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ABSTRACT 
 

Until recent decades, most monitoring of surface waters relied exclusively on samples analysed in the 
laboratory for ecologically and management-relevant parameters. It is now possible, however, to 
automatically monitor many parameters using in-situ sensors and to provide remote web-based 
access to these data. Such data are typically provided at frequencies of minutes rather than at the 
weekly, fortnightly or monthly intervals typical of traditional monitoring and therefore capture both 
short-term change and, for inter-annual deployments, long-term trends. Here we give an overview of 
the use of high frequency monitoring (HFM) in Ireland and present case studies from a set of four 
sites, representative of the catchment-stream-lake-estuary continuum, to illustrate new insights that 
such deployments can provide. These include 1. effects of cattle access on stream turbidity, 2. 
biogeochemical processing in agricultural streams, 3. effects of summer storms on dissolved organic 
matter in a catchment and lake, and 4. changes in a trophic index in an estuarine setting. We discuss 
the additional information provided by such systems when compared to traditional monitoring, some 
of the challenges related to their use, and assess the future use of HFM to inform management and 
policy  of aquatic systems on the island of Ireland.  



INTRODUCTION 
 
Surface waters are vital global resources. They not only provide critical ecosystem services for the 
human population (Reynaud and Lanzanova 2017), but are also important in terms of biodiversity 
(Dudgeon et al. 2006), and are the site of key processes for carbon and nutrient cycling. There have 
been ongoing declines in the quality of surface freshwater systems for many decades, both globally 
(Cross et al. 2015) and on the island of Ireland (EPA 2019; NIEA 2021; Rippey et al. 2022). These 
declines have been attributed to a range of pressures including those from land cover change, 
increased pollution and global warming (IPCC 2022). Until relatively recently, monitoring programmes 
in surface waters relied exclusively on the collection of discrete samples that were then analysed in 
the laboratory. These include programmes used to support, for example, the Water Framework 
Directive (WFD) (CEC 2000) (Brack et al. 2017). Sampling frequency has generally been at relatively 
long time intervals (weekly, fortnightly or monthly) due to time and budget constraints. Low frequency 
data have, in fact, informed much of the current understanding of how aquatic systems operate. For 
example, data at relatively long intervals were used to identify the causal relationship between 
increased nutrients and algal biomass (Dillon and Rigler 1974; Vollenweider 1976) and the effects of 
seasonal changes in climate on thermal stratification in lakes (Imberger 1994). These low frequency 
data, however, will miss the effects of short-term changes on aquatic ecosystem functioning, such as 
the impacts of sudden climate extremes like storms and heatwaves, episodic and random pressures 
due to human management, or the occurrence of within system events such as toxic algal blooms. The 
impacts of such events are often highly non-linear in behaviour and therefore key process dynamics 
can be missed (Krause et al. 2015). Ecosystem theory which is based on more traditional lower 
frequency sampling will therefore potentially be biased, as by definition short-lived or unpredictable 
events, which can have extreme and unexpected consequences, will be missed (Jennings et al. 2012; 
Marcé et al. 2016; Jennings et al. 2022). Understanding the effects of such events is becoming more 
urgent given current and projected increases in the frequency and severity of climate extremes due 
to global warming (IPCC 2022). In addition, many of the more rapid changes in aquatic systems are 
regulated by organisms such as bacteria and phytoplankton that have generation times in hours or 
days and therefore will show rapid fluctuation.  
 
Technological developments in recent decades now make it possible to automatically monitor 
ecologically and management-relevant parameters in rivers and lakes using sensors, and to provide 
web-based access to these data in near real time (Marcé et al. 2016; Rode et al. 2016). In contrast to 
traditional monitoring, sampling frequencies are typically sub-hourly. High frequency monitoring 
(HFM) systems in lakes and reservoirs are generally located close to the deepest point, with a suite of 
sensors measuring, for example, water temperature, dissolved oxygen, pH, turbidity and chlorophyll 
fluorescence (Marcé et al. 2016). Until recently, most lake systems were deployed from a buoy or 
other floating station at a fixed depth (typically c. 1m from the surface), with often a chain of 
temperature sensors to capture changes in the thermal profile with depth. However, winched 
systems, where all sensors move up and down through a single point in the water column, are now 
becoming more common (e.g. Brentrup et al. 2017; de Eyto et al. 2019). High frequency monitoring 
can be particularly useful in rivers and streams where conditions are dynamic and change even more 
rapidly than in lakes (Rode et al. 2016). River monitoring stations generally consist of in-situ 
deployments of sensors in submerged cages (e.g. Ryder et al. 2014), or in bankside installations where 
water is pumped to the station and then back into the river (Jordan et al. 2007; Jordan et al. 2012). 
The suite of water quality sensors used in riverine systems is generally similar to those used in lakes, 
with water level sensors providing data for quantifying stream discharge. 
 
The key to the wider use for in-situ HFM in Europe and on the island of Ireland was the development 
of improved control and communication systems in the 1990s. Some of the most sophisticated early 
systems were developed for a set of European lakes (i.e. 18 stations across Europe funded by a series 



of EU projects (Rouen et al. 2004)) and included two in the Republic of Ireland: one in Lough Lein 
(Kerry) and one in Lough Feeagh (Mayo). The system on Feeagh has been maintained by the Marine 
Institute in the decades since and is now one of the longest running HFM platforms in Europe (de Eyto 
et al. 2020). In 2003, three river HFM stations were also established in the same catchment while a 
winched system was established on Lough Furnace, the coastal lake that lies between Feeagh and the 
sea at Clew Bay, in 2008. Together with a network of water level gauges, precipitation gauges and 
river water temperature sensors, these are the key components of the Burrishoole Ecological 
Observatory, which has provided new insights in lake and catchment functioning using data that are 
both high frequency and multiannual including, for example, on the effects of storms (de Eyto et al. 
2016; Andersen et al. 2020; Calderó -Pascual et al. 2020; Hoke et al. 2020) and global warming (Kelly 
et al. 2020). The Burrishoole is a site member of the Global Lake Ecological Observatory Network 
(GLEON), with the resulting data been used in many multi-site publications (e.g. Jennings et al. 2012; 
O’Reilly et al. 2015). Other HFM studies of note on Irish lakes have included a three-year investigation 
of water column mixing and internal phosphorus loading in Lough Namachree, a small drumlin lake in 
County Monaghan (Crockfort et al. 2015), and deployments in Lough Ine (County Cork) which 
investigated changes in conditions during seasonal stratification (Sullivan et al. 2013). More recently, 
a HFM system was deployed in Lough Neagh in 2019 to help determine the nitrogen threshold at 
which phosphorus was released from lake sediment (Thompson 2022).  
 
Some of the longest running HFM deployments on Irish rivers are those in the Teagasc Agricultural 
Catchment Programme (ACP) funded by the Irish Department of Agriculture Food and the Marine 
(Mellander et al. 2022). These include high-resolution water quality monitoring stations at the outlets 
of six study catchments continuously monitored since 2009. The stations include a wet chemistry 
based system to monitor two fractions of phosphorus (P) (total P and total reactive P) and total 
oxidised nitrogen (TON), a system that was first trialled on the island of Ireland in the Lough Neagh 
catchment (Jordan et al. 2005). The stations also have sensors to monitor turbidity, total organic 
carbon (a proxy for dissolved organic matter, DOM), temperature, and electrical conductivity on a sub-
hourly basis, together with river discharge (Mellander et al. 2012, 2022). The ACP programme has 
provided a wealth of data on nutrient export from agriculture (e.g. Mellander et al. 2012; Mellander 
and Jordan 2021; Shore et al. 2017) and has expanded more recently to include eddy flux covariance 
towers for gaseous emissions measurements from agricultural land. In addition to these long-term 
ACP stations, other shorter studies in Irish rivers have included the DEPLOY project in the River Lee 
(Cork) (e.g. Regan et al. 2009), a demonstration project that aimed to highlight the capability of multi-
sensor systems to remotely monitor variations in water quality. Targeted deployments in the 
Burrishoole catchment have also been successfully used to capture impacts of forestry management 
practices (O’Driscoll et al. 2016) which are often apparent at sub-daily time steps and not captured by 
routine sampling. Separate to the use of HFM in water bodies, there has also been an increase in the 
use of sensor data and camera observations to provide information in agricultural settings. Williams 
et al. (2020), for example, used cameras to track cattle behaviour at a drinking trough and calculate 
water in-take, while Rice et al. (2021) combined motion-capture cameras and terrestrial laser scanning 
to assess impacts of cattle access on stream bank modifications at three Northern Ireland catchments.  
 
Whilst Irish participation in networks such as GLEON has been strong, to date there has been no 
collaborative publication that investigates the potential of information from HFM systems in an Irish 
context. Ireland’s temperate oceanic climate, high rainfall, high organic soils and reliance on livestock-
based agriculture mean that HFM may be particularly well suited to understanding the pressures on 
Irish aquatic ecosystems. Here, we present a set of four new case studies that demonstrate the 
potential use of HFM from differing catchments that are representative of site types along the 
catchment-stream-lake-estuary continuum: (1) at the field to small stream scale, (2) within the stream 
system, (3) at the larger river and lake scale, and (4) in the lower reaches of a large river. These aim to 
illustrate the capacity for HFM to (1) capture sudden changes, in this case related to cattle access and 



separately to storms, (2) provide new insights into biogeochemical processing in catchments, (3) 
inform on load estimation and the sampling design of monitoring programmes, and (4) be used to 
provide useful indices of trophic status in estuarine waters. We then further review the potential use 
of such data to inform Irish water resource management and policy. 
 

METHODS AND MATERIALS 
 

CASE STUDY SITE DESCRIPTIONS 
 
Case Study 1: Commons River 
This case study focused on a cattle drinking site in a third order stream on the Commons River, County 
Louth, in the northeast of Ireland (53°50'01.7"N, 6°25'04.9"W) (Table 1, Fig. 1a). Precipitation at the 
site was typical for eastern Ireland with annual rainfall of 756mm year-1 in 2017 and rainfall occurring 
on 244 days. The study field was used for grazing cattle and had 25 heifers and between 2 and 6 cows 
in the study period. The field was bordered on its north-eastern side by the stream, a small tributary 
of the White River (stream width between 1 and 3m depending on water level). The cattle drinking 
point was only accessible from the study field side of the bank. Electric fencing also prohibited cattle 
from going further upstream or downstream. This site was selected as cattle movement was confined 
but it also had sufficient water level for sensor deployment on the streambed. The stream waters at 
the site had relatively high nutrient concentrations during two sampling occasions in April and June 
2017 (TP: 0.080, 0.258mg L-1 respectively; TON: 1.82, 2.00mg L-1 respectively) (Ó hUallacháin et al. 
2019). 
 
Case Study 2: Ballycanew River 
The Ballycanew catchment (area 11.9km2) is situated in the Brackan sub-basin of the Owenavoragh 
(36 km2) catchment (52°37ʹ7ʺN, 6°18ʹ51ʺW), County Wexford, in southeast Ireland (Table 1, Fig. 1a). 
It was chosen to represent intensively managed agricultural land on poorly drained soils as part of the 
Teagasc Agricultural Catchments Programme (ACP). Most of the land (97%) is used for agriculture and 
of that 78% is used for grass production. The main farm enterprises are beef and dairying with a mean 
livestock unit of 1.28ha-1. The remaining land is used for arable crops (mainly spring barley). About 
two thirds of the catchment has poorly-drained Gleysols. One third of the catchment, on the elevated 
land, has well-drained Cambisols. Where the two soils meet, there is a spring line with numerous small 
springs feeding tributaries to the main stream. The catchment has an extensive ditch/tile drainage 
network that increases hydrological connectivity (Shore et al. 2014). The hydrology is flashy (high ratio 
of storm flow to base flow magnitudes) and the hydrological pathways are dominated by quick surface 
pathways. The catchment is therefore at risk for loss of P despite relatively low soil P sources 
(Mellander et al. 2015), and for loss of sediment, mainly eroded from the riverbanks (Sherriff et al. 
2016). 
 
Case Study 3: Black River and Lough Feeagh 
The Black River flows into Lough Feeagh (53°55'46.6''N, 9°34'24.6''W), the largest freshwater lake in 
the Burrishoole catchment, Co. Mayo (Table 1, Fig 1a). Its catchment area is 48.3km2 and includes 
uplands with an altitude range of 8m - 627m (Doyle et al. 2019). Blanket bog represents 64% of land 
cover, commercial afforestation covers 17%, and the remainder is made up of agricultural and semi-
natural grasslands. Rainfall is high reflecting the oceanic location. Doyle et al. (2019) estimated that 
annual precipitation from 2011 to 2017 was 2,623mm year-1. The Black River typically has high levels 
of humic materials but low levels of nutrients. The range for colour reported by Doyle et al. (2019) 
was 15-257mg PtCo L-1 while that for dissolved organic carbon (DOC), a proxy for DOM, was 2-25mg 
DOC L-1. The Black River flows into Lough Feeagh, which has mean and maximum depths of 14.5m and 
46m respectively, a surface area of 3.92km2, and a retention time of approximately five months (de 
Eyto et al. 2016; de Eyto et al. 2020). It is also highly coloured (ca. 80mg L-1 PtCo, with a mean DOC 



concentration of 8.82mg L-1). The lake water is slightly acidic (pH = ca. 6.7) with low alkalinity (< 20mg 
L-1 CaCO3) (de Eyto et al. 2016). 
 
Case study 4: Moy Estuary 
The monitoring site used for the current study was in the lower reaches of the River Moy, downstream 
from the marina in Ballina town, in an area with highly variable salinity (54°8'6.4''N, 9°8'16.6''W) (Table 
1, Fig. 1a). North of Ballina town, the River Moy flows to the sea via a long, narrow estuarine channel. 
After approximately 8km, the estuary widens to form a north-facing triangular bay. The Moy and Killala 
Bay catchment includes the area drained by the River Moy and all streams entering tidal water in 
Killala Bay between Benwee Head and Lenadoon Point, Co. Sligo. This drains a total area of 2,345km². 
Given the urban location, the total population of the catchment is relatively high at approximately 
77,260. A long sandy island (Bartragh Island) separates the south-western side of the bay from the 
open water. Much of the inner part of the bay is intertidal. The estuary is classified at Moderate status 
under current WFD monitoring (Wan et al. 2017; EPA 2019).  
 

CASE STUDY METHODS AND DATA ANALYSES 
 
Case Study 1: cattle access site on Commons River 
Two multi-parameter sondes (YSI 6600 EDS V2-2), each of which included a turbidity sensor measuring 
in nephelometric turbidity units (NTU), were deployed in the stream from June 2017 to June 2018: 
one placed 3m upstream from the upper boundary of the cattle access point and the second 1m 
downstream of the lower boundary. These were first calibrated in the laboratory following 
manufacturer recommendations using an NTU standard (YSI, Part number 607300) and deionised 
water. Prior to deployment, the sensors were run overnight in the same sample to ensure the readings 
were consistent and there was no significant inter-sensor variability. In the stream, each sonde was 
placed in a specially constructed steel cage (Fig. 1b) to ensure that probes were completely submerged 
and were not dragged along the riverbed. Site visits were made every four weeks to clean the sensors 
and download data. The sondes were set to record at 15-min intervals. The data used here were for a 
ten-day period from 8 to 17 August 2017. The nephelometer data were first corrected for drift due to 
fouling (Wagner et al. 2006). River discharge and precipitation data were available from an ACP 
monitoring station approximately 280m downstream from the cattle access site (Mellander et al. 
2022). The 5th percentile of discharge for the study year was used as a measure of low flow at the site. 
 
Three motion-activated infrared cameras (Bushnell Trophy Cam™ HD, Model 119676) were placed at 
different angles to record presence of cattle or other species in the stream. The cameras also captured 
images during darkness. The data extracted from the image files included date and time, and the 
number of cattle in the stream. Access by other species was also noted. As the nephelometer data 
were recorded at 15-min intervals, cattle data were summarised (mean and maximum number) for 
the 15-min period prior to a nephelometer reading for plotting. To avoid pseudoreplication for 
statistical analyses, the data were then classified into ‘events’, defined as a period of continuous cattle 
access that was separated by at least 30min. The gaps between events ranged from 30min to 23h, 
with a median of 4h 50min. The maximum and mean number of cattle during an event were used as 
metrics of cattle pressure. The relationships between these metrics and the maximum difference 
between the upstream and downstream nephelometer readings for any event were assessed using 
generalised additive models (package mcgv, Wood 2011) with a cubic regression spline in R (Version 
4.0.2, R Core Team, 2020). The models were assessed for any breaches of assumptions and a variance 
structure was added to account for a breach of the assumption of heterogeneity (Zuur et al. 2009).  
 
Case Study 2: nutrient dynamics in the Ballycanew River 



The catchment outlet at Ballycanew is equipped with a wet chemistry bankside P analyser (Jordan et 
al. 2013) (Fig. 1c) that uses Hach Sigmatax-Phosphax instruments to analyse river water samples for 
total P (TP) and total reactive P (TRP) concentrations, giving three TP and three TRP analyses per hour 
by alternating the digestion step. The detection limit is 0.010mg P L-1 and the measuring range is 
0.010mg P L-1 to 5.000mg P L-1. The bankside kiosk is also equipped with optical sensors for monitoring 
of TON, turbidity and total organic carbon TOC (Hach UVAS SC sensor), all on a 10-min basis. A Hach 
Nitratax SC-Plus UV was used to monitor TON with a measuring range of 0.1 - 50mg l-1. The TON data 
were assumed to be equivalent to nitrate nitrogen (NO3-N) concentration based on comparison with 
nitrite nitrogen (NO2-N) concentrations (Melland et al. 2012). Turbidity was monitored using a Hach 
Solitax calibrated to laboratory base suspended sediment (SS) concentration (Sherriff et al. 2016). 
Stream water level was recorded on a 10-min basis with OTT Orpheus Mini vented-pressure 
instruments installed in stilling wells. Stream discharge was calculated via rating curves, developed in 
WISKI-SKED software, on Corbett non-standard flat-v weirs using the velocity-area method with OTT 
Acoustic Doppler Current meters. Standard weather data (including rainfall) were collected on a 10-
min basis from a BWS200, Campbell Scientific weather station (www.acpmet.ie) located in the central 
lowlands of the catchment. The aim of this Case Study was to demonstrate the use of high frequency 
in situ monitoring to gain insight into the processes driving nutrient and sediment loss. The direction, 
slope and amplitude of plots of concentration (C) versus stream discharge (Q) can provide useful 
information on temporal and spatial mobilisation and transfer of nutrients and sediments during 
runoff events, generally referred to as hysteresis relationships (Hashemi et al. 2020). A clockwise C-Q 
loop in the plot indicates a quick or short transfer of nutrients and sediment from the streambed or 
riparian areas while an anticlockwise loop indicates a slow response or a transport from more distant 
sources. 
 
Case Study 3: dissolved organic matter monitoring in the Black River and Lough Feeagh 
The Automatic River Monitoring Station (ARMS) located on the Black River had a suite of 
instrumentation and included a sensor measuring chromophoric DOM (CDOM) fluorescence, a proxy 
for DOC concentration (Seapoint CDOM UV fluorometer). The CDOM data were logged at two minute 
intervals. River water temperature data were collected from the same site by a multi-parameter sonde 
(Hydrolab DS5, OTT). Water level was measured on the adjacent Glenamong River every 15 min using 
a data logger (Orpheus mini, OTT Hydromet). The water level for that site was converted to stream 
discharge using an established rating curve. The Black River discharge was then estimated using the 
drainage area ratio method (Hirsch 1979) and the Glenamong data. The 95th percentile value was 
calculated as an indicator of high flow rates. 
  
An Automatic Water Quality Monitoring System (AWQMS) on Lough Feeagh, situated at the deepest 
point of the lake (46m), collected high frequency sensor information every 2min which was 
transmitted back to a logging computer (Fig 1d). Vertical temperature profiles were measured using 
12 platinum resistance thermometers (PRTs, Lab facility PT100 1/10DIN 4 wire sensor, 
www.labfacility.co.uk) at 2.5, 5, 8, 11, 14, 16, 18, 20, 22, 27, 32, and 42m. The AWQMS also had a 
multiparameter sonde situated at 0.9 m (Environmental Hydrolab Data Sonde X5), which included 
measurement of water temperature. CDOM data were also available from the AWQMS at 2min 
intervals from a second Seapoint sensor. All sensors were cleaned fortnightly.  
 
The fluorimeter output in mV from the CDOM sensors was first corrected for a fluorescence reading 
in distilled deionized water (clear water correction) and further corrected for temperature quenching 
using stream and lake surface water temperature (Watras et al. 2011; Ryder et al. 2012). The two-
minute corrected CDOM data were then aggregated to hourly means. Dissolved organic carbon 
concentration was estimated separately for each sensor. The CDOM fluorescence data were 
converted to estimated DOC concentration using separate relationships for each site as described in 
Jennings et al. (2020). These used DOC data from multiple filtered water samples that were analysed 



within 48h in the laboratory using a Sievers TOC Analyser.  Estimated DOC data from 1 May to 30 
September 2018 were used in the current study. Values for five hypothetical weekday sampling 
programmes were extracted from the hourly mean data for the Black River by sub-setting the data to 
produce five datasets with one data point per day (midday) for each day between Monday and Friday 
inclusive. Data were also extracted for all events where stream discharge was greater than the 95th 
percentile (5.8m3 s-1) to assess whether any weekly sampling scenario coincided with the extreme high 
stream discharge events and therefore would have captured any resultant change in concentration. 
Estimated daily DOC loads were calculated for the Black River as the product of total daily discharge 
and mean daily estimated DOC concentration. 
 
Case Study 4: using high frequency monitoring to provide an index of estuarine eutrophication 
The deployment in the Moy estuary site used a Hydrolab DS5x Datasonde equipped with sensors to 
collect temperature, salinity in practical salinity units (psu), dissolved oxygen (DO), and pH. The sonde 
was attached to a mooring buoy just out of the main navigation channel and was suspended at a depth 
of 1m below the surface. Data were recorded to the internal memory every 20 min and the 
deployment was from February to August 2013. The mooring was visited every 4 to 6 weeks to clean 
the sensors, download the internally logged data and replace the batteries. In some cases, the sensors 
required more maintenance than could be undertaken in the field and therefore there were some 
gaps in the deployment.  
 
The data for the months from February to August 2013 were used in the current case study. 
The sensor setup was chosen to allow for the calculation of an index that uses pH and dissolved 
oxygen data to assess eutrophication state. This phDO index was developed using a range of 
pH (as pH units) and DO saturation (as % O2) values observed in multiple water bodies across 
Ireland (O’Boyle et al. 2013). To remove the effects of outliers, the range for each variable was 
first calculated based on the lower 5th and upper 95th percentile values at the study site. The 
monthly index (i) was calculated by adding together the normalised parameter ranges for each 
month and dividing that value by two (Eq. 1). Index values therefore ranged from 0–100, with 
0 indicating no variation in either variable and 100 representing the maximum observed 
variation in both variables.  
  

i = [((range pHi)/(max range pHn/100))+((range DOi)/(max range DOn/100))]/2 (Eq. 1), 
  
where range pHi and range DOi are the difference between the 5th and 95th percentile values 
for pH and DO respectively for the Moy case study data, and max range pHn and max range 
DOn are the maximum range for the full set of values from across Irish estuaries that were used 
to create the model.  

  
RESULTS 

 
Case Study 1: cattle access effects on turbidity in the Commons River 
Stream discharge over the ten-day study period was generally low and below the 5th percentile of 
annual discharge in 2017 (0.004m3 s-1). It increased on 14-15 August following rainfall of 19.2mm on 
the 14 August (Fig. 2a). Turbidity also increased at both the upstream and downstream nephelometers 
in response to increased flow on the 14 August to daily maxima of 12.7NTU and 20.8NTU respectively 
(Fig. 2b). There was also a smaller increase in turbidity at the upstream nephelometer only on 13 
August, the initial day of rainfall, but before discharge had increased. However, multiple other spikes 
in turbidity were recorded only by the downstream nephelometer throughout the study period during 
low flows. These spikes coincided with 46 occasions when cattle were also recorded in the stream by 
the cameras (Fig. 2b). The number of cattle in the stream ranged from 1 to 8 head 15-min-1, with a 
median of 2 head 15-min-1. The maximum difference between upstream and downstream turbidity 



for any 15-min period that coincided with cattle access was +164NTU, with a median of +7NTU. In 
total there were 22 cattle events i.e. discrete periods with continuous cattle access. The model 
between the downstream-upstream difference in turbidity and the maximum number of cattle during 
an event (range: 1 to 8 cattle) had an r2

adj. of 0.59 (p<0.0001, n = 22) (Fig. 2c). This relationship was 
positive and slightly non-linear, indicated by an estimated degrees of freedom (edf) of greater than 1 
(edf = 1.38). The model with the mean number of cattle as the co-variate (range: 1 to 4.4 cattle) had 
a lower r2adjusted of 0.50 (p = 0.00011, n =22). 
 
Case Study 2: Ballycanew, Agricultural Catchments Programme 
Changes in stream discharge and in concentrations of TP, TRP, NO3-N, TOC and SS were captured 
during two successive rainfall events in August 2020 (Fig. 3a). The first event (Event I) produced a total 
streamflow of 26.7mm over 48h and the second (Event II) 38.4mm over 61h and both events had 
maximum flows that were above the 95th percentile for the period 1 October 2010 to 30 September 
2020. In-stream TP, TRP, SS and TOC concentrations were generally elevated during these events, 
while the NO3-N concentrations in contrast were diluted, increasing again after discharge had subsided 
(Fig. 3b-d). Compared to a long-term annual average mass load for 2010 to 2019, the total mass load 
during the two events combined was 27% for TP and 30% for TRP (Table 2). For both TP and TRP, there 
was a higher percentage lost in Event II. The loss of SS was 16% of the long-term annual average and 
again there was a larger loss in Event II. The loss of NO3-N was 7% of the long-term annual average, 
while that for TOC was 16%. 

For the two events, the concentration to stream discharge (C-Q) hysteresis loop for TP was clockwise 
with a positive slope, indicating rapid transfer from sources closer to the stream (Fig. 4a). 
Concentrations of TP were lower in Event II than Event I, likely due to source depletion. For TRP, the 
pattern was similar, but in Event II there was a weak figure-of-8 C-Q loop, a pattern indicative of more 
distant and slowly transferred sources that only became connected at higher flows (Fig. 4b). The plot 
for SS also showed a positive and clockwise C-Q hysteresis, but with an amplitude that increased in 
Event II, suggesting proximal sources of sediments with connection to high availability sources that 
increased in the second event (Fig 4.c). In contrast to P fractions and SS, the C-Q hysteresis for NO3-N 
was anticlockwise (Fig. 4d), with a negative slope in both events and a lower amplitude in Event II, a 
pattern that indicated the sources were distant or slowly transferred and were depleting as the event 
progressed. The loop for NO3-N also appeared as chemo-static (i.e. a horizontal C-Q relationship) when 
at stream discharge rates of 2 to 5m3 s-1. The pattern for TOC was similar to TRP, with a positive slope 
and a clockwise direction for Event I and a weak figure-of-8 pattern for Event II (Fig. 4e). While the 
patterns differed between the parameters, for all the pollutants there was a change in slope at 
discharge rates of ca. 2m3 s-1, indicating a switch to quick-flow transfer pathways (surface runoff, drain 
flow etc.) above this threshold. 

 
Case Study 3: estimation of DOC concentration and loads, River Black and Lough Feeagh, Mayo 
The weather in the study period for Case Study 3 (1 May and 30 September 2018) was exceptional 
due to the co-occurrence of two extreme weather events: 1. a drought from 22 May to 14 July broken 
by 2. a summer storm, Storm Hector, between 13 to 19 June (Fig. 5a). Discharge from the Black River 
was generally low in the dry periods before and after Storm Hector, but increased immediately 
following the storm with high flows on 18 and 19 June. In addition, there were seven other occasions 
when mean daily discharge in the Black River exceeded the 95th percentile value (5.8m3 s-1): two in 
May (1 and 20), three in August (1, 17 and 18) and two in September (8 and 17) (Table 3). The last of 
these was the highest mean daily discharge (22.22m3 s-1) and was associated with the highest rainfall 
over the period (28.8mm day -1). 
 
The estimated DOC concentration in the river was highly variable. It increased during the high 
discharge events in May, but decreased during higher flows on, for example, 17 and 18 August, and 
16 September (Fig. 5b). The response of concentration during Storm Hector in June was more complex. 



Concentrations increased for an initial period on the 13 June to 11.8mg L-1 but then declined to very 
low levels of < 3mg L-1 on 16 June before increasing again. A similar decline with increased flow 
occurred during the largest discharge event on 17 September. Concentrations declined from 15 mg L-

1 on the 16 September to 4.3mg L-1 on the 17 September before increasing again. Six of the nine events 
were captured by at least one sampling programme, but, interestingly they would have been missed 
by all others, while events that occurred at weekends would have been missed entirely (Table 3). The 
timing of events during any day also had implications for monitoring. On 20 May (a Monday), for 
example, estimated DOC concentrations started to increase at 4.00 and peaked at 18.4mg L-1 at 23.00, 
but had declined again by 8.00 on the 21 May and would not have been captured by a Tuesday midday 
sample (Table 3). Despite these fluctuations in DOC concentration, the pattern in the estimated DOC 
loading to the lake was dominated by the effect of day-to-day changes in stream discharge (Fig. 5d). 
However, while the mean daily DOC load using all HFM data was 0.38kg ha-1 day-1, the estimated values 
based on the five weekly sampling scenarios ranged from 0.31kg ha-1 day-1 (Friday sampling) to 0.62kg 
ha-1 day-1 (Thursday sampling), an underestimation of -24% and overestimation of 51% respectively 
(Table 3). 
 
Water temperature profiles from Lough Feeagh showed that the lake first began to stratify in mid-
May, with an initial period of strong stratification occurring from 29 May to 12 June (Fig. 5c). By 7 June 
the water temperature at 0.9m was 19.4oC, while that at 8m was six degrees lower at 13.1oC. 
Stratification broke down during Storm Hector and by 19 June, the water temperature at 0.9m was 
14.7oC while that at 8m was 14.5oC. Temperatures then increased from 21 June and remained 
relatively high until the lake began to cool in September. Despite these changes in lake physical 
structure, and the variation in DOC loading from the main inflow, the estimated DOC concentration in 
the lake surface waters remained relatively constant from 1 May to mid-June (Fig. 5d). Over the full 
study period, the median estimated DOC concentration in Feeagh was 10.1mg DOC L-1 (interquartile 
range 9.6 to 10.8mg DOC L-1), while that in the Black River was 11.7mg DOC L-1 (interquartile range 6.1 
to 13.8mg DOC L-1). There was a small increase in concentration in the lake following higher flows 
associated with Storm Hector in mid-June, and again after the high flow event in mid-July. The 
estimated DOC concentration in the lake then began to increase to c. 13-14mg DOC L-1 in August and 
September, reflecting the more consistent increase in daily loading during that time. But it then 
declined and became variable following the largest inflow event on 16 September, a date which had 
the highest daily DOC load (Fig. 5d) but actually resulted in decreased concentrations as the large 
volume of lower DOC concentration water from the river (Fig. 5b) diluted the lake.  

 
Case Study 4: using HFM to provide an index of eutrophication in the River Moy 
Water temperatures at the River Moy estuary monitoring site gradually increased in the period from 
February to August 2013 (Fig. 6a). Over that same period, salinity levels increased from values of less 
than 1psu in February and March, reflecting a predominance of freshwater sources to the river, to 
values over 25psu in August, reflecting an increasing influence of tidal waters. Dissolved oxygen 
concentrations declined gradually over the sampling period from above 100% saturation in February 
to approximately 60% saturation in mid-July to August (Fig. 6b). While pH was variable, it stayed above 
8.2 for much of the period, but declined continuously over the month of July to a low of 7.8 in mid-
August. From February to June, the index based on DO and pH data showed that the estuary had little 
or no indication of being eutrophic, with all index values in the ‘unpolluted’ range (Fig. 6c). Only in 
April, did the index go above the unpolluted/intermediate boundary (i.e. an index value 40) at 41.1, 
corresponding to a time when a spring phytoplankton bloom would be expected. There was a large 
increase in the index values to 77.6 in July and 65.3 in August, indicating a tendency towards 
eutrophication in those months, a time when opportunistic macroalgal growth peaks (Bermejo et al. 
2019). 
 
 



DISCUSSION 
The case studies presented here were selected from large data archives to illustrate some of the key 
benefits that HFM can provide (Table 4). They have highlighted the capacity for in-situ automated 
systems to capture the effects of episodic or extreme events, such as livestock movement (Case Study 
1) and storms (Case Study 3), and to track the propagation of these events through linked aquatic 
systems, as in Case Study 3. They also have demonstrated how HFM systems not only provide data on 
current water quality status, but can also be used to gain new insights into catchment processes (Case 
Study 2), improve the design of monitoring programmes (Case Study 3) and be combined to provide 
indices of trophic status (Case Study 4). Moreover, these benefits are enhanced where data from 
multiple sensors are combined, as was the case in all of our examples. Stream discharge and lake 
temperature profile data, for example, were used to provide the physical context for interpretation of 
the information captured by high frequency nutrient monitoring and CDOM sensors, while automated 
image capture gave a visual context to Case Study 1. In that example, the automated image capture 
linked what might otherwise be interpreted as random noise in stream turbidity levels to cattle 
movements.  
 
A particular advantage of combining HFM of water quality and hydrometric parameters in rivers is 
that it allows the capture of the effects of sudden and rapid flow events without skewing the 
information provided through having only a few data points (Cassidy and Jordan 2011). It then 
becomes possible to very accurately quantify nutrient and sediment losses in the stream or river 
throughout the year, or during single events, and relate this to annual losses that include both low 
and high flow periods (Case Study 2). Concurrent monitoring of chemistry and stream flow further 
allows the use of methods such as our example C-Q analysis to gain insights into underlying 
mobilisation and transfer processes. The data can also facilitate other methods that analyse and 
quantify contaminant transfer pathways and concentrations, for example, Loadograph Recession 
Analysis (Mellander et al. 2012). Such analyses can facilitate a process-based understanding of 
nutrient and sediment loss that is essential for the identification of critical source areas (e.g. Thomas 
et al. 2016) and critical transfer times (e.g. Shore et al. 2016) and can be used to support targeted 
mitigation strategies. In Case Study 3, daily mean stream discharge and estimated DOC concentrations 
were also used to assess the implications of weekly versus HFM for load estimation. Of particular note 
was the magnitude of the large over- and under-estimations in estimations of daily DOC loads from 
the Black River when hypothetical weekly sampling frequencies were used. Indeed, initial periods of 
HFM would be invaluable in informing monitoring design and quantifying the uncertainty in 
concentration and load estimates where monitoring programmes will rely on lower frequency data in 
the longer term (Jordan and Cassidy 2011). 
 
Concurrent HFM datasets from lakes and their inflows are still relatively rare in the literature generally. 
In Case Study 3, the availability of both data types also highlighted the damping and integrating effect 
of lake retention time (five months in the case of Feeagh) on lake concentrations. The lower variability 
in the data from the lake sensor when compared to the inflow was striking, with relatively small 
increases in the lake after high loading events such as Storm Hector in mid-July. Concentrations only 
increased substantially once loading was consistently high in autumn. In contrast to the effect on DOC, 
Storm Hector resulted in an immediate but short lived disruption in lake stratification as indicated by 
the temperature changes with depth. Temperature sensors are among the most reliable and widely 
used sensors in lakes and are widely used to capture changes in lake physical structure (Jennings et al. 
2017). The effects of Storm Hector on lake biota in Lough Feeagh in 2018 were variable, with 
disruption of the phytoplankton community (Calderó-Pascual et al. 2020) while bacterioplankton were 
generally less impacted (Hoke et al. 2020). A previous multi-year study of the effects of a 1-in-250 year 
rainfall event during summer also showed that Feeagh was relatively resilient and that conditions 
reset after the winter mixing period (de Eyto et al. 2016). In addition to the benefits that we have 
highlighted, existing HFM station infrastructure may also be used as testbeds for new technologies 



thus supporting new advances in HFM research (e.g. O’Boyle et al. 2014) while HFM can also be used 
to calibrate and validate models that can then be used to simulate past and future changes in, for 
example, lake water temperature (Kelly et al. 2020) (Table 4). 
 
Challenges for the use of HFM in surface water systems 
While our case studies were selected to showcase advantages of automated HFM systems, it is well 
recognised that there are also challenges related to their use. These include issues related to 
deployment moorings, sensor failures and performance issues, technical maintenance, data 
processing, and equipment and personnel costs (Table 4). The original in-stream cage in one of the 
Burrishoole rivers, for example, was damaged on several occasions during high flows resulting in data 
gaps (Jennings et al. 2020), while the moorings of the Lough Lein system referred to earlier also were 
damaged during storms and the deployment was eventually abandoned in 2005. We note, however, 
that successful long-term deployments in the Burrishoole and the ACP catchment have been in place 
for more than 15 years, attributed to strong, in-house technical support. Vandalism can also be a 
factor for some automatic stations, for example in one study by Teng et al. (2009) 8 of 19 oceanic 
mooring failures were attributed to this, but this issue has not been frequently encountered by the 
study authors. Sensor failure or issues related to reliability can also compromise HFM data. The data 
for our Case Studies 2 and 4 had gaps due to failure or maintenance requirements, while in the year 
previous to our Case Study 4, the pH sensor at the Moy failed completely. Even where a sensor does 
not fail, the performance of all water quality sensors should be benchmarked against other 
measurements regularly. A detailed study assessing the performance of a set of commercially 
available nephelometers, for example, reported considerable variability between instruments, results 
that have implications for inter-study comparisons (Rymszewicz et al. 2017).  
 
Sensor maintenance, data collation and quality assurance-quality control measures to minimise signal 
drift are other cost relevant issues which are frequently underestimated, even for sensor-based 
systems that do not require the consumables needed for wet chemistry methods. The technical 
support of sensors on HFM platforms requires a different set of skills than is traditional in aquatic 
science, including continuous maintenance and often electronic troubleshooting. Thus, having access 
to electronic engineering expertise is crucial for long term programmes, whether that be in-house or 
on an outsourced contractual basis. If it is outsourced, delays in getting instrumentation fixed and 
redeployed can be an issue. This can be overcome by having duplicate instruments and a rolling 
calibration/maintenance schedule. Fouling can be a particular problem for optical sensors (Delgado et 
al. 2021) although the introduction of wipers to these sensors has improved this. The use of optical 
proxy parameters may also require site specific calibration, for example the relationship between 
turbidity and suspended solid concentration will vary between catchments, while removing the effect 
of temperature quenching in DOM fluorometer data can require both site- and sensor-specific 
correction values (Ryder et al. 2012). Indeed, it should be noted that HFM compliments rather that 
replaces laboratory-based analyses of grab samples, which will continue to be essential in order to, 
for example, ground truth measurements and calibrate sensors. Data processing has its own 
challenges (Table 4). McBride and Rose (2018) noted that a single lake platform measuring 20 variables 
every 5min will produce more than half a million individual observations per year and that these 
datasets require meticulous error detection, correction, interpolation, and/or data transformations 
before publication. All of the above will add to the economic cost of automated HFM systems, and 
therefore to the decision on whether it is worth undertaking given the aims of a particular study. 
Seifert-Dähnn et al. (2020) conducted a cost benefit analysis on HFM at three European sites that 
supplied drinking water (including one Irish site, Lough Gara) that included costs for infrastructure, 
data handling/storage, and technical expertise. They concluded that the benefits for drinking water 



provision outweighed costs only where reservoirs served a sufficiently large population. It should be 
noted, however, that they did not include any benefit from additional information gained such as 
identification of long-term trends or controlling factors, analyses that would also require additional 
expert resources.  
 
The use of automated in-situ HFM systems for routine monitoring  
A major advantage of automated HFM in complementing national monitoring efforts is that water 
quality parameters are measured at frequencies and times that could not be achieved with usual 
manual sampling. This ensures that data are obtained for routinely monitored variables during times 
when traditional manual monitoring cannot be carried out, such as during storms or when restrictions 
on fieldwork are in place, as for example, during the recent COVID pandemic. National monitoring 
programmes, such as those required for the WFD, generally specifically aim to characterise general 
conditions, using mean values with the aim of ensuring that water bodies do not fail to meet WFD 
objectives. Events such as acute pollution incidents and storm flows have the potential to hugely affect 
assessment outcomes, and conversely samples taken on the basis of what might be one-off events do 
not well describe the most common conditions in a water body.  
 
The data generated by national monitoring programmes also often provide little evidence as to the 
source, timing or magnitude of the major pressure that is causing any impact. This affects programmes 
like the WFD in two ways: in the first instance the characterisation process, whereby the risk of each 
water body not achieving their WFD objectives, can be hampered by the low number of points used 
to provide information on seasonal variation and longer-term trends. Short-lived events such as heat 
waves or storms can have large impacts on water quality and ecosystem functioning as we have shown 
and these events can result in pulses of nutrients and carbon which likely impact WFD metrics, but are 
largely missed by monthly sampling efforts (Bergkemper and Weisse 2018). Secondly, where WFD 
Programmes of Measures are required to improve or protect water bodies, specific information about 
the delivery mechanisms and timing of inputs are required to ensure that the appropriate measure is 
put in place. Added value from HFM can also include improving stakeholder engagement and raising 
the profile of government funded monitoring efforts. The response from key stakeholders such as the 
Lough Neagh Fishermen’s Co-Operative Society to the deployment of a HFM buoy in Lough Neagh (N. 
Ireland), for example, has been very positive. Members frequently access information from a free 
public portal, especially meteorological variables, before and during fishing (Thompson et al. 2021). 
 
Although assessment methods for WFD aim to describe the general condition of the water body over 
a three-year period, the methods used need to be able to detect impacts along a gradient of pressure, 
so that the most impacted sites are identified with as high confidence as the least. In this capacity, 
HFM has the potential to support tool development by capturing rapid and variable changes. Our case 
study from the R. Moy showed how having continuous data from two commonly used sensors can 
provide useful index values to assess trophic status and inform WFD status. The primary drivers of 
trophic status at this location have been phytoplankton communities and elevated macroalgal growth 
(Wan et al. 2017). Routine assessment of in-situ parameters, sampled 4 times per year, had not 
however shown any elevated concentration of nutrients in the estuarine waters. The index used in 
our case study, based on pH and dissolved oxygen data, was developed to allow for an assessment of 
eutrophication state (O’Boyle et al. 2013). This index value can be calculated from data obtained 
during low frequency site visits. However, as our case study shows, the two parameters show high 
levels of variability, variability that single grab samples would miss. Continuous HFM data in this case 
showed the potential to provide an additional line of evidence to identify pressures acting on the 
estuarine environment. While traditional broad scale monitoring had clearly indicated that the Moy 



estuary status was being impacted negatively, these finer scale data were useful in helping identify 
exactly when these pressures were acting and when impacts were occurring within the water body. 
However, while the 2013 HFM on the Moy deployment was successful, it should be noted that a 
deployment in the previous year had issues when the pH sensor failed to function and no data were 
collected, highlighting the need for regular maintenance for any long-term sensor deployment. 
 
The use of HFM to inform policy, management and the public 
Our case studies highlighted individual applications of HFM for water quality monitoring, although the 
implementation of such systems on the island of Ireland is still relatively limited. Their full potential is 
only realised when the information they provide is also used to inform policy and management (Marcé 
et al. 2016). Currently, real-time river discharge data and hydrographs, for example, provide not only 
site specific information, but help to inform flood policy, management actions and emergency 
responses. It is also of note that many of these challenges related to cost, maintenance and expertise 
also apply to existing automated meteorological and hydrometric networks, but such networks are 
now long established. As of 2017, automated recorder stations measuring water level or discharge in 
the Republic of Ireland were employed in 99.3% of 950 hydrometric stations (Nasr and Hynds 2017). 
 
Our case studies moreover identify the potential for HFM to provide policy relevant information for 
key parameters such as DOM and nutrients that can impact on drinking water quality. This is 
particularly the case for DOM concentrations in raw water which, although not a contaminant of public 
health concern in itself, can impact on for example drinking water quality through taste, appearance 
(colour) and the formation of disinfectant by-products (DBPs) which are potentially carcinogenic for 
humans (Villanueva et al. 2015). In the Republic of Ireland, approximately 80% of drinking water is 
abstracted from surface water sources (DHPLG, 2018; Rolston and Linnane 2020). In 2020, the EU 
escalated an infringement case against the Republic of Ireland for persistent exceedance of 
trihalomethanes (THMs), toxic disinfection by-products that can be formed when drinking water is 
treated using chlorine, by issuing a reasoned opinion on the country’s failure to fulfil its obligations 
under the Drinking Water Directive (EC 2020). Installation of HFM of DOM in drinking water 
catchments at risk would both provide managers with the potential to implement actions to reduce 
the risk at times when that is highest (e.g. after heavy rainfall following dry periods), but also would 
provide new information to inform policy.  
 
The installation of any HFM station network on the island of Ireland could require a policy change to 
augment current programs. This would also need a significant financial investment, not just for the 
installation period, but also for the equipment maintenance and data management processes. Yet, 
automated HFM in real-time could not only fill data gaps currently present within catchment-scale 
monitoring, but also provide water managers with improved information to implement management 
actions. Indeed, systems and tools to automate measurement of DOM and other parameters in 
drinking water management are now becoming mainstream (e.g. Cascone et al. 2022) while water 
supply companies such as Northern Ireland Water now maintain networks of controlled HFM optical 
sensors for ‘now-casting’ source water supplies into treatment plants, with alarm systems to reduce 
or change water input if thresholds are exceeded (O'Donoghue 2015). There is also the scope for real-
time provision of HFM for parameters of public health interest such as faecal coliforms (Briciu-
Burghina et al. 2019), which significantly impact on bathing water quality throughout the Republic of 
Ireland. Providing a public information tool with real-time bathing water quality would potentially help 
to reduce health risks and increase awareness of the issues impacting on local water quality. The 
potential for using data from multiple HFM sites to inform policy has also been highlighted by the 
wealth of high impact publications that have arisen from the GLEON network and the ACP (e.g. Jordan 
et al. 2005; Jennings et al. 2012; O’Reilly et al. 2015; Mellander et al. 2022). Multi-site studies using 
lake temperature profile data, including from Feeagh, have also been central to increasing 
understanding of the impacts of climate extremes on lakes (e.g. O'Reilly et al. 2015; Jennings et al. 



2022), literature that has contributed to the recent IPCC 6th report thus informing future policy at 
national and global scales (IPCC 2022). 
 

RECOMMENDATIONS AND CONCLUSIONS 
Despite the challenges identified above, the benefits we have described provide scope for the 
increased use of HFM in water quality applications on the island of Ireland. While sensors for some 
key chemical and biological parameters such as P are still under development, operating a suite of key 
operational sites using tried and tested HFM technology can only benefit water quality monitoring, 
reporting and research. Undertaking HFM continually at all monitoring sites in national programmes 
would likely be prohibitive in terms of budget and human resources (Seifert-Dähnn et al. 2020; Jordan 
and Cassidy 2022), but we believe the benefits of extending HFM in Ireland outweigh the costs and 
would ensure that Irish aquatic systems are included in future key policy decisions. Data from HFM 
sites can help to contextualise other sites with lower frequency data and can make important 
contributions to national and global trend analysis including wider cause and effect interpretation. As 
the effects of climate extremes continues to impact on aquatic systems, HFM may prove to be a crucial 
tool in climate change attribution and adaptation as it enables data collection at time scales necessary 
for calibrating models of aquatic systems, which, in turn, allow projections of climate impacts on 
aquatic ecosystems to be developed. The maintenance of any new network and existing sentinel HFM 
sites will facilitate the detection of response patterns in Ireland’s complex natural water systems, as 
shown by the wealth of publications already based on the Burrishoole Ecological Observatory and the 
ACP programmes. In summary, we believe that sustained strategic investment in a suite of HFM 
monitoring sites, at multiple scales, would serve to underpin water research and surveillance in Ireland 
and ensure its scientific quality and global relevance.  
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Fig. 1— a. map showing case study locations (numbers); b. sonde in metal cage ready for in-stream 
deployment at Dunleer, Case Study 1; c. bankside measurement hut in Ballycanew, Case Study 2; d. 
lake monitoring buoy, Lough Feeagh, Case Study 3. 
 
  



 
Fig. 2—a. daily precipitation and stream discharge for the study period, 8 to 17 August 2017; b. 
turbidity data (NTU) from upstream (black) and downstream (grey) of the cattle access site, together 
with the maximum number of cattle in the stream in any 15-min period (black circles); c. the 
smoother for the relationship between the upstream to downstream difference in turbidity and the 
maximum number of cattle in the stream during an access event, with model residuals (black). The y-
axis units are the scaled smoother, with the estimated degrees of freedom (edf). 
  



 
Fig. 3—a. hourly stream discharge, rainfall and concentrations of b. total phosphorus (TP), c. total 
reactive P (TRP), d. NO3-N, suspended sediments (SS) and d. total organic carbon (TOC) during two 
flow events in August 2020 in Ballycanew catchment. NO3-N data were gap filled with modelled data 
during the recession of the first flow event (dotted line) due to a logging failure. 
  



 
Fig. 4—Example of concentration-streamflow (C-Q) hysteresis plots for a.  total phosphorus (TP), b. 
total reactive P (TRP), c. NO3-N, d. suspended sediments (SS) and e. total organic carbon (TOC) during 
two high flow events in August 2020 in the Ballycanew catchment. Grey = event I (25 August 2020) 
and red = event II (27 August 2020). The order of the measurements is indicated by the colour 
intensity, with the darkest colours at the start of an event and intensity getting lighter as the event 
progresses. 
  



 
Fig. 5—a. daily total precipitation and mean daily river discharge for the Black River; b. mean hourly 
estimated DOC concentration (grey, based on HFM CDOM fluorescence) in the Black River, with five 
datasets for hypothetical weekly sampling programmes (each at 12.00, Monday to Friday), generated 
by sub-setting the full dataset; c. contour plot of water temperature by depth in Lough Feeagh; d. 
mean hourly estimated DOC concentration ([DOC]) in Lough Feeagh (black) and daily DOC load in the 
Black River (grey, kg DOC ha-1 day-1). All data run from 1 May 2018 and 30 September 2018. 
 
  



 
 
Fig. 6—a. water temperature (black) and salinity (grey) measured at the Moy station sonde from 1 
February to 31 August 2013; b. pH (black) and dissolved oxygen (% saturation) (grey); c. index of 
trophic status based on measured pH and DO data. 
  



Table 1—Case Study details including number, spatial scale, location, station type, deployment 
timescale and aim, and Case Study outputs (this paper).  
 

Case  
no. 

Spatial scale County/ 
catchment/ 
coordinates 

Station 
 type 

Deployment 
timescale, 

aim 

Case study 
outputs 

1 

 

Field Louth, 
Commons, 
53°50'1.7"N, 
6°25'4.9"W 

In-stream  
cage 

Short-term, 
 research 

Relationship of 
turbidity to 
cattle movement 

2 

 

River Wexford, 
Ballycanew, 
52°37ʹ7ʺN, 
6°18ʹ51ʺW 

Bankside  
hut 

Long-term, 
 research 

Load calculation/ 
catchment 
nutrient 
processing 

3 

 

Inflow/ 
lake 

Mayo, 
Burrishoole, 
53°55'46.6''N, 
9°34'24.6''W 

River: bankside 
hut 
Lake: buoy  

Long-term, 
 research 

Load calculation/ 
storm impacts  

4 

 

Lower 
reach 

Mayo, 
Moy, 
54°8'6.4''N, 
9°8'16.6''W 

Buoy Short-term,  
national 
monitoring 

Index value for 
trophic status 

  



Table 2—Case Study 2: event loss of total phosphorus (TP), total reactive P (TRP), nitrate-N (NO3-N), 
total organic carbon (TOC) and suspended sediment (SS) as a percentage of the annual average mass 
load from 2010 to 2019 (2018-2020 for TOC). 
 

Event no./date TP TRP SS NO3-N TOC* 
I:  25 Aug 2020 12.7% 14.5%  6.2% 3.0% 7.1% 
II: 27 Aug 2020 14.3% 15.2% 10.0% 3.9% 9.2% 

*(percentage of average annual loss for 2018-2020).  



Table 3—Case Study 3: date of each event where stream discharge was greater than the 95th 
percentile value (5.8 m3 s-1) between 1 May and 30 September 2018; event weekday, daily total 
precipitation and daily mean river discharge. Sampling day indicates whether a given weekday 
sampling programme captured that event and resultant changes in DOC concentration (Y and 
shaded = yes; N = no).  
 

Date 
 

Event 
weekday 

Precip. 
 

Stream 
discharge 

Sampling scenario day 
 

  mm day-1 m3 s-1 Mon Tues Wed Thu Fri 

01/05/2018 Thu 12.7 5.89 N N 
 

N Y Y 

20/05/2018 Mon 12.8 6.03 Y 
 

N 
 

N N N 

19/06/2018 Thu 33.2 11.46 N 
 

N 
 

N Y N 

20/06/2018 Fri 1.8 6.06 N 
 

N 
 

N N Y 

01/08/2018 Thu 19.8 11.42 N 
 

N 
 

N Y N 

17/08/2018 Sat 37.0 10.43 N 
 

N 
 

N N N 

18/08/2018 Sun 19.3 6.64 N 
 

N 
 

N N N 

08/9/2018 Sat 17.0 10.02 N 
 

N 
 

N N N 

17/9/2018 Mon 28.8 22.22 Y 
 

N 
 

N N N 

Mean daily load using weekly 12.00 sample 
(+ S.E.) 

0.39 
+0.13 

 
0.49 

+0.22 

 
0.49 

+0.14 
0.61 

+0.19 
0.31 

+0.07 
  



Table 4— Advantages and challenges for the use of HFM in aquatic systems (CS = Case Study). 
Advantage Example Reference Challenge Example Reference 

Use of HFM 
data for 
monitoring/ 
modelling 

All CS 
 
Modelling 
past/future 

This study 
 
Kelly et al. 
2020 

Mooring 
failure 

1. Gaps in CDOM 
data due to storm 
damage 
2. Vandalism 

Jennings et al. 
2020 
 
Teng et al. 
2009 

Episodic/ 
extreme 
events 

CS 1 & 3 This study Sensor 
failure 
  

CS 2 & 4 This study 
 

Accurate 
load 
estimation 

CS 2 & 3 This study Sensor 
performance  

Assessment of 
variation between 
nephelometers 

Rymszewicz et 
al. 2017 

New 
insights into 
key 
processes 

CS 1 & 2 This study Sensor 
maintenance
/fouling 

Example of drift 
due to biofouling 

Delgado et al. 
2021 (review) 

Station use 
as testbed 

Testing NO3 
sensor 

O’Boyle et al. 
2014   

Data 
processing/ 
QA-QC 

Multiple 
processing steps 
required  

McBride and 
Rose 2018 

Benefits 
exceeding 
costs 

Cost-benefit 
analysis:  
Erken & 
Kinneret 
examples 

Seifert-
Dähnn et al. 
2021 

Cost 
exceeding 
benefits 

Cost-benefit 
analysis:  
Gara example 

Seifert-Dähnn 
et al. 2021 

 
 
 


