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Abstract 

Introduction. Sepsis is characterized by an inappropriate inflammatory response. Acute lung

injury (ALI) is the most common type of organ injury in sepsis, with high morbidity and

mortality.  6-Gingerol  is  the  main  bioactive  compound  of  ginger,  and  it  possesses  anti-

inflammatory bioactivity in different  diseases.  This  study is  aimed to explore the specific

function of 6-Gingerol in sepsis-induced ALI.

Material  and  methods.  Lipopolysaccharide  (LPS)  was  intraperitoneally  injected  into

Sprague-Dawley  rats  for  establishing  the  ALI  models  in  vivo.  The  ALI  rats  were

intraperitoneally injected with 20 mg/kg 6-Gingerol. The contents of oxidative stress markers

malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were detected

in the lung tissues of ALI rats. The concentrations of inflammatory factors [Tumor Necrosis

Factor alpha (TNF-α), interleukin (IL)-6, and IL-1β] were measured by ELISA. Inflammatory

cell infiltration in bronchoalveolar lavage fluid (BALF) of rats was tested. Western blot was

utilized to test the protein levels of nuclear factor erythroid 2-related factor (Nrf2) and heme

oxygenase-1 (HO-1) in lung tissues. Furthermore, immunohistochemical staining was applied

for testing the expression of NLRP3 inflammasome in lung tissues.

Results. The pathological changes in ALI rats were characterized by increased accumulation

of inflammatory cells, alveolar hemorrhage, and pulmonary interstitial edema. However, the

degree  of  pathological  injury of  lung tissues  was significantly improved after  6-Gingerol

treatment. Additionally, 6-Gingerol significantly attenuated the lung wet/dry ratio and protein

permeability index (PPI) of  LPS-induced rats. Furthermore, 6-Gingerol repressed oxidative

stress and inflammatory reaction in LPS-induced rats by reducing the contents of MDA, GSH,

SOD,  TNF-α,  IL-6,  and  IL-1β  in  the  lung.  LPS-induced  infiltration  of  eosinophils,

macrophages,  neutrophils,  and  lymphocytes  into  lung  was  suppressed  by  6-Gingerol

administration.  Moreover,  6-Gingerol  activated  Nrf2/HO-1  signaling and repressed  LPS-

induced-NLRP3  inflammasome  expression in  lung  tissues  of  LPS-induced  rats.

Intraperitoneal injection of ML385 (Nrf2 inhibitor) treatment into rats reversed the effects of

6-Gingerol on lung injury, inflammation, and oxidative stress in LPS-subjected rats.

Conclusions. 6-Gingerol  attenuates  sepsis-induced  ALI  by  suppressing  NLRP3



inflammasome activation through Nrf2 activation.

Keywords: 6-Gingerol; acute lung injury; sepsis; NLRP3 inflammasome; Nrf2

Introduction 

Acute lung injury (ALI) is a severe multifactorial lung pathology with high incidence rate

[1]. The clinical features of ALI include inflammatory cell infiltration, pulmonary edema, and

arterial  hypoxemia, which can damage the alveolar epithelium, thus weakening pulmonary

function  [2,  3].  Sepsis  is  a  deadly  syndrome  characterized  by  the  overactive  systemic

inflammatory response caused by the infection of bacteria, fungi, and viruses [4]. ALI is one

of the most common complications of serious sepsis  [5]. During the progression of sepsis-

induced ALI, the overwhelming release of inflammatory factors leads to the disruption of

alveolar epithelial cells, the increase of epithelial permeability, and the influx of edema fluid

into the alveolar space  [6, 7]. However, at present, there is no effective treatment for ALI.

Thus, it is essential to explore new approaches for the treatment of ALI.

Emerging studies have confirmed that inflammation plays a vital role in ALI pathogenesis

[8, 9]. Lipopolysaccharide (LPS), a major biologically active component of the cell walls of

Gram-negative bacteria, has been extensively utilized to establish the animal models of ALI

[10, 11]. The LPS-induced animal model is similar to the pathological characteristics of ALI

in  humans  [12].  For  instance,  NEAT1  downregulation  represses  LPS-induced  ALI  and

inflammatory  response  by  HMGB1-RAGE signaling  [13].  Dehydrocostus  lactone  inhibits

LPS-induced  ALI  and  macrophage  activation  by  modulating  NF-κB  pathway  [14].

Furthermore,  the  NLRP3  inflammasome  is  a  crucial  signaling  node  that  facilitates  the

maturation  of  proinflammatory  factors  such  as  IL-6  and  IL-1β  [15].  The  NLRP3

inflammasome is a critical component of the innate immune system that mediates caspase-1

activation  and  the  secretion  of  proinflammatory  cytokines  IL-1β/IL-18  in  response  to

microbial  infection  and  cellular  damage  [16].  Some  agents,  e.g.,  β-hydroxybutyrate  can

deactivate NLRP3 inflammasome to repress gout flares [17]. Glycine alleviates LPS-induced

ALI by regulating NLRP3 inflammasome and Nrf2 signaling  [18].  Thus,  focusing on the



potential targets of inflammatory processes is conducive to exploring new treatment strategies

for ALI.

6-Gingerol  is  the  main  bioactive  compound  of  ginger,  and  it  has  been  confirmed  to

possess anti-inflammatory, anti-tumor, antioxidant and neuroprotective bioactivities  [19–21].

Importantly,  its  protective  effects  on  human  diseases  have  also  been confirmed  by many

studies  [22,  23].  For  example,  6-Gingerol  inhibits  sepsis-induced  acute  kidney  injury  by

regulating methylsulfonylmethane and dimethylamine production  [24]. 6-Gingerol exerts an

anti-inflammatory effect and protective properties in LTA-induced mastitis [25]. Furthermore,

6-Gingerol  is  recently  reported  to  reduce  pulmonary  fibrosis  by activating  sirtuin  1  [26].

However,  there  are  few  studies  on  the  protective  effect  of  6-Gingerol  on  pulmonary

dysfunction  caused by sepsis.  The transcription  factor  nuclear  factor  erythrocyte-2 related

factor 2 (Nrf2) is involved in the regulation of oxidative stress and inflammatory reaction

[27].  Nrf2  translocates  into  the  nucleus  under  oxidative  stress  and  binds  to  antioxidant

response  elements,  such as  HO-1  [28].  The Nrf2/HO-1 axis  can  inhibit  the  activation  of

NLRP3 inflammasome in sepsis-induced ALI  [29, 30]. Moreover, 6-Gingerol is reported to

ameliorate sepsis-induced liver injury through the activation of Nrf2 [31]. However, whether

6-Gingerol regulates the progression of sepsis-induced ALI via Nrf2 signaling is unclear.

In this study, the main purpose was to explore the biological roles of 6-Gingerol in sepsis-

induced ALI. We utilized LPS to establish the sepsis-induced ALI rat models and performed a

series  of  assays.  We hypothesized  that  6-Gingerol  could  attenuate  sepsis-induced  ALI by

suppressing  NLRP3  inflammasome  through  Nrf2  activation,  which  may  provide  a  novel

therapeutic agent for ALI. 

Materials and methods

Animal experiments. A total of 32 male Sprague-Dawley rats (180–220 g) were obtained

from Vital River Co. Ltd. (Beijing, China). The animal study was approved by the Ethics

Committee of Wuhan Hospital of Traditional Chinese Medicine (Wuhan, China). All animals

were maintained in cages under a specific pathogen-free (SPF) condition at 23°C with free

access to food and water on a 12 h light/dark cycle.



The rats were divided into 4 groups (n = 8 each): control group, LPS group, LPS  + 6-

Gingerol (20 mg/kg) group, and LPS  +  6-Gingerol +  ML385 (30 mg/kg) group. Rats were

intraperitoneally injected with 50 mg/kg sodium pentobarbital for anesthesia, and then they

were subjected to intratracheal instillation of 5 mg/kg LPS in 50 μL PBS [32]. The control rats

received an equal volume of PBS. After 30 min, rats in the LPS  +  6-Gingerol group were

intraperitoneally injected with 20 mg/kg 6-Gingerol dissolved in 0.5% 10 μL DMSO. Rats in

the LPS + 6-Gingerol + ML385 group were intraperitoneally injected with 30 mg/kg ML385

[33] 30 min before LPS treatment followed by 20 mg/kg 6-Gingerol administration. After 24

h of LPS instillation, 100 mg/kg sodium pentobarbital in PBS was intraperitoneally injected

into rats for euthanasia.

Lung  wet/dry  (W/D)  ratio  analysis. After  the  rats  were  euthanized,  their  lungs  were

harvested and weighed (W, wet) immediately. Then, the lung in each experimental group was

put in an oven at 80°C for 24 h and weighed (D, dry). The lung W/D ratio was counted for

evaluating the lung edema.

BALF collection. After rats were euthanized by an overdose of anesthesia, the right lungs

were ligated. BALF was gathered by cannulating and lavaging the left lungs three times with

1.0 mL PBS. After centrifuging BALF for 10 min at 1500 rpm at 4°C, supernatants were

collected and stored in a −80°C freezer until use. The right lower lobe of the lung was fixed in

10% formalin for histopathological analysis.

Hematoxylin and eosin (HE) staining. Lung tissue samples were fixed with 10% formalin

and then embedded in paraffin. Next, tissues were cut into 5-µm-thick slices and stained with

hematoxylin and eosin (H&E) according to the standard method [34]. After that, slices were

dehydrated,  sealed  with  a  neutral  gel,  and  observed  by  an  optical  light  microscope

(OLYMPUS  IX51,  Tokyo,  Japan).  Lung  injury  score  was  determined  by  4  categories:

interstitial inflammation, neutrophil infiltration, edema, and congestion  [35]. Those indexes

were graded as follows: 0 means no injury; 1 means 25% injury; 2 means 50% injury; 3



means 75% injury; and 4 means 100% injury. Each specimen was analyzed in 10 randomly

selected fields, and the severity of lung injury was evaluated by the average score.

Immunohistochemical (IHC) analysis. The paraffin-embedded lung tissues were cut into 5-

μm-thick slices, deparaffinized in xylene,  and rehydrated by placing in decreasing ethanol

concentrations. Then, slices were placed in 0.01 mol/L citrate buffer for antigen retrieval and

blocked with 5% bovine serum albumin. After that, slides were incubated with the primary

antibody against NLRP3 (SC06-23, 1:200, Thermo Fisher Scientific, Waltham, MA, USA) at

4°C overnight.  Slices were then incubated with a  secondary antibody (ab205718,  Abcam,

Cambridge,  UK)  for  half  an  hour  at  room temperature.  Next,  DAB was  used  for  color

development for 5 min. In the end, a light microscope (OLYMPUS IX51) and Image-Pro Plus

6.0 software (National Institutes of Health, Bethesda, MD, USA) were utilized for analysis.

Detection of lung protein permeability index (PPI). Blood samples were obtained from the

left ventricle and then subjected to centrifugation at 4  at 3500 rpm for 15 min. Then the℃

plasma was gathered for assays. Protein concentration in BALF supernatant and plasma was

tested utilizing the Quick Start™ Bradford protein assay (Bio-Rad Laboratories,  Hercules,

CA, USA). The calculation formula is as follows: PPI (%) ¼ protein content in BALF/protein

content in plasma ×100 [36].

Detection of MDA, GSH, and SOD contents. Lung tissues were homogenized in 0.3 g/mL

(wet mass w/v) precooled 0.9% normal saline by a high-speed homogenizer (Heidolph, DIAX

900,  Heidolph  Instruments,  Kelheim,  Germany)  five  times  for  10  seconds  at  10,000  g.

Following homogenization, the homogenates were subjected to centrifugation at 12000 g for

10 min at 4 . After that, the supernatant was collected for assays. MDA, GSH and SOD℃

contents were detected in the supernatant by respective kits according to the manufacturer’s

instruction (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

ELISA. The concentrations of IL-1β, TNF-α and IL-6 in tissue homogenates and BALF were



estimated. The detection of absorbance values was calculated utilizing respective ELISA kits

(MultiSciences Biotechnology, Hangzhou China). The absorbance at 450 nm was analyzed by

a Multiskan MK3 microplate reader (Thermo Fisher Scientific, Inc.).

Inflammatory  cell  counts. Total  cell  count  was  measured  in  BALF  utilizing  a

hemocytometer. Cell pellets  were subjected to resuspension in saline and then centrifuged

onto slides. After that, they were stained with Wright-Giemsa for 8 min. The differential cell

count was measured by counting a total of 200 cells/slide in a light microscope (Olympus).

RT-qPCR. Total RNAs were extracted from lung tissues using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA). Then, RNA was utilized for reverse transcription to synthesize cDNA

using  Reverse  Transcription  Kit  (205313;  Qiagen,  Hilden,  Germany).  The  qPCR  was

conducted using SYBR Green (Qiagen) according to the manufacturer’s instruction on an

ExicyclerTM  96  fluorescence  quantitative  assay  system  (Bioneer  Corporation,  Daejeon,

Korea). Nrf2 and HO-1 expression at the mRNA level was calculated by the 2−ΔΔCt method

normalized to GAPDH. The sequences of primers used were as follows: Nrf2 forward, 5’-

TCTGACTCCGGCATTTCACT-3’; Nrf2 reverse, 5’-TGTTGGCTGTGCTTTAGGTC-3’;

.HO-1 forward, 5’-GCCACCAAGGAGGTACACAT-3’;

HO-1 reverse, 5’-GGGGCATAGACTGGGTTCTG-3’;

GAPDH forward, 5’-AACTCCCATTCTTCCACCT-3’;

GAPDH reverse, 5’-TTGTCATACCAGGAAATGAGC-3’.

Western blot. Lung tissues were lysed in RIPA lysis buffer and the supernatant was collected

by centrifugation at 7000 g for 10 min at 4°C. The protein concentrations were measured by

BCA kit  (Beyotime,  Shanghai,  China).  Proteins  were  separated  by  10% SDS‐PAGE and

transferred onto PVDF membranes (Millipore, MA, USA), followed by blocking with 5%

skim milk for 1  h. Then, the membranes were incubated with primary antibodies (all from

Abcam)  against  Nrf2  (ab92946,  1:1000),  HO-1  (ab68477,  1:10000),  NLRP3  (ab263899,

1:1000), ASC (ab180799, 1:1000), Caspase-1 (ab286125, 1:1000), and GAPDH (ab181602,

1:1000) as loading control overnight  at  4°C. After that,  membranes were rinsed and then



incubated with secondary antibodies (ab205718, 1:2000) for 1  h. The bound antibodies were

visualized  with  enhanced  chemiluminescence  (Advansta,  Menlo  Park,  CA,  USA).  The

relative densities of protein bands were analyzed by ImageJ (v. 8.0; National Institutes of

Health).

Statistical analyses. Data are displayed as the means ± SD from three individual repeats.

GraphPad Prism 8 software (GraphPad Software, Inc., La Jolla, CA, USA) was applied for

statistical analysis. Data were analyzed by one-way ANOVA followed by Tukey’s  post hoc

analysis. P < 0.05 represented statistical significance.

Results

6-Gingerol attenuates LPS-induced lung injury in the rat model

To investigate the effects of 6-Gingerol in LPS-induced lung injury, we established the

model of ALI rats by peritoneal injection of 5 mg/kg LPS. ML385 is the inhibitor for Nrf2,

and because Nrf2 can regulate oxidative stress and inflammatory reaction in ALI [37], thus we

also studied the effects of ML385 and 6-Gingerol in LPS-induced ALI. The groups of animals

and time course of the experiment are shown in Fig. 1A. After 24 h of LPS administration, all

rats were euthanized and lung tissue samples were isolated for experiments. Additionally, the

pulmonary permeability index was increased by LPS, and 6-Gingerol attenuated this change,

while ML385 treatment reversed the effect  of 6-Gingerol (Fig.  1B). Lung wet/dry (W/D)

weight ratio was determined to semi-quantitatively evaluate the extent of lung edema. We

found the lung W/D ratio was elevated by LPS stimulation, while 6-Gingerol administration

decreased the ratio.  However,  ML385 elevated the lung W/D ratio  again (Fig.  1C).  H&E

staining was performed to analyze the histopathologic changes of lung tissues in different

groups. The results indicated that the ALI scores in the LPS group were significantly higher

than  the  control  group  and  the  pathological  changes  were  characterized  by  increased

accumulation of inflammatory cells, alveolar hemorrhage, and pulmonary interstitial edema.

However, the degree of pathological injury of lung tissues and the ALI scores in LPS + 6-

Gingerol  groups  were  significantly  improved  and  decreased.  However,  in  the  LPS  +  6-



Gingerol + ML385 group, we found the lung injury was aggravated again (Fig. 2A, B). Thus,

we found that 6-Gingerol treatment alleviates LPS-induced lung injury in rats.

6-Gingerol represses oxidative stress and inflammatory reactions in LPS-induced ALI

Oxidative stress and inflammatory reactions are the two main contributing factors for ALI

[38],  and therefore  we determined their  indices. The contents of  oxidative stress markers

(MDA, GSH, and SOD) in the lung tissues of rats were detected. We found that MDA content

was elevated in the lung tissues of LPS-treated rats. However, 6-Gingerol treatment decreased

its content, which was then increased by ML385 (Fig. 3A). On the contrary, the contents of

GSH and SOD in lung tissues were reduced in LPS-induced rats and increased by 6-Gingerol

treatment. However, pretreatment with ML385 counteracted the effect of 6-Gingerol (Fig. 3B,

C). Then ELISA was utilized to evaluate the contents of inflammatory factors (TNF-α, IL-6,

and IL-1β) in lung tissues and BALF of rats in different groups. The results showed that,

compared with the control group rats, the contents of TNF-α, IL-6, and IL-1β in lung tissues

and  BALF  of  LPS-treated  rats  were  significantly  increased,  while  their  contents  were

decreased by 6-Gingerol treatment. However, ML385 treatment promoted their contents again

(Fig.  3D–I).  Thus,  these  data  suggested  that  6-Gingerol  represses  oxidative  stress  and

inflammatory reaction in LPS-induced rats.

6-Gingerol attenuates inflammatory cell infiltration in LPS-induced ALI

As shown in Fig. 4A–F, LPS markedly promoted the infiltration of inflammatory cells

into the lung tissues as there was an elevation in the differential and total cell counts in BALF

compared  with  the  control  group.  Then  6-Gingerol  administration  reduced  the  counts  of

eosinophil, macrophage, neutrophil, and lymphocyte, while ML385 treatment could offset 6-

Gingerol effect.

6-Gingerol activates Nrf2 in the lungs of LPS-induced ALI

Since  our  experiments  have  proved  that  ML385  (Nrf2  inhibitor)  counteracted  the

protective  effect  of  6-Gingerol  against  oxidative  stress  and inflammatory  response  in  the

lungs of LPS-induced rats, we decided to find out whether Nrf2 and HO-1 could be activated



in ALI rats. Results of RT-qPCR illustrated that the mRNA and protein levels of Nrf2 and

HO-1  were  reduced  in  the  lung  tissues  of  LPS-treated  rats.  After  the  treatment  with  6-

gingerol,  both  Nrf2  and  HO-1  levels  recovered  to  the  level  found  in  the  control  group.

However,  ML385 treatment  decreased their  mRNA and protein levels  again (Fig.  5A–C).

Thus, we showed that 6-Gingerol activates Nrf2/HO-1 axis in the lungs of LPS-induced rats.

6-Gingerol represses NLRP3 inflammasome in lungs of LPS induced-rats by activating

Nrf2

Finally, we detected the effect of 6-Gingerol on NLRP3 inflammasome expression in the

lungs of LPS-treated ALI rats. Western blot was utilized for measuring the alterations of main

components  for  NLRP3  inflammasome.  The  results  showed  that  NLRP3,  Apoptosis-

associated Speck-like protein containing a Caspase-recruitment domain (ASC), and caspase-1

levels  induced by LPS administration  in  lung tissues  of  rats  were  reduced by 6-gingerol

treatment, while they were increased in the LPS + 6-Gingerol + ML385 group (Fig. 6A, B).

Immunohistochemical staining further indicated that NLRP3 expression was increased in lung

tissues of the LPS group and decreased in the LPS + 6-Gingerol group. In the LPS + 6-

Gingerol + ML385 group, NLRP3 expression was recovered to the level of the control group

(Fig. 7A, B). Thus, these results suggested that 6-Gingerol represses NLRP3 inflammasome

expression in LPS-treated rats by activating Nrf2.

Discussion

Sepsis has become a major etiology of ALI  [39].  It  is reported that  the patients  with

sepsis-induced ALI had higher illness severity and mortality rates than the patients with non-

sepsis-induced ALI  [40]. Thus, it is urgent to find an effective treatment for sepsis-induced

ALI. 6-Gingerol is one of the main bioactive compounds of ginger, and it has been confirmed

as a potential therapeutic agent in different diseases due to its effects against inflammation

and oxidative stress [41–43]. Thus, we examined the specific function of 6-Gingerol in ALI.

In this  study,  we utilized  LPS to  establish  the  ALI  rat  model.  Through histopathological

analysis, we found that the lungs of rats treated with LPS showed infiltration of inflammatory



cells into the alveolar space, peribronchial wall thickening, and vascular congestion. After 6-

Gingerol treatment, these pathological alterations were significantly alleviated. Previously, 6-

Gingerol  was  reported  to  attenuate  ventilator-induced  lung  injury  by  modulating  the

PPARγ/NF-κB  signaling  pathway  in  rats  [44].  Similarly,  our  study  also  confirmed  the

protective effect of 6-Gingerol against LPS-induced lung injury in rats.

Inflammatory  mechanism  exerts  vital  function  to  eliminate  pathogens  from  human

bodies, while the excessive release of inflammatory cytokines may cause tissue injury [45].

The  migration  and  activation  of  neutrophils  is  the  earliest  response  to  ALI,  resulting  in

capillary  permeability  and  edema  [7].  Neutrophils  promote  inflammatory  and  immune

reactions  by  activating  the  production  of  proinflammatory  cytokines,  chemokines,  and

metalloproteinases [46]. It has been confirmed that the severity of ALI is associated with the

number  of  inflammatory cells  in  BALF  [47,  48].  In  this  study,  we found the contents  of

proinflammatory factors (TNF-α, IL-6, and IL-1β) in lung tissues and BALF of LPS-treated

rats were significantly increased, while their contents were decreased by 6-Gingerol addition.

Furthermore, 6-Gingerol treatment could reduce the counts of inflammatory cells (eosinophil,

macrophage, neutrophil, and lymphocyte) in BALF. These findings suggested that 6-Gingerol

repressed  inflammatory  reactions  in  LPS-induced  ALI.  Additionally,  the  NLRP3

inflammasome also plays a crucial role in the process of inflammatory reactions [49, 50]. The

NLRP3 inflammasome is the core of inflammatory response, and it can modulate caspase-1

activation and promote the secretion of cytokine precursors pro-IL-1β, thereby causing an

inflammatory response  [51].  In this  study,  we observed that  NLRP3, ASC, and caspase-1

levels induced by LPS were reduced by 6-Gingerol administration. It has been reported that 6-

Gingerol represses the release of TNF-α and IL-6 in LPS-induced astroglioma cells [52]. Also,

6-Gingerol  suppresses  cerebral  ischemia/reperfusion  injury  by  repressing  NLRP3

inflammasome [53]. 6-Gingerol relieves renal damage in streptozotocin-induced diabetic rats

by  regulating  oxidative  stress  and  inflammation  [54].  These  studies  further  support  our

findings  that  6-Gingerol  alleviated  ALI  by  inhibiting  inflammatory  reaction  via NLRP3

inflammasome.

Oxidative stress also plays a key role in ALI development [38, 55]. ROS attacks different



organs,  leading  to  lipid  peroxidation,  a  mutation  in  the  DNA  molecule,  and  protein

inactivation [56]. ROS overproduction exacerbates the development of pulmonary edema and

infiltration of inflammatory cells  [57]. In this study, we found that  the content of the  lipid

peroxidative marker MDA was elevated in lung tissues of LPS-treated rats, while 6-Gingerol

treatment decreased its content. The contents of antioxidants GSH and SOD reduced by LPS

stimulation  were  increased  by 6-Gingerol  treatment.  These  results  proved the  antioxidant

activity of 6-Gingerol against LPS-induced ALI. Previously, 6-Gingerol is reported to repress

liver  injury  by  inhibiting  oxidative  stress  [58].  6-Gingerol  relieves  colonic  injury  via

repressing oxidative stress in mice [59].

The Nrf2 is responsible for the regulation of the level of antioxidant proteins, such as

HO-1  [60, 61]. It has been confirmed to be involved in regulating the progression of lung

injury [37]. Accumulating evidence has confirmed that the Nrf2/HO-1 axis participates in the

progression of the different diseases [62–64]. For example, suppression of the Nrf2/HO-1 axis

causes the increased activation of NLRP3 inflammasome in osteoarthritis [65]. Furthermore,

etomidate relieves hyperoxia-induced ALI in mice by modulating the Nrf2/HO-1 axis [66]. In

this study, we observed that Nrf2 and HO-1 levels that were reduced in lung tissues of LPS-

induced  rats  were  recovered  by 6-Gingerol  administration.  Moreover,  we also  found that

ML385 (Nrf2 inhibitor) could counteract the protective effect of 6-Gingerol against oxidative

stress and inflammatory response in the lungs of LPS-induced rats. Previously,  6-Gingerol

was demonstrated to repress sepsis-induced liver injury by activating Nrf2 pathway [31]. In

this study, we confirmed that 6-Gingerol activated Nrf2/HO-1 axis in LPS-induced ALI rats

for the first time.

Overall,  this  study  demonstrates  that  6-Gingerol  attenuates  sepsis-induced  ALI  by

suppressing oxidative stress and inflammatory reaction by inhibiting NLRP3 inflammasome

via the Nrf2/HO-1 axis (Fig. 6). These findings may provide a new therapeutic strategy for

ALI. However, the limitation of this paper is that there is no in-depth study on the molecular

mechanism of how 6-Gingerol regulates the Nrf2/HO-1 axis, which will become the focus of

our further research.
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+ 6-gingerol + ML385 group).  B. The detection of pulmonary permeability index and lung

W/D (wet/dry) ratio in different groups. **P < 0.01, ***P < 0.001.

Figure 2.  Pathological changes in the lung tissues. A. H&E staining assay was utilized to

assess the histopathological changes of lungs in different groups.  B. The detection of lung

injury score in different groups. **P < 0.01, ***P < 0.001.



Figure 3.  6-Gingerol represses oxidative stress and inflammatory reaction in LPS-induced

acute lung injury. A–C. The contents of MDA, GSH, SOD in lung tissues of rats in different

groups were tested by their corresponding kits. D–I. The contents of TNF-α, IL-6, IL-1β in

lung tissues and BALF of rats in different groups were detected by ELISA. *P < 0.05, **P <

0.01, ***P < 0.001.



Figure 4. Gingerol attenuates infiltration of inflammatory cells in lungs of LPS-treated rats.

A–F. The counts of total cells, eosinophil, macrophage, neutrophil, and lymphocyte in BALF

of rats in different groups were measured using the Wright-Giemsa stained cells.  **P < 0.01,

***P < 0.001.



Figure 5.  6-Gingerol activates Nrf2 in LPS-induced acute lung injury. A–C. RT-qPCR and

western blot were utilized to the mRNA and protein levels of Nrf2 and HO-1 in lung tissues of

rats of the control group, the LPS group, the LPS + 6-Gingerol group, and the LPS + 6-

gingerol + ML385 group. **P < 0.01, ***P < 0.001.



Figure 6. 6-Gingerol represses NLRP3 inflammasome by activating Nrf2. A–B. Western blot

was applied for detecting NLRP3, ASC, and caspase-1 levels in lung tissues of rats of the

control  group,  the LPS group,  the LPS + 6-Gingerol  group,  and the LPS + 6-gingerol  +

ML385 group. **P < 0.01, ***P < 0.001.



Figure 7.  Immunohistochemical  staining of NLRP3 in the lung. A. Immunohistochemical

staining was utilized to estimate NLRP3 expression in lung tissues of different groups of rats.

B. Quantification of NLRP3 expression. **P < 0.01, ***P < 0.001.



Figure 8. Schematic overview of 6-Gingerol regulating LPS-induced acute lung injury (ALI).

6-Gingerol  administration  repressed  LPS-induced  activation  of  NLRP3  inflammasome,

thereby  repressing  inflammation  in  ALI.  Meanwhile,  6-Gingerol  activates  the  Nrf2/HO-1

signal axis to repress NLRP3 inflammasome, the activities of MPO and MAD, and promote

SOD activity, which results in the repression of oxidative responses in ALI.


