
Approximation by Basis Pursuit:
Background and Application to the
Construction of Efficient Spline

Approximations

Babita Timalsina

Project Submitted to
The Eberly College of Arts and Sciences

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Master of Science in Mathematics
Area of Emphasis: Applied Mathematics

Prof. Harvey Diamond, Chair
Adam Halasz, Ph.D.

Robert Mnatsakanov, Ph.D.

Morgantown, West Virginia, USA 2022

Keywords: Basis Pursuit, Signal Processing
Copyright © 2022 Babita Timalsina

Abstract

Approximation by Basis Pursuit: Background and Application
to the Construction of Efficient Spline Approximations

Babita Timalsina

Basis Pursuit was developed primarily as a tool in the field of signal pro-
cessing, beginning in the mid 1990’s. The idea is to model the behavior of
discrete signals using a wide range of functional behaviors and scales and to
obtain an accurate and efficient representation of the signal using a minimal
number of functions from a large “dictionary” of possible behaviors. The key
observation is by formulating the representation as an ℓ1 optimization, the
problem can be posed as a linear program so that the optimal solution uses
no more than the number of constraints - it must be a basic feasible solution.

While the problem has been explored in signal processing, we are here in-
terested in the possible application to approximation of functions as classically
considered in analysis. We present a number of applications in approximation
with a dictionary consisting of multiresolution cubic spline spaces, with vary-
ing objective functions, but optimizations that ultimately must minimize a
linear objective function. While signal processing applications are concerned
with efficient solution of very large linear programs, here we can limit the
sizes of the problems and study the nature of the solutions themselves. We
use interpolation, uniform approximation, and formulations involving blended
approximation, with objective functions involving ℓ1 terms blended with uni-
form or quadratic penalty functions.

Acknowledgements

I would like to thank my advisor, Professor Harvey Diamond, for suggesting
this problem and for providing background in the underlying theory and computa-
tional implementations. I would also like to thank Dr. Adam Halasz and Dr. Jessica
Deshler for constant interaction and support during my graduate study. Finally, I
would like to remember to my husband Ghadendra Bhandari for his encouragement.

iii

Table of Contents

List of Figures v

1 Introduction 1

2 Optimization Problems using Basis Pursuit 3
2.1 Introduction . 3

3 Review of Linear Programming 6
3.1 Linear Approach . 6
3.2 Quadratic Programming and other formulations 7

4 Multi-resolution Spline Approximations 11
4.1 Introduction . 11
4.2 Recursion Relation of B-spline function 12
4.3 Cubic B-spline . 12

5 Applications and Results 15
5.1 Basis pursuit involving multi-resolution B-spline interpolation and

approximation . 15
5.2 Basis pursuit interpolation . 16
5.3 Uniform Approximation . 19
5.4 Blended approaches . 20
5.5 Quadratic programming formulation 22
5.6 Discussion . 22

iv

List of Figures

2.1 Basis Pursuit Illustration. 4

4.1 B-spline from degree 0 to 3. 13
4.2 B-splines: a) A cubic B-spline centered at x=0, b) Two Cubic B-

splines obtained from translation of previous. 14

5.1 A set of B-splines of degree 3 constructed by translation. 15
5.2 Schematic representation of coefficient’s size and center. 17
5.3 A sequence of operation for interpolation the function y = xcos(x) +

x2. In the left graphs of each iteration red line denotes actual function
and blue line denotes approximated function. 18

5.4 (a)Actual function g(x) = tan−1(5x) + cos(x) and interpolated data
(b) Residue . 19

5.5 (a)Actual function g(x) = tan−1(5x) + cos(x) and uniform approxi-
mated data (b) Residue . 20

5.6 (a)Actual g(x) = tan−1(5x)+cos(x) and blended approximated func-
tions (b) Residue . 21

5.7 (a)Actual g(x) = tan−1(5x) + cos(x) and quadratic approximated
functions (b) Residue . 22

v

CHAPTER 1

Introduction

Function approximation deals with the problem of reconstructing a complex

or unknown function, being only provided with a finite set of data points sampled

from this function. In some cases we know or can compute the function exactly

through its domain and wish to generate an efficient approximation from some

family of functions. The best approximation minimizes the difference between the

original function and the approximation according to some metric. Function ap-

proximations arises in many branches of science and is fundamental to applications

such as pattern recognition, prediction and classification. In 1885, Karl Weierstrass

published a proof of a theorem, nowadays known in its more general form as the

Stone-Weierstrass theorem, which says that any continuous function on the closed

interval [a, b] may be arbitrarily closely approximated by polynomials [1]. Much clas-

sical approximation involved approximation by polynomials and /or trigonometric

polynomials. We have approximated the functions by Basis pursuit methods using

spline function.

Basis pursuit is an approach to obtaining a continuous representation of a

signal by decomposing it into a superposition of elementary wave forms with sparse

coefficients[2]. In basis pursuit, the primary notion is to find a solution that min-

imizes the ℓ1 norm of the solution rather than the traditional sum of squares ℓ2

norm of the residual error[3]. Typically, the larger the dictionary, the better a sig-

nal can be approximated. However, not all signals need all of the basis functions for

a reasonable approximation. The idea of basis pursuit is to choose a small subset

of a larger set, or dictionary, of basis functions that may be over determined. The

mathematical optimization form of the basis pursuit is given by[4, 5]

min
x

||x||1 subject to y = Ax (1.1)

1

where, x is a N × 1 solution vectors, y is M × 1 vector of observations,

A is M ×N matrix and M < N [6].

Because of the non-differentiability of the ℓ1 norm, this optimization principle leads

to decompositions that can have very different properties from other signal repre-

sentation ℓ2 norm. We have discussed basis pursuit method in chapter 2 and its

equivalence of linear programming in chapter 3.

The basis pursuit is usually applied in the cases where there is an under de-

termined system of linear equations y = Ax that must be exactly satisfied. The

principle of basis pursuit is find a representation of the signal whose coefficients have

minimal ℓ1 norm. Basis pursuit can be converted to linear programming which is

explained in the next chapter. So, the solution of the optimization problem is a

basic feasible solution, using columns that form a basis of RM , hence the name ”

basis pursuit”.

Another classical method of function approximation uses spline spaces, and

more recently, multiresolution spline spaces. Here we can consider interpolation,

curve fitting, or approximation in the standard mathematical norms of ℓ1, ℓ2, and

the uniform norm. A spline of degree n is a piecewise polynomial function of degree

n in the variable x (the pieces connect continuously at the knots). The values of x

where the pieces of polynomial meet are known as knots, denoted by n+1 locations

t1, t2, t3, . . . , tn+1. It should be non-decreasing ti ≤ ti+1. If each knot is separated

by the same distance ti+1 − ti the knot vector and the corresponding B-splines are

called ”uniform”. For a given set of data {ti, yi}n+1
i=1 , we attempt to choose a spline

function s(x) with nodes at {xi}n+1
i=1 in such a way that ||ȳ − ¯s(t)||2 is minimized.

We have discussed B-spline methods in chapter 4. Our dictionary in this project

uses uniform B-splines at successively halved resolutions. Such spaces are capable

of approximation of not just functions values, but their derivatives as well. On the

other hand, they are not as open-ended as the dictionaries used in signal processing

and the problems can be readily formulated.

We show some of the needed formulations for carrying out basis pursuit: uni-

form approximation, blended approaches and quadratic formulation. Chapter 5

concludes the project by providing a synopsis of the results.

2

CHAPTER 2

Optimization Problems using Basis Pur-

suit

2.1 Introduction

Basis pursuit is a type of nonlinear, or adaptive, approximation method. If

one wishes, say, to optimize an approximation using n terms of an infinite series

representation, then the terms retained will depend on the function, so that the

n-term optimal approximation of a sum of two functions is not the sum of their

individual approximations, hence the “nonlinear” descriptive term applied.

In the case of an orthonormal decomposition, such as wavelets in multiresolu-

tion settings, or simply Fourier series, an optimal n-term approximation of a function

with respect to the ℓ2 norm consists simply in taking the n terms whose coefficients

(in absolute value) are the largest or equivalently, eliminating all coefficients whose

absolute value is less than or equal to the nth largest coefficient. As pointed out in

Devore’s article [7] this in turn is just thresh-holding, a common method of com-

pression or economization of approximations. It is also an approximation method

that depends on the function being approximated and so is adaptive, and nonlinear.

In basis pursuit, we choose basis vectors from a “dictionary” of vectors so as to

obtain an expansion f̄ = Sn =
∑n

i=1 aiνi with the idea that Sk =
∑k

i=1 aiνi for k < n

provides good approximations of f , i.e. ||̄(f) −
∑k

i=1 aiνi|| is small.In other words,

we have selected a basis that provides an efficient approximation. A similar idea is

to choose k vectors from our dictionary so that ||f − Sk|| is as small as possible.

Our dictionary would normally consist of vectors
{
νi
}
or functions

{
ϕi(x)

}
which

are easy to compute, the idea being to replace f by a suitably short expansion.

Such expansion would be most useful where f varies on a range of scales, with our

expansion presumably including higher-resolution terms where they are needed.

3

Consider, for instance, orthonormal bases on Rn. One such choice are the

standard basis vectors
{
ēi
}
in this context referred to as the “dirac” dictionary. If

our vectors f̄ have no particular structure, (for instance randomly generated) then

this may work reasonably well. But if our vectors f̄ are of the form fi = f(ih) for

some smooth function f , we might wish to use a different basis, perhaps a discrete

form of the Legendre polynomials.

Consider the following Matlab code, where the built-in “qr” function is used

for the orthogonal-triangular decomposition of a matrix A, with the output in Fig

2.1.

Figure 2.1 Basis Pursuit Illustration.

In the figure Fig:2.1(a) the approximation is produced by the first five vectors

4

basis vectors. The graph indicates still there is some need of improvement. If we

look at the coefficients, all the even “powers” have zero coefficients. In general, we

want to use the terms that contribute the most. In this case, it would be 2:2:10 if we

want to use the “best five” terms. This approximation shown in figure Fig:2.1(b),

which is better than before. Pretty clearly the standard Dirac basis vectors would

not have the property that partial sums are good approximations.

So we are left with the following questions: for a given function f, what is a

good basis to use? If we look at the sequence of “best partial sums” {S(k)} how

would that compare if we fixed a value of k and found the best approximation using

any k basis functions? We seek methods that are not only nonlinear, but adaptive

to the function f under consideration. This is the setting for “basis pursuit”.

In basis pursuit, begin with a dictionary of potential basis functions that is

over-complete, i.e. we have many more functions than we need to create a basis.

These functions will typically be easy to compute with. We use a weighted ℓ1 norm

of the coefficients to effect a selection - as we will see later, this minimization will

select a basis for us.

5

CHAPTER 3

Review of Linear Programming

When we formulate equations modeling an application, they are typically ap-

proximated by linear equations because linear equations are so easy to solve. Linear

programming is an optimisation problem where the objective function is a linear

combination. It has long been known that minimum ℓ1 optimizations and LP are

equivalent[8]. The solution of equation (1.1) can be obtained by solving an equiva-

lent linear program. If A is m×n with full row rank then there is always an optimal

solution with at most m nonzeros variables, called a basic feasible solution. If the

nonzero basic variables are
{
xj

}
j∈J then A(:, J) is our optimal basis. One can find

the solution using simplex method or interior point methods - we do not emphasize

algorithms here, however and just use Matlab’s linprog.

3.1 Linear Approach

In basis pursuit, begin with a dictionary of potential basis functions that is

overcomplete, i.e. we have many more functions than we need to create a basis.

These functions will typically be easy to compute with. We use a weighted ℓ1 norm

of the coefficients to effect a selection - as we will see later, this minimization will

select a basis for us. We’ll consider first interpolation of data.

min
∑

wi|ai| ({wi} are given positive weights),
∑

aiϕi = f

6

where {ϕi} are the functions in our dictionary. This is a linear program that can be

put into the standard form.

min c̄T x̄

Ax̄ = b̄

x̄ ≥ 0

(3.1)

we replace ai = a+i − a−i with both terms non-negative so that |ai| = a+i + a−i . In

any optimal solution it is clear that either a+i = 0 or a−i = 0 (or both). The linear

program then looks like:

min
∑

wi(a
+
i + a−i)[

ϕ −ϕ
]
×

[
ā+

ā−

]
=

[
f̄
]

The linear programming formulation ensures that at most n of the coefficients (n

=#data values) will be nonzero and this feature is what chooses our basis vectors.

In our Matlab implementation we opt to keep a+i , a
−
i next to each other in the matrix

and vector:

[
ϕ1(x̄) −ϕ1(x̄)

... ϕ2(x̄) −ϕ2(x̄)
... · · · ... ϕn(x̄) −ϕn(x̄)

]
×

ā+1

ā−1

ā+2

ā−2
...

ā+n

ā−n

(3.2)

3.2 Quadratic Programming and other formulations

In some contexts we want to relax the interpolation constraint but “penalize”

errors. This can be accomplished by “blending” terms as below in a general formu-

lation.

min c̄T x̄+ λ||Ax̄− b̄||22
min c̄T x̄+ λ||ē||22, Where, Ax̄− b̄ = ē

This is a quadratic programming problem and is computationally more dif-

ficult than linear programming. The value of λ is chosen by the user to empha-

7

size/deemphasize the effect of pointwise errors.

The above formulation suggests the following alternatives:

min c̄T x̄+ λ||ē||1, Where, Ax̄− b̄ = ē

This can be formulated as a linear programming problem with additional variables

ei = e+i − e−i . The norm ||ē||1 =
∑

|ei| can be modified with weights as in 3.1. One

may, for instance want an approximation where the relative errors are controlled

min c̄T x̄+ λ||ē||∞
These can be formulated for basis pursuit as before. In each of these problems, given

any choice for M or ē, the coefficients of {ϕj} will represents the solution of a linear

programming problem, and hence a basis will be chosen from among the {ϕj} as

noted before.

(i)

min
∑

wj(a
+
j + a−j) + λ||ē||22

[
ϕ1(x̄) −ϕ1(x̄)

... ϕ2(x̄) −ϕ2(x̄)
... · · · ... ϕn(x̄) −ϕn(x̄)

]
×

ā+1

ā−1

ā+2

ā−2
...

ā+n

ā−n

−
[
ē
]
= f

(3.3)

a+j , a
−
j ≥ 0, j = 0, 1, 2,n, ei unconstrained. This is the quadratic pro-

gramming formulation for which we will use Matlab’s optimization function

quadprog.m.

(ii) In a formulation that includes a blended penalty term for ||e||1 we would solve

min
m∑
j=1

wj(a
+
j + a−j) + λ

m∑
j=1

(e+i + e−i)

8

[
ϕ1(x̄) −ϕ1(x̄)

... ϕ2(x̄) −ϕ2(x̄)
... · · · ... ϕn(x̄) −ϕn(x̄)

]
×

ā+1

ā−1

ā+2

ā−2
...

ā+n

ā−n

−
[
ē+

]
+
[
ē−

]
= f

(3.4)

(iii) The subsequent formulation involves a penalty term using ||e||∞ norm.

min
m∑
j=1

wj(a
+
j + a−j) + λM

a+j , a
−
j ≥ 0, j = 0, 1, 2,n, ei unconstrained. M = ||e||∞ is true for the

optimal solution.

[
ϕ1(x̄) −ϕ1(x̄)

... ϕ2(x̄) −ϕ2(x̄)
... · · · ... ϕn(x̄) −ϕn(x̄)

]

ā+1

ā−1

ā+2

ā−2
...

ā+n

ā−n

− f ≤ M (3.5)

−
[
ϕ1(x̄) −ϕ1(x̄)

... ϕ2(x̄) −ϕ2(x̄)
... · · · ... ϕn(x̄) −ϕn(x̄)

]

ā+1

ā−1

ā+2

ā−2
...

ā+n

ā−n

+ f ≤ M

(3.6)

(iv) Here we specify a tolerance (call it M) and seek a uniform approximation with

9

maximum error M . The formulation in iii would apply, except without the M

term in the objective function and the value of the variable M specified. This

is treated later in section 5.3 and we do not rewrite the entire formulation

here.

10

CHAPTER 4

Multi-resolution Spline Approximations

4.1 Introduction

Formulation of interpolation/approximation problems using basis pursuit and

its application to numerical examples with a Matlab implementation have been

applied with a multi-resolution spline dictionary. A spline function is a piecewise

defined polynomial function with several beneficial properties such as numerical sta-

bility of computations, local effects of coefficient changes and built-in smoothness

between neighboring polynomial pieces. A common application of spline functions

is fitting of data which can be done either by interpolation or approximation of data

points. In general, an interpolating function passes through the data points, while

an approximating function minimizes the residuals between the function and the

data without passing through the data points [9]. Representations using splines are

popular in computer-aided design, engineering, modeling and graphics for the draw-

ing of curves, objects and surfaces. In addition, they are for calculating trajectories

of computer controlled industrial machines and robots.

A B-spline of degree n is a minimally supported piecewise polynomial function

of degree n in the variable x (the pieces connect continuously at the knots). The

values of x where the pieces of polynomial meet are known as knots, denoted by n+2

locations t0, t1, t2, t3, . . . , tn+1. It should be non-decreasing ti ≤ ti+1. If each knot

is separated by the same distance ti+1 − ti the knot vector and the corresponding

B-splines are called “uniform”. For a given set of data {xi, yi}n+1
i=1 , we attempt to

choose a spline function s(x) with knots at {ti} in such a way that {yi − S(ti)} is

minimized.

11

4.2 Recursion Relation of B-spline function

B-splines have the property that any spline function of degree n on a given set

of knots t̄ can be expressed as a linear combination of B-splines

Sn,t(x) =
∑
i

αiBi,n(x) (4.1)

B-splines play the role of basis functions for the spline function space, hence the

name. On an interval [a,b] a basis for the spline space is formed by all the B -splines

whose support has nontrivial intersection with the interval in question. We begin

with the B-splines of degree 0, whose spline spaces have jump discontinuities at the

knots.

Bi,0,t̄(x) =

1 if ti ≤ x < ti+1

0 otherwise
(4.2)

Expressions for B-splines of higher degree polynomial can be derived from the

degree-0 B-splines by means of the Cox–de Boor recursion formula[10]

B
(i)
i,n,t(x) =

x− ti
ti+n − ti

Bi,n−1,t(x) +
ti+1+n − x

ti+1+n − ti+1

Bi+1,n−1,t(x) (4.3)

Where,Bi,n,t(x) i
th B-spline of degree n with knot sequence t := {ti, ..., ti+1},

tj ≤ tj+1.

If all knots in a B-spline are distinct, then their derivatives are continuous up

to order n − 1. The following plot 4.1 shows the basis function B0,n for the knots

xj = j[11]. Spline within the knots marked by a straight line is non-zero and outside

it is zero. As the degree increases, the B-spline becomes increasingly smooth.

A linear spline basically connects the data points with a linear function and the

corresponding B-spline has a tent-shape. In the case of quadratic spline, quadratic

functions are used instead of linear function. Cubic splines are most frequently used

in applications as they have continuous curvature, and have good approximation

order equivalent to local cubic polynomial approximation.

4.3 Cubic B-spline

We use the recursion formula given by equation:(4.3) to produce cubic B-

splines centered at x=0 with uniform knot spacing of 1. This B-spline is denoted by

12

Figure 4.1 B-spline from degree 0 to 3.

B3(x) as shown in figure(4.2 a). It has non-zero value from -2 to 2 and zero outside.

The number of segments required for this spline are 4 and knots are 5. The spline is

translated by unit intervals to obtin other B-splines; B3(x − 1); as shown in figure

(4.2 b). Using a similar process we can create a large number of spline functions

and when we scale the splines in power of two we obtain a multiresolution spline

space spanned by scalings and translations of which forms our dictionary.

13

Figure 4.2 B-splines: a) A cubic B-spline centered at x=0, b) Two Cubic B-splines
obtained from translation of previous.

14

CHAPTER 5

Applications and Results

5.1 Basis pursuit involving multi-resolution B-spline interpola-

tion and approximation

Our dictionary for interpolation and approximation consists of a multi reso-

lution spline generated by B-splines {B(2mx − k)}m,k, where m specifies the scal-

ing (knot spacing of 2−m) and k identifies translations along the x-axis. Cubic

B-spline code is developed from the recursion formula 4.3. Now, as an exam-

ple let us take m = 2 on the interval [-1,1]. Then, B3(4x − k), comparing with

B3(x/h − k), uses knot spacing h=1/4. Figure 5.1 is plot of a B-spline basis func-

tions B3(4x−k) = B3(4(x−k/4)), k = −5,−4,, 4, 5. The space spline is spanned

by the B-splines centered at each of the points k/4 and so there are 9 + 2 = 11 B-

splines. Note that if there is (x, y) data specified at the centers x : −1,−3/4, .., 3/4, 1

then this is 9 pieces of data.

Figure 5.1 A set of B-splines of degree 3 constructed by translation.

15

We will use this interval [-1,1] for multiple values of m (without loss of gen-

erality), viz., m=0,1,2 and 3 (i.e. spacing 1, 1/2, 1/4, 1/8) for our scaling. For

example m=0 will involve the B-spline basis {B(x − k)}, k = {k = −2,−1, 0, 1, 2}
with knot spacing of 1 and then this needs 5 set of basis splines. Similarly, it needs

7, 11, 19 set basis splines corresponding to m = 1,2, and 3. And altogether it should

be 42 B-spline functions in our dictionary. Firstly, we will show some of the needed

formulations for carrying out basis pursuit, then we will move to couple of other

problems: uniform approximation, blended approaches and quadratic formulation.

5.2 Basis pursuit interpolation

This is our first model, where we interpolate the data and use basis pursuit to

find an efficient representation of the interpolant. The input data consists of data

points {x, y} where x = points in [-1,1] with spacing h defined above and our spline

interpolant given by

s(x) =
imax∑
i=0

2i+1∑
k=−2i−1

ckB(2ix− k) (5.1)

Let t(k) is the array center and spaced by 2−i. We have the constraints

min
∑

2i|c(i, j)|

To these constraints we add the interpolation constraints

s(x) =
imax∑
i=0

2i+1∑
k=−2i−1

ckB(2i(x− t(k)) = f(x)at x = x(j) (5.2)

Here, 2i works as a penalty coefficient in the objective function, so that higher

resolution splines are penalized. Equation 5.2 gives matrix A which has 42 columns

as discussed above. To interpolate the discrete data (x, g(x))

∑
i,j

c(i, j)B(2i(x− ti,j)) = g(x)

with (i,j) sufficient for interpolation. In general the equations will be undetermined

by the interpolation conditions. This is our basis pursuit formulation of interpolation

with many solutions. The linear program will “select” an optimal basis for us. Note

that c(i, j) = ci,j is the coefficient of a centered B-spline whose support is scaled by

16

Figure 5.2 Schematic representation of coefficient’s size and center.

2−i, with the values of j chosen so as to include all B-splines whose support intersects

[-1, 1] in a non-trivial interval. For each value of i, our splines are B((2i(x− t)) with

the centers at the elements of t. For cubic splines we need one “extra” spline to the

left and one to the right of the interval [-1,1] in order to span the associated spline

space. The array t(k) is t = −1− w ∗ (2−i) : 2−i : 1 + w ∗ (2−i); where offset w=1.

Then, we have to formulate the problem for linear programming optimization. As

discussed in linear approach in 3.2, we developed another matrix by duplicating each

columns and multiplying by -1, ie, A:{Aj, -Aj}. We can calculate the basis pursuit

solution to get coefficient matrix {c} using in built function ”linprog” in Matlab:

c = linprog(f, [], [], Aeq, beq, lb, ub) . Where, Aeq=A and beq= y. It requires that

the user define a set of lower and upper bounds on the design variables, x, so that

the solution is always in the range 0 = lb ≤ x ≤ ub = ∞. Next, we reform our

variables (the coefficients: c) so that they are exclusively non-negative. cij = c+ij−c−ij

and |cij| = c+ij + c−ij.

Figure 5.2 shows which 17 of the 42 B-splines are used. The height of the

rectangle (∆y) gives the relative size of the coefficient with the width proportional

to the knot spacing and the base drawn at y = −1 when h = 2−i is the knot

17

Figure 5.3 A sequence of operation for interpolation the function y = xcos(x) + x2.
In the left graphs of each iteration red line denotes actual function and blue line
denotes approximated function.

spacing. If the coefficients are ordered by size, we obtain the sequence of partial

approximations shown below, including the first 7 largest terms. We interpolated

the function y = xcos(x)+x2 and shown in figure 5.3 at the points x = −1 : 1/8 : 1

and used basis pursuit to find an efficient representation of the approximation.

We also interpolated another function g(x) = tan−1(5x) + cos(x). The in-

terpolated function and actual function has been shown in figure 5.4(a). There

are 17 nonzero coefficients but basis pursuit has economized the coefficients of the

high resolution splines to be small. Thresholding these values can further econo-

mize the representation and the figure on the right is the residue when coefficients

below 0.05 in absolute value are thresholded, leaving 11 nonzero coefficients in the

18

(a) (b)

Figure 5.4 (a)Actual function g(x) = tan−1(5x) + cos(x) and interpolated data (b)
Residue

representation.

5.3 Uniform Approximation

In this case, we solved

min
∑

2i|c(i, j)| such that |
∑
i,j

cijB(2i(x− ti,j))− g(x)| ≤ M

where the value of M is specified according to the desired tolerance. The vector

x is a discrete sample of the domain but will be a good proxy in practice for the

points of interest, e.g. x = -1:0.01:1 for the interval [-1,1]. Note that if desired, it

is a simple matter to modify the problem so as to obtain a uniform relative error.

The value of chosen for M will of course need to be feasible in light of the dictionary

used, but on the other hand, for a continuous function, there is always a dictionary

for any positive M that leads to a feasible solution, simply by taking a fine enough

resolution in our space.

It is simple matter to note that |Ax − b| ≤ M is equivalent to Ax ≤ M +

b,−Ax ≤ M − b so from the matrix AA in the prior section, wherein we split the

coefficients into positive and negative parts to form the composite matrix

AA =

[
AA

−AA

]

19

We have approximated the same function g(x) = tan−1(5x) + cos(x). The uniform

approximation and actual function are shown in figure 5.5(a) and the residue has

been plotted in figure 5.5(b). Our tolerance was M = 0.03 and there were only 11

nonzero coefficients in the solution.

(a) (b)

Figure 5.5 (a)Actual function g(x) = tan−1(5x)+ cos(x) and uniform approximated
data (b) Residue

5.4 Blended approaches

Here, we used a combination of our ℓ1 objective
∑

2i|c(i, j)| for the coefficients

and the uniform ℓ∞ norm M of the error.

min(M + λ
∑

2i|c(i, j)|)

such that

|
∑
i,j

c(i, j)B(2i(x− ti,j))− g(x)| ≤ M

Here, we need to incorporate into the constrains as a variable, and into the

objective function. This requires an augmented column in our matrix and in the ob-

jective function vector. We are approximating the same function g(x) = tan−1(5x)+

cos(x). The blended approximated function and actual function has been shown in

figure 5.6(a) and the residue has been plotted in figure 5.6(b). The value of λ used

here is 0.1. Following list shows the fifteen non-zero value of coefficients c.

20

(a) (b)

Figure 5.6 (a)Actual g(x) = tan−1(5x)+cos(x) and blended approximated functions
(b) Residue

-0.83356

2.534487

-0.056939

0.22383

1.078316

-0.28268

0.21265

0.643833

0.15098

0.186599

-0.03157

0.00605

-0.06529

0.009861

0.04926

21

5.5 Quadratic programming formulation

Finally, we used a quadratic programming formulation that is seen in the

literature, employing an ℓ2 norm on the error

minλ
∑

2i|c(i, j)|+ 1

2

∑
e(x)2

∑
i,j

c(i, j)B(2i(x− ti,j))− g(x) = e(x)

We used inbuilt Matlab function ”quadprog” as x = quadprog(H, f,A, b, Aeq, beq, LB,UB),

where H represents a quadratic term 1
2
xTHx so that H = I in our case. The ini-

tial setup is the as in the previous blended approach. The approximated function

according to quadratic formulation and actual function has been shown in figure

5.7(a) and the residue has been plotted in figure 5.7(b). The value of λ used here is

0.1, and there are twelve nonzero coefficients.

(a) (b)

Figure 5.7 (a)Actual g(x) = tan−1(5x) + cos(x) and quadratic approximated func-
tions (b) Residue

5.6 Discussion

We were successful in using basis pursuit in several formulations to approx-

imate functions from multi-resolution spline spaces. There are many parameter

choices made along the way that could be adjusted and the results studied in simi-

lar fashion. Each of the methods used was effective in picking out an efficient basis.

22

Uniform approximation or a blended uniform approach are more ”faithful” to the

linear formulation than the more customary blended quadratic approach and seem

to do just as well. If the idea is to obtain an efficient approximation with few nonzero

coefficients, then interpolation is probably not the best approach, as it naturally will

use as many functions as there are equality constraints.

These problems are a jumping off point for further study. Some questions might

be: are there any desirable optimality properties we can associate with basis pursuit

solutions of this sort, and which formulations are more desirable in which con-

texts? Also, with a linear programming formulation, a variety of other issues can be

included, e.g. positive approximations for positive functions, issues of shape preser-

vation, or uni-directional approximations. These can be naturally incorporated into

the constraints, whereas classical approximation approaches, such as least squares,

are indifferent at best to such questions.

23

Bibliography

[1] Allan Pinkus. Weierstrass and approximation theory. Journal of Approximation

Theory, 107(1):1–66, 2000.

[2] Chen, Scott S. Donoho, David L. Saunders, Michael A. Atomic decomposition

by basis pursuit. SIAM Review, 43:129–159, 2001.

[3] Patrice Simard and Jérôme Antoni. Acoustic source identification: Experiment-

ing the ℓ1 minimization approach. Applied Acoustics, 74(7):974–986, 2013.

[4] Andreas M. Tillmann. Equivalence of Linear Programming and Basis Pursuit.

Proc. Appl. Math. Mech., 15:735–738, 2015.

[5] Lorenz, Dirk A. Pfetch, Marc E. Tillmann, Andreas M. Solving basis pur-

suit: Heuristic optimality check and solver comparison. ACM Transactions on

Mathematical Software, 41:1–29, 2015.

[6] Mallat Stéphane. A Wavelet Tour of Signal Processing The Sparse Way. Sci-

encedirect, 2009.

[7] Ronald A. DeVore. Nonlinear approximation. Acta Numerica, 7:51–150, 1998.

[8] W. Bloomfield, P. Steiger. Least Absolute Deviations:Theory, Applications, and

Algorithms,. Springer, 1983.

[9] Jorge Holling, Klause Horner. Approximation and Modelling with B-Splines.

SIAM, 2013.

[10] Knut Lyche, Tom Morken. Spline Methods Draft. 2008.

[11] Julian Valentin. Flavors and types of b-splines. 2019.

24

	List of Figures
	Introduction
	Optimization Problems using Basis Pursuit
	Introduction

	Review of Linear Programming
	Linear Approach
	Quadratic Programming and other formulations

	Multi-resolution Spline Approximations
	Introduction
	Recursion Relation of B-spline function
	Cubic B-spline

	Applications and Results
	Basis pursuit involving multi-resolution B-spline interpolation and approximation
	Basis pursuit interpolation
	Uniform Approximation
	Blended approaches
	Quadratic programming formulation
	Discussion

