandem mass spectrometry (LC-MS/MS), gas 

chromatography/mass spectrometry (GC–MS), have been used for food analysis to identify and 

quantify chemical components with high sensitivity, accuracy, and reproducibility (Careri et al., 

2002; Malik et al., 2010). Although conventional mass spectrometry methods offer great 

advantages in food analysis, their application in the food and meat industry is limited due to high 

costs, time, and the technical expertise required (Birse et al., 2021). 

REIMS is an attractive alternative that can provide valuable chemical information in real-

time, lower cost, and without sample preparation that conventional MS techniques require. 

Because REIMS does not require sample preparation, data acquisition takes just a few seconds. 

The rapid acquisition of REIMS data could follow the pace of production lines, allowing to use it 

for in-situ measurements in control points (Verplanken et al., 2017). Although recent REIMS 

studies use high-resolution mass spectrometers (Ross et al., 2021), the costs of implementing this 

technology could be reduced by acquiring lower resolution equipment. The REIMS analysis is 
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used as a chemical fingerprint, and the data is binned in intervals of 0.1 to 1.0 m/z making high-

resolution equipment unnecessary. Furthermore, Strittmatter et al. (2014) found that varying the 

bin size from 0.1 to 5.0 Da does not impair REIMS ability to predict species, genus, and gram 

levels in microorganisms. 

Some of the limitations of REIMS compared to conventional MS are that it cannot detect 

low abundance or high-molecular-weight molecules (Ross et al., 2021). REIMS does not include 

a chromatography separation step compared to conventional GC-MS and LC-MS. In REIMS, all 

the compounds reach the mass spectrometer almost simultaneously, which could cause ion 

suppression of low abundance molecules due to the effect of the sample matrix (Volmer and 

Jessome, 2006). Verplanken et al. (2017) observed this phenomenon when they could not detect 

traces of components responsible for boar taint (indole, skatole, and androstenone) from neck skin 

samples using REIMS. The optimal mass bins for REIMS reported by Birse et al. (2021) were 

between 600-900 m/z for chicken models, while other studies have used ranges between 100 to 

1500 m/z. Since the compounds need to be in aerosol to be detected by REIMS, only molecules 

with molecular weights around 1000 and 1500 Da can be analyzed by REIMS (Ross et al., 2021).  

Compared to conventional MS protocols, REIMS is not an appropriate method to quantify 

chemical components. Since the spray generated during sampling is highly variable, a standard 

infused in the sample is required to build a calibration curve for quantification. Nevertheless, there 

is no straightforward method to infuse standards in solid samples that can work for quantification 

(Barlow et al., 2021; Ross et al., 2021). Moreover, the confidence for compound identification of 

REIMS is low since it only includes MS data and not MS/MS (Ross et al., 2021). Instead, REIMS 

can segregate or classify samples based on chemometric profiling. The metabolic fingerprint 

generated by REIMS contains mass-to-charge ratios (m/z) of all components from the sample that 
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reaches the MS. The resulting data is a rich source of chemical information that can be used to 

build statistical models for biological classification (Balog et al., 2013). 

REIMS data analysis 

Analysis of REIMS data usually involves four main steps: data pre-processing, 

dimensionality reduction, building predictive models, and model verification. Data pre-processing 

is done with specialized software that allows peak selection (burns), data calibration, and 

transformations to make it easier to work with the data. Dimensionality reduction involves deleting 

redundant features that increase noise or make models inefficient. This step can also be performed 

using transformations that optimize data representation in a low number of features (van der 

Maaten et al., 2009). Then, the reduced data is used to train predictive models with machine 

learning algorithms. The last term refers to a combination of statistical tools and computational 

algorithms that allow the generation and improvement of models through experience with the data. 

Algorithms that include a response variable are called supervised learning. In contrast, 

unsupervised learning does not include labels and seeks to find patterns in the data (Gareth et al., 

2021a). As the main purpose is using REIMS to build predictive models, supervised machine 

learning algorithms are used to build models; however, unsupervised algorithms are usually used 

to reduce dimensionality or analyze the data to find patterns (Gareth et al., 2021b). Finally, the 

performance of the models is evaluated using cross-validation or calculating statistical indicators 

or performance. 

Data pre-processing includes lock mass correction using a standard, background 

subtraction, and peak normalization based on total ion current (Jones et al., 2019). Depending on 

the type of analysis, exact m/z are used, or data is binned in intervals (e.g., 0.1, 0.5, 1.0 m/z bins). 

Some authors have analyzed exact mass as preliminary identification of specific compounds in 
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animal tissues and microorganisms (Strittmatter et al., 2014; Balog et al., 2016; Genangeli et al., 

2019; He et al., 2021). However, identification of compounds using REIMS is only tentative 

because of the lack of procedure for feature correspondence and quantification (Ross et al., 2021). 

REIMS data is more suitable for untargeted analysis that uses chemometric profiling for sample 

classification. Since the chemometric profile analysis does not require exact m/z, the mass spectra 

are usually binned. 

After binning, the size of the data obtained is still considerably large to build properly 

predictive models (e.g., 600, 1000, 1700 mass bins). Therefore, dimension reduction is 

recommended to reduce computational costs and the chance of overfitting the model (Kettaneh et 

al., 2005). Dimension reduction consists of applying transformations or deleting unnecessary 

features to reduce redundancy and increase the significance of the data in fewer dimensions (van 

der Maaten et al., 2009). Common dimension reduction methods used for REIMS are Principal 

Component Analysis (PCA), Partial Least Squares (PLS), and feature selection (FS). PCA is a 

mathematical algorithm that transforms the data by projecting it into new directions (principal 

components, PC) that maximize the data variation in smaller dimensions (Ringnér, 2008). The 

benefits of using PCA are that it reduces noise and collinearity while explaining variability into a 

smaller number of features (Kemsley, 1996). In addition, this tool can be used as unsupervised 

machine learning for cluster identification. PLS is a supervised machine learning algorithm that 

projects the data into new hyperplanes that optimize linearity between the data and the response 

variable (Gareth et al., 2021b). Feature selection (FS) consists of identifying a subset of features 

that better explains the observations (Hauskrecht et al., 2007). This process can involve multiple 

steps and criteria of selection. Some criteria used in metabolomics analysis are selecting the 

features with lower variability within samples or excluding highly-correlated data (Ross et al., 
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2021). Other methods could include using backward or forward selection to eliminate variables 

that do not contribute to the model. 

Following dimensionality reduction, statistical learning algorithms are applied to build 

predictive models. The most commonly used algorithms in REIMS are linear discriminant analysis 

(LDA), partial least square discriminant analysis (PLS-DA), and orthogonal partial least square 

discriminant analysis (OPLS-DA). Although the ones mentioned above are usually in studies, 

other algorithms should also be explored. Gredell et al. (2019) demonstrated that REIMS data is 

complex, and using just one approach to analyze all situations is not appropriate. This study used 

three different dimensionality reduction methods combined with eight machine learning to train 

four predictive models of beef attributes. As a result, the best machine learning for one model was 

not the best for the others. 

A common technique to evaluate the performance of the predictive models is cross-

validation. This technique consists of testing the predictive ability of the model with a new data 

set that was not used to train the models. The benefit of using a new data set to test the models is 

that it reduces the risk of overfitting the model. Since REIMS data is high-dimensional, it is easy 

to fit noise or random fluctuations in the predictive models. Therefore, cross-validation techniques 

are highly recommended to verify REIMS models. Particularly for classification models, the 

performance is evaluated with the accuracy, specificity, or sensitivity that resulted from cross-

validation. The accuracy represents the percentage of correct classifications of the model. 

Sensitivity represents the ability of the model to classify a positive outcome correctly, while 

specificity measures the ability to classify a negative outcome correctly. 

Some of the cross-validation methods are hold-out, k-fold, and leave-one-out cross-

validation. In the hold-out approach, observations are divided into two subsets. Then one subset is 
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used to build the models, and the hold-out subset is used to validate the model (Gareth et al., 

2021c). This method is the most simple and requires the least computational power. In k-fold cross-

validation, the observations are randomly divided into k groups of similar size. Then, k-1 groups 

are used to train the model, and the remaining k group is used to validate the model. This process 

is repeated k times until all groups are tested (Kohavi, 1995). The leave-one-out cross-validation 

(LOOCV) takes one observation aside as a test set and trains the model with the remaining 

observations. This process is repeated until all the observations are tested without repetition. The 

drawback of LOOCV is that it is computationally intense since modeling/validation is realized the 

same number of times as observations (Kohavi, 1995). Currently, there is no clear definition of 

what method works better for REIMS because it depends on the underlying structure of the data. 

However literature on machine learning states that intermedium approaches (e.g., 10 or 5-k-fold 

cross-validation) are generally better than others because they have a balanced bias and variance 

(Kohavi, 1995; Gareth et al., 2021c).  

REIMS and Meat Quality 

Current research of REIMS in meat science is focused on evaluating its potential for 

applications in provenance and food fraud, processing systems, and meat quality. REIMS provides 

a chemometric profile in seconds, remotely, and with minimally invasive procedures. Therefore, 

REIMS could be used as an in-situ and real-time method to verify meat attributes. REIMS also 

could be used as a rapid screening method for chemical analysis since it provides chemical 

information without tedious sample preparation that conventional MS techniques implied.  

The first published REIMS study in meat science emerged as a solution to detect 

adulterations of ground beef with horse meat or offal meat. Balog et al. (2016) evaluated the ability 

of REIMS to discriminate samples from different species and anatomical origins. Predictive 
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models with PCA-LDA algorithms could differentiate meat from different species (bovine, equine, 

venison) and between horse meat and liver with perfect accuracy. Although this technology could 

differentiate pure samples with high precision, it was unable to recognize when the samples were 

adulterated with less than 5% of another type of tissue. Similarly, Black et al. (2019) used PCA-

LDA models to detect adulteration with offals in cooked and raw ground beef. They found that the 

detection limit of REIMS was 5% for adulteration of raw and cooked beef with brain and liver 

tissues and 1% for adulterations with heart, kidney, and large intestine. Genangeli et al. (2019) 

reported up to 100% accuracy of binary classification models for 6 tissue types from 6 animal 

species. Nevertheless, the latest study does not specify the number of animals per tissue type but 

rather the number of burns per tissue type. Hence, it is assumed that models do not account for 

variation across animals. 

Marketing programs that use breed or production systems as differentiators could be 

validated with rapid identification methods (e.g., Certified Angus Beef). Currently, breed 

identification is carried out by phenotype identification or parentage genotype association. REIMS 

could be used as an in-line identification or verification system for the breed. Balog et al. (2016) 

sorted samples from four cattle breeds with 97% using PCA-LDA, while Gredell et al. (2019) 

differentiated beef samples from carcasses with Angus influence from non-Angus with 82.5% 

using a PLS-DA model. These results are only proof of concept since breed classes for both studies 

were determined by phenotype traits and not genetic classification. 

REIMS also can identify variations in production systems. For example, REIMS was able 

to classify lamb samples into grass-fed and grain-fed categories with 93% accuracy (Zhai et al., 

unpublished data). He et al. (2021) achieved 96% accuracy with OPLS-DA models to discriminate 

never-frozen from frozen beef samples. REIMS can also identify the use of ractopamine (a 
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common β-agonist) in feeding regimes from pork loin, shoulder, and thigh samples. Guitton et al. 

(2018) classify samples of pigs fed with and without ractopamine regimens with 95% accuracy 

based on the metabolic profile generated by REIMS. These applications could be implemented at 

an industrial level to avoid mislabelling and increase meat marketability to the export market. In 

research, REIMS could also be used as a screening method to identify chemical variation generated 

by production methods. Zhang et al. (2021) found different metabolic profiles between dry-aged 

and stepwise-aging beef, and they made a preliminary identification of dipeptides and amines 

between the two processing systems. He et al. (2021) made inferences about differences in fresh 

and frozen beef metabolites using tentative identification of fatty acids. 

Regarding quality attributes, Gredell et al. (2019) evaluated the ability of REIMS to 

classify beef strip loin samples into two categories of tenderness. They got a maximum accuracy 

of 90.8% using a feature selection combined with a support vector machine algorithm. REIMS can 

identify off-odor (boar taint) in pork neck samples. Verplanken et al. (2017) built predictive 

models using OPLS-DA with the chemometric profiling of REIMS that discriminated tainted from 

untainted boar samples with 99% accuracy. However, they were unsuccessful in identifying traces 

of the chemical compounds responsible for boar taint. 

Repeatability and reproducibility of REIMS 

The reliability of measurement techniques is determined by repeatability and 

reproducibility. A measurement method is repeatable when it can provide consistent measurements 

of the same sample measured with the same instrument, operator and within the same day. 

Reproducibility represents the variations in measurements obtained with different instruments and 

operators and in different locations and times (Tabb et al., 2010). Another important but less 

studied property of measurement techniques is robustness. Robustness represents the resilience of 
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an analytical technique to variation in measurement conditions without affecting the output. While 

robust methods are desirable for laboratory applications, robust techniques are almost mandatory 

for industrial applications. In general, experiments carried out in laboratories have controlled 

conditions, and sources of variability are reduced. On the other hand, controlling the source of 

variation without affecting the efficiency of production processes is generally challenging, so 

robustness is an important attribute to consider. 

Since the sampling process in REIMS is thermally dependent, variables that influence the 

generation and transfer of heat impact measurement variability. Variables such as the type of 

sampling device, cutting speed, solvent flow rate, and cutting power influence peak intensity and 

mass spectra (Genangeli et al., 2019; He et al., 2021). The cutting power and geometry of the 

sampling electrode affect the signal intensity and noise by influencing the heat transfer rate and 

contact surface. Bodai et al. (2018) tested sharp versus round blades in a diathermy device and 

found that the sharp tip requires less power than tips with a larger contact area to get similar signals. 

Bodai et al. (2018) also found that the power intensity affects the signal-to-noise ratio, and an 

optimal intermediate value depends on the application that provides the best results. Similarly, He 

et al. (2021) determined that variations in the cutting power and the cutting speed affect the signal 

intensity of specific mass bins. The flow rate of the solvent injected into the MS source also affects 

the mass spectra by changing the matrix effect (He et al., 2021).  

Genangeli et al. (2019) compared the performance of a CO2 laser and a diathermic knife as 

sampling devices to classify biological tissues from 6 different species. They found that the 

variability of the total ion chromatogram between replicates of CO2 laser is lower than the 

variability using a diathermic knife. The coefficient of variation (CV) of the CO2 laser was between 

9.76-12.00%, and the CV for a diathermic knife was 13.92-22.72%. However, it is important to 
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notice that the CO2 laser was applied using a mechanical arm that stabilizes the sampling 

technique, while the diathermic knife was used by hand. He et al. obtained CV between 4.95-

9.57% of specific ions on beef samples using a monopolar electrosurgical handpiece after 

optimizing solvent rate, cutting speed, and power intensity. Verplanken et al. (2017) evaluated 

REIMS repeatability by analyzing the variability of the ion peaks of an endogenous standard (m/z 

699.497) in quality control samples (bovine meat). They found that 94% of the intensity peaks of 

the standard were within 2 standard deviations of the mean. Most studies used signal intensity or 

intensity of specific m/z to evaluate REIMS repeatability. However, because the spray generated 

in REIMS is highly variable, analysis of the relative abundance of specific components is more 

appropriate to determine repeatability. 

High reproducibility and robustness of REIMS analysis have been demonstrated in the 

medical field to differentiate cancerous from noncancerous cells. Database from different surgical 

interventions, hospitals, and tissue types have been employed to develop predictive models that 

resulted in 97.7% sensitivity and 96.5% specificity for in-vivo histological diagnosis (Balog et al., 

2013). In another study, a classification model to detect ovarian cancer was built with frozen 

samples and validated in-real time during multiple interventions resulting in an overall accuracy 

of 99.1% (Phelps et al., 2018). Strittmatter et al. (2014) analyzed the reproducibility of REIMS 

using a recursive maximum margin criterion (RMMC) plot, a supervised algorithm, including 

microorganism species and measures with three different mass spectrometers. Their RMMC plot 

showed that interspecies separation was more dominant than instrument clustering. 

In food applications, Black et al. (2017) classified five different fish species with 99.0% 

accuracy in real-time using a model built with previously frozen samples. Verplanken et al. (2017) 

studied the reproducibility and robustness of REIMS to classify tainted boars, untainted boars, and 
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sows and to classify tainted and untainted boars. The predictive accuracy of their model with three 

classes dropped from 99% to 89% when building models using data from the same day and the 

same cone voltage to data collected on three consecutive days and varying cone voltage. However, 

the accuracy of the 2-classes model with a 100% accuracy was not affected when modeling with 

data collected on different days. He et al. (2021) obtained interday CV between 4.06-8.24% of 

specific ions in a beef sample.  

REIMS is a non-destructive technique that has the potential to be implemented in 

processing plants as a real-time method to assess beef quality attributes. However, no studies have 

explored the reliability of REIMS measures on beef matrices collected on different days, 

instruments, or labs. Understanding the reliability of results to data variations due to the 

aforementioned factors will increase confidence in this technology, facilitating its implementation 

and opening to new studies. 
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CHAPTER II: ABILITY OF RAPID EVAPORATIVE IONIZATION MASS-

SPECTROMETRY TO PREDICT TENDERNESS, JUICINESS, AND FLAVOR 

ATTRIBUTES OF TWO BEEF MUSCLES AT DIFFERENT AGING TIMES 

 
 
 
Introduction 

Beef palatability depends on tenderness, juiciness, and flavor. Tenderness has been 

previously defined as the most important quality trait for consumer satisfaction when consuming 

beef (Wheeler et al., 1990; Miller et al., 1995). However, when tenderness is acceptable, beef 

flavor plays a major role in the overall eating experience (Goodson et al., 2002; Behrends et al., 

2005; Legako et al., 2015). In addition, juiciness contributes 7.4% to the overall palatability of 

beef (O’Quinn et al., 2018). The USDA quality grade attempts to predict the three palatability 

traits of beef based on carcass traits, including sex class, lean texture/firmness, marbling score, 

and animal maturity, although marbling score is the main determinant. The USDA quality grade 

segregates carcasses by the probability of having a positive eating experience (O’Quinn et al., 

2018). However, instrumental marbling score explains less than 45% variability in juiciness, 40% 

variability in tenderness, and 61% overall palatability of longissimus muscle (Smith et al., 1985; 

Emerson et al., 2013). Therefore, the current grading system does not account for other significant 

sources of variation in tenderness and juiciness. 

Real-time assessment of beef quality traits (flavor, tenderness, and juiciness) at current 

production speeds is challenging, and implementation of current techniques is impractical. Large 

commercial beef facilities, on average, can process 6,000 heads of beef cattle per day. Current 

methods to assess beef quality attributes are slow compared to the production rate of commercial 

facilities. Mechanical methods for measuring beef tenderness, such as slice shear force (SSF) or 
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Warner-Bratzler shear force (WBF), have been suggested to be implemented in-line (Shackelford 

et al., 1999). However, mechanical methods are not popular among producers because 1-inch 

ribeye steak is wasted during the analysis, and the time is required to complete such analyses. 

Non-destructive techniques that can predict beef palatability traits (flavor, tenderness, and 

juiciness) in real-time could improve the current grading system. Rapid Evaporative Ionization 

Mass-Spectrometry (REIMS) is an ambient mass spectrometry technique that provides rapid 

chemometric profiling of biological tissues in-situ, without sample preparation (Balog et al., 2016). 

Since this method does not require sample preparation, data collection takes a few seconds, making 

REIMS a good alternative for assessing quality attributes in production lines. Previously, REIMS 

has been used to classify beef striploins samples aged 14 days into “tough” and “tender” classes 

defined by a cutoff of 20kg of SSF for tenderness and reported that REIMS could classify beef 

samples into the two tenderness categories with 91% accuracy (Gredell et al., 2019). However, 

REIMS data for this study were collected from steaks aged 14 days, so the potential of REIMS to 

be used to predict quality during grading is still unknown. Therefore, the goal of this study was to 

evaluate the ability of REIMS as a real-time method to predict meat tenderness, juiciness, and 

flavor using data collected at the grading time.  

Materials and Methods 

Product collection, aging, and measure of sensory attributes were performed at Texas Tech 

University (TTU), while REIMS and data analysis of REIMS data were performed at Colorado 

State University (CSU). 

Product Collection and Aging 

Forty-two (n=42) USDA Select and forty-two USDA upper 2/3 of the Choice grade were 

selected from a commercial beef processing facility over three production days. Slivers from both 



25 

sides of the carcasses were collected at the grading time (around 36 h post-mortem; GR samples), 

frozen with liquid nitrogen, and stored at -80°C until further analysis. After grading, whole 

striploins (Logissiumus medius; LM) and tenderloins (Psoas major; PM) were collected from both 

sides of the carcasses and transported in coolers (2-4°C) to the meat laboratory at TTU. Upon 

arrival, striploins (from both sides of the carcasses) were fabricated into six 6-cm sections. The 

gluteus medius from the posterior part of the LM was excluded. Similarly, heavy connective tissue 

was removed from the PM from both sides and fabricated into six 9-cm sections. Each of the six 

sections per muscle was vacuum sealed and randomly assigned to one of the six aging periods (3, 

14, 28, 42, 56, and 70 days). However, only samples aged 3, 14, and 28 days were used in this 

study to simulate industry practices. Portions were aged at 0-2°C for the corresponding aging 

period and were stored at -80°C until further analysis. Frozen LM sections were fabricated into 

two 2.54-cm steaks using a band saw, and each steak was randomly assigned to shear force and 

sensory panels. Likewise, frozen PM sections were fabricated into three 2.54-cm steaks, and two 

steaks were randomly assigned to sensory panels and the remaining steak to shear force.  

Cooking procedure 

Steaks for sensory panels and shear force evaluation were cooked using the same 

procedure. Frozen steaks were thawed at 0-2°C for 24-48 h to attain raw internal temperatures of 

0-2°C before cooking. Steaks were cooked in an oven (Model SCC WE 61 E; Rational, Landsberg 

am Lech, Germany) at 204°C and 0% relative humidity to a final internal temperature of 71°C. 

Peak internal temperatures were recorded in the geometric center of the steaks using a thermometer 

(AccuTuff 34032, Cooper-Atkins Corporation, Middlefield, CT). 
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Trained Sensory Panel 

The LM and PM sensory panels were performed similarly but separately. Panels were 

performed in 44 sessions/muscle, with a maximum of 2 sessions/day, a resting time of at least 7h 

between sessions, a maximum of 12 samples/session, and at least 8 trained panelists/session. All 

samples (n=504 per USDA grade) were randomly assigned to each session, ensuring that both 

USDA quality grades and all aging treatments were present in each session. Immediately after 

cooking, external fat and connective tissue were removed, and the steaks were cut into small cubes. 

Two to three cubes were served to the panelists in individual booths equipped with a red 

incandescent light. Panelists evaluated tenderness, juiciness, and 12 flavor descriptors from the 

Beef Lexicon (Adhikari et al., 2011) described in Table 1 on a 100-mm unstructured line scale. 

The left end of the line scale was anchored with “not present,” “extremely dry,” or “extremely 

tough,” and the right end represented “extremely intensity,” “extremely juicy,” or “extremely 

tender.” A warm-up sample (USDA Low Choice strip steak) was served at the beginning of each 

session to calibrate panelists. Consensus on the attributes of the warm-up sample was reached 

before moving to the study samples. 

Shear Force 

Tenderness of both muscles was evaluated using Warner-Bratzler shear force (WBF) and 

slice shear force (SSF) as described by Shackelford et al. (1999) and Lorenzen et al. (2010). 

Samples were cooked, and internal peak temperatures were recorded following the protocol 

described above. Within 2-3 min after recording peak temperature, the lateral ends of the steak 

were removed, and a 1 x 5 cm slice was cut parallel to the muscle fiber. SSF was measured by 

shearing the slice perpendicular to muscle fibers with a universal testing machine (Instron Corp., 

Canton, MA) equipped with a flat, blunt-end blade (500 mm/min crosshead speed and 100 kg load 
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capacity). The remaining part of the sample was cooled down to room temperature or below, and 

2 to 6 cores (1.2-cm diameter) were removed parallel to the muscle fibers orientation. The WBF 

was measured by shearing each core perpendicular to the fiber with the universal testing machine 

equipped with a WBF blade (74.2 mm wide x 138.7 mm long x 0.99 mm thick, 200 mm/min 

crosshead speed, and 100kg load cell capacity). 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) 

Metabolomic profiles of the GR samples were obtained using a quadrupole time-of-flight 

mass spectrometer (Synapt G2-Si Q-ToF, Waters Corporation, Milford, MA) equipped with a 

REIMS source (Waters Corporation). An electronic probe (Waters Corporation) powered by an 

electrosurgical generator (Erbe VIO 50C, Erbe Elektromedizin GmbH, Tubingen, Germany) was 

used as a sampling device. The electrosurgical generator was set to dry cut mode and maximum 

cutting power of 40W. Mass spectra from 100-1,000 m/z were acquired in negative ion mode, with 

cone voltage at 40V and heater bias at 60V. Samples were thawed at 0-4°C for 16-24 h and 

randomly sorted for REIMS analysis. The sampling device was used to generate at least 5 burns 

over the surface of individual samples. Burns were made in the 4 corners, and the middle of a 2.5 

x 2.5 cm square from the surface of the sample, and each burn lasted approximately 1s. Extra burns 

were made in a random location equidistant to the last burn when additional burns were required 

due to low signal intensity. A 40µg/L of leucine-enkephalin/isopropanol solution was injected 

directly into the REIMS sources (flow rate: 200µg/min) for lock mass correction. REIMS data was 

pre-processed with AMX Recognition software (version 1.0.2184.0, Waters Corporation). This 

process included lock mass correction using leucine-enkephalin (554.2615m/z), background 

subtraction using standard Masslynx pre-processing algorithms, total ion current normalization, 

peak binning in 0.5m/z intervals, and exclusion of bins in the range of 550-600m/z. 
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Data analysis 

The statistical analyses described here were performed in  R statistical computing program (version 

4.1.0, 2018). 

Tenderness, juiciness, and flavor classification 

Cutoffs for juiciness and tenderness, including panel tenderness (PT), SSF, and WBF, were 

specified close to the means of each attribute to divide the samples of 3, 14, and 28 days into 

relatively balanced classes. For juiciness, LM and PM samples with values lower than or equal to 

55 were classified as “dry” and the remaining as “juicy.” LM samples with PT higher or equal to 

55 were classified “tender” and the remaining as “tough,” while PM samples with PT higher or 

equal to 77 were classified “tender” and the remaining as “tough.” SSF cutoffs were 14.0 and 12.0 

kg, and WBF cutoffs were 3.1 and 2.9 kg for LM and PM, respectively. Samples with higher values 

of SSF and WBF than the cutoffs were classified as “tough” and lower than the cutoff were 

classified as “tender.” 

Hierarchical clustering was used to group samples into classes with similar flavor 

performance. Briefly, a Principal Component Analysis (PCA) of the 13 flavor attributes was 

performed using the PCA function from the FactoMineR package (Lê et al., 2008). Then, the 

HCPC function from the FactoMineR package was used to group the samples with similar flavor 

performance based on the first five principal components (PC). Samples aligned to positive flavor 

attributes were assigned to the “acceptable” class, and those aligned to the negative ones to the 

“unacceptable” class. 

Predictive model building 

 Classification models were built using REIMS data of GR samples to predict quality 

attributes of PM and LM samples on days 3, 14, and 28. Models were built using three 
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dimensionality reduction methods and ten machine learning algorithms. PCA, Feature selection 

(FS), and both methods combined (PCA-FS) were used to reduce the dimensionality of the REIMS 

preprocessed data. PCA was performed with the PCA function from the FactoMineR package, and 

the number of principal components was selected with a scree plot. In FS, highly correlated pairs 

(|r| >0.9) were identified and removed from the data; then, a recursive feature elimination was 

performed using the rfe function from the caret package (Kuhn, 2008). The PCA-FS was 

performed with PCA, followed by recursive feature elimination using the aforementioned 

functions. Fifteen machine learning algorithms (Table 2) from the caret package repository (Kuhn, 

2008) were used to build predictive models for each combination of muscle, aging period, response 

variable, and dimensionality reduction method. Models were trained and tuned with the train 

function of the caret package (Kuhn, 2008) using 10-fold cross-validation. The performance of the 

models was analyzed with the accuracy, sensitivity, and specificity of the top-performing models. 

Sensitivity results by dividing the true positives by the actual positives, while specificity is the 

fraction of true negatives by the actual negatives. “Tough,” “dry,” and “unacceptable” samples 

were treated as positive for sensitivity calculation of tenderness, juiciness, and flavor models, 

respectively. While “Tender,” “juicy,” and “acceptable” were treated as negative for specificities 

calculation. 

Results and discussion 

Tenderness and juiciness classes 

 LM and PM samples were classified into “tough” and “tender” classes for tenderness based 

on three measurement methods (SSF, WBF, and PT) and into “dry” and “juicy” classes for 

juiciness. The numbers of samples per class and aging period for LM and PM are presented in 

Table 3 and 4Table 4, respectively. As expected, the number of tough samples decreased with the 
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aging time, and the number of tender ones increased with aging in all tenderness classifications 

and both muscles. It is known that tenderness increases with aging due to proteolysis of structural 

proteins of the muscles (Koohmaraie, 1996). Juiciness classes of LM samples were similar in all 

aging periods since juiciness did not change with aging for these muscles (P = 0.24). Lepper-Blilie 

et al. (2016) also found similar results when comparing the juiciness of LM steaks aged 14 to 49 

days and did not find differences in juiciness. However, the number of samples classified as dry 

with PM increased with time. Juiciness of PM samples aged 3 days was higher than those aged 

more than 42 days (P < 0.01), which could explain the increase of samples in the dry class with 

aging. 

Flavor classes 

LM and PM samples aged 3, 14, and 28 days were classified using PCA of the ten flavor 

attributes evaluated in the sensory panels (Figures 1 and 2). Loading plots of the PCA of both 

muscles showed that brown, beefy, and roasted flavors were positively correlated, and these 

attributes were negatively associated with livery flavor. As expected, fat-like and buttery flavors 

were associated since the intensity of both increases with the intramuscular fat (Legako et al., 

2016; O’Quinn et al., 2016). However, they were more closely related to umami than to other 

flavors. Foraker et al. (2020) found similar results when performing a discriminant function 

analysis of aged beef LM sensory attributes. They found that positive flavors such as roasted, beef 

identity, fat-like, and browned were positively associated with each other but negatively associated 

with off-flavors (sour, liver-like, oxidized, and metallic). Gredell (2018) also found similar results 

when performing a PCA of beef samples from different USDA grades, cattle breeds, and 

production systems. PCA analysis by Gredell showed that browned and beef ID attributes and 

buttery and fat-like flavors were associated. 
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The hierarchical clustering of the sample resulted in two classes that were defined as 

“acceptable” and “unacceptable” (Figures 1 and 2). Samples classified as acceptable were mostly 

located in the positive quadrant of dimension 1 (dim1), suggesting higher intensity on the positive 

attributes and lower values of the negative ones. Classifications were mostly driven by the PCA's 

dim1, and the major contributor to the dim1 was the beef identity. Foraker et al. (2020) and Gredell 

(2018) obtained similar results by performing a multivariable analysis of flavor attributes. Both 

studies concluded that beef identity was the major contributor to separating samples with positive 

from negative performance.  

Classification models of tenderness, juiciness, and flavor of striploins  

Three dimensionality reduction methods combined with different machine learning 

algorithms were trained using 10-fold cross-validation. The accuracy, sensitivity, and specificity 

(based on 10-fold cross-validation) of the best models for each attribute and aging time of LM are 

reported in Table 5. 

Tenderness 

For tenderness models, the SSF and WBF of 28 days (d28) and PT of 3 days (d3) showed 

the best accuracies. PLSDA plots of tenderness classes (Figures 3-5) showed overlapped classes. 

These results were expected since tenderness cutoffs were close to the means, and tenderness is a 

numerical attribute. The PLSDA plot of SSF and WBF of d28 and PT of d3 showed the smallest 

overlap between those tenderness classes (Figures 3-4), which explains the highest accuracy of 

those models. SSF d2 and PT d3 also showed high accuracy, but the sensitivity of the SSF model 

to classify tough samples was very low, and the specificity of the PT model was low (Table 5). 

The best performing model for tenderness was the WBF d28, showing an accuracy of 94.8% with 

84.2% sensitivity and 96.7% specificity (Table 5). Specificity of all tenderness models increased 
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with aging, and sensitivity decreased with aging in all tenderness models, except for WBF models. 

The ability of REIMS to classify tough samples decreased with aging time, and the ability to sort 

tender samples increased with aging time. This observation could be attributed to the data structure 

used in this study. Data of d3 and d28 were unbalanced because most d3 observations were tough, 

while most d28 were tender. Machine learning algorithms perform poorly when data is unbalanced 

because the models favor the larger class (Cieslak and Chawla, 2008). In addition, overlap between 

classes and a small number of observations in the minority group contribute to the low performance 

of predictive models (Batista et al., 2004). This phenomenon was observed when 50 random 

iterations of 10-fold cross-validation were performed, and the WBF, SSF, and PT values versus 

the proportion of times specific samples were misclassified were plotted (Figures 8-10). Samples 

in the minority classes were more frequently misclassified than samples in the majority classes. 

Compared to other studies, the accuracies of tenderness models obtained in this study were similar 

to Gredell et al. (2019). These researchers reported 90.8% accuracy of a classification model that 

differentiated tough from tender samples of LM aged 14 days using SSF= 20.0kg as a cutoff. 

The limitation of REIMS to analyze high molecular weight compounds could limit its 

ability to predict tenderness with high accuracy. Studies have shown that a large part of the 

variability in beef tenderness depends on muscle proteins and intramuscular fat (Platter et al., 2003; 

Emerson et al., 2013; Picard et al., 2014; Gagaoua et al., 2018). During the first few days of post-

mortem, the cross-sectional area of muscle fiber and sarcomere length are large contributors to 

beef tenderness, while background toughness becomes more relevant after 14 days of aging 

(Dubost et al., 2013). Those factors depend on contractile proteins, cytoskeletal and stromal 

proteins found in muscle tissues. Because REIMS requires that the compounds found in the 

samples be vaporized, only compounds with molecular weight between 1000 and 1500Da reach 
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the mass spectrometer. Therefore, REIMS can analyze chemical compounds, including fatty acids, 

sugars, phospholipids, and small peptides, but cannot detect large peptides or proteins (Ross et al., 

2021). REIMS could provide information on metabolites identified as possible indicators of beef 

tenderness (for example, malic acid, glucose, glucose, glucose-6-phosphate) and compounds 

related to intramuscular fat (King et al., 2019). However, REIMS may not be able to analyze intact 

proteins (e.g., collagen, desmin) that also influence tenderness variability. 

Flavor 

The low performance of flavor may be due to the complexity of the response variable 

(Table 5). Flavor perception results from taste and odor sensations and can be defined by multiple 

flavor descriptors (for example, browned, sourness, or beef identity). Specific flavor attributes 

have been associated with numerous chemical compounds or groups of compounds. Elaborating a 

composite score that condenses ten flavor attributes (Figure 1) into two classes might have 

simplified beef flavor interpretation. However, clustering multiple flavor attributes represents a 

more difficult problem in building classification models based on the chemical fingerprint. 

Mathematically, when the number of dimensions (attributes) increases, the distance between 

observations increases, making it more difficult to find nearby observations in the hyperplanes 

(Aremu et al., 2020). In other words, samples in one class could be chemically different because 

the classification results from a combination of chemically unrelated attributes. Since machine 

learning algorithms use similarities in the training dataset to predict classes of the test data, more 

data will be required to cover a broader range of flavor profiles. 

Gredell (2018) evaluated the ability of REIMS to predict flavor classes defined with 

multivariate analysis. The accuracy of his model for binary classification was 73.8%. However, in 

that study, beef samples were from different USDA grades, cattle breeds, and production systems, 
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which could increase variability in the fingerprint across classes and increase the error. 

Additionally, Gredell (2018) only used PLSDA algorithms to build the model, whereas in the 

current study, multiple algorithms were evaluated, and the best one was reported. Our results using 

PLSDA algorithms for flavor classification ranged from 55.0 to 88.6% (Table 5). Verplanken et 

al. (2017) also evaluated the ability of REIMS to predict pork flavor. They demonstrated that 

REIMS could classify pork carcasses with untainted and tainted boar flavor with perfect accuracy 

using an orthogonal PLSDA model. However, identifying boar taint could be less complex than 

identifying beef flavor profiles because boar taint is a specific flavor with a physiological origin. 

Boar taint is an odor occurring in the meat of non-castrated male pigs and is associated with high 

levels of skatole and androstenone (Verplanken et al., 2017). In contrast, beef flavor profile 

evaluated in the present study results from a combination of attributes that could come from 

different sources of variation. 

Juiciness 

PLSDA plots corresponding to juiciness classes (Figure 7) show an overlap between the 

two classes in all aging times, which could explain the low performance of the three juiciness 

models. In the PLSDA plot, the overlap implies similarity in the REIMS data of both classes. These 

results are not surprising since juiciness classes were defined with a cutoff close to the average 

juiciness of all the samples. There is not a gap that could differentiate juicy from dry samples 

chemically. Samples corresponding to different classes but with similar values of juiciness are 

probably more similar than samples in the same class with different values. For example, a sample 

considered as juicy with a juiciness value of 55.1 is perhaps more similar to a sample with a 

juiciness value of 54.7 classified as dry than a sample with a juiciness value of 63 classified as 

juicy. This could explain why after 50 random iterations of 10-fold cross-validation, samples that 
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were more frequently misclassified had a juiciness value close to the cutoff on d3 and d28 (Figure 

11). However, the reason why the same pattern is not present in 14 days (d14) models is unknown. 

Similar to tenderness, juiciness is also influenced by intramuscular fat and protein composition of 

muscle tissues (Dubost et al., 2013). Therefore, the inability of REIMS to evaluate proteins could 

contribute to low prediction accuracy for this attribute. 

Another source of error in all models could be the inconsistency in the cooking 

temperatures of the samples used for sensory evaluation. Even following the same cooking 

protocol, it is very common to have minor variations in the cooking temperature due to 

uncontrolled variables during the cooking process (e.g., steak size or location in the oven). The 

three sensory attributes evaluated are highly dependent on the cooking temperature. Steaks cooked 

with a higher internal temperature are less tender and less juicy than steaks cooked with a lower 

internal temperature (Cross et al., 1976; Savell et al., 1999; McKillip et al., 2017). Beef flavor is 

produced by chemical reactions catalyzed by temperature; therefore, cooking temperature plays a 

major role in developing beef flavor compounds (Kerth and Miller, 2015). Consequently, using 

REIMS on GR samples does not account for variations in sensory attributes affected by extrinsic 

factors during storage, transportation, and cooking. 

Classification models of tenderness, juiciness, and flavor of tenderloins 

 The accuracy, sensitivity, and specificity of the best models for PM are reported in Table 

6. In all cases, except for the model of flavor of d3 and PT of d28, the accuracy of LM models was 

higher than PM models. Similar to LM models, the specificity of SSF and WBF increased, and 

sensitivity decreased with aging time due to unbalanced data. The number of tender samples 

increases with aging, enhancing the ability of the model to predict the majority class. 
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Since REIMS was collected on GR samples from LM muscle, the ability of REIMS to 

predict sensory attributes of PM muscle was expected to be lower. These two muscles are 

metabolically different, with distinct biochemical properties (Abraham et al., 2017). While LM is 

predominantly glycolytic, PM is primarily oxidative (Kim et al., 2021). LM contains more muscle 

fiber type IIX than type I and IIA, while PM comprises more type I fibers than type IIX and IIA 

fibers (Kim et al., 2021). Several proteins degrade at different rates in both muscles suggesting 

that proteolysis mechanisms related to quality attributes are muscle-dependent (Kim et al., 2021). 

Proteome analysis of LM and PM revealed that sarcoplasmic proteins, including metabolic 

enzymes, antioxidants, and chaperones proteins, differed in both muscles (Joseph et al., 2012). 

Previous authors have reported that sensory attributes change differently in both muscles due to 

metabolic differences. Tenderness of the LM improves until 21 days post-mortem, while the PM 

improves until day 7 with no additional improvement observed with extended aging (Nair et al., 

2019). Additionally, factors that affect tenderness are specific to the muscle. Gagaoua et al. (2018) 

found that the tenderness variability of LM depends on carcass characteristics, while the 

semitendinous on fattening period-related factors (e.g., average daily gain, feed efficiency). 

Therefore, even if particular fingerprints of the LM are found to classify carcasses on tenderness 

with perfect accuracy, it is expected that the prediction accuracy of the LM muscle to be lower. 

Conclusions 

Non-destructive techniques that can predict meat quality attributes in real-time would be a 

great asset for the meat industry. Consumer satisfaction in eating beef depends on the tenderness, 

juiciness, and flavor. Therefore, techniques that allow predicting these attributes and can be 

implemented in the current grading system would improve the consumer experience, increasing 

consumer trust and demand for beef. This study demonstrated that REIMS could potentially be 
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used as a real-time, in-situ technique to classify beef carcasses into flavor, juiciness, and tenderness 

classes at different aging times. However, the ability of REIMS to predict meat juiciness and 

tenderness may have been limited by its inability to analyze all of the proteins related to these 

attributes. Moreover, working with a composite score for flavor classes improves the interpretation 

of this complex attribute but increases model complexity. Developing a predictive model of beef 

flavor that encompasses a wide range of sensory profiles will require a large sample size to cover 

a wide range of flavor profiles. All classes evaluated were overlapped and were occasionally 

unbalanced, which affected the efficacy of REIMS in classifying the samples with high accuracy. 

Therefore, further exploring the true potential of REIMS will require increasing the sample size 

and developing a sampling method that allows increasing the gap between sensory evaluations. 
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Table 1. Definition and reference standards for beef sensory attributes and their intensities based on Adhikari et al. (2011), where 0 = 
none and 100 = extremely intense 
Attribute Definition Reference 

Tenderness The overall tenderness of the sample Strip steak to 160°F = 60 
Tenderloin to 160°F = 95 

Juiciness The amount of perceived juice that is released from the product 
during mastication 

Carrot = 55 
Strip steak cooked to 175°F = 60  
Strip steak cooked to 135°F = 75  
Watermelon = 95 

Beef Flavor 

ID 

Amount of beef flavor identity in the sample Swanson’s Beef Broth = 35 
Beef brisket (160°F) = 80 

Bitter The fundamental taste factor associated with a caffeine solution 0.01% caffeine solution = 15 
0.02% caffeine solution = 25 

Browned Aromatic associated with the outside of grilled or broiled meat; 
seared but not blackened or burnt 

Beef suet (broiled) = 55 

Buttery Sweet, dairy-like aromatic associated with natural butter Land O’Lakes unsalted butter = 45 
Fat-Like The aromatics associated with cooked animal fat Hillshire Farm Beef Lit’l Smokies = 45 

Beef suet = 80 
Liver-Like The aromatics associated with cooked organ meat/liver Beef liver = 50 
Metallic The impression of slightly oxidized metal, such as iron, copper, and 

silver spoons 
0.10% potassium chloride solution = 10 
Select striploin steak (60°C internal) = 25 
Dole canned pineapple juice = 40 

Roasted Aromatic associated with roasted meat 80% lean ground chuck = 65 
Sour The fundamental taste factor associated with citric acid 0.015% citric acid solution = 10  

0.050% citric acid solution = 25 
Umami Flat, salty, somewhat brothy. The taste of glutamate, salts of amino 

acids, and other molecules called nucleotides 
0.035% Accent Flavor Enhancer solution = 
50 
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Table 2. R machine learning algorithms, functions, and libraries used for building classification 
models 
Algorithm Function Libraries 

Stochastic gradient boosting gbm gbm, plyr 
Support vector machine radial kernel svmRadial kernlab 
Support vector machine linear kernel svmLinear kernlab 
Support vector machine polynomial kernel svmPoly kernlab 
Linear discriminant analysis  lda MASS 
eXtreme gradient boosting xgbTree xgboost, plyr 
Penalized discriminant analysis pda mda 
Boosted logistic regression LogitBoost caTools 
Random forest rf randomForest 
Generalized linear model glm stats 
Lasso and elastic-net regularized generalized linear models glmnet glmnet, Matrix 
K-nearest neighbors knn class 
Recursive partitioning tree rpart rpart 
Bagged classification tree treebag ipred, plyr, e1071 
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Table 3. Number of observations (percent) of striploins (LM) per class of slice shear force (SSF), 
Warner-Bratzler shear force (WBF), sensory panel tenderness (PT), flavor, and juiciness 

Attribute1 Classes2 3 days 14 days 28 days 

SSF 
Tender (SSF≤14.0kg) 21 (25.3) 44 (55.0) 66 (82.5) 
Tough (SSF>14.0kg) 62 (74.7) 36 (45.0) 14 (17.5) 

     

WBF 
Tender (WBF≤3.1kg) 17 (20.5) 44 (55.0) 60 (75.0) 
Tough (WBF>3.1kg) 66 (79.5) 36 (45.0) 19 (23.8) 

     

PT 
Tender (PT≥55) 12 (14.5) 28 (35.4) 57 (71.3) 
Tough (PT<55) 71 (85.5) 51 (64.6) 23 (28.8) 

     

Flavor2 Acceptable 53 (63.9) 46 (58.2) 35 (43.8) 
Unacceptable 30 (36.1) 33 (41.8) 45 (56.3) 

     

Juiciness 
Dry (juiciness≤55) 37 (44.6) 39 (49.4) 40 (50.0) 
Juicy (juiciness>55) 46 (55.4) 40 (50.6) 40 (50.0) 

1 SSF, slice shear force; WBF, Warner-Bratzler shear force; PT, sensory panel tenderness 
2 Flavor classes based on hierarchical clustering of the samples using PCA 
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Table 4. Number of observations (percent) of tenderloins (PM) per class of slice shear force (SSF), 
Warner-Bratzler shear force (WBF), sensory panel tenderness (PT), flavor, and juiciness 

Attribute1 Classes 3 days 14 days 28 days 

SSF 
Tender (SSF≤12.0kg) 32 (38.1) 47 (57.3) 50 (61) 
Tough (SSF>12.0kg) 52 (61.9) 35 (42.7) 32 (39) 

     

WBF 
Tender (WBF≤2.9kg) 34 (40.5) 39 (47.6) 52 (63.4) 
Tough (WBF>2.9kg) 50 (59.5) 43 (52.4) 30 (36.6) 

     

PT 
Tender (PT≥77) 54 (64.3) 41 (48.8) 45 (54.2) 
Tough (PT<77) 30 (35.7) 43 (51.2) 38 (45.8) 

     

Flavor 
Acceptable 43 (51.2) 43 (51.2) 23 (27.7) 
Unacceptable 41 (48.8) 41 (48.8) 60 (72.3) 

     

Juiciness 
Dry (juiciness≥55) 31 (36.9) 39 (46.4) 43 (51.8) 
Juicy (juiciness<55) 53 (63.1) 45 (53.6) 40 (48.2) 

1 SSF, slice shear force; WBF, Warner-Bratzler shear force; PT, sensory panel tenderness 
2 Flavor classes based on hierarchical clustering of the samples using principal component analysis 
(PCA) 
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Table 5. Top machine learnings prediction accuracies (based on 10-fold cross-validation, percent) for striploin (LM) tenderness, 
juiciness, and flavor based on REIMS of grading (GR) samples 

Models1 Aging period2 Top model3 N of predictors Accuracy Sensitivity Specificity 

SSF 
d3 FS/GLMNET 155 85.8 95.2 57.1 
d14 PCA-FS/XGBoost 12 84.8 80.6 88.6 
d28 PCA-FS/XGBoost 3 91.5 50.0 100.0 

       

WBF 
d3 FS/XGBoost 14 86.5 95.5 52.9 
d14 FS/RF 325 82.5 77.8 86.4 
d28 PCA-FS/SVM Poly 44 94.8 84.2 96.7 

       

PT 
d3 FS/XGBoost 23 93.9 100.0 58.3 
d14 FS/XGBoost 46 87.4 78.6 92.2 
d28 FS/PLSDA 600 82.5 59.5 95.2 

       

Flavor 
d3 FS/GBM 181 86.7 76.7 92.5 
d14 FS/PLSDA 265 88.6 92.5 78.3 
d28 FS/XGBoost 17 81.3 86.7 74.3 

       

Juiciness 
d3 FS/XGBoost 84 84.5 89.1 78.4 
d14 FS/XGBoost 26 83.6 84.6 82.5 
d28 FS/XGBoost 61 82.5 85.0 80.0 

1 SSF, slice shear force; WBF, Warner-Bratzler shear force; PT, sensory panel tenderness 
2 d3, 3 days; d14, 14 days; d28, 28 days of aging 
3 FS, Feature selection; PCA-FS, principal component analysis - feature selection; GLMNET, Lasso and elastic-net regularized 
generalized linear models; XGBoost, extreme gradient boosting; RF, random forest; SVM, support vector machine; PLSDA, partial 
least square discriminant analysis; GLM, generalized linear model. 
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Table 6. Top machine learnings prediction accuracies (based on 10-fold cross-validation, percent) for tenderloin (PM) tenderness, 
juiciness, and flavor based on REIMS of grading (GR) samples 
Models1 Aging period2 Top model3 N of predictors Max accuracy Sensitivity Specificity 

SSF 
d3 PCA-FS/SVM Poly 59 82.1 88.5 71.9 
d14 PCA-FS/XGBoost 51 73.4 68.6 76.6 
d28 FS/PLSDA 38 89.0 75.0 98.0 

       

WBF 
d3 FS/SVM Poly 205 78.6 88.0 64.7 
d14 FS/RF 4 77.7 81.4 74.4 
d28 FS/SVM Poly 32 81.5 76.7 84.6 

       

PT 
d3 PCA-FS/XGBoost 34 83.8 73.3 88.9 
d14 FS/XGBoost 80 81.0 81.4 80.5 
d28 PCA-FS/SVM 46 84.3 78.9 88.9 

       

Flavor 
d3 PCA-FS/XGBoost 29 83.3 75.6 90.7 
d14 FS/XGBoost 4 73.8 75.6 72.1 
d28 PCA-FS/SVM Poly 35 84.3 95.0 56.5 

       

Juiciness 
d3 FS/XGBoost 30 81.1 90.6 64.5 
d14 PCA-FS/SVM Poly 65 79.5 84.4 74.4 
d28 PCA-FS/SVM Poly 59 79.6 80.0 79.1 

1SSF, slice shear force; WBF, Warner-Bratzler shear force; PT, sensory panel tenderness 
2d3, 3 days; d14, 14 days; d28, 28 days of aging 
3FS, Feature selection; PCA-FS, principal component analysis - feature selection; GLMNET, Lasso and elastic-net regularized 
generalized linear models; XGBoost, extreme gradient boosting; RF, random forest; SVM, support vector machine; PLSDA, partial 
least square discriminant analysis; GLM, generalized linear model. 
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Figure 1. Principal component analysis (PCA) of 10 flavor attributes of beef striploins (LM; n=242) aged 3, 14, and 28 days. (A) 
Loading plot of PCA and (B) flavor classes based on hierarchical clustering of the samples in the PCA. 
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Figure 2. Principal component analysis (PCA) of 10 flavor attributes of beef tenderloins (PM; n=251) aged 3, 14, and 28 days. (A) 
Loading plot of PCA and (B) flavor classes based on hierarchical clustering of the samples in the PCA. 
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Figure 3. Partial least squares-discriminant analysis (PLSDA) plot of slice shear force of striploin (LM) classes corresponding to (A) 3, 
(B), 14, and (C) 28 days of aging  
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Figure 4. Partial least squares-discriminant analysis (PLSDA) plot of Warner-Bratzler shear force of striploin (LM) classes 
corresponding to (A) 3, (B), 14, and (C) 28 days of aging 
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Figure 5. Partial least squares-discriminant analysis (PLSDA) plot of sensory panel tenderness of striploin (LM) classes corresponding 
to (A) 3, (B), 14, and (C) 28 days of aging 
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Figure 6. Partial least squares-discriminant analysis (PLSDA) plot of flavor of striploin (LM) classes corresponding to (A) 3, (B), 14, 
and (C) 28 days of aging 
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Figure 7. Partial least squares-discriminant analysis (PLSDA) plot of juiciness of striploin (LM) classes corresponding to (A) 3, (B), 
14, and (C) 28 days of aging 
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Figure 8. Slice shear force (SSF) versus the proportion of misclassification of each observation after performing 50 random iterations 
of training/testing (10-fold cross-validation) using the best tuning parameters of the top predictive models of striploins (LM). 
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Figure 9. Warner-Bratzler shear force (WBF) versus the proportion of misclassification of each observation after performing 50 
random iterations of training/testing (10-fold cross-validation) using the best tuning parameters of the top predictive models of 
striploins (LM).   
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Figure 10. Sensory panel tenderness (PT) versus the proportion of misclassification of each observation after performing 50 random 
iterations of training/testing (10-fold cross-validation) using the best tuning parameters of the top predictive models of striploins (LM). 
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Figure 11. Juiciness score versus the proportion of misclassification of each observation after performing 50 random iterations of 
training/testing (10-fold cross-validation) using the best tuning parameters of the top predictive models of striploins (LM).  
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CHAPTER III: REPEATABILITY AND REPRODUCIBILITY OF RAPID EVAPORATIVE 

IONIZATION MASS SPECTROMETRY FOR BEEF SAMPLES 

 
 
 
Introduction 

Rapid Evaporative Ionization Mass Spectrometry (REIMS) is an ambient mass 

spectrometry (MS) technique that can generate a mass spectral fingerprint of biological tissues in 

real-time and in situ (Balog et al., 2010). Compared to conventional MS methods (e.g., LC-MS/MS 

or GC-MS/MS), REIMS does not require sample preparation which enables rapid collection of 

valuable chemical information at a lower cost and with a low level of technical expertise 

(Verplanken et al., 2017). These benefits have raised interest in evaluating REIMS for multiple 

applications in the beef industry. Studies have demonstrated that REIMS has the potential to be 

used as a real-time tool for applications in food provenance and fraud, processing systems, and 

meat quality. For example, the chemometric fingerprint obtained with REIMS can differentiate 

between beef, horse, and venison meat with almost perfect accuracy and can detect adulteration of 

ground beef with horse meat or offals to levels of 5% (Balog et al., 2016; Black et al., 2019). 

Predictive models using metabolomic profiling can classify beef carcasses into tenderness 

categories with 91% accuracy (Gredell et al., 2019). REIMS can also be implemented as a 

verification process of marketing programs based on the breed of animals or production systems. 

Chemometric profiling can differentiate at breed level with up to 97% accuracy and between 

organic production systems from conventional with 84% accuracy (Balog et al., 2016; Gredell et 

al., 2019; Robson et al., 2022). Since REIMS is a non-destructive technique that provides rapid 

chemical information, it is a viable alternative as a control point to verify beef attributes. 
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Repeatability, reproducibility, and robustness are necessary attributes for all new 

techniques to cross over from bench-top experiments to plant implementation. A measurement 

method is repeatable when it can provide consistent measurements on the same sample measured 

with the same instrument and operator and within the same day. Reproducibility represents the 

variations in measurements obtained with different devices and operators in different locations and 

times (Tabb et al., 2010). Robustness represents the resilience of an analytical technique to 

variation in measurement conditions without affecting the output (Ferreira et al., 2017). While 

robust methods are desirable for laboratory applications, robust processes are almost indispensable 

for industrial applications. In general, experiments carried out in laboratories have controlled 

conditions, and sources of variability are reduced. On the other hand, controlling the source of 

variation without affecting the efficiency of production processes is generally challenging, so 

robustness is an important attribute to consider. Reproducing results obtained in laboratory 

experiments with REIMS into industrial applications will depend on the stability of the data over 

time with different operators and equipment. Furthermore, understanding the reliability of results 

to data variations due to the factors mentioned above will increase confidence in this technology, 

facilitating its implementation and opening to new studies. Therefore, this study aims to evaluate 

the stability of REIMS data within and between days, the reproducibility of the data collected with 

different instruments, sampling methods and operators, and its reliability in reproducing results 

with data variation in beef applications. 

Materials and Methods 

Beef samples and quality control samples 

The repeatability and reproducibility of REIMS in beef applications were analyzed using 

REIMS data of samples from the procedure described in Chapter II and quality control samples. 
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Briefly, 42 carcasses USDA Select (marbling scores Slight00 – Slight99), and 42 upper 2/3rd Choice 

(marbling scores Modest00 - Moderate99, n = 42, N=84) were randomly selected in a commercial 

facility for this study. Both striploins (LM) and tenderloins (PM) were collected around 36 h post-

mortem, cut into portions, and each section was randomly assigned to 6 aging times (3, 14, 28, 42, 

56, and 70 days). In addition, two sets of slivers from both sides of the longissimus dorsi muscle 

between the 12-13th rib (GR samples) were collected at the grading time to be analyzed by two 

laboratories (Colorado State University [CSU] and Texas Tech University [TTU]). 

QC samples were made from ground beef (80% lean, 20% fat) acquired from the CSU 

Meat Lab facility. Ground beef was homogenized for 15s using a food processor (Blixer 6V, Robot 

Coupe, MS), mixed manually, and homogenized for a second time with the blender. Then, the 

homogenized product was formed into patties. Each patty was individually vacuum-packed and 

stored at -20°C until further analysis. 

REIMS data collection 

Chemometric profiles of the samples were obtained using a quadrupole time-of-flight 

(ToF) mass spectrometer (Synapt G2-Si Q-ToF, Waters Corporation, UK) equipped with a REIMS 

source (Waters Corporation, Milford, MA). An electronic probe (MedRes Medical Research 

Engineering Ltd., Budapest, Hungary) powered by an electrosurgical generator (Erbe VIO 50C, 

Erbe Elektromedizin GmbH, Tubingen, Germany) was used as the sampling device. The 

electrosurgical generator was set to dry cut mode and maximum cutting power of 40W. Mass 

spectra from 50-1,500 m/z were acquired in negative ion mode, with cone voltage at 40V heater 

bias at 60V. Samples were thawed at 0-4°C for 16-24 h and randomly sorted for REIMS analysis. 

The sampling device was used to generate at least five burns over the surface of individual samples. 

Burns were made in the four corners, and the middle of a 2.5x2.5cm square from the surface of 
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the sample, and each burn lasted approximately 1s. A 40µg/L of leucine-enkephalin/isopropanol 

solution was injected directly into the REIMS sources (flow rate: 200µg/min) for lock mass 

correction.  

REIMS data were pre-processed with AMX Recognition software (version 1.0.2184.0, 

Waters Corporation). This process included lock mass correction using leucine-enkephalin 

(554.2615m/z), background subtraction using standard Masslynx pre-processing algorithms, total 

ion current normalization, peak binning in 0.5 or 0.1m/z intervals, and exclusion of bins in the 

range of 550-600m/z. 

REIMS repeatability and reproducibility 

All samples, including GR (n=168), LM and PM samples of all aging treatments (n=1008), 

and QC samples (n=29), were analyzed at CSU on 5 continuous days, including two batches per 

day. The ion transfer device of the REIMS instrument was cleaned every day before analysis, and 

the venturi and transfer capillary was cleaned between batches. The GR samples were analyzed 

during day 1, while the LM and PM samples were randomly analyzed during the remaining days. 

QC samples were analyzed at the beginning, middle, and end of each batch. 

The evaluation of reproducibility of REIMS between labs, instruments, technicians, and 

sampling devices was performed with the two sets of GR samples. One set of samples was 

analyzed during day 1 at CSU following the protocol described before, and the second set was 

analyzed at TTU using the same protocol used at CSU but with a different MS analyzer brand 

(Xevo G2-S quadrupole ToF, Waters Corp., Wilmslow, UK), technician, and using a monopolar 

electrosurgical as sampling device (iKnife, Waters Corporation, Milford, MA). Both sets of 

samples were analyzed in both labs in one day to eliminate a possible day effect of the instrument. 

Since the optimal cutting power of each sampling device is different due to different geometries, 
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the cutting power used in TTU was 50W to get an optimal ionization. Aged LM and PM samples 

were randomly analyzed from day 2 to day 5 to evaluate the day effect and robustness of REIMS. 

QC samples were analyzed at the beginning, middle, and end of each batch to assess the stability 

of REIMS. The measurement stability represents the instrument's ability to provide consistent 

measures or with low variability over time. 

Statistical analysis 

All data analyses were performed using R statistical computing software (RStudio Team, 

version 2022.2.1.461, 2022). REIMS data of QC samples were used to evaluate the stability of the 

data across multiple batches and days. Repeatability and reproducibility were evaluated using a 

random-effects model of the top 5 most abundant peaks fitted with the lmer function from the 

lmer4 R package (Bates et al., 2015). Models included the relative abundance of the greatest mass 

bins as response variables with batches nested within collection days as random effects. Best linear 

unbiased predictions were calculated with the ranef function from the lmer4 R package. The rand 

function from the lmerTest R package (Kuznetsova et al., 2017) was used to test the null hypothesis 

of variance equal to 0 using likelihood ratio tests for random effects. Coefficients of variation (CV) 

between burns of all mass bins in the range 50-1500m/z with a binning of 0.1m/z were calculated 

across the 29 QC samples to analyze the variability of the data. 

Interlab reproducibility of REIMS was evaluated with principal component analysis (PCA) 

of the GR data from the two labs. The PCA function from the FactoMineR package (Lê et al., 

2008) with a Boolean normalization of the data was used to perform PCA. The function 

fviz_pca_ind from the factoextra package (version 1.0.7, 2020) was used to visualize the PCA and 

build the 95% confidence ellipses. The robustness of REIMS to differences in the data between 

labs and the reproducibility of multiple machine learning algorithms were evaluated with 
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predictive models for juiciness, tenderness, and flavor on days 3, 14, and 28 of aging. Models were 

trained with REIMS data of the GR collected at CSU using three dimensionality reduction methods 

(PCA, feature selection [FS], and PCA-FS) and fifteen machine learning algorithms. Models were 

trained and tuned with the train function from the caret R package (Kuhn, 2008) using 10-fold 

cross-validation. Then, tuning parameters of the top CSU models of each attribute and aging time 

were used to re-train the models with CSU data and test them with CSU and TTU data using 10-

fold cross-validation. The last step was performed manually since the train function does not allow 

cross-validation between different data sets. The same random seed was fixed to train and tune the 

models the first time and to train the model the second time. A random seed is a pseudorandom 

generator that ensures consistent results of machine learning algorithms (Gundersen et al., 2022b). 

Since splitting the data into training/test sets and, in some cases, steps of the machine learning 

algorithms (e.g., random feature selection in decision tree-based algorithms) depend on random 

generators, fixing a random seed ensures exact results if the data and procedure are equal 

(Gundersen et al., 2022a). In this analysis, even when the same random seed was used to train the 

first and second models with CSU data, there is no guarantee that the results of the first and second 

ones are the same. This occurs because, in the first step, the models were trained and tuned, and 

the random generator changes with each iteration of the tuning process, while in the second step, 

the models were only trained once. Tracing back the random generator through the tuning process 

to use the same random seed on the second step was not straightforward, so the results of the first 

and second models were reported. 

LM and PM data were used to analyze the day effect of REIMS. PCA evaluated how data 

were clustered by collection days, muscle type, and aging period. The robustness of REIMS to the 

day effect of the instrument was assessed by building predictive models for muscle type and aging 
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period. For this purpose, sparse partial least squared discriminant analysis (sPLSDA) models were 

trained using the tune.splsda function from the mixOmics package with 10-fold cross-validation. 

Results and discussion 

Stability of REIMS data 

Variability of the mass bins (bin size = 0.1m/z) representing 90% of the total ion current 

(TIC) in a range of 50-1500m/z of the QC samples (n=29) is presented in Figure 12. The CV of 

mass bins ranged from 0.07 to 0.98, with CV of the most abundant mass bins lower than 0.30 

(Figure 12B). Features with low variability between burns were mostly located in the 50-1000m/z 

range, while most mass bins between 1000-1500m/z had CV greater than 0.30 (Figure 12C). The 

number of features that accounted for 90% of the TIC with CV less than 0.30 was 1460, while the 

number of features with CV less than 0.20 was 466. None of the mass bins representing the 

remaining 10% of the TIC had CV less than 0.20, and only 28 had CV less than 0.30. Ross et al. 

(2021) found similar results evaluating the CV between burns of 175 beef samples. They found 

that low-intensity mass bins predominantly have lower measurement stability. In contrast, they 

found that the most stable features were between 50-1600m/z, while in the current study, the more 

stable features were between 50-1000m/z, but these differences could be due to different sampling 

devices. Previous research reported that peaks between 100-350 tentatively correspond to fatty 

acids and peaks between 600-1100mz correspond to glycerophospholipid and triglyceride in meat 

samples (Verplanken et al., 2017; Genangeli et al., 2019; Ross et al., 2021). Consequently, it could 

be interpreted that REIMS is more suitable for providing chemical information on lipids found in 

beef samples.  

 Measurement stability of the top 5 abundance mass bins across ten batches and five 

collection days are presented in Table 7 and 8. The top most abundant mass bins in QC samples 
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were 281.25, 279.25, 726.55, 742.55, and 283.25, corresponding to exact mass peaks 281.2399, 

279.2256, 726.5475, 742.5462, and 283.2558. Putative identification of those peaks using 

Lipidmaps (www.lipidmaps.org) suggests that 279.2256, 281.2399, and 283.2558 might 

correspond to the fatty acids and conjugated class, probably deprotonated fatty acids C18:2, C18:1, 

C18:0, respectively. Ions 726.5475 and 742.5462 might be compounds in the family of 

glycerophosphoethanolamines. Other authors have previously identified similar mass bins as 

relevant in the chemometric profiling of beef samples (Balog et al., 2016; He et al., 2021; Zhang 

et al., 2021). The likelihood ratio test for both random effects (Tables 7 and 8) demonstrated 

agreement between measures taken in different batches and days for all top mass bins (P<0.05). 

REIMS interday reproducibility  

The PCA of LM and PM samples (n=504) corresponding to two cuts and six aging periods 

(3, 14, 28, 42, 56, and 70 days) are presented in Figure 13. The data were clustered by the collection 

days on the first two dimensions of the PCA, which represents 52% of the data variability (Figure 

13A). Data collected during days 2 and 3 (d2 and d3) seem more dispersed than data collected on 

days 4 and 5 (d4 and d5), suggesting higher variability on the first days than the later ones. 

Clustering by muscle type was observed in dimension 4 of the PCA (Figure 13D), while clustering 

by aging times was not observed in the first ten dimensions. These observations in the PCA suggest 

that collection day has a stronger effect on the variability of REIMS data than muscle types and 

aging times.  

Higher variability (greater dispersion of the data in the PCA plot) of d2 and d3 compared 

with d4 and d5 may be due to the replacement of the heated impactor or an improvement in the 

sampling technique (Figure 13A). Almost at the end of d3, the heated impactor of the MS analyzer 

failed, and it was replaced for d4 and d5. The heated impactor is an electronic component of the 

http://www.lipidmaps.org/
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MS instrument source responsible for the ionization of the molecular species. Therefore, it is 

possible that when the heated impactor was about to fail, it induced variability in the mass spectra, 

which is a possible scenario when working with this equipment. Higher variability on the first days 

could also be due to improvement in the sampling technique. Since aerosol generation during 

sampling is a thermally dependent process, changes that influence heat transfer impact the vapor 

generation. He et al. (2021) demonstrated that changing the cutting speed from 1mm/s to 5mm/s 

could increase the peak intensity of some m/z up to 3.5 times. Bodai et al. (2018) evaluate multiples 

electrode geometries to optimize the sampling technique for species-level classification models 

for microorganisms. In their study, changes in the electrode geometries and heating power 

impacted the cross-validation accuracy of the models radically, from 77% to 93% accuracy in 

negative mode and 33 to 91% in positive mode. While attempts were made to minimize variation 

in sampling techniques, non-controlled changes in the techniques, such as pressure applied during 

sampling or the sampling device's holding angle, may contribute to the variability between the first 

and last days. Therefore, it is important to consider these factors when developing models using 

REIMS data.  

Although REIMS data showed a cluster by collection day (Figure 13A), the performance 

of classification models for muscle type was not affected by the day structure of the data. The 

ability of REIMS to segregate samples by muscle types and aging periods across collection days 

is reported in Table 9. The accuracy of the model of muscle type across all aging times and 

collection days was 98.1% (Table 9). Performances of muscle type models for specific collection 

days (d2 and d5) or aging periods were similar to the full model showing accuracies between 95.8 

to 98.4%. These results were expected since the LM and PM data were clustered by muscle type 

in dimension 4 of the PCA (Figure 13D). The LM muscle has less oxidative fiber, lipid content, 
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and different fatty acid composition than the PM muscle, explaining the differences in metabolic 

profile observed in the PCA (Pavan and Duckett, 2013; Kim et al., 2021). Abraham et al. (2017) 

also found similar results when comparing metabolites found in the two muscles aged 0, 3, and 7 

days using GC-MS analysis. The metabolic profiles of the two muscles were different and 

clustered by muscle when a PCA of all the metabolites was performed. 

The performance of predictive models of aging time depends on the differences in 

metabolic fingerprints of the classes and the model complexity. Model of aging including all the 

samples, only LM, and only PM have poor performances (48.5%, 54.9%, and 45.4% accuracy, 

Table 9). However, models to predict the two most distant aging periods (3 vs. 70 days) across the 

two muscle types, LM, and PM, showed almost perfect performances with 99.9%, 100%, and 

99.3% accuracies, respectively. Models to classify samples into 3 vs. 28 days of aging classes also 

showed acceptable accuracies, but the accuracy of the models dropped when aging classes were 

closer (for example, classification models for 3 vs. 14 days). The differences in the metabolic 

profiles of both muscles increase with time (Abraham et al., 2017). Therefore, increasing the time 

between aging classes increases the accuracy of the model. Even when classification models for 3 

vs. 28 days and 3 vs. 70 days of aging had high performance, the model performance dropped with 

model complexity when an extra class was included. Multiclass models are prone to higher errors 

than binary classifications since the classifiers need to separate data into more categories, 

increasing error chances (Lorena et al., 2009). In addition, most machine learning algorithms are 

designed for binary classification, and multicategory classification results from decomposing the 

classes into binary subproblems. Fusion of those algorithms is challenging and can contribute to 

error (Rifkin and Klautau, 2004; García-Pedrajas and Ortiz-Boyer, 2011).  
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Even when REIMS data vary with collection days, it can still be used to build acceptable 

predictive models if classes are different. Previous research demonstrated that REIMS is a robust 

technology that can classify samples independently when the data is collected. In the medical field, 

REIMS data collected over multiple days have been used to classify cancer cells from normal cells 

with almost perfect accuracies (Balog et al., 2013; Phelps et al., 2018). Similarly, Verplanken et 

al. (2017) found that classification models of tainted and untainted boars based on REIMS from 

neck fat were not affected by the collection day. However, they found that the accuracy of models 

with three classes (tainted, untainted boars, and sows) was reduced from 99 to 89% when data 

were collected in one day versus collected in three days and variations in cone voltage.  

REIMS interlab reproducibility and statistical reproducibility of predictive models 

Figure 14 shows the PCA of the two sets of GR samples analyzed by two different labs, 

brands of MS analyzer, operators, and types of sampling devices. The first two dimensions of the 

PCA represent 53.8% of the variability. The PCA plot showed that the REIMS data collected at 

CSU differed from the data collected at TTU. Predictive models of tenderness, juiciness, and flavor 

were built using CSU data and tested with TTU data to evaluate the robustness of REIMS against 

differences in the data between labs. Predictive models were trained and tuned with 10-fold cross-

validation using only CSU data, and the maximum accuracies were reported in Table 10. Then, 

top models and their tuning parameters were used to re-train the models with CSU data and test 

them with CSU and TTU data. Models were validated with 10-fold cross-validation, and 

accuracies, sensitivities, and specificities of re-tested CSU data and test of TTU data are reported 

in Table 10. FS as dimensionality method yielded the best performance in all the models, except 

for some SSF and WBF models. None of the best models included PCA, and only SSF of 14 and 

28 days and WBF of 28 days had PCA-FS as the best dimensionality reduction method.  
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The accuracies of the first models obtained from the tunning process (max accuracy, Table 

10) were not reproducible after re-training the model with CSU data (accuracy CSU, Table 10). 

These results were expected due to the stochastic nature of machine learning algorithms and since 

the top CSU models and the re-tested models used different random seeds for splitting the data 

into train/test data sets or random selection of some algorithms changed. A random seed is a 

pseudorandom generator that allows getting the exact outcome of the same model using the same 

data by reproducing the generation of random numbers in the machine learning algorithm 

(Gundersen et al., 2022b). Only accuracies of SSF d28 and WBF d14 models were higher in the 

re-test, while the performance of PT d28 was maintained. Controlling the reproducibility of 

machine learning algorithms has been a concern due to the great variability of results that can lead 

to different conclusions (Islam et al., 2017; Pineau et al., 2020; Gundersen et al., 2022b). Machine 

learning algorithms involve algorithm, implementation, and observational factors that depend on 

randomness and impact results reproducibility (Gundersen et al., 2022a). Reproducibility of the 

results of the algorithms used for this study that were subject to randomness, including splitting of 

the data into training and test sets, hyperparameters optimization, and feature selection in the 

particular cases of extreme gradient boosting (XGBoost) and random forest (RF). Therefore, even 

when the optimized parameters of the first models were used to re-test the same data, the results 

were not reproducible because of random splitting data and feature selection on XGBoost and RF 

models. Reproducibility of statistical models does not apply only to REIMS but to studies where 

machine learning is used. Some authors suggest that setting random seeds and sharing data, code, 

and results (Beam et al., 2020; Pineau et al., 2020; Heil et al., 2021) will help to improve 

reproducibility. However, seeding a random generator would lead to a generalized conclusion of 

a specific random seed (Bouthillier et al., 2019). Therefore, other approaches recommend reporting 
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error rates with confidence intervals or including sensitivity analysis for model variations (Gardner 

et al., 2018; Henderson et al., 2018). Implementing these practices for reporting REIMS results 

could increase the transparency and interpretability of the results. 

The models built with CSU data could not predict sensory classes of TTU data. All CSU 

models performed better when tested with CSU data than tested with TTU data, except for the 

WBF d28 model (Table 10). SSF d3 classified all TTU samples as tender and could not recognize 

tough samples, while SSF d28 and PT d3 models classified all samples as tough and could not 

identify tender samples. The only model that showed a certain ability to segregate TTU samples 

correctly was the WBF d28, with an accuracy of 81.3% but displayed 42% specificity. The 

remaining models resulted in low accuracy, corroborating the findings of Figure 14 that REIMS 

data collected at CSU differed from TTU data. 

It is unclear if the data differences are solely due to different MS analyzers, technicians, 

sampling devices, or a combination of these factors. Previous studies have reported that REIMS is 

reproducible across MS instruments. Strittmatter et al. (2014) evaluated the inter-instrument 

reproducibility of REIMS to classify nine strains of microorganisms. They found that the 

classification accuracy of the model built from data collected with an Orbitrap instrument was 

100%, while the accuracy of the model from a Xevo Q-TOF analyzer was 97.8%. They also 

showed that samples in the recursive maximum margin criterion (RMMC) plot was dominated by 

microorganisms strains even when the data were collected with different instruments. The last 

findings could suggest that variation between CSU data and TTU might be due to the differences 

in devices or technicians since different analyzers yielded similar results. However, RMMC is a 

supervised algorithm that maximizes interclass separability (Veselkov et al., 2014), explaining 



68 

why samples were clustered by strains and not by instruments. In addition, model cross-validation 

was performed within MS analyzers and not between instruments as in the present study.  

Other studies have demonstrated that the cutting speed, cutting power, and geometry of the 

sampling device blade influence REIMS chemical profiling (Bodai et al., 2018; He et al., 2021). 

The ionization process is heat sensitive, and therefore, differences in techniques by technicians 

and different ionization devices may generate differences in the REIMS data between labs. At the 

same time that a spray of molecules is produced, chemical reactions of compounds present in the 

samples occur. Therefore, differences in exposure time and temperature can cause variations in 

heat-sensitive compounds or heat-catalyzed reactions, resulting in variations in MS readings. 

Genangeli et al. (2019) collected REIMS data from multiple animal tissues with a diathermic knife 

and CO2 laser and evaluated species and animal age classification models with cross-validation 

between instruments. In contrast to the present study, they found that data collected with one 

sampling device can be used to predict species and age classes from data generated from the other 

one. However, they compared two sampling devices with the same MS analyzer, and models were 

between well-differentiated classes (for example, cow vs. calf or cow vs. chicken), while in the 

present study, different MS analyzers were used, and models were between the same species with 

similar ages. 

Conclusions 

REIMS is a rapid technique that can provide valuable chemical information in-situ of meat 

tissues. It has the potential to be implemented as a real-time verification method for multiple 

purposes if it can provide consistent and reliable measures. This study has demonstrated that 

REIMS is a repeatable technique that provides chemical information of beef samples with good 

stability of the measures within days, especially for lipids compounds. Although there was an 
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evident cluster of REIMS data by collection day, it does not limit REIMS capacity to produce 

accurate classification models for beef cuts and aging time when classes are distant.  

The data obtained from two instruments, technicians, and types of sampling devices were 

different. The construction of a universal predictive model that allows evaluating meat quality 

attributes (tenderness, juiciness, and flavor) with data from different instruments, operators, and 

sampling devices was not possible. However, it was not possible to determine if REIMS was not 

reproducible due to multiple factors or an individual factor because they were not evaluated 

separately. Further studies are required to determine the individual effect of instruments, 

technicians, and sampling devices on REIMS reproducibility to develop strategies to improve the 

interlab reproducibility of this technology.  

The reliability of REIMS-based predictive models to interday variations depends on the 

differences between classes and the complexity of the models. Since this study of the LM and PM 

samples was performed on five continuous days, these results are limited to short periods. The 

robustness of REIMS to interday variations is limited to the models evaluated. However, these 

results generate inputs on the importance of evaluating REIMS models with data collected on 

different days. Understanding the interday reproducibility of REIMS in industrial applications will 

require evaluating this technology for longer periods of continuous operation to simulate industrial 

practices.  
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Table 7. Best linear unbiased predictions of the relative abundance (percent) of the top 5 more 
abundant peaks found in REIMS data of quality control samples corresponding to each batch 

Mass bins B11 B2 B3 B4 B5 B6 B7 B8 B9 B10 σbatch
2 p-value 

281.25 5.27 5.90 5.53 5.74 5.68 5.11 5.69 5.59 6.09 5.73 <0.01 0.63 
279.25 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19 2.19 <0.01 1.00 
726.55 1.50 1.57 1.55 1.53 1.54 1.55 1.56 1.55 1.55 1.56 <0.01 0.83 
742.55 1.18 1.20 1.19 1.19 1.19 1.19 1.20 1.20 1.19 1.20 <0.01 0.93 
283.25 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 <0.01 1.00 

1B1-B10 correspond to the batches 
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Table 8. Best linear unbiased predictions of the relative abundance (percent) of the top 5 more 
abundant peaks found in REIMS data of quality control samples corresponding to each collection 
day 

Mass bins d1* d2 d3 d4 d5 σday
2 p-value 

281.25 5.63 5.63 5.63 5.63 5.63 <0.01 1.00 
279.25 2.19 2.19 2.19 2.19 2.19 <0.01 1.00 
726.55 1.34 1.50 1.52 1.71 1.66 <0.01 0.24 
742.55 1.10 1.17 1.18 1.28 1.24 <0.01 0.43 
283.25 1.10 1.10 1.10 1.10 1.10 <0.01 1.00 

*d1 to d5 correspond to the collection days of the samples 
a-c Least-squares means in the same row lacking a common superscript differ (P < 0.05) 
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Table 9. Accuracy of 10-fold cross-validation of sparse partial least squares-discriminant analysis 
(sPLSDA) classification models for cut type or aging period across combinations of cut type, aging 
period, and REIMS collection day. 
Classification 
model 

Muscle type Aging1 Collection day2 N. samples Accuracy 

Muscle All All All 1001 98.1% 
Muscle All 3 days All 167 97.7% 
Muscle All 28 days All 165 98.1% 
Muscle All 70 days All 168 95.8% 
Muscle All 3 vs. 14 days All 335 95.6% 
Muscle All 3 vs. 28 days All 332 97.5% 
Muscle All 3 vs. 70 days All 335 96.0% 
Muscle All All d2 240 98.4% 
Muscle All All d5 215 97.9% 
Aging All All All 1001 48.5% 
Aging All 3 vs.14 days All 335 73.8% 
Aging All 3 vs. 28 days All 332 97.8% 
Aging All 3 vs. 70 days All 335 99.9% 
Aging All 3 vs. 28 vs. 70 days All 500 81.1% 
Aging Striploin All All 499 54.9% 
Aging Striploin 3 vs.14 days All 168 81.5% 
Aging Striploin 3 vs. 28 days All 165 98.7% 
Aging Striploin 3 vs. 70 days All 168 100% 
Aging Striploin 3 vs. 28 vs. 70 days All 249 85.7% 
Aging Tenderloin All All 502 45.4% 
Aging Tenderloin 3 vs.14 days All 167 71.4% 
Aging Tenderloin 3 vs. 28 days All 167 91.0% 
Aging Tenderloin 3 vs. 70 days All 167 99.3% 
Aging Tenderloin 3 vs. 28 vs. 70 days All 251 80.1% 

1 Aging period contains six levels 3, 14, 28, 42, 56, and 70 days. 
2 Collection day contains four levels d2, d3, d4, and d5, corresponding to each collection day 
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Table 10. Prediction accuracy of the top classification models of REIMS predictive models for beef tenderness, juiciness, and flavor 
trained with 10-fold cross-validation from Colorado State University (CSU) data and tested with CSU and Texas Tech University (TTU) 
data 

Models1 Aging 

period2 Top model3 N of 

predictors 
Max 

accuracy 
Accuracy Sensitivity Specificity 
CSU TTU CSU TTU CSU TTU 

SSF 
d3 FS/GLMNET 155 85.8 82.5 70.0 63.3 0.0 95.0 100.0 
d14 PCA-FS/XGBoost 12 84.8 76.3 60.0 80.0 78.1 76.5 46.9 
d28 PCA-FS/XGBoost 3 91.5 91.7 75.0 100.0 90.5 66.7 0.0 

           

WBF 
d3 FS/XGBoost 14 86.5 76.8 51.8 14.3 23.8 93.1 57.3 
d14 FS/RF 325 82.4 85.7 49.0 64.3 64.3 95.2 42.9 
d28 PCA-FS/SVM Poly 44 94.8 78.4 81.3 81.6 90.7 67.1 42.0 

           

PT 
d3 FS/XGBoost 23 93.9 83.3 70.8 95.2 100.0 66.67 0.0 
d14 FS/XGBoost 46 87.4 81.4 44.3 91.3 26.8 61.50 65.8 
d28 FS/PLSDA 600 82.5 82.5 60.0 59.5 37.0 95.24 72.0 

           

Flavor 
d3 FS/GBM 181 86.7 83.8 33.8 89.6 11.4 78.8 73.8 
d14 FS/PLSDA 265 88.6 80.0 40.0 87.3 19.5 76.5 75.7 
d28 FS/XGBoost 17 81.0 76.3 42.5 73.2 64.3 82.1 28.0 

           

Juiciness 
d3 FS/XGBoost 18 85.0 75.0 57.5 73.0 64.0 79.8 50.8 
d14 FS/XGBoost 26 83.6 77.1 55.7 70.2 53.8 81.8 55.3 
d28 FS/XGBoost 61 86.3 76.3 53.8 74.2 80.7 79.3 31.7 

1 SSF, slice shear force; WBF, Warner-Bratzler shear force; PT, sensory panel tenderness 
2 d3, 3 days; d14, 14 days; d28, 28 days of aging 
3 FS, Feature selection; PCA-FS, principal component analysis - feature selection; GLMNET, Lasso and elastic-net regularized 
generalized linear models; XGBoost, extreme gradient boosting; RF, random forest; SVM, support vector machine; PLSDA, partial 
least square discriminant analysis; GLM, generalized linear model. 
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Figure 12. Variability of REIMS data mass bins representing 90% of the total ion current (TIC) over 50–1500 m/z with a bin size of 
0.1 m/z of 29 ground beef samples. (A) Identification of mass bins with a coefficient of variation (CV) ≤ 0.2, (B) identification of 
mass bins with CV ≤ 0.30, and (C) Median CV between burns of mass bins representing 90% of total ion current (TIC) 
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Figure 13. Principal component analysis (PCA) of REIMS data of striploin and tenderloin samples aged 3, 14, 28, 42, 56, and 70 days 
collected in 4 running days of REIMS instrumentation. (A) Dimensions 1 and 2 of the PCA colored by day, (B) dimensions 1 and 2 of 
the PCA color 
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Figure 14. Principal component analysis of REIMS data of beef longissimus dorsi samples taken 
at the grading time (GR) collected at Colorado State University (CSU) with an electronic probe 
and a Synapt G2-Si mass spectrometer (MS) analyzer and collected at Texas Tech University 
(TTU) with an iKnife as sampling device and Xevo G2-S as mass spectrometer analyzer 
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APPENDICES 

Table 11. Classification accuracies (based on 10-fold cross-validation, percent) of slice shear force models of striploins aged 3 (d3), 14 
(d14), and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 80.6 73.8 74.8 80.2 52.0 80.9 85.2 81.4 86.7 
SVM Linear 83.3 74.7 79.4 78.5 59.0 76.1 76.6 82.7 82.8 
LDA 56.8 73.6 75.4 45.1 60.1 76.2 58.3 79.8 83.1 
Logit Boost 75.8 72.4 70.0 73.6 49.6 79.5 80.0 78.5 90.1 
SVM Poly 84.4 75.8 79.2 84.1 61.7 79.8 83.7 82.6 90.6 
RF 74.8 68.3 74.7 77.2 52.4 83.7 86.7 78.9 87.5 
XGBoost 82.0 74.5 76.9 83.5 62.4 84.8 87.8 82.9 91.5 
PLSDA 83.8 73.8 68.8 81.3 60.0 77.5 78.8 82.5 85.0 
GBM 79.1 65.3 73.5 75.1 48.2 81.5 89.0 80.9 90.1 
PDA 76.5 72.5 70.1 77.9 58.5 74.1 61.7 80.2 86.2 
GLM 50.4 72.2 72.2 59.1 61.2 61.2 52.1 80.7 80.7 
GLMNET 85.8 74.7 74.7 73.7 58.9 58.9 82.7 82.8 82.8 
KNN 79.4 73.5 73.5 66.5 54.7 54.7 86.4 82.6 82.6 
RPART 73.6 60.1 60.1 50.9 63.9 63.9 68.6 76.8 76.8 
TREEBAG 71.4 68.6 68.6 70.9 47.1 47.1 81.6 72.2 72.2 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 12. Classification accuracies (based on 10-fold cross-validation, percent) of Warner-Bratzler shear force models of striploins aged 
3 (d3), 14 (d14), and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 80.7 78.1 79.7 74.1 47.3 56.0 86.1 74.8 88.6 
SVM Linear 76.5 79.7 77.0 64.2 63.6 64.1 86.3 76.1 88.6 
LDA 68.9 79.3 74.2 68.1 58.2 63.9 60.9 73.6 87.5 
Logit Boost 80.6 76.9 77.1 77.2 57.4 58.9 77.1 76.1 81.1 
SVM Poly 82.3 82.1 79.7 76.3 62.7 62.5 87.3 76.1 94.8 
RF 82.5 77.9 80.9 82.4 51.9 57.0 83.8 72.0 79.8 
XGBoost 86.5 80.3 80.6 80.2 57.4 66.4 87.3 77.5 84.6 
PLSDA 82.5 82.5 80.0 80.0 57.5 62.5 85.7 75.7 85.7 
GBM 84.1 73.0 77.1 77.7 51.3 60.8 83.6 71.7 85.9 
PDA 71.0 77.2 77.0 64.9 61.9 60.1 79.8 73.6 85.9 
GLM 67.6 79.5 79.5 63.8 62.3 62.3 53.2 74.8 74.8 
GLMNET 80.8 82.2 82.2 74.8 62.3 62.3 82.1 76.1 76.1 
KNN 80.7 79.8 79.8 66.8 56.1 56.1 79.8 72.1 72.1 
RPART 67.4 69.0 69.0 63.0 66.0 66.0 72.1 68.6 68.6 
TREEBAG 76.2 74.4 74.4 76.4 44.4 44.4 77.0 73.4 73.4 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 13. Classification accuracies (based on 10-fold cross-validation, percent) of tenderness panel models of striploins aged 3 (d3), 14 
(d14), and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 93.1 85.4 86.9 83.6 62.9 64.6 72.5 70.5 72.0 
SVM Linear 85.4 85.7 88.0 76.3 60.9 64.7 77.3 71.4 73.7 
LDA 80.8 84.2 86.8 69.6 65.6 53.1 55.2 70.1 73.6 
Logit Boost 93.1 87.1 89.1 79.1 69.6 63.3 72.5 65.5 70.9 
SVM Poly 91.4 86.9 89.3 86.1 67.5 64.7 78.1 71.4 76.7 
RF 92.9 87.6 86.8 81.0 58.6 64.7 76.2 69.9 76.0 
XGBoost 93.9 89.3 91.7 87.4 72.2 71.3 79.7 71.3 77.5 
PLSDA 90.0 87.5 86.3 80.0 62.9 60.0 75.0 70.0 67.5 
GBM 91.5 85.8 89.2 82.6 68.5 63.7 76.0 65.8 76.2 
PDA 83.1 87.1 87.8 66.5 68.5 65.8 77.3 70.1 71.8 
GLM 79.4 84.4 84.4 66.7 65.0 65.0 59.3 70.0 70.0 
GLMNET 91.7 87.9 87.9 82.1 70.8 70.8 74.1 71.3 71.3 
KNN 91.7 86.8 86.8 72.7 67.1 67.1 73.9 76.3 76.3 
RPART 83.3 80.8 80.8 62.0 68.0 68.0 66.4 69.4 69.4 
TREEBAG 88.2 83.1 83.1 80.8 64.2 64.2 71.1 72.3 72.3 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 14. Classification accuracies (based on 10-fold cross-validation, percent) of juiciness models of striploins aged 3 (d3), 14 (d14), 
and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 79.1 64.8 67.9 76.1 56.1 68.8 77.5 59.8 72.5 
SVM Linear 70.9 67.4 66.4 70.7 63.0 64.8 68.8 62.5 68.8 
LDA 48.0 64.7 69.0 69.6 60.7 64.6 52.5 57.5 75.0 
Logit Boost 83.3 57.9 74.5 77.1 62.1 67.1 73.8 71.3 63.8 
SVM Poly 80.1 69.9 71.0 78.2 64.5 71.3 81.3 66.3 73.8 
RF 82.5 68.2 69.3 77.3 54.3 64.8 80.0 58.8 73.8 
XGBoost 85.0 65.2 76.1 83.6 65.9 69.3 86.3 70.0 77.5 
PLSDA 70.0 63.8 66.3 77.1 60.0 65.7 73.8 62.5 72.5 
GBM 84.5 62.7 73.7 82.5 57.5 75.0 80.0 62.3 77.5 
PDA 55.7 65.0 63.2 64.5 60.9 66.1 60.0 60.0 73.8 
GLM 56.7 66.8 66.8 67.3 59.8 59.8 55.0 62.5 62.5 
GLMNET 78.2 67.0 67.0 75.7 67.1 67.1 80.0 62.5 62.5 
KNN 78.7 66.3 66.3 73.4 72.1 72.1 75.0 60.0 60.0 
RPART 68.0 61.0 61.0 60.5 58.2 58.2 68.0 68.8 68.8 
TREEBAG 84.6 61.6 61.6 73.2 54.3 54.3 80.0 57.5 57.5 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 15. Classification accuracies (based on 10-fold cross-validation, percent) of flavor models of striploins aged 3 (d3), 14 (d14), and 
28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 78.6 62.8 76.3 85.7 62.5 63.4 76.3 61.4 56.3 
SVM Linear 75.0 68.2 83.1 77.1 60.7 62.7 65.5 61.9 55.2 
LDA 49.0 72.1 84.3 44.0 61.1 52.5 66.3 63.9 53.3 
Logit Boost 81.3 69.6 79.4 70.1 67.7 60.9 69.9 54.1 64.0 
SVM Poly 80.6 74.7 83.5 86.8 68.6 71.3 80.2 71.4 56.3 
RF 84.6 64.7 78.6 74.5 63.3 64.4 73.8 58.0 70.1 
XGBoost 85.7 72.2 86.7 82.2 73.1 74.6 81.0 69.7 69.8 
PLSDA 81.3 72.5 83.8 88.6 60.0 64.3 72.5 60.0 55.0 
GBM 86.7 62.3 84.3 76.2 61.0 67.2 77.1 52.8 66.8 
PDA 79.4 73.2 82.9 82.2 60.9 59.9 67.4 60.2 61.6 
GLM 49.3 73.5 73.5 46.1 61.2 61.2 66.2 65.6 65.6 
GLMNET 81.0 72.2 72.2 81.3 68.5 68.5 76.0 62.4 62.4 
KNN 76.8 70.8 70.8 73.0 63.5 63.5 78.8 65.7 65.7 
RPART 58.2 70.0 70.0 53.0 67.7 67.7 67.7 58.0 58.0 
TREEBAG 80.4 64.3 64.3 63.0 67.2 67.2 75.6 56.4 56.4 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 16. Classification accuracies (based on 10-fold cross-validation, percent) of slice shear force models of tenderloins aged 3 (d3), 
14 (d14), and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 64.3 75.1 66.3 57.4 69.6 84.3 61.1 61.1 
SVM Linear 64.0 78.3 52.2 53.5 63.6 72.2 61.1 59.9 
LDA 58.5 74.9 54.3 54.3 70.0 79.3 59.7 53.3 
Logit Boost 74.0 56.9 67.9 65.0 65.2 84.0 52.4 64.6 
SVM Poly 68.2 82.1 66.7 57.4 70.2 84.3 61.1 61.1 
RF 70.6 64.4 71.8 59.3 66.4 85.8 44.3 63.6 
XGBoost 74.9 69.6 72.5 66.1 73.4 89.0 57.1 68.5 
PLSDA 67.5 77.5 61.3 55.0 65.0 81.3 56.3 60.0 
GBM 73.4 63.7 68.6 64.9 68.4 85.7 53.3 61.1 
PDA 59.6 76.3 44.8 58.6 62.8 76.8 59.6 53.8 
GLM 63.3 68.6 54.1 53.6 63.5 70.8 50.8 61.9 
GLMNET 62.5 79.9 65.9 55.6 66.2 86.8 59.6 69.9 
KNN 69.3 64.3 68.5 56.3 55.9 77.1 51.3 59.9 
RPART 57.5 45.6 52.4 51.2 69.6 81.9 52.8 62.2 
TREEBAG 61.5 64.3 69.6 52.9 62.3 80.4 42.6 62.2 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 17. Classification accuracies (based on 10-fold cross-validation, percent) of Warner-Bratzler shear force models of tenderloins 
aged 3 (d3), 14 (d14), and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 71.4 61.1 70.3 69.6 57.7 68.5 76.8 64.3 77.8 
SVM Linear 59.6 59.6 67.4 66.6 60.0 64.2 80.7 63.3 71.0 
LDA 49.6 58.2 68.8 65.4 55.3 54.7 70.4 63.3 56.5 
Logit Boost 61.1 55.0 65.0 65.8 60.5 55.5 64.7 65.4 69.7 
SVM Poly 78.6 61.0 77.2 75.7 61.3 68.3 81.5 63.3 72.2 
RF 70.6 52.4 67.9 77.7 60.0 61.0 79.3 63.5 68.2 
XGBoost 77.6 70.4 71.3 74.2 69.4 66.0 77.9 66.9 74.4 
PLSDA 71.3 57.5 73.8 62.5 50.0 77.5 80.0 66.3 71.3 
GBM 77.6 62.1 69.0 74.3 63.3 59.4 71.5 63.2 72.9 
PDA 54.9 59.6 69.0 64.9 52.8 60.7 76.8 64.7 63.8 
GLM 49.6 60.7 66.9 65.1 53.5 52.5 70.7 60.7 64.6 
GLMNET 71.8 61.7 73.9 65.6 57.1 60.0 78.1 68.5 71.8 
KNN 67.1 56.1 64.4 59.6 56.5 61.4 74.4 64.4 65.6 
RPART 55.0 65.3 54.6 62.1 58.1 50.3 63.3 63.6 67.1 
TREEBAG 63.6 50.4 60.6 67.2 55.9 53.8 74.7 61.1 72.6 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 18. Classification accuracies (based on 10-fold cross-validation, percent) of tenderness panel models of tenderloins aged 3 (d3), 
14 (d14), and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 74.9 64.2 80.0 74.5 45.9 61.8 71.3 69.0 84.0 
SVM Linear 75.3 64.2 71.3 70.8 53.6 47.2 75.2 65.3 69.4 
LDA 54.6 58.2 79.9 46.4 45.4 49.7 72.4 65.5 76.0 
Logit Boost 79.9 64.0 78.5 76.3 50.8 59.3 78.1 64.9 76.7 
SVM Poly 79.9 64.2 80.4 77.3 58.5 62.4 77.5 72.0 79.0 
RF 71.5 52.9 66.5 74.3 44.0 59.1 74.0 63.0 80.3 
XGBoost 80.8 64.2 83.8 80.7 51.4 75.0 83.1 69.6 78.1 
PLSDA 80.0 62.5 75.0 73.8 55.0 51.3 73.8 63.8 77.5 
GBM 78.6 60.6 83.5 78.2 45.4 60.7 77.1 65.0 75.8 
PDA 66.4 58.3 78.8 69.2 54.0 56.9 70.0 66.1 74.7 
GLM 46.0 60.7 69.9 44.9 47.2 54.8 72.4 62.5 77.4 
GLMNET 81.0 64.2 77.1 77.6 48.8 54.3 75.2 70.3 80.1 
KNN 71.4 60.4 68.1 69.0 47.2 57.2 76.9 68.4 72.3 
RPART 63.2 53.3 62.5 55.4 48.8 58.3 72.1 64.9 60.0 
TREEBAG 72.6 47.5 68.9 68.2 42.9 58.2 72.2 60.7 69.0 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 19. Classification accuracies (based on 10-fold cross-validation, percent) of juiciness models of tenderloins aged 3 (d3), 14 (d14), 
and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 71.7 63.1 72.7 62.4 62.1 66.1 70.3 67.5 68.5 
SVM Linear 56.4 63.1 67.2 52.5 65.3 75.0 63.3 60.1 65.3 
LDA 59.3 57.1 73.7 59.8 60.9 64.8 66.8 61.5 64.7 
Logit Boost 62.9 65.4 74.0 61.8 54.3 55.0 72.6 57.8 69.9 
SVM Poly 73.0 63.8 71.4 66.5 61.9 79.5 74.6 61.4 79.6 
RF 76.9 76.0 76.0 67.6 58.1 64.4 75.0 57.2 69.6 
XGBoost 81.1 74.1 79.7 73.9 65.0 67.4 79.4 63.8 74.6 
PLSDA 63.8 55.0 72.5 62.5 55.0 72.5 70.0 61.3 68.8 
GBM 71.6 65.6 73.6 73.8 64.0 61.8 76.9 59.9 73.3 
PDA 66.3 58.4 73.9 51.1 63.1 69.9 62.8 57.9 64.0 
GLM 45.4 61.8 69.8 46.8 62.0 73.9 69.6 61.5 61.3 
GLMNET 67.8 61.8 74.3 66.5 61.8 74.7 70.1 64.0 70.6 
KNN 69.7 62.8 67.5 67.0 56.2 49.7 70.4 51.0 58.3 
RPART 63.1 69.0 61.0 57.1 56.6 63.9 61.1 56.5 60.4 
TREEBAG 73.9 71.1 65.7 66.8 57.2 61.8 64.7 59.4 63.8 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection  
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Table 20. Classification accuracies (based on 10-fold cross-validation, percent) of flavor models of tenderloins aged 3 (d3), 14 (d14), 
and 28 (d28) days. 

Machine learning1 
d3 d14 d28 

FS2 PCA3 PCA-FS4 FS PCA PCA-FS FS PCA PCA-FS 

SVM 60.4 58.2 80.3 60.6 52.8 69.6 81.0 72.5 82.4 
SVM Linear 54.9 59.3 67.2 65.8 44.2 63.5 77.2 72.5 80.8 
LDA 53.4 55.1 68.8 64.8 47.4 54.1 80.8 71.3 74.6 
Logit Boost 59.6 54.0 76.4 64.0 54.9 53.5 79.6 65.1 76.1 
SVM Poly 60.4 59.3 77.4 67.4 58.5 66.9 79.7 74.7 84.3 
RF 61.7 51.8 74.9 69.0 41.9 56.1 82.1 64.2 73.6 
XGBoost 63.3 58.3 83.3 74.0 48.1 68.2 81.8 68.9 79.4 
PLSDA 58.8 57.5 76.3 65.0 50.0 62.5 77.5 71.3 78.8 
GBM 57.6 59.6 81.0 72.8 46.7 63.3 79.3 67.8 79.3 
PDA 58.9 53.3 67.6 70.1 51.0 65.7 77.2 70.0 77.1 
GLM 52.2 55.6 74.4 63.4 48.2 62.5 76.3 71.3 71.4 
GLMNET 63.3 56.9 75.4 63.1 55.8 65.6 81.9 72.5 79.4 
KNN 56.7 52.1 59.4 66.5 38.7 56.6 78.2 70.1 71.4 
RPART 53.9 46.1 69.3 68.8 49.4 46.7 73.6 68.6 63.9 
TREEBAG 56.8 54.4 66.5 71.5 37.9 48.4 78.5 58.8 72.8 

1 SVM, support vector machine; LDA, linear discriminant analysis; RF, random forest; XGBoost, extreme gradient boosting; PLSDA, 
partial least square discriminant analysis; GBM, gradient boosting machine; PDA, penalized discriminant analysis; GLM, generalized 
linear model; KNN, k-nearest neighbors; RPART, recursive partitioning  
2 FS, feature selection 
3 PCA, principal component analysis 
4 PCA-FS, principal component analysis followed by feature selection 


