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Abstract: Genes with similar expression patterns in a set of diverse samples may be considered
coexpressed. Human Gene Coexpression Analysis 2.0 (HGCA2.0) is a webtool which studies the
global coexpression landscape of human genes. The website is based on the hierarchical clustering of
55,431 Homo sapiens genes based on a large-scale coexpression analysis of 3500 GTEx bulk RNA-Seq
samples of healthy individuals, which were selected as the best representative samples of each
tissue type. HGCA2.0 presents subclades of coexpressed genes to a gene of interest, and performs
various built-in gene term enrichment analyses on the coexpressed genes, including gene ontologies,
biological pathways, protein families, and diseases, while also being unique in revealing enriched
transcription factors driving coexpression. HGCA2.0 has been successful in identifying not only
genes with ubiquitous expression patterns, but also tissue-specific genes. Benchmarking showed
that HGCA2.0 belongs to the top performing coexpression webtools, as shown by STRING analysis.
HGCA2.0 creates working hypotheses for the discovery of gene partners or common biological
processes that can be experimentally validated. It offers a simple and intuitive website design and
user interface, as well as an API endpoint.

Keywords: gene coexpression analysis; gene coexpression network; co-expression; RNA-Seq;
transcriptomics; bioinformatics; webtool

1. Introduction

Genes that exhibit similar expression profiles in a large number of samples of different
biological conditions, are considered coexpressed and tend to participate in similar biologi-
cal processes or common metabolic pathways. The coexpression of genes, revealed through
computational methods, can determine functional gene partners and, consequently, may be
used to make assumptions about common pathway participation of a group of coexpressed
genes, or to assign roles to genes of unknown function by consulting the known biological
roles of the genes they are coexpressed with [1].

Gene coexpression analysis is performed on a specific organism, and uses samples
from the same transcriptomic platform, that are processed in the same manner [2]. RNA-
Seq [3] transcriptomic technology can massively study all transcripts of a tissue and has
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become the norm in gene expression estimation. As a consequence, RNA-Seq raw data
constitute the main source for gene coexpression analysis. Depending on the type of
samples used, coexpression analysis can be classified into two approaches: “condition-
independent”, where primary data derive from healthy samples from a variety of tissues
of an organism, and “condition-dependent”, where the samples come from a specific
tissue or experimental condition [4]. RNA-Seq samples are procured either through in-
house experiments or downloaded from public repositories, such as Gene Expression
Omnibus (GEO) [5], Sequence Read Archive (SRA) [6], ArrayExpress [7], Expression
Atlas [8], European Nucleotide Archive (ENA) [9], The Cancer Genome Atlas (TCGA) [10],
and Genotype-Tissue Expression (GTEx) [11]. Public transcriptomic databases offer an
ever-increasing amount of primary datasets which, if used for coexpression analysis, can
produce findings that transcend the scope of each original experiment [12].

There are multiple RNA-Seq-based coexpression webtools for a vast variety of
species [13–16], with a significant number of tools studying gene coexpression in Homo
sapiens [17–19], a field of particular interest, as unravelling the coexpression relationships
in human genes can lead to a better understanding of specific metabolic pathways that
can potentially elucidate the primary molecular mechanisms behind diseases [20] or reveal
novel gene functional partners [4,21]. Here, we describe HGCA2.0, a web-based coexpres-
sion tool for Homo sapiens, created using 3500 representative bulk RNA-Seq samples from
GTEx, and we present several use cases for human genes.

2. Materials and Methods
2.1. Transcriptomic Data Processing

GTEx version 8.0 RNA-Seq gene read count and TPM-normalised [22,23] expression
data (phs000424.v8.p2, 5 May 2017 released), as well as their corresponding metadata, were
downloaded from GTEx Portal [11], which offers high-quality curated RNA-Seq data from
various human tissues, processed with the same protocol, and ArrayExpress. This GTEx
version includes RNA-Seq data from 17,382 samples of 54 tissues from 948 post-mortem
donors [24]. GTEx TPM expression data for 56,200 genes were only used to discover non-
expressed genes. The lowest non-zero TPM expression value replaced zero TPM values,
so that all expressions could be log2 transformed. Genes with zero standard deviation
across all samples were identified and subsequently removed, this accounted for 322 genes.
All 44 Y chromosome pseudoautosomal genes, denoted by a “_PAR_Y” suffix in their
Ensembl [25] gene version code, were among them. Furthermore, another 447 genes with
deprecated Ensembl gene stable IDs according to Ensembl release 99 Biomart [26], were
also removed. Finally, cell-line samples were deleted, leaving 16,704 samples remaining.
Afterwards, read count data corresponding to the remaining genes and samples were
normalised using the normalizeTissueAware function in YARN [27], a wrapper for the
qsmooth normalisation algorithm [28], which normalises all samples with the assumption
that the statistical distribution of counts should be similar among samples of the same
tissue rather than across all samples.

2.2. Gene Coexpression Tree Construction

Through custom PHP scripts, pairwise correlations between samples or genes were
calculated using Pearson’s Correlation Coefficient (PCC or r-value) [29]. The correlation
values were transformed to distance values using the d = 1− r formula [30], and hierarchical
clustering of samples or genes was performed on the transformed pairwise distance values
through the Phangorn [31] R package implementation of UPGMA [32].

In order to determine the representative GTEx samples, and create the HGCA2.0 gene
coexpression tree based on them, we followed a procedure previously described [33]: using
the normalised expression data of 55,431 Homo sapiens genes in 16,704 samples, r-values
were calculated for each sample pair and a sample distance matrix was created in PHYLIP
format [34]. This ensures that all distances have positive values, with a range between 0
and 2, where 0 represents complete correlation, and 2 represents complete anti-correlation.
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A sample correlation tree in Newick format [35] was produced, using the distance matrix
of samples as input. Each leaf of the produced tree corresponded to a unique GTEx sample.

As our goal was to study the global (i.e., condition/tissue-independent) coexpression
landscape of Homo sapiens, the most representative samples of the dataset were selected to
minimise tissue bias (Figure S1). Tree pruning was performed on the tree of 16,704 sample-
leaves using a previously described custom-made iterative PHP algorithm [2], which
automatically prunes adjacent leaves in a cladogram, producing a tree of 3500 leaves which
corresponded to the most distinct representative samples (Figure S2).

To calculate the r-values between all gene pairs, gene expression values of those
3500 samples were used to create a distance matrix of genes, in a similar manner as the
distance matrix of samples. The gene distance matrix was used to construct a coexpression
tree of 55,431 genes, which were represented as leaves. Genes lying in the same clade are
considered coexpressed.

2.3. External Data Collection and Biological Term Enrichment Calculation

HGNC [36] gene symbols and descriptions, as well as Ensembl gene stable IDs, were
downloaded from Ensembl Biomart, gene ontologies from Gene Ontology [37], biological
pathways from KEGG [38] and WikiPathways [39], transcription factor target genes from
ENCODE [40] through Harmonizome [41] and ReMap2020 [42], gene-disease associations
from OMIM [43] and DisGeNet [44], protein domains from Pfam [45], and cytogenetic band
coordinates from the NCBI Genome Decoration Page (https://www.ncbi.nlm.nih.gov/
genome/tools/gdp) (accessed on 20 January 2023). All data were downloaded and parsed
using in-house PHP scripts, either through the BioMart XML-based data retrieval system
or directly from their respective websites. We intend to update the biological term data
each time a new GTEx version is released and a new gene coexpression tree is calculated.
Gene term enrichment analysis p-value calculations are based on the Hypergeometric
Distribution [46] and the False Discovery Rate (FDR) [47] corrected.

2.4. Webtool Implementation and Usage

A MySQL relational database was designed to store all required data, i.e., gene ex-
pression values and metadata for each sample, as well as human gene biological terms.
The web server is hosted on a 16-core, 64 GB memory, Ubuntu 22.04 Linux system.
Website development was based on fully validated HTML5 by HTML validator (https:
//www.gueury.com/) (accessed on 20 January 2023) and CSS, along with Bootstrap
(https://getbootstrap.com/) (accessed on 20 January 2023) styling library and JavaScript.
All backend scripts were written in PHP and run on an Apache 2.4.52 web server with
verified HTTPS protocol.

On the main page of the website, the user initially inputs a human Ensembl gene
stable ID or HGNC gene symbol (henceforth, the “driver gene”), and a gene coexpression
clade whose size is closest to 25 genes is displayed, along with a scale bar (referring to the
distance-transformed PCC) at the top. Genes in the coexpression clade are represented
as terminal nodes (“leaves”), which are progressively connected through internal nodes,
which, in turn, are represented as branching points (Figure 1). The internal node number,
from the driver gene leaf to the root of the clade, is displayed below the tree visualisation.
The clade size can be increased or decreased by adding or subtracting internal nodes, with
a maximum clade size of up to 25% of the genes studied. Each clade leaf name contains an
Ensembl gene stable ID, an HGNC gene symbol, and a gene description. To change driver
gene, the user clicks on a different Ensembl gene stable ID. Although the same coexpression
clade will be displayed, when choosing a driver gene located in a different subclade, this
subclade can be isolated and studied by reducing the clade size. To find more information
on any gene of the clade, the user may click on a gene symbol to visit the corresponding
gene entry in Genecards [48]. The constructed coexpression clade can be downloaded in
Newick format [35] or viewed in iTOL tree viewer [49]. A table located below the gene
clade, contains the descriptions of the gene-leaves. The gene list of the clade can also be

https://www.ncbi.nlm.nih.gov/genome/tools/gdp
https://www.ncbi.nlm.nih.gov/genome/tools/gdp
https://www.gueury.com/
https://www.gueury.com/
https://getbootstrap.com/
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downloaded or exported to the g:Profiler [50], Genemania [51], Pathway Commons [52],
FLAME [53], STRING [54], and EnrichR [55] websites for further analyses.
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Figure 1. The five branching points (depicted as numbered dots), from the driver gene leaf (GNG4)
until the root of the clade, constitute the internal nodes of this coexpression clade.

To perform a gene term enrichment analysis using the genes of the current clade, an
enrichment category needs to be selected from a drop-down menu, which appears right
below the coexpression clade. The analysis is performed on the fly and the enrichment
results are displayed on the enrichment summary table. Only terms with an FDR-adjusted
p-value ≤ 0.05 are presented, and ranked in p-value ascending order. Furthermore, for each
term, its over-representation rate (observed/expected) and hit percentage (appearance in
the coexpression clade/appearances in all available genes) are displayed. The change in
clade size affects the results of the enrichment analysis. A smaller clade might not be able
to deem terms as statistically significant, and only on a tree of increased size may those
terms be revealed. On the other hand, a larger clade might contain smaller subclades of
genes with different biological functions which might be revealed by decreasing the tree
size. As such, it is at the user’s discretion to determine the optimal tree size, through the
observation of the fluctuations of the FDR-adjusted p-values of the enriched biological
terms or other metrics. Below the enrichment table, a full list of the genes of the clade,
along with all the terms of that category that describe them, is displayed, linking to the
corresponding website entries.

2.5. API Access

HGCA2.0 provides access to all coexpression and enrichment results through a public
JSON-based Application Programming Interface (API) endpoint, keyed on an Ensembl gene
stable ID, a tree node number and, optionally, an enrichment analysis category 2-character
keyword. For example, using https://www.michalopoulos.net/hgca2.0/api/ENSG00000
114391/5/bp (accessed on 20 January 2023) returns the coexpression clade of the driver
gene ENSG00000114391 with 5 internal nodes in Newick format, the driver gene details,
the coexpression clade gene list, and the enriched “Gene Ontology: Biological Process”
terms ranked by p-value. If a wrong (or no) keyword is typed, then no enrichment analysis
will be performed. Instructions to developers can be found in the API section of the “Help”
page of the HGCA2.0 website.

2.6. STRING Analysis

STRING is a webtool performing protein-protein interaction (PPI) network construc-
tion by incorporating known and predicted interactions between proteins, as well as

https://www.michalopoulos.net/hgca2.0/api/ENSG00000114391/5/bp
https://www.michalopoulos.net/hgca2.0/api/ENSG00000114391/5/bp
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interactions based on text-mining, co-expression, and homology, which are scored relative
to their evidence strength. Additionally, STRING offers multiple network metrics and
built-in enrichment analysis categories. To perform benchmarking of HGCA2.0, and 4 other
popular webtools also studying condition-independent gene coexpression analysis in Homo
sapiens, i.e., COXPRESdb [56], GeneFriends [18], ARCHS4 [57], and SEEK [58], various
metrics of STRING v11.5 were used as independent comparison measures: The gene of
interest was used as the driver gene in HGCA2.0, to produce a default coexpression clade
(a coexpression clade with ~25 leaves) and its corresponding list of coexpressed genes.
The same driver gene was used as the input for the rest of the coexpression webtools as
follows: In COXPRESdb, hsa-u.4 was used as the coexpression collection for analysis, in
GeneFriends, both GTEx and SRA were selected as data source with samples of all tissues,
in SEEK, multi-tissue profiling dataset was selected and ARCHS4 was used as is, since
there were no configurations available. The gene lists of the top-ranked coexpressed genes
(including the driver gene), as well as that of HGCA2.0, underwent STRING multiple
protein analysis, ensuring that each list contained the same number of genes mapped
by STRING. STRING protein-protein interaction network generation was performed by
removing any “co-expression” interactions and setting a high confidence cut-off (0.700).
The metrics used for the evaluation of the tools include, “Number of Edges”, “Expected
Number of Edges”, “Average Node Degree”, “Avg. Local Clustering Coefficient” [59],
“PPI enrichment p-value”, and Gene Ontology: Biological Process and KEGG Pathways
biological term enrichment analyses available in STRING.

3. Results
3.1. Use Cases
3.1.1. Ribosomal Proteins

The human 80S ribosome is a complex of 80 proteins and 4 RNA molecules [60]. RPL11,
coding Ribosomal Protein L11, was used as the input to HGCA2.0. The webtool produced
a clade that was expanded up to 14 internal nodes and contained 87 genes. Of those genes,
75 were ribosomal proteins (Figure 2). Enrichment analyses in all Gene Ontology aspects,
as well as in KEGG and WikiPathways, highlighted ribosome-related terms, achieving very
low p-values (Table 1). In addition, Pfam showed several ribosome-specific families of
proteins, and DisGeNet linked genes of the clade to Diamond-Blackfan anaemia, a known
ribosomopathy [61], and to several of the disease’s clinical features, such as short stature,
cleft palate, and thumb deformities [62]. Finally, ENCODE revealed a large number of
enriched transcription factors targeting almost all of the 87 coexpressed genes.

Table 1. Selected top gene term enrichments of the coexpressed genes to RPL11 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 7.9 × 10−174 GO:0006614 SRP-dependent cotranslational

protein targeting to membrane
GO: Molecular
Function 1.7 × 10−149 GO:0003735 Structural constituent of ribosome

GO: Cellular
Component 2.0 × 10−175 GO:0022626 Cytosolic ribosome

4.8 × 10−148 GO:0044391 Ribosomal subunit
KEGG 4.4 × 10−133 hsa03010 Ribosome—Homo sapiens (human)
WikiPathways 1.7 × 10−154 WP477_r108309 Cytoplasmic Ribosomal Proteins
DisGeNet 4.2 × 10−47 C1260899 Anemia, Diamond-Blackfan

Pfam 3.9 × 10−5 Ribosomal_L7Ae Ribosomal protein
L7Ae/L30e/S12e/Gadd45 family
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3.1.2. Metallothioneins

Metallothioneins have a high percentage of cysteine residues and bind to various
heavy metals. They are regulated at the transcriptional level by both heavy metals and
glucocorticoids [63]. MT1M (Metallothionein 1M) was used as the driver gene in HGCA2.0.
The clade produced was reduced to 7 internal nodes and contained 10 genes (Figure 3),
9 of which belonged to metallothioneins, and 4 of them being insufficiently annotated
pseudogenes. A GO Biological Process enrichment analysis identified terms related to
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stress response to metal ions, such as copper, cadmium, and zinc, and detoxification of
inorganic compounds, such as copper ions (Table 2). A GO Molecular Function analysis
also proposed binding to metals, such as zinc ions, as enriched terms. A KEGG biological
pathway analysis highlighted the term “mineral absorption” in humans, and WikiPathways
displayed the terms “zinc homeostasis” and “copper homeostasis”. A Pfam analysis
assigned the proteins of the coexpressed genes to the Metallothionein family. Finally, a
transcription factor analysis via ReMap revealed two transcription factors of the zinc finger
family (zinc finger proteins 879 and 26) as targeting the genes of the clade.
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Table 2. Selected top gene term enrichments of the coexpressed genes to MT1M in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 2.6 × 10−14 GO:1990169 Stress response to copper ion

2.6 × 10−14 GO:0010273 Detoxification of copper ion
2.9 × 10−14 GO:0097501 Stress response to metal ion

2.9 × 10−14 GO:0061687 Detoxification of
inorganic compound

GO: Molecular
Function 8.8 × 10−6 GO:0008270 Zinc ion binding

1.8 × 10−5 GO:0046914 Transition metal ion binding

KEGG 1.8 × 10−11 hsa04978 Mineral absorption—Homo
sapiens (human)

WikiPathways 7.9 × 10−13 WP3529_r106738 Zinc homeostasis
3.9 × 10−12 WP3286_r106367 Copper homeostasis

Pfam 3.0 × 10−16 Metallothio Metallothionein
ReMap 7.6 × 10−5 ZNF879 Zinc finger protein 879

1.7 × 10−2 ZNF26 Zinc finger protein 26

3.1.3. MHC Class I and Class II Protein Clusters

Major Histocompatibility Complex class II (MHC-II) proteins are known to function
at the early stages of immune response, by presenting processed peptides to CD4+ T-
lymphocytes [64]. HLA-DM is a MHC-II protein heterodimer consisting of an α and a β

chain which are encoded by the HLA-DMA and HLA-DMB genes, respectively [65]. HLA-
DM regulates the loading of peptides into MHC-II molecules of the antigen-presenting
cells [66,67]. HLA-DMA (Major Histocompatibility Complex, Class II, DM Alpha) was used
as a driver gene in a HGCA2.0 analysis. A clade that was reduced to 7 internal nodes was
produced. The clade contained 14 gene-leaves, 13 of which were HLA or HLA-related genes
(Figure 4). The most correlated gene to HLA-DMA was that of its binding partner, HLA-
DMB (Major Histocompatibility Complex, Class II, DM Beta). A GO enrichment analysis
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revealed terms of antigen presentation via MHC class II in Biological Process aspect,
binding to MHC class II proteins in Molecular Function aspect, and MHC class II complex
in Cellular Component aspect (Table 3). A KEGG biological pathway analysis showed the
presentation and processing of antigens in humans as the top function, and a Pfam analysis
showed as over-represented, families of α and β chains of MHC class II and a protein
family corresponding to the C1-set domain of immunoglobulin. A ReMap enrichment
analysis showed over 40 enriched transcription factors, with the top two being SMAD5 and
ZBED1. In the coexpression clade, the only gene which was not described by any biological
term was a “To be Experimentally Confirmed” (TEC) non-coding gene, AC133065.3, whose
most correlated gene was CIITA. Given that the genomic coordinates of AC133065.3 fall
within CIITA genomic boundaries, both have the same transcription orientation (Figure S3)
and display similar expression patterns, AC133065.3 might constitute a CIITA alternative
monoexonic transcript, sharing common transcriptional regulatory mechanisms.
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Table 3. Selected top gene term enrichments of the coexpressed genes to HLA-DMA in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 1.9 × 10−19 GO:0019886

Antigen processing and presentation
of exogenous peptide antigen via
MHC class II

1.9 × 10−19 GO:0002495 Antigen processing and presentation
of peptide antigen via MHC class II

1.9 × 10−19 GO:0002504
Antigen processing and presentation
of peptide or polysaccharide antigen
via MHC class II

GO: Molecular
Function 1.8 × 10−15 GO:0023026 MHC class II protein

complex binding
1.2 × 10−14 GO:0032395 MHC class II receptor activity

GO: Cellular
Component 1.9 × 10−34 GO:0042613 MHC class II protein complex

KEGG 2.1 × 10−24 hsa04612 Antigen processing and
presentation—Homo sapiens (human)

Pfam 1.6 × 10−25 C1-set Immunoglobulin C1-set domain

4.4 × 10−16 MHC_II_alpha Class II histocompatibility antigen,
alpha domain

1.0 × 10−15 MHC_II_beta Class II histocompatibility antigen,
beta domain

ReMap 2.8 × 10−4 SMAD5 SMAD family member 5
2.8 × 10−4 ZBED1 Zinc finger BED-type containing 1

The coexpression clade was further expanded up to 14 internal nodes, revealing a total
of 41 genes (Figure 4), among which additional MHC Class II family genes (HLA-DQB2,
HLA-DQA2, HLA-DRB9 and HLA-DRB6) were identified. Moreover, essential genes related
to innate and adaptive immune response (e.g., TNF, NFKBIE, IRF4, IL2RA, STX4) were also
identified. In particular, TNF (Tumour Necrosis Factor) encodes for a pleiotropic cytokine,
which binds to its membrane receptors, TNF receptor type I (TNFR1) and TNF receptor type
II (TNFR2), and participates in cellular responses [68,69]. NFKBIE encodes for an essential
negative feedback regulator of the NF-κB transcription factor which regulates immune
responses, B cell proliferation and survival, cancer phenotype establishment, etc., [70–72].
In addition, the IRF4 transcription factor, a member of the IRF family, has a regulatory role
in the immune response, proliferation, and differentiation of immune system cells [73,74].
An enrichment analysis on the expanded coexpression clade, revealed that terms related to
defence and immune response were more prominent compared to the analysis for the initial
7 internal node clade: “adaptive immune response” had an adjusted p-value of 6.2 × 10−17

in the 14 internal node clade compared to 1.4 × 10−11 in the 7 internal node one.
NLR family CARD domain containing 5 (NLRC5) is constitutively expressed in a

multitude of human tissues, but predominantly in hematopoietic cells. NLRC5 contains a
nuclear localisation signal (NLS) enabling its translocation into the nucleus upon induction
of cells by certain stimuli. NLRC5 lacks a DNA-binding domain and interacts with a
plethora of transcription factors and multi-protein complexes to exert its well-described
regulatory role in stimulus-induced activation of Major Histocompatibility Complex class
I (MHC-I) genes [75,76]. An NLRC5-centered HGCA2.0 analysis generated a clade that
was reduced to 6 internal nodes, which contained 14 genes in total (Figure 5). The closest
neighbouring leaves were composed of MHC-I members (HLA-A/B/C/E/F), in line with
their aforementioned NLRC5-induced transactivation. Importantly, B2M, PSMB9, and
TAP1 [75,76] were composites of the second mostly correlated subclade. A GO enrichment
analysis underscored the antigen processing and presentation via MHC-I molecules as
one of the most significantly over-represented terms (Table 4). Furthermore, NLRC5 has
been proposed as a main component of NLRP3 inflammasome reconstitution, in response
to immunogenic stimuli or Damage Associated Molecular Patterns (DAMPs). Inflamma-
some’s activity, among other things, mediates Caspase 1 (CASP1) maturation [77]. Both
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CASP1 and its inhibitor, CARD16, were identified as significantly coexpressed, supported
by GO Biological Process, KEGG pathways, and WikiPathways analyses, which highlighted
immune-related inflammatory responses and cytokine-mediated signalling pathways as
enriched. The inflammasome complex along with the MHC-I complex were also identi-
fied as the most enriched GO Cellular Component terms associated with NLRC5 and its
coexpressed genes.
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Table 4. Selected top gene term enrichments of the coexpressed genes to NLRC5 in HGCA2.0.

Category FDR Term ID Description

GO: Biological
Process 3.1 × 10−17 GO:0042590

Antigen processing and presentation
of exogenous peptide antigen via
MHC class I

1.0 × 10−12 GO:0019221 Cytokine-mediated
signaling pathway

GO: Molecular
Function 3.3 × 10−4 GO:0042288 MHC class I protein binding

GO: Cellular
Component 4.7 × 10−17 GO:0042612 MHC class I protein complex

KEGG
Pathways 2.2 × 10−11 hsa04612 Antigen processing and

presentation—Homo sapiens (human)
Pfam 2.8 × 10−13 MHC_I_C MHC_I C-terminus

1.4 × 10−4 CARD Caspase recruitment domain

3.1.4. STAT1 Transcription Factor

STAT1 (Signal Transducer and Activator of Transcription 1) is a transcription factor
and a member of the STAT family of proteins. STAT1 is activated by type I interferons,
mediates the expression of various genes that play a role in cell survival in response to
various stimuli and pathogens, and can form dimers with other members of the same
family [78]. STAT1 was used as the driver gene to HGCA2.0 and the produced clade was
expanded to 5 internal nodes with 34 gene-leaves, many of which were related to interferons
(Figure 6). A GO Biological Process enrichment analysis highlighted defence response to
virus terms as the top enriched ones (Table 5). KEGG and DisGeNet over-representation
analyses showed an association with various viral diseases. A WikiPathways enrichment
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analysis showed the involvement of STAT1 and other clade genes, such as genes belonging
to the OAS family (OAS1, OAS2, OAS3, OASL), in the response to human coronaviruses.
Finally, both ENCODE and ReMap transcription factor analyses showed STAT2 as the top
transcription factor, targeting more than 2/3 of the genes of the clade.
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Table 5. Selected top gene term enrichments of the coexpressed genes to STAT1 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 2.2 × 10−33 GO:0051607 Defense response to virus

KEGG 7.7 × 10−11 hsa05160 Hepatitis C—Homo sapiens (human)
8.4 × 10−11 hsa05164 Influenza A—Homo sapiens (human)

WikiPathways 2.1 × 10−11 WP4880_r109979 Host-pathogen interaction of human
corona viruses—Interferon induction

3.4 × 10−8 WP4868_r109974
Type I Interferon Induction and
Signaling During
SARS-CoV-2 Infection

Pfam 6.0 × 10−11 OAS1_C 2’-5’-oligoadenylate synthetase 1,
domain 2, C-terminus

DisGeNet 4.7 × 10−28 C0021400 Influenza
6.3 × 10−13 C0042769 Virus Diseases
1.8 × 10−10 C0019196 Hepatitis C

ENCODE 2.6 × 10−40 STAT2 Signal transducer and activator of
transcription 2

ReMap 5.9 × 10−16 STAT2 Signal transducer and activator of
transcription 2



Cells 2023, 12, 388 12 of 36

3.1.5. TMPRSS2 in Relation to COVID-19 Infection

TMPRSS2 (Transmembrane Serine Protease 2) encodes for a transmembrane protein
belonging to the type 2 serine protease family with a role in epithelial homeostasis. Several
viruses use TMPRSS2 for cell invasion [79]. The SARS-CoV-2 virus has been found to infect
the human body via the ACE2 receptor in combination with TMPRSS2 [80]. TMPRSS2 was
used as the driver gene in a HGCA2.0 analysis and the produced clade was expanded up
to 6 internal nodes and contained 37 genes (Figure 7). A GO Biological Process analysis
revealed terms related to epithelial cells and intercellular binding, which is in agreement
with SARS-CoV-2 attachment to epithelial cells (Table 6). GO Cellular Component and
KEGG biological pathways analyses also showed terms related to intercellular binding.
Among the top three transcription factors discovered by ENCODE, two were factors related
to the zinc finger family and the third one was ESR1 (Estrogen Receptor 1). Additionally, a
ReMap analysis found, among several other transcription factors, that ESR1 targets 36 out of
all 37 genes of the coexpression clade. The presence of ESR1 as a factor targeting TMPRSS2
and genes which are coexpressed with it, may explain the distinct fatality patterns between
males and females [81,82].
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Table 6. Selected top gene term enrichments of the coexpressed genes to TMPRSS2 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 1.7 × 10−4 GO:0007043 Cell-cell junction assembly

3.2 × 10−4 GO:0030855 Epithelial cell differentiation
3.2 × 10−4 GO:0045216 Cell-cell junction organization
9.6 × 10−4 GO:0060429 Epithelium development

GO: Cellular
Component 1.4 × 10−3 GO:0043296 Apical junction complex

1.4 × 10−3 GO:0005911 Cell-cell junction

KEGG 1.5 × 10−3 hsa04514 Cell adhesion molecules
(CAMs)—Homo sapiens (human)

1.5 × 10−3 hsa04530 Tight junction—Homo sapiens (human)
Encode 8.9 × 10−5 ZNF217 Zinc finger protein 217

4.2 × 10−4 ESR1 Estrogen receptor 1

4.3 × 10−3 ZBTB7A Zinc finger and BTB domain
containing 7A

3.1.6. Late Cornified Envelope Genes

Late cornified envelope (LCE) clusters of genes are stratum corneum proteins responsi-
ble for keratinisation. They are located in a ~380 Kbps region of 1q21.3 cytoband (Figure S4),
which is part of a wider genomic region stretching ~1.9 Mbps, known as the epidermal dif-
ferentiation complex [83]. LCE 1 and 2 group genes are primarily expressed in the skin [84].
C1orf68 (Chromosome 1 Open Reading Frame 68), also known as Skin-Specific Protein 32
(XP32), is located in the genomic region between the LCE 1 and 2 clusters. C1orf68 was
used as the driver gene in a HGCA2.0 analysis, and the resulting clade was reduced to
5 internal nodes containing 12 genes, all of which, except for C1orf68, were LCE genes
(Figure 8). A GO Biological Process enrichment analysis showed “keratinization” and
“epidermis development” as top terms (Table 7), and WikiPathways revealed the “Vitamin
D Receptor Pathway” term as over-represented. Pfam classified 10 of the coexpressed
genes into the LCE protein family, and chromosome band analysis indicated all genes
as located in 1q21.3, suggesting that this genomic co-localisation may be responsible for
coexpression. A multiple protein sequence alignment of the coexpressed genes (Figure S5),
using MUSCLE [85], showed a high degree of similarity between LCE1 and LCE2 genes,
with the genes of each family being clustered in distinct subclades (Figure 9). The topology
of the phylogenetic tree indicates that C1orf68 and LCE6A are ancient paralogues of the
LCE 1 and 2 gene groups. SignalP 6.0 [86] predicted that none of the proteins contained any
signal peptide. As none of the proteins of the coexpressed genes had any solved structure,
a model could not be constructed in SWISS-MODEL [87] to predict the C1orf68 structure
through homology modelling. The AlphaFold [88] prediction for C1orf68 (UniProt ID:
Q5T750) was a Beta structure which matches with the 2-solenoid architecture (CATH ID:
2.150) of CATH [89]. On the other hand, AlphaFold predicted serpentine protein structures
for the LCE proteins (e.g., UniProt ID: Q5T7P2 for LCE1A). The discovery of several tan-
dem repeats (Figure S6) in the C1orf68 protein sequence by HHrepID [90] may justify the
2-solenoid architecture prediction.
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Table 7. Selected top gene term enrichments of the coexpressed genes to C1orf68 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 2.8 × 10−19 GO:0031424 Keratinization

1.6 × 10−18 GO:0008544 Epidermis development
WikiPathways 6.9 × 10−5 WP2877_r105854 Vitamin D Receptor Pathway
Pfam 2.1 × 10−31 LCE Late cornified envelope
Chromosome
Band 7.4 × 10−29 1q21.3

Cells 2023, 12, 388 14 of 37 
 

 

located in 1q21.3, suggesting that this genomic co-localisation may be responsible for co-
expression. A multiple protein sequence alignment of the coexpressed genes (Figure S5), 
using MUSCLE [85], showed a high degree of similarity between LCE1 and LCE2 genes, 
with the genes of each family being clustered in distinct subclades (Figure 9). The topology 
of the phylogenetic tree indicates that C1orf68 and LCE6A are ancient paralogues of the 
LCE 1 and 2 gene groups. SignalP 6.0 [86] predicted that none of the proteins contained 
any signal peptide. As none of the proteins of the coexpressed genes had any solved struc-
ture, a model could not be constructed in SWISS-MODEL [87] to predict the C1orf68 struc-
ture through homology modelling. The AlphaFold [88] prediction for C1orf68 (UniProt 
ID: Q5T750) was a Beta structure which matches with the 2-solenoid architecture (CATH 
ID: 2.150) of CATH [89]. On the other hand, AlphaFold predicted serpentine protein struc-
tures for the LCE proteins (e.g., UniProt ID: Q5T7P2 for LCE1A). The discovery of several 
tandem repeats (Figure S6) in the C1orf68 protein sequence by HHrepID [90] may justify 
the 2-solenoid architecture prediction. 

 
Figure 8. HGCA2.0 C1orf68 5 internal node coexpression clade. 

 
Figure 9. Phylogenetic tree resulting from MUSCLE multiple sequence alignment of the protein se-
quences of the genes of the HGCA2.0 C1orf68 (XP32) coexpression clade, as viewed by Dendroscope 
[91]. 

Figure 9. Phylogenetic tree resulting from MUSCLE multiple sequence alignment of the protein
sequences of the genes of the HGCA2.0 C1orf68 (XP32) coexpression clade, as viewed by Dendro-
scope [91].



Cells 2023, 12, 388 15 of 36

3.1.7. Heat Shock Protein 90

Heat shock proteins (HSP) were named after their elevated expression during heat
shock response [92]. The HSP90 (90kDa) chaperone machinery plays an important role
in the regulation of proteostasis during physiological and stress conditions in eukaryotic
cells, and it is involved in many cellular processes, beyond protein folding and assembly,
such as signal transduction, cell cycle control, DNA repair, development, immune response,
and neurodegenerative diseases [93]. HSP90 has three structural domains: the N-terminal
domain (NTD), in which the ATP binding site is located, the middle domain (MD), and the
C-terminal domain (CTD) which is responsible for the dimerisation [94].

There are two HSP90 genes which encode HSP90A and HSP90B. HSP90A is induced
by heat shock. It appears across cytosol in all eukaryotes and is duplicated in vertebrates
into HSP90AA1 and HSP90AB1 [95]. HSP90B1 is constitutively expressed in the cytosol [96].
It is present in the endoplasmic reticulum in all eukaryotes, with the exception of some
fungal species, and is associated with molecular chaperones which transmit information
within the compartment and help transport “passenger proteins” across membranes.

Using HSP90AA1 as the driver gene, HGCA2.0 produced a coexpression clade which
was expanded up to 14 internal nodes and contained 31 gene-leaves, 16 of which were HSP
or HSP-related genes (Figure 10). HSPH1 (Heat shock protein family H) and CHORDC1
(cysteine- and histidine-rich domain-containing protein) appear as the most highly coex-
pressed genes with HPS90AA1. Indeed, HSP90AA1 is highly coexpressed with HSPH1
during head and neck squamous cell carcinoma (HNSCC), which means that these factors
could be either prognostic biomarkers or potential clinical targets [97]. Furthermore, HSP90
complexes interact with CHORDC1 as an ADP-dependent HSP90-interacting protein [98].
The HSP90AA1 paralog, HSP90AB1, is also found on a neighbouring subclade. A GO
Biological Process enrichment analysis displayed “protein folding”, “regulation of cellu-
lar response to heat”, and “chaperone-mediated protein folding”, as top processes, the
GO Molecular Function showed “unfolded protein binding”, “chaperone binding”, and
“heat shock protein binding”, and GO Cellular Component analysis revealed “chaperone
complex” as the top term (Table 8). An ENCODE analysis exhibited HSF1 (heat shock
transcription factor 1) and PPARGC1A (PPARG coactivator 1 alpha) as the top transcription
factors related to HSP90AA1. This association between HSF1 and HSP90AA1 is confirmed
by studies that suggest that HSF1, the master transcriptional regulator of heat shock
response, allows the inducible expression of HSP90AA1 upon binding to heat shock ele-
ments (HSEs), which are located upstream of HSP90A [96]. A DisGeNET analysis showed
Tauopathies as one of the top related diseases associated with HSP90AA1. This finding is
in accordance with previous studies, which proposed that changes in the expression levels
of HSP90s and their co-regulators could drive tau deposition and neurotoxicity, leading
to Alzheimer’s disease (AD) and other neurodegenerative diseases (tauopathies) [99]. Fi-
nally, a Pfam analysis displayed “CS domain”, “HSP90”, and “HSP70” as over-represented
families which are related to HSP90AA1.

Using HSP90B1 as the driver gene, HGCA2.0 produced a clade that was reduced
to 5 internal nodes having 10 gene-leaves, 3 of which were HSP or HSP-related genes
(Figure 11). A GO Biological Process enrichment analysis displayed “response to endoplas-
mic reticulum stress”, “response to topologically incorrect protein”, and “protein folding in
endoplasmic reticulum”, as the top processes, the GO Molecular Function showed “protein
disulfide isomerase activity”, “intramolecular oxidoreductase activity (transposing S-S
bonds)”, “chaperone binding”, and “unfolded protein binding”, and a GO Cellular Com-
ponent analysis revealed “endoplasmic reticulum lumen” and “endoplasmic reticulum
chaperone complex” as the top terms (Table 9). An ENCODE analysis exhibited SP2 (Sp2
transcription factor), as the top functional element related to HSP90B1, whereas DisGeNET
showed Spinocerebellar Ataxia 17 as one of the top related diseases associated with it.
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Table 8. Selected top gene term enrichments of the coexpressed genes to HSP90AA1 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 2.9 × 10−17 GO:0006457 Protein folding

7.7 × 10−13 GO:1900034 Regulation of cellular response
to heat

1.1 × 10−9 GO:0061077 Chaperone-mediated protein folding
GO: Molecular
Function 7.8 × 10−12 GO:0051082 Unfolded protein binding

1.5 × 10−10 GO:0051087 Chaperone binding
3.4 × 10−10 GO:0031072 Heat shock protein binding

GO: Cellular
Component 3.1 × 10−12 GO:0101031 Chaperone complex

ENCODE 1.1 × 10−21 HSF1 Heat shock transcription factor 1

2.6 × 10−20 PPARGC1A PPARG coactivator 1 alpha
(PPARGC1A)

DisGeNET 6.4 × 10−4 C0949664 Tauopathies
Pfam 3.4 × 10−9 CS CS domain

2.0 × 10−5 HSP90 Hsp90 protein
1.1 × 10−4 HSP70 Hsp70 protein
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Table 9. Selected top gene term enrichments of the coexpressed genes to HSP90B1 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 2.8 × 10−14 GO:0034976 Response to endoplasmic

reticulum stress

1.3 × 10−10 GO:0035966 Response to topologically
incorrect protein

6.7 × 10−10 GO:0034975 Protein folding in
endoplasmic reticulum

GO: Molecular
Function 2.4 × 10−6 GO:0003756 Protein disulfide isomerase activity

2.4 × 10−6 GO:0016864 Intramolecular oxidoreductase
activity, transposing S-S bonds

3.2 × 10−6 GO:0051087 Chaperone binding
4.6 × 10−6 GO:0051082 Unfolded protein binding

GO: Cellular
Component 5.8 × 10−14 GO:0005788 Endoplasmic reticulum lumen

2.9 × 10−10 GO:0034663 Endoplasmic reticulum
chaperone complex

ENCODE 3.1 × 10−6 SP2 Sp2 transcription factor
DisGeNET 1.4 × 10−7 C1846707 Spinocerebellar Ataxia 17

“Chaperone binding” and “unfolded protein binding” are shared enriched terms in
both coexpression clades, as heat shock proteins interact with unfolded proteins preventing
or reversing their aggregation, assisting their refolding to native structure [100]. “Reg-
ulation of cellular response to heat” appears only in the first clade because HSP90AA1
and HSP90AB1 are stress-induced while HSP90B1 is constitutively expressed [96]. That
difference in expression patterns also explains why HSP90B1 is located in a different clade
than that of HSP90AA1 and HSP90AB1.

3.1.8. Neurovascular Genes

NRP1 (Neuropilin 1) is a receptor for vascular endothelial growth factor (VEGF) and a
member of the semaphorin family of proteins. It has been shown to regulate angiogenesis
and vascular permeability [101]. A NRP1 analysis in HGCA2.0 produced a coexpression
clade that was expanded to 5 internal nodes with a total of 34 genes (Figure 12). A GO Bio-
logical Process enrichment analysis (Table 10) highlighted terms related to cardiovascular
system development, a result supported by a DisGeNet analysis, which contained blood-
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vessel-related diseases and anomalies. In addition, a large number of enriched terms were
related to NRP1′s role as a receptor for VEGF, such as “vascular endothelial growth factor-
activated receptor activity” in the GO Molecular Function, and “Robo4 and VEGF Signaling
Pathways Crosstalk” and “VEGFA-VEGFR2 Signaling Pathway” in WikiPathways.
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Table 10. Selected top gene term enrichments of the coexpressed genes to NRP1 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 4.6 × 10−19 GO:0001944 Vasculature development

4.6 × 10−19 GO:0072358 Cardiovascular system development
5.5 × 10−19 GO:0048514 Blood vessel morphogenesis

GO: Molecular
Function 3.1 × 10−4 GO:0004714 Transmembrane receptor protein

tyrosine kinase activity
3.1 × 10−4 GO:0001605 Adrenomedullin receptor activity

GO: Cellular
Component 3.4 × 10−4 GO:1903143 Adrenomedullin receptor complex

KEGG
Pathways 3.8 × 10−2 hsa04514 Cell adhesion molecules

(CAMs)—Homo sapiens (human)

3.8 × 10−2 hsa05418
Fluid shear stress and
atherosclerosis—Homo
sapiens (human)

3.8 × 10−2 hsa04270 Vascular smooth muscle
contraction—Homo sapiens (human)

WikiPathways 6.5 × 10−4 WP3943_r106492 Robo4 and VEGF Signaling
Pathways Crosstalk

6.5 × 10−4 WP3888_r108912 VEGFA-VEGFR2 Signaling Pathway
DisGeNET 2.7 × 10−8 C1519670 Tumour Angiogenesis

1.2 × 10−7 C1658953 Tumour vasculature
Pfam 3.9 × 10−5 RAMP Receptor activity modifying family

3.9 × 10−5 CD34_antigen CD34/Podocalyxin family
3.9 × 10−5 Sox17_18_mid Sox 17/18 central domain

3.1.9. Olfactory Receptors

Olfactory receptors are a family of ~1000 genes responsible for the sense of smell, with
about 60% constituting pseudogenes [102,103], and are all expressed in the olfactory sensory
neurons [104]. Each odourant ligand can be recognised by multiple olfactory receptors with
different affinity, and specific odourants can be bound to certain olfactory receptor families.
The monogenic and monoallelic expression of olfactory receptors in a single olfactory
neuron cell is due to the stochastic activation of a single allele of a single gene from an array
of olfactory receptor genes [104]. OR1D2 (Olfactory Receptor Family 1 Subfamily D Member
2) was used as the input to HGCA2.0 and the resulting clade was expanded to 98 internal
nodes containing 398 genes (Figure S7), 220 of which were olfactory receptors. Among
the olfactory receptor leaves, smaller subclades of other gene families, such as Interferon
Alpha family or Pregnancy Specific Beta-1-Glycoprotein family, were encountered. A
particular characteristic of that clade was that its internal nodes were very close to its root,
i.e., the cophenetic distances [105] of all its coexpressed gene pairs were similar. Cophenetic
distances refer to the pairwise distances between genes, as these are depicted on a gene
coexpression tree [32]. Essentially, the coexpression tree represents a distance matrix,
where pairwise distances between its genes correspond to their Cophenetic distances. The
comparison of the original Pearson correlation-based distance matrix with the Cophenetic
distance matrix derived from the UPGMA-constructed coexpression tree can be used to
measure the quality of the hierarchical clustering. When the pairwise distances between
all 839 olfactory receptor genes and pseudogenes studied in HGCA2.0 were examined,
the average distance prior to clustering was ~0.93. Their respective cophenetic distances
derived from the UPGMA tree were also examined, with the average distance being
~0.96. Those distances corresponded to ~0.07 and ~0.04 Pearson correlation coefficients,
respectively, meaning that, in any case, there was almost no correlation between any
olfactory gene pair. When a STRING analysis was performed, using all 839 olfactory
receptor genes that HGCA2.0 studied, STRING recognised only 376 non-pseudogenes. Out
of 70,500 olfactory receptor gene pairs, 2973 had Pearson correlation-based coexpression
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interaction scores ranging from 0.048 to 0.520, with only two of them exceeding the default
0.400 cut-off.

A HGCA2.0 enrichment analysis of GO Biological Process highlighted terms related
to stimulus detection as over-represented (Table 11). “Detection of a chemical stimulus
involved in sensory perception of smell” which describes 180 of the 398 genes of the clade,
was a top term. For this specific term, there are 387 genes described by it in the gene back-
ground library, 180 of which (46.5%) are located in this coexpression clade. Likewise, the
GO Molecular Function highlighted the terms “olfactory receptor activity” and “G protein-
coupled receptor activity”, and a GO Cellular Component analysis showed the coexpressed
genes as part of membranes. The aforementioned terms are in accordance with the fact
that olfactory receptors are members of the large family of G-protein-binding receptors
and are therefore naturally associated with the cell membrane. A KEGG pathways analysis
similarly highlighted the term “olfactory transduction”, and a Pfam analysis classified the
same 180 genes into the olfactory receptor family. In addition, a WikiPathways analysis
showed top terms for G-protein coupled receptors and interferon-mediated signalling
pathways, the latter being enriched due to the appearance of 4 IFNA-family genes in the
coexpression clade.

Table 11. Selected top gene term enrichments of the coexpressed genes to OR1D2 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 7.2 × 10−269 GO:0050911

Detection of chemical stimulus
involved in sensory perception
of smell

GO: Molecular
Function 1.5 × 10−285 GO:0004984 Olfactory receptor activity

9.1 × 10−236 GO:0004930 G protein-coupled receptor activity
GO: Cellular
Component 9.3 × 10−65 GO:0016021 Integral component of membrane

KEGG 5.9 × 10−225 hsa04740 Olfactory transduction—Homo
sapiens (human)

WikiPathways 1.2 × 10−18 WP455_r106426 GPCRs, Class A Rhodopsin-like

3.8 × 10−8 WP4558_r107928 Overview of interferons-mediated
signaling pathway

Pfam 1.2 × 10−278 7tm_4 Olfactory receptor

In order to determine how the 839 olfactory receptor genes were distributed across the
coexpression tree, a sliding window approach was implemented. The OR1D2 coexpression
clade of 398 genes, was discovered to be the largest one, containing 180 olfactory receptor
genes and 40 olfactory receptor pseudogenes. Another distinct olfactory receptor clade of
135 genes, contained 41 olfactory receptor genes and 41 olfactory receptor pseudogenes.
This clade can be displayed by using OR51A7 as the driver gene and expanding the resulting
coexpression clade to 77 internal nodes. The remaining 537 olfactory receptor genes studied
in HGCA2.0 were scattered throughout the coexpression tree.

3.1.10. Glucocorticoid Receptor Signalling

NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1, also known as Glucocorti-
coid Receptor) is a nuclear receptor of the superfamily of ligand-dependent transcription
factors, mediating the physiologic pleiotropic actions of glucocorticoids [106]. NR3C1 is
ubiquitously expressed across almost all cell types, during all developmental stages. In
the absence of glucocorticoids, the inactive NR3C1 is primarily located in the cytoplasm
as a component of a multiprotein complex, including chaperones (of HSP70 and HSP90
family of proteins and PTGES3) and immunophilins (FKBP5 and FKBP4) [107]. Upon
ligand binding, NR3C1 is conformationally changed, dissociates from the other proteins
of the complex, homodimerises, and translocates into the nucleus, where NR3C1 homod-
imers bind to glucocorticoid receptor elements (GREs), regulating the expression of target
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genes [108], resulting in the regulation of up to 10–20% of the human genome [109]. NR3C1
was used as the driver gene in a HGCA2.0 analysis and the resulting clade was reduced
to 3 internal nodes (Figure 13). The most correlated genes with NR3C1 were RB1 (RB
transcriptional Corepressor 1) and KBTBD2 (Kelch Repeat and BTB Domain Containing 2).
RB1 encodes for a negative regulator of the cell cycle (G1/S transition) and is known as
the first reported oncosuppressor gene [110]. It has been proposed that NR3C1-mediated
cell cycle arrest is induced when the activated NR3C1 inhibits the expression of G1-acting
cyclin/CDK complexes, leading to Rb hypophosphorylation [111]. Therefore, RB1 seems
to be involved in the NR3C1-mediated cell cycle arrest, and thus, was shown as a closely
correlated gene. The function of KBTBD2 appears to be largely unexplored. KBTBD2
induces PIK3R1 ubiquitination, thus, its proteasome-mediated degradation. In the absence
of KBTBD2, the concentration of PIK3R1 increases dramatically [112]. It has been proposed
that free PIK3R1 negatively regulates PI3K signalling by competition with the Class IA
PI3K complex (which is a heterodimer of PIK3R1 and PIK3CA, PIK3CB or PIK3CD) for
binding to phosphotyrosine docking sites [113]. NR3C1 contains two such PI3K recruitment
motifs that contribute to the NR3C1-PI3K interaction. The physical interaction between
NR3C1 and the PIK3R1 subunit of PI3K is essential for the rapid non-genomic effects of
glucocorticoids [114]. In another line of evidence, EZR phosphorylation by SRC induces the
association of EZR with KBTBD2 [115]. As SRC is a component of both the plasma mem-
brane and cytoplasmic NR3C1 complexes, mediating non-genomic NR3C1 signalling [108],
and EZR is a cross-linker of plasma membrane proteins with actin cytoskeleton [116],
EZR-KBTBD2 interaction might contribute to the regulation of non-genomic NR3C1 sig-
nalling [117]. Thus, KBTBD2 may be mechanistically associated with NR3C1 signalling
(especially non-genomic signalling).
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An HGCA2.0 enrichment analysis showed “intracellular steroid hormone receptor
signaling” among the most significantly over-represented GO Biological Process terms
(Table 12). The most highly enriched GO Molecular Function terms were: “transcrip-
tion coactivator activity”, “sequence-specific DNA binding”, “transcription coregulator
activity”, “modification-dependent protein binding”, and “nuclear hormone receptor
binding”, all of which are congruent with the NR3C1 signalling pathway [118]. Among
the most highly enriched GO cellular compartments were the nucleus and nucleoplasm.
Glucocorticoid-activated NR3C1 shows heterogeneous organisation in the nucleus, being
distributed between the nucleoplasm and membraneless compartments, the so-called nu-
clear foci; however, the functional significance of this localisation remains elusive [119].
Using the Chromosome Band analysis, both NR3C1 and TAF7 were shown as being located
in the same cytogenetic region (5q31.3). NR3C1 and TAF7 are indeed positioned in rela-
tively close physical proximity (~2Mbps) within 5q31.3; however, it is unlikely that this
co-localisation is responsible for their coexpression relationship, as a dozen other genes,
that do not appear in the coexpression clade of NR3C1, are located between them.
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Table 12. Selected top gene term enrichments of the coexpressed genes to NR3C1 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 9.7 × 10−4 GO:0030522 Intracellular steroid hormone

receptor signaling pathway
GO: Molecular
Function 1.2 × 10−2 GO:0003713 Transcription coactivator activity

1.3 × 10−2 GO:0140030 Modification-dependent
protein binding

1.3 × 10−2 GO:0035257 Nuclear hormone receptor binding
GO: Cellular
Component 1.6 × 10−2 GO:0005654 Nucleoplasm

Chromosome
Band 4.5 × 10−4 5q31.3

3.1.11. ALS and LGMD Related Genes

Amyotrophic Lateral Sclerosis (ALS) and Limb-Girdle Muscular Dystrophies (LGMD)
are neuromuscular conditions with the common characteristic that any one of a number of
single gene mutations may cause them.

ALS is characterised by the loss of both upper and lower motor neurons, and is the
most common form of motor neuron disorder [120]. Its onset may occur at any age, but
peaks considerably among 54–67 years old, initially involving muscle atrophy, which pro-
gresses to swallowing difficulties, paralysis, and ultimately to death by neuromuscular
respiratory failure. Patients typically survive for 2–5 years after the first symptoms occur,
with 5–10% surviving more than 10 years [121]. Variants in some 30 genes are recog-
nised as monogenic causes of ALS [122–124] and the disease has high estimated rates of
inheritance [125], but for the large majority of patients, a genetic cause has not yet been
identified [126]. Some of the known causal genes have functional relationships to one
another and can be grouped accordingly by function, but no common functional pathway
has been identified and the functions in which they are involved represent a diverse set of
cellular processes [127].

LGMD are characterised by progressive atrophy and weakness of the hip and shoulder
(limb-girdle) muscles, which may progress to other muscles of the body [128]. Age at
onset, severity, and progression of symptoms may vary greatly from case to case [129]. The
condition represents a set of genetic disorders with more than 30 different sub-types, most
of which are associated with genetic defects in one or several specific known genes [130].
Most of these genes have known functional relationships to several of the others, and three
broad categories of cellular function have been recently proposed [131].

To explore gene coexpression functional groupings, each of the causal genes of ALS
(Table S1) and LGMD (Table S2) collected through the bibliography and Orphanet [132],
were submitted to HGCA2.0, and coexpression clades for each one of them were produced.
Clades were then explored manually, with the addition or subtraction of internal nodes, to
identify significant functional enrichments.

Several ALS causal genes were found to inhabit gene clades which produce low
p-value enrichments of terms related to the known functions of the gene (Table S3). These
genes include the neuronal nicotinic acetylcholine receptor subunit CHRNA3 (Cholinergic
Receptor Nicotinic Alpha 3 Subunit), whose clade was enriched for related functional terms
such as response to nicotine, neuromuscular synaptic transmission, and acetyl choline
binding; the kinesin axonal transporter of neurofilament proteins KIF5A (Kinesin Family
Member 5A), whose clade was enriched for synapse, neuron projection, and nervous system;
UNC13A (Unc-13 Homolog A) involved in vesicle maturation during exocytosis occupied a
clade enriched for SNARE binding, synaptic vesicle cycle, and neurotransmitter secretion;
and the NEFH (Neurofilament Heavy Chain) clade was enriched for the synapse and
spontaneous neurotransmitter secretion, as well as Ras GTPase binding. MOBP (myelin-
associated oligodendrocyte basic protein), thought to be involved in stabilisation of the
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myelin sheath, occupied a clade enriched for astrocyte projection, spinal cord injury, and
optic disc oedema. Interestingly, OPTN (Optineurin), the protein product of which links
MYO6 (myosin VI) to the Golgi complex [133], was observed to be coexpressed with a large
cluster of genes highly enriched for muscle contraction and actin-myosin filament sliding.
None of the ALS causal genes were observed to closely inhabit the same clade.

Similarly to ALS, a number of LGMD causal genes were found to inhabit clades en-
riched for terms related to the known functions of the gene (Table S4). However, unlike ALS,
several clades were identified to include more than one of the disease query genes. SGCG,
POMGNT1, DES, ANO5, MYOT, SGCD, BVES, and SGCA co-occupied a clade enriched
for terms such as myofibril, contractile fibre, and muscle structure development. Distinct
from this clade, but with enrichment of overlapping and closely related functions, such
as myofibril assembly and sarcomere, was a clade co-occupied by TCAP, TTN, and CAV3.
Three collagen genes, COL6A1, COL6A2, and COL6A3, were unsurprisingly coexpressed
within a clade of extracellular matrix genes. LIMS2, a gene encoding for the focal adhesion
protein PINCH-2, was coexpressed with a separate clade of genes involved in muscle
contraction. DAG1 (Dystroglycan 1) was coexpressed among other genes that contribute to
the dystrophin-associated glycoprotein complex, enriched in that specific term and also the
more general term “peripheral nervous system development”. LMNA, encoding for part of
the nuclear envelope, inhabited a clade that was enriched for cell adhesion and regulation
of cellular component movement, as well as integrin binding and focal adhesion.

3.1.12. Growth Hormones

The Growth Hormone (GH) family is a cluster of similar genes that encode for proteins
related to growth control, whose main member is growth hormone, also known as soma-
totropin, which is produced in the anterior pituitary gland and has an important role in
controlling growth and cell division [134,135]. Specifically, in mammals, growth hormone 1
is encoded by GH1 [134]. The GH gene family also consists of GH2 which encodes for pla-
cental growth hormone [134], the chorionic somatomammotropin genes (CSH1 and CSH2),
and chorionic somatomammotropin-like 1 (CSHL1), which are expressed in the placenta.
Another member of the growth hormone family is prolactin (PRL), which is associated with
gland differentiation and lactation in mammals [136,137]. CSHL1 was used as the input
in HGCA2.0 and the resulting coexpression clade included all members of the GH family
among the 24 genes listed (Figure 14). A GO Biological Process analysis ranked the response
to growth hormone as the top term (Table 13). Enriched terms of growth hormone receptor
signalling pathway and regulation of growth also emerged. Moreover, GO Molecular
Function and KEGG pathway analyses showed hormone activity and neuroactive ligand-
receptor interaction in humans as top functions, respectively, consistent with the presence
of a variety of growth hormones and their receptors in the coexpression clade. In addition,
DisGeNET and WikiPathways analyses highlighted pituitary diseases and Prader-Willi
and Angelman syndromes, in which growth hormone production is known to be affected
and therefore lead to developmental delay [138,139]. Finally, a Chromosome Band analysis
showed an enrichment of genes in the chromosomal region 17q23.3, evidenced by the fact
that five genes of the GH family (GH1, GH2, CSH1, CSH2, CSHL1) co-localize at the growth
hormone locus [134,140].

Table 13. Selected top gene term enrichments of the coexpressed genes to CSHL1 in HGCA2.0.

Category p-Value Term ID Description

GO: Biological
Process 1.5 × 10−12 GO:0060416 Response to growth hormone

7.5 × 10−12 GO:0060396 Growth hormone receptor
signaling pathway

7.3 × 10−9 GO:0040008 Regulation of growth
GO: Molecular
Function 6.6 × 10−19 GO:0005179 Hormone activity
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Table 13. Cont.

Category p-Value Term ID Description

7.8 × 10−13 GO:0005131 Growth hormone receptor binding
KEGG
Pathway 2.3 × 10−16 hsa04080 Neuroactive ligand-receptor

interaction—Homo sapiens (human)

3.1 × 10−9 hsa04935
Growth hormone synthesis,
secretion and action—Homo
sapiens (human)

DisGeNET 2.1 × 10−15 C0013338 Pituitary dwarfism
2.7 × 10−15 C0032002 Pituitary Diseases

WikiPathways 3.9 × 10−5 WP3998_r106536 Prader-Willi and Angelman
Syndrome

Chromosome
Band 3.4 × 10−10 17q23.3
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3.1.13. Antisense Genes

An antisense gene of a coding or non-coding (sense) gene is transcribed from the
opposite strand to the strand the sense transcript is transcribed from. Antisense genes
are primarily involved in gene expression regulation, although they might fulfil various
roles [141]. HGCA2.0 studies 3627 genes which are labelled as “antisense” in their gene
description, 1376 of which include the “-AS” suffix in their HGNC gene symbol. GATA3,
NR2F1, and MEF2C, which are genes with known antisense transcripts, were used as drivers
in HGCA2.0. In all three cases, the most coexpressed gene to each driver gene was its
corresponding antisense transcript, being situated in the adjacent branch (Figure 15), which
in turn discloses a possible functional association. Indeed, GATA3-AS1-driven tumour
growth and metastasis in liver cancer are mediated by GATA3 [142], and NR2F1-AS1 was
shown to have adverse effects in pancreatic cancer by activating the NR2F1/AKT/MTOR
axis [143]. In the human genome, the primary transcripts of NR2F1 and MEF2C constitute
divergent overlapping pairs with their antisense transcripts, while the primary transcript
of GATA3 and its antisense form a divergent non-overlapping gene pair, with an intergenic
distance of less than 1.5 Kbps between their 5′ ends (Figure S8).
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3.2. Coexpression Tool Benchmarking

13 genes of the use cases described earlier (C1orf68, CSHL1, HLA-DMA, HSP90AA1,
HSP90B1, MT1M, NLRC5, NR3C1, NRP1, OR1D2, RPL11, STAT1, and TMPRSS2) were
used for benchmarking of HGCA2.0 and four other popular webtools (Table S5). The tools’
performances were evaluated based on their produced PPI network metrics, as well as
the relevance of their enriched biological terms and their corresponding adjusted p-values.
For C1orf68, HGCA2.0, COXPRESdb, and GTEx-based GeneFriends performed best, while
SRA-based GeneFriends did not result in a connected STRING network and ARCHS4

produced no coexpression results. For CSHL1, HGCA2.0 exhibited the best performance
regarding network metrics. Most webtools produced enriched terms related to growth
hormone activity. For HLA-DMA and NLRC5, all webtools except for SRA-based GTEx
had dense networks, with HGCA2.0 performing best, showing enriched biological terms
related to defence response and antigen processing. For the HPS90AA1 and HSP90B1
heat shock protein genes, all webtools, except for SEEK, performed comparably well,
showing “Protein Folding” and “Response to endoplasmic reticulum stress” as enriched
terms, respectively. For MT1M, SRA-based GeneFriends and ARCHS4 produced networks
with 1 edge each, while the other webtools found no connections. COXPRESdb produced
the lowest enrichment p-values, while HGCA2.0 produced the second highest ones. For
NR3C1, SRA-based GeneFriends and ARCHS4 performed best regarding network metrics,
while HGCA2.0 showed the sparsest network. In addition, HGCA2.0 discovered no
enriched terms, while the enriched biological terms discovered by the other webtools were
very generic. In the case of NRP1, HGCA2.0 and SEEK performed best, both in network
metrics as well as enrichment p-values. For RPL11, all webtools exhibited dense networks
with high levels of statistical confidence, although SEEK and SRA-based GeneFriends
performed slightly worse. For OR1D2, all networks were sparse, with only HGCA2.0,
ARCHS4 and, to some extent, COXPRESdb producing statistically significant enriched
terms related to olfactory receptor biological functions, with HGCA2.0 having by far the
lowest p-values. GTEx-based GeneFriends had the densest network, but its coexpressed
genes were enriched for “sexual reproduction”, a term unrelated to olfactory receptors. It
should be mentioned that the analysis of ARCHS4 used only 76 genes mapped by STRING,
as the webtool outputs a list of a maximum of 100 coexpressed genes. For STAT1, HGCA2.0
and COXPRESdb performed best. HGCA2.0 also had the lowest GO Biological Process
enrichment term p-values. For TMPRSS2, COXPRESdb performed best in both network
metrics and enrichment p-values, while HGCA2.0 had the fourth best performance.

4. Discussion
4.1. Comparison with Previous HGCA Version

HGCA2.0 has been developed as an upgrade to the original Human Gene Correlation
Analysis (HGCA1.0) tool [12], created over 10 years ago. The initial HGCA version included
expression data derived from 1959 healthy high-quality Affymetrix Human Genome U133
Plus 2.0 Array Chip samples, which were manually selected as tissue representatives of
4452 high-quality healthy samples in a way to minimise tissue bias. Microarray samples
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were then normalised using MAS5.0 with default Affymetrix CDF. Since default CDF
does not guarantee a one-to-one gene-probe set correspondence, users were required to
select one of the available probe sets for their gene of interest and, as the original HGCA
was microarray-based, the searchable gene list was also limited, compared to the current
knowledge and understanding of the human genome. HGCA1.0 could produce both lists
of the most coexpressed genes to the gene of interest or neighbour-joining-based [144]
coexpression clades and offered various enrichment analysis categories.

The updated HGCA version is based on 3500 GTEx bulk RNA-Seq samples, which
were automatically selected as representatives of the original 16,704 non-cell line ones.
GTEx guarantees high-quality samples and healthy tissue conditions, as well as optimal
RNA-Seq execution and data preprocessing [11]. In addition, RNA-Seq is a method that
is more accurate and sensitive in measuring gene expression in tissue, compared to mi-
croarrays. Furthermore, as it is not dependent on probe hybridisation, expressions are not
limited to a set of genes. Finally, a UPGMA hierarchical clustering method was used as
an alternative to neighbour joining, as its cophenetic distances better corresponded to the
original pairwise distances.

In large-scale coexpression analyses which depend on the processing of raw data
from different studies, batch correction may be necessary, unless advanced normalisation
algorithms, such as SCAN [145], are employed, as in the case with ACT [2,33]. Although
HGCA1.0 was based on data from more than 300 studies, which were normalised by
MAS5.0, a basic single-channel array normalisation method, no batch correction was
applied. As GTEx is a single study, there was no need for batch correction in HGCA2.0.
In addition, read counts were normalised using the qsmooth algorithm, which performs
best for datasets of various tissues, as is the case of GTEx [27]. HGCA2.0 further contains
new and updated biological term libraries for improved enrichment analyses. In HGCA1.0,
transcription factor analysis was based on predicted transcription factor binding sites from
MATCH [146] hits of Position Weight Matrices from TransFac [147]. On the other hand,
experimentally validated gene-transcription factor interactions from ENCODE and ReMap
are a unique feature of HGCA2.0, thus, being novel in highlighting the transcription factors
which may act as master co-regulators which drive gene coexpression.

4.2. Comparison of Coexpression Webtools

To compare the performance of the 5 coexpression webtools, their outputs for 13 driver
genes were used for the construction of STRING PPI networks, which served as an indepen-
dent measure. Since ribosomal proteins are ubiquitously and concurrently expressed for
ribosome assembly, coexpression webtools expectedly discovered most ribosomal proteins
as coexpressed, resulting in high STRING PPI network metrics and comparable biological
term enrichment p-values (Table S5). Small differences in such low p-values between tools
should not be considered significant, as they might depend on even a single coexpressed
gene difference. STAT1 is a transcription factor related to defence response genes and all
webtools produced enrichments of relevant biological terms, but with highly varying signif-
icance levels, with HGCA2.0 having the lowest p-value, followed by COXPRESdb, while the
two GeneFriends versions were lower than the rest. NRP1 coexpressed gene lists produced
various enrichments depending on the coexpression webtool used, with only HGCA2.0
highlighting the gene’s role in vasculature development. STRING analyses of NR3C1,
TMPRSS2, MT1M, and OR1D2 did not produce dense PPI networks. As a result, webtools
that discovered even one more edge than the rest of the tools, exhibited better network
metrics. Thus, in those four genes, enrichment analyses were mostly used to determine
the best performance. In the cases of C1orf68, CSHL1, and NLRC5, HGCA2.0 performed
best. For HSP90AA1 and HSP90B1, COXPRESdb outperformed all other tools, while for
HLA-DOA, HGCA2.0 performed equally well with COXPRESdb. The performance of
coexpression webtools shows variation on a case-to-case basis, possibly attributable to their
different ways of calculating coexpression between genes and their different transcriptomic
datasets. Overall, COXPRESdb and HGCA2.0 performed best, followed by GTEx-based
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GeneFriends, SEEK and ARCHS4 and, finally, SRA-based GeneFriends. In addition, GTEx-
based GeneFriends outperformed its SRA-based version in almost all examples, hinting
that the choice of GTEx data by HGCA2.0 is favourable for studying condition-independent
gene coexpression. Interestingly, HGCA2.0 and GTEx-based GeneFriends version showed
significant differences in performance for specific genes, even though both were based on
data from the same source. This may be due to the fact that GeneFriends used all available
GTEx samples, without the prior representative sample selection that HGCA2.0 applied,
possibly leading to the introduction of tissue biases: The complete GTEx dataset displays
great variability in the number of samples per tissue, distorting the depiction of the global
coexpression landscape. Furthermore, this effect could be accentuated depending on the se-
lected normalisation process of raw data: GeneFriends GTEx samples were not normalised
using a tissue-aware normalisation method, as opposed to the qsmooth algorithm that was
used by HGCA2.0. These issues could explain the high performance of GeneFriends in
ubiquitously expressed genes (e.g., RPL11), and its low performance in stimulus-related
(e.g., STAT1) or cell type-specific (e.g., NRP1) genes.

Apart from each tool’s performance, there are also differences in the presentation of
coexpression. All webtools except for HGCA2.0 produce a list of the most coexpressed
genes as their main output. While gene lists offer a simple depiction of gene coexpression,
they do not constitute a systems biology approach, as they do not show the interconnections
between coexpressed genes. SEEK additionally shows a heatmap depicting the expression
levels of 100 selected genes from the ordered coexpression gene list in 50 selected datasets,
which is a limited approach, as it is restricted to a specific number of genes and samples
each time. Coexpressed genes can be visualised as Gene Coexpression Networks (GCNs)
in COXPRESdb and GeneFriends, or as UMAP [148] plots in COXPRESdb and ARCHS4.
GeneFriends GCN is interactive as the user can alter the number of coexpressed genes and
the r-value cut-off, while COXPRESdb GCN has a fixed cut-off that does not allow the user
to estimate the strength of correlations between the coexpressed genes themselves. The
coexpression clade visualisation of HGCA2.0 is easily understood by molecular biologists,
who are accustomed to the same depiction in phylogenetic trees. Furthermore, the size
of coexpression clades in HGCA2.0 can be altered. Finally, all other webtools, except for
SEEK and HGCA2.0, depend on external tools to perform enrichment analysis. External
enrichment analysis tools do not replace HGCA2.0’s own enrichment analysis since many
of them do not include non-coding RNAs, as in the case of STRING’s enrichment statistics.

4.3. Limitations

HGCA2.0 is based on the latest GTEx Release (V8), which uses the GENCODE v26
annotation of the GRCh38 human reference genome assembly. As GENCODE v26 was
released on 14 March 2017, genes that were added in later versions of GENCODE were
not included in GTEx V8. Likewise, GTEx V8 contains genes of GENCODE v26 which
have been rendered obsolete in later versions of GENCODE. As GTEx RNA-Seq FASTQ
files are not publicly available, it would be preferable if these data were reprocessed in
new GTEx releases using the latest GENCODE version. That would enable HGCA2.0 to
work to its full potential. This limitation was encountered in an attempt to study hominin
encephalisation using HGCA2.0, where ARHGAP11B was selected as the ideal driver gene,
as it derived from partial duplication of ARHGAP11A after humans and chimpanzees
split [149], promotes basal progenitor amplification and neocortex expansion [150], and its
deletion may cause microcephaly [151]. However, as ARHGAP11B was first introduced
in GENCODE v28, it was not included in GTEx V8, thus HGCA2.0 was not able to study
its coexpression.

Due to the inherent attributes of the coexpression tree depiction used by HGCA2.0,
it is not easy for the user to determine the optimal coexpression clade size for a gene
of interest. Selection of the best size may be determined through achieving the lowest
possible adjusted p-values of enriched terms, by the presence of known gene partners or
the topology of the tree itself. Another feature related to tree depiction, is the fact that
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multiple gene queries are not allowed in HGCA2.0. Furthermore, gene coexpression trees
are not able to efficiently portray anti-correlated genes. As gene correlations are converted
to non-negative distance values prior to hierarchical clustering, coexpressed genes grouped
close to each other usually represent gene partners, but long distances between genes in
the coexpression tree do not necessarily relate to negative correlations.

The rationale for selecting olfactory receptor genes as a use case, was that due to their
monogenic and monoallelic expression, they would be expected to be fully anti-correlated
among themselves (i.e., having Pearson correlation coefficients close to −1). Nevertheless,
in HGCA2.0, their pairwise correlations appear close to 0 (i.e., not correlated). The unique
olfactory receptor gene coexpression pattern would only be revealed using single-cell
RNA-Seq (scRNA-Seq) data, instead of bulk RNA-Seq ones which produce averages of
gene expressions due to the nature of tissue sampling, i.e., using parts of the olfactory
epithelium which contain multiple olfactory cells. This could explain why olfactory receptor
genes were grouped by UPGMA hierarchical clustering on distinct subclades of HGCA2.0.
Interestingly, even though STRING v11.5 aims to connect functionally related genes, it
failed to correlate olfactory receptor genes, while HGCA2.0 achieved their grouping, even
though their correlation values would not sufficiently lead to that conclusion.

Enrichment analysis depends on the annotation quality of each source database. Large
parts of the human genome are not properly annotated, if at all, and there are many varia-
tions in gene annotations between different databases [152]. Additionally, databases which
are based on text evidence may contain misannotated data which may impact the quality
of subsequent enrichment analyses. For instance, due to erratic text-mining, DisGeNet
falsely linked metallothioneins with metatarsalgia [153] and melatonin deficiency [154],
since it misidentified MT1 (type 1 family of the metallothionein superfamily), as MT-I (first
metatarsal bone) and MT1 (Melatonin Receptor 1A).

4.4. Interpretation of HGCA2.0 Predictions

The prediction potential of HGCA2.0 can be assessed by comparing its output to
the existing literature. The use cases demonstrated that HGCA2.0 does indeed have the
ability to reproduce known biology. Thus, the gene coexpression clades identified by
HGCA 2.0 have the potential to reveal novel mechanistic relationships for human genes,
which may give useful insights into cellular processes that involve multiple genes with
diverse functional roles. HGCA2.0 analysis is exploratory with no pre-defined significance
thresholds, the intention being to show the potential for HGCA2.0 to identify novel gene
groupings that may be worthy of future investigation due to their sharing of molecular
functions and potential relevance to the understanding of cellular pathology. So, gene
coexpression functional relationships were explored in two neuromuscular conditions:
ALS and LGMD. Co-occupancy of gene coexpression clades was observed for many of the
genes that harbour causal mutations for LGMD, but no ALS causal genes were observed to
occupy the same clades as one another. This may reflect the fewer functional groupings that
have been proposed for LGMD causal genes [131] compared to ALS causal genes, for which
common functional grouping remains a largely unmet challenge [127]. Complete molecular
mechanistic explanations of these pathologies, tracing the emergence of a single definable
disease (albeit with subtypes and clinical variation) from diverse genetic mutations, remain
lacking for both ALS and LGMD.

Constitutively expressed genes would be expected to be correlated amongst them-
selves in healthy samples, regardless of their differences in biological functions. However,
in HGCA2.0, HSP90B1 which is continuously expressed in cytosol, is coexpressed with its
functional partners. This would imply that there is regulation of the expression even of
constitutively expressed genes, suggesting a revisiting of the term “constitutive” gene.

HGCA2.0 was also tested for its ability to study the coexpression between sense and
their antisense genes. Indeed, in three use cases, sense and antisense were next to each
other in their respective coexpression clades, with all pairs belonging to the divergent pair
class either overlapping or non-overlapping. Divergent genes of the same bidirectional
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promoter share common proximal regulatory elements which constitute the driving force
of their coexpression. The discovery of coexpression between coding and non-coding genes
cannot be achieved using microarray-based coexpression webtools or PPI network tools,
such as STRING [54] or Genemania [51], as none of them study non-coding RNAs.

5. Conclusions

HGCA2.0 is an RNA-Seq-based webtool that performs gene coexpression analysis in
Homo sapiens. HGCA2.0 has been thoroughly tested for ubiquitously expressed genes, as
well as tissue- or condition-specific genes. All use cases were validated by cross-checking
the coexpression partners and enrichment results via an extensive bibliographical search.
In use cases serving to benchmark HGCA2.0 and other coexpression webtools, using
STRING PPI metrics as an independent assessor, HGCA2.0 generally showed the top
performance among its competitors. We believe that this new HGCA version will be an
important addition to the community of molecular biologists, enabling them to create
verifiable hypotheses for gene partnership, especially considering the unique features of
HGCA2.0: its user-friendly interface; its biologically relevant output, avoiding information
overload; the gene coexpression tree depiction; and the enrichment analysis for verified
gene-targeting transcription factors.
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