

“ADBU-Journal of Engineering Technology”

Gupta, AJET, ISSN: 2348-7305, Volume 11, Issue3, December, 2022, 0110303264(7PP)

1

Performance Optimization for Distributed Database

Based on Cache Investment

1
Sanju Gupta and

2
Dr. Swati V. Chande

1The IIS (Deemed to be) University

 Jaipur, India

ksanjana.khandelwal@gmail.com

2
International School of Informatics and Management,

 Jaipur, India.

swatichande@rediffmail.com

Abstract: In database query processing there are some key factors which determine performance are, the processor speed, the size of RAM, and the

cache memory strategy etc. The focus of this paper is on caching method. Retrieving the results from the cache memory is one of the popular

techniques to enhancement the performance of the query and in turn improving the query response time. It reduces the load on the back-end

database servers, as required data is available on cache. In this paper we describe how to reduce the number of moving tables to database server

round-trips by caching most appropriate table on the application server. We propose a novel caching framework, named Proref, which provide the

best caching candidates for long run of queries. Proref work on the concept of Cache investment. This paper describes the proposed architecture

and workflow of Proref policy which describe how this policy is designed and calculate the best cache candidate for caching in the distributed

environment. The results show how this proposed policy helps in improving the performance of the database, especially relevant for today’s “big

data” environment.

Keywords: Distributed database, Caching, Cache investment, Query processing, Query Performance, Response Time.

(Article history: Received: 3rd April 2022 and accepted 15th December 2022)

I. INTRODUCTION

As we know that most important part of computer is the

central processing unit (CPU). Due to advancement in chip

technology, size of CPU chip is getting smaller with

improved performance. One aspect which leads to slower

processing speed is still the focus point for researcher‟s i.e.,

the communication time between system‟s main memory

(random access memory) and CPU chip. This issue is not

resolved simply by increasing memory size as major cost

(interaction time) is taken by CPU to access the memory.

To address this issue, system developers have find a solution

to use cached memory, In this case, chip is also having some

memory. Although size of cache memory is very small in

comparison to main memory, but it can be accessed much

faster. To retrieve information in cache memory quickly,

cache in CPU keep the information stored somewhere. Due

to the implementation of the cache memory, system

performance enhanced significantly.

 As mentioned in the above paragraph advance computers

with improved performance need big memory and fast

processor. In the system, where data need to be processed

and lot of data/information is transferred between processor

and memory and vice versa. In this environment cache

become very important and required features of the system

due to its effectiveness and small size. We can define cache

performance by two ratios: i) hit ratio and ii) miss ratio.

Performance enhancement of the queries can be achieved

either by hardware-controlled change or software-based

approach. This paper explains the proposed policy for the

performance improvement of distributed database system.

This proposed strategy optimizes the cache performance

based on improving the cache hit ratio.

The paper is arranged as below-

 In section II prior related work for caching and

cache investment is discussed.

 Section III explain the experimental setup. It

includes description and implementation of Proref

policy algorithm and formula evolution.

 Section IV contains the results obtained from the

mathematical experimental setup and practical

implementation.

 the last section contains the conclusions.

II. PRIOR RELATED WORK ON CACHING AND

CACHE INVESTMENT

Caching can be applied to many types of databases like a)

relational databases for example Amazon relational database

system (Amazon RDS) or b) NoSQL databases for example

Apache Cassandra, MongoDB and Amazon DynamoDB.

Caching does not interfere in implementation and by doing

so it helps to achieve scale and improvement in speed of

application performance. Most effective strategy for

improving application performance is in memory data

caching.

“ADBU-Journal of Engineering Technology”

Gupta, AJET, ISSN: 2348-7305, Volume 11, Issue3, December, 2022, 0110303264(7PP)

2

system performance can be derived from individual unit

performance like i) I/O units, ii) caches, iii) bus, iv) integer,

branch and floating point, v) memory systems. Speed of

processor and main memory has huge gap and it‟s

increasing exponentially. For the period of 2001-05, CPU

speed increased by 55% and memory speed by 7%. This

data is published by research group clock frequency. This

phenomenon is considered as memory wall. The main

purpose of cache to reduce the speed gap and overcome the

memory wall (Tarig Ibrahim Osman Ahmed, Elsanosy M.

Elamin, 2018).

As cache is proved to effective tool to overcome the

memory wall, matrix for its performance is playing big role

in selecting parameters like size of cache, replacement

policy and associativity. performance also depends on cache

hits and cache misses‟ number („Sheshappa S.N.,

Ramakrishnan K.V. and G. Appa Rao, 2012‟). Cache hits

means the probability of finding the required data in cache

and cache miss means not finding the data in cache. AAT

(average access time) or AMAT is the average time taken to

access the memory is calculated based on count of cache

hits and misses. This parameter is very significant for

measurement of cache performance. This number depends

on speed of processor so as processor speed increases,

performance improves.

Commercial database systems have been using caching to

speed up processing for a long time. To decrease disc IO in

a distributed setting, all systems typically use one or more-

page caches (also known as buffer pools) that store

frequently used database pages. The size of buffer pool is in

gigabytes in a large database server. Many systems cache

execution plans in order to avoid repeatedly optimizing the

same query or stored method. In many systems, catalogue

data is also regularly cached. Different forms of cache data

are employed in different systems during query optimization

and query processing, although the specifics vary from

system to system. All of these are examples of software

caches that are used in conjunction with hardware caches in

current CPUs to decrease main memory and hard drive

accesses (Themis Palpanas, Per-Åke Larson and Jonathan

Goldstein,2002).

 Data caching at client workstations has shown to be

a successful method for enhancing the performance of a

client-server database system (Carey, Michael, Miron, and

Eugene ,1991); Michael J. Franklin and Michael J. Carey,

1994; Michael J. Franklin, 1996). Client-server interactions

can be decreased by caching data for subsequent reuse,

improving response time and reducing network traffic.

Because queries can be processed using data cached on the

client side, the client CPU, memory, and disc resources are

utilized, and the server workload is greatly reduced. As

more clients are added to the system, more resources can be

used, therefore system scalability is improved. The major

research issues in data caching include: i) caching

granularity, ii) cache coherency strategy, iii) cache

replacement policy and iv) prefetching scheme, etc. (Qun

Ren and Margaret H. Dunham, 1998).

(Konard et.al., 2009) adopted a cache investment caching

strategy for use in a peer-to-peer database with semantic

cache Cache candidates are chosen using this method based

on previous query executions. The semantic cache,

according to the author, is used to cache composite data

such as interim results from prior queries. Result of this

paper shows that with proper utilization of semantic caching

in peer-to-peer environment, it is possible to decrease data

flow and avoid unneeded, costly procedures. When

leveraging semantic cache investment, performance has

been found to improve.

III. EXPERIMENT SETUP AND OBJECTIVE

In order to boost the efficiency of the distributed database

system, the proposed policy (Proref policy) has been

developed. It improves the performance of a system by

reducing the response time for query execution. This

proposed policy assigns Proref value (explained later in this

paper) to each database table and helps to identify better

cache candidate. Experiments were conducted to investigate

and explain the working of this proposed policy.

Objective- The experiment has been conducted with

following objectives:

1) To find best candidate for caching using Proref policy in

the distributed environment.

2) Design and prove the Hypotheses

The Proref policy is used to boost the performance of

queries in a distributed database system. Simple hypothesis

method is used to prove it. This hypothesis predicts the

relationship between the single dependent variable (response

time) and single independent variable (cache hit ratio).

Hypothesis: “Proposed Proref policy improves the

performance of the distributed database queries by

minimizing query response time and increasing the cache

hit ratio.”
For mathematical setup to see the improvement of Proref

policy, following values have been considered to make the

experiment simplified.

a. Database type: Distributed database

b. Size of the cache – 1 MB

c. Size of the table – 100 KB (Uniform size for all

tables)

d. No. of sample database Tables- 50

e. Min runs of Query -500

As we will increase the complexity and history of the work,

this policy will give better results. For further work, we can

change the values and increase complexity to observe the

performance improvement.

A. Proposed Policy method and formula:

The proposed policy work for better cache candidate. To

find the same, following methods and formula derived using

existing policies (reference counting and profitable)

architecture.

As per our Policy To identify the cache candidate following

formula is used for table (q) at client (i)

Kit(q)= Vit(q) + Rit(q) ----- (I)

Where

Kit(q) = Proref Policy Value for table (q) following the

execution of query (t)

“ADBU-Journal of Engineering Technology”

Gupta, AJET, ISSN: 2348-7305, Volume 11, Issue3, December, 2022, 0110303264(7PP)

3

Vit(q) = value of table (q) assigned after the execution of

query (t). This value shows how frequent table has been

used.

Rit(q)=Improvement in Response time after the execution of

query (t)

For Value of table Vit(q) calculation following formula has

been used

Vit(q) =Cit(q) + α* Vit-1(q) ----- (II)

Where:

Cit(q) =Component of value for reference count

 Cit(q) =0 if table is not used in query

 Cit(q) = 1 if table is used in query

α = Aging Factor (0≤ α ≤ 1). We have used α=1 to

give equal weightage

To calculate Response time Rit(q) following formula has

been used

 Rit(q) = Oit(q) - Lit(q) -----

(III)

Where:

Oit(q) = Response time to execute query with present cache

condition using optimal plan for table (q)

Lit(q)= Response time to execute query with caching the

table (q)

B. Calculation for value of table Vit(q) (Step 1)

Value of the table (Vit(q)) assigned based on the

Component value Cit(q).

Where:

Cit(q) =Component of value for reference count

 Cit(q) =0 if table is not used in query

 Cit(q) = 1 if table is used in query

In the experiment, tables have been randomly selected in

query with 10% probability condition. That means out of the

50 tables, only 5 tables have been used in each query.

Formula used for the same in excel is as below:

=INDEX(A$2:A$3,COUNTIF(C$2:C$3,”<=”&RAND())+1

),Where

In the following table, results for 8 tables and 10 queries

have been shown.

Table 1: Table to get Cit(q):

For Value of table Vit(q) calculation following formula used

Vit(q) =Cit(q) + α* Vit-1(q)

Where α = 1 so Vit(q) =Cit(q) + Vit-1(q)

For initial part of the sheet value of the table remains almost

in a range for all tables but going forward it reflects the

frequency of the table used in queries.

Table 2: Table with calculation for Vit(q) for initial 10

queries are as below:

Where value of the table changes with each use of the table

in query. In the simulation 50 tables and 500 instances of

query execution have been considered.

Table 3: Sample sheet with calculation for Vit(q) at the end

of the experiment range is as below:

“ADBU-Journal of Engineering Technology”

Gupta, AJET, ISSN: 2348-7305, Volume 11, Issue3, December, 2022, 0110303264(7PP)

4

C. Calculation for improvement in response time Rit(q)

(Step 2)

To calculate improvement in response time Rit(q) following

formula used

 Rit(q) = Oit(q) - Lit(q) ----- (III)

Where:

Oit(q) = Response time to execute query with present cache

condition using optimal plan for table (q)

Lit(q)= Response time to execute query with caching the

table (q)

For mathematical environment, random variable number has

been arrived at using excel formula “Randbetween”

considering normal range of response time for reference

counting and profitable policy. For profitable policy, it is

derived basis on the formula based on continuous

improvement with number of queries run.

In this experiment, response time for various policies has

been documented. In table 4 response time at various

queries at different query intervals captured for reference.

Table 4: Sheet with response time in reference counting,

profitable and Proref policy is as below:

Refer below figures for response time graph for experiment.

Summary of the same as below:

Figure 1 - For reference counting in ms

Figure 2 - For profitable policy in ms

Figure 3 - For Proref policy in ms

Figure 4 - comparison for all three policies in ms

Figure 1: Response time for reference counting in ms

Figure 2: Response time for Profitable Policy in ms

Figure 3: Response time for Proref Policy in ms

Figure 4: Response time comparison for all 3 policies in ms

D. Calculation for Proref Policy value for table Kit(q)

(Step 3)

To identify the cache candidate following formula is used

for table (q) at client (i)

Kit(q)= Vit(q) + Rit(q) ----- (I)

Where

Kit(q) = Proref Policy Value for table (q) after the execution

of query (t)

Vit(q) = value of table (q) assigned after the execution of

query (t)

Rit(q)=Improvement in Response time after the execution of

query (t)

Table 5 Sample sheet with calculation for Kit(q) is as below:

“ADBU-Journal of Engineering Technology”

Gupta, AJET, ISSN: 2348-7305, Volume 11, Issue3, December, 2022, 0110303264(7PP)

5

Figure 5: Proref Policy value for queries executed in

experiment

IV. RESULT FOR MATHEMATICAL EVOLUTION

After execution of the experiment, it is observed that Proref

Policy improves the response time gradually as the number

of queries increases. Refer Table 6 for average response

time after running of 500 queries. Average response time

improves in case of Proref policy over comparison to

reference counting and Profitable policy. Fig. 6 is show

trend of how response time improves gradually in case of

Proref policy. Table 7 and Fig. 7 show average response

time improvement in Proref policy.

Table 6: Average response time for all policies after

executing 500 queries is as below:

Response time Improvement due to Proref policy over

reference counting and profitable policy is as below:

Figure 6 Response time Improvement due to Proref policy

over reference counting and profitable policy

Table 7 Average response time improvement

Figure 7: Avg. Response time improvement in Proref policy

(in ms)

A. Comparison of proposed policy with existing History-

based policies

 In addition to mathematical experiment, proposed

policy compared with existing work done by Donald

Kossmann, Michael J Franklin and Gerhard Drasch

(Kossmann et.al, 2000). In this comparison same

environment has been considered in the calculation. In

process for calculation of response time, parameters

considered in existing work have been considered here and

value for each policy derived based on the same.

This comparison validates the response time improvement

due to proposed policy. Results of the experiment are as

below:

Table 8: Comparison of proposed policy with existing

history-based policies

Figure 8: Comparison of Proref Policy with existing history-

based policies (in ms)

“ADBU-Journal of Engineering Technology”

Gupta, AJET, ISSN: 2348-7305, Volume 11, Issue3, December, 2022, 0110303264(7PP)

6

B. Results from practical implementation:

In this experiment Load check parameter for dashboard and

charts measured before implementation of Proref policy and

after implementation of Proref Policy. In both parameters

query time (benchmark time) and page load time has been

measured.

Load check is used for testing of software to measure

service quality of website based on expected behavior of

user by modelling the usage and simulating the software

program by number of users simultaneously.

Result of the Experiment are as below:

Pre- Implementation Report of Proref Policy

1. Dashboard Load Check

a. Benchmark time (query time) - 0.073489

seconds

b. Page load time - 2.465 seconds

2. Charts Load Check

a. Benchmark time (query time) - 0.142767

seconds

b. Page load time - 1.343 seconds

After Implementation of Proref Policy:

1. Dashboard Load Check

a. Benchmark time (query time) - 0.047980

seconds

b. Page load time - 1.585 seconds

2. Chart Load Check

a. Benchmark time (query time) - 0.073033

seconds

b. Page load time - 837 milliseconds

 It is evident that after Implementation of Proref policy,

performance of the system increased.

V Conclusion:

This paper presents a history-based hybrid Proref policy.

Which works on the concept of cache investment to increase

the performance gains in distributed environment due to

caching the most appropriate cache candidate. Experiment

results show that implementation of Proref policy improves

the response time of queries in distributed environment. The

policy has been simulated mathematically and results are

explained in section IV which are in line with our

hypothesis.

“REFERENCES

[1] Donald Kossmann , Michael J. Franklin and Bjorn Thor Jonsson,

"Performance Tradeoffs for Client-Server Query Processing” , ACM
– SIGMOD Conference on Management of Data , New York,1996.

[2] Sheshappa S.N., Ramakrishnan K.V. and G. Appa Rao,” Enhancing
Cache Performance Based on Improved Average Access Time”,
International Journal of Scientific and Research Publications, Volume
2, Issue 11, November 2012 1 ISSN 2250-3153.

[3] Ugah John Otozi , Abakaliki Chigozie-Okwum Chioma , Owerri
Ezeanyeji Peter C.” Virtual and Cache Memory: Implications for
Enhanced Performance of the Computer System”, International
Journal of Computer Applications (0975 – 8887) Volume 181 – No.
20, October 2018.

[4] M. Kowarschik and C. Weiß, “An Overview of Cache Optimization
Techniques and Cache-Aware Numerical Algorithms,” Lecture Notes
in Computer Science Vol. 2625, pp. 213-232, Springer, 2003.

[5] R. Nanda, K. S. Sharma, S. Chande 2016. Enhancing the Query
Performance of NoSQL Datastores using Caching Framework.
International Journal of Computer Science and Information
Technologies, Volume 7, Issue 5 (September-October 2016), 2332-
2336, 0975-9646

[6] Kaladhar Voruganti ,M. Tamer Ozsu , Canada Ronald C. Unrau,” An
Adaptive Hybrid Server Architecture for Client Caching Object
DBMSs”, Proceedings of the 25th VLDB Conference Edinburgh,
Scotland, 1999.

[7] Donald Kossmann, “The State of the Art in Distributed Query
Processing”, ACM Computational Surveys, vol. 32, Dec. 2000.

[8] White Paper,”Server side cache invalidation through Oracle push
notification,” External Document © 2015 Infosys Limited.

[9] Sanju Gupta, Swati V.Chande,” A Hybrid Cache Investment Strategy
for Distributed Database Queries”, International Journal of Computer
Applications (0975 – 8887) Volume 145 – No.5, July 2016

[10] Abhijit Gadkari, “Caching in Distribute Environment”, The
Architecture Journal,2009.

[11] Shaina,Anshu Kamboj, “ High Performance E-Business using
Application Level Caching”, International Journal of Advanced
Research in Communication Engineering, vol3,issue sep.2014.

[12] Mantu Kumar,Neera Batra and Hemant Aggarwalo, “Cache Based
Query Optimization Approach in Distributed Database”,IJCSI,Vol.9,
Nov.2012.

[13] Konard G.Beiske,Jan Bjorndalen,Jon Olav Hauglid, ”Semantic Cache
Investment” , NIK-2009 conference.

[14] Ruchi Nanda, Swati V. Chande, Krishna S. Sharma, “Determining
Appropriate Cache-size for Cost-effective Cloud Database Queries”,
International Journal of Computer Applications (0975 – 8887)
Volume 157 – No 6, January 2017.

[15] Norvald H. Ryeng, Jon Olav Hauglid, and Kjetil Norvag , “Site-
Autonomous Distribted Semantic Cachig”, SAC,2011 .

[16] Donald Kossmann , Michael J. Franklin, “Cache Investment
Strategies", Univ.of MD Technical CS-TR3803 and UMIACS-TR -
97-50,May 1997.

[17] Ideh Azari,” Efficient Execution of Query in Distributed Database
Systems”, 2010 3rd International Conference on Advanced Computer
Theory and Engineering (ICACTE).

[18] Donald Kossmann , Michael J. Franklin,Gehard Drasch, "Cache
Investment : Integrating Query Optimization and Distributed Data
Placement," ACM Transaction on Database System (TODS), Dec.
2000.

[19] ,”Local Disk Caching for Client-Server Database Systems *”,
Computer Science Department University of
WisconsinMadison,1994.

[20] Doshi P. and Raisinghani V., “Review of Dynamic Optimization
Strategies in Distributed Database”, Electronics Computer
Technology (ICECT), 3rd International Conference, April 2011.

[21] Yan T,IacobesnM,Garcia-Mo Lina H,”Introduction of Query
optimization of distributed database”, WAM Press, I 999.

[22] Alaa Aljanaby, Emad Abuelrub, and Mohammed Odeh,“A Survey of
Distributed Query Optimization”, The International Arab Journal of
Information Technology, Vol. 2, January 2005.

[23] Elmasri R. and Navathe S. B.,” Fundamentals of Database Systems,
Reading”, MA, Addison-Wesley, 2000.

[24] Donald Kossmann , Michael J.Franklin,Gehard Drach,”Cache
Investment for Indexes”,VLDB Conference,Feb,1998.

[25] Hua-Ming Liao, Guo-Shun Pei, “Cache-Based Aggregate Query
Shipping: An Efficient Scheme of Distributed OLAP Query
Processing”, JOURNAL OF COMPUTER SCIENCE AND
TECHNOLOGY 23(6): Nov. 2008.

[26] Ruby Bhati ,Nitika Bansal, S K Jha,“ Distributed Database
System:The Current Features And Problems?”, International Journal
of Computer Science and Management Research, Vol 2 , March 2013

“ADBU-Journal of Engineering Technology”

Gupta, AJET, ISSN: 2348-7305, Volume 11, Issue3, December, 2022, 0110303264(7PP)

7

[27] Laura M. Haas, Donald Kossmann, Ioana Ursu ,” Loading a Cache
with Query Results.”, Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

[28] Tarig Ibrahim Osman Ahmed1 , Elsanosy M. Elamin2 ,” Design
Strategy of Cache Memory for Computer Performance
Improvement”, International Journal of Research Studies in Electrical
and Electronics Engineering(IJRSEEE) Volume 4, Issue 3, 2018, SSN
2454-9436.”

 AUTHOR PROFILE

 Mrs. Sanju Gupta

 Specialization: DBMS, Big Data, ERP, Cache

 investmentPh.D. scholar from The IIS University,

 Jaipur.

 Dr. Swati V Chande Professor and HOD,

 Computer Science

 Specialization: Big Data, DBMS,

 Soft Computing,

 Qualification: Ph.D, M.S. (Software Systems),

 M.Sc. B.Sc (Hons.)

