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Introduction
Mineral dust concentration is coupled to climate over glacial-
interglacial cycles (Lambert et al., 2008). Increased dust is associ-
ated with major cold phases (stadials) characterised by aridity, 
low terrestrial biomass, increased availability of fine sediments 
and strong winds at mid-latitudes (Muhs et al., 2013). This has 
allowed terrestrial, marine and cryospheric records of aeolian dust 
deposition to be used as proxies for both palaeoclimate and atmo-
spheric transport pathways (Maher et  al., 2010). While atmo-
spheric dust concentrations have been lower during the Holocene 
than at the Last Glacial Maximum (28–19 ka BP), considerable 
fluctuations in the abundance and characteristics of deposited 
aeolian material have been recorded (e.g. Albani et  al., 2015; 
Kylander et  al., 2016; Vanneste et  al., 2016). Holocene dust 
records are variable in terms of their spatial and temporal expres-
sion, and strongly reflect regional or local (rather than global) 
drivers such as glacier dynamics (Bullard, 2013), vegetation 
change (Egerer et al., 2017), proglacial geomorphology (Sugden 
et al., 2009), aeolian activity (Humphries et al., 2017) and anthro-
pogenic impact (Hooper and Marx, 2018).

This paper focuses on Holocene records of minerogenic dust 
deposition in the North Atlantic. Mineral dust is an important part 
of Earth’s biogeochemical cycle and a vital source of micronutri-
ents to marine and terrestrial ecosystems (Bullard et  al., 2016; 
Hawkings et al., 2014). Windblown dust can travel thousands of 
kilometres but contemporary direct measurements indicate most 

is deposited within 1000 km of the source (Lawrence and Neff, 
2009). The dominant source of dust to the North Atlantic is the 
Sahara (Ginoux et al., 2012) from which dust is transported west 
to the Americas or north towards western Europe (Muhs, 2013). 
Palaeoenvironmental records suggest mid-Holocene dust deposi-
tion in the low latitude North Atlantic and off the northwest coast 
of Africa was low, associated with the Mid-Holocene African 
Humid Period and greening of the Sahara; dust deposition then 
increased (NW Africa) or stabilised (equatorial Atlantic) during 
the Late-Holocene (e.g. Albani et al., 2015). Under present condi-
tions, Saharan dust can reach the mid- to high latitude North 
Atlantic and has been recorded in Ireland, the UK, Iceland and 
mainland Scandinavia (Dall’Osto et al., 2004; Ryall et al., 2002; 
Varga et al., 2021).
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Around the mid-latitude North Atlantic, increased aeolian 
activity recorded in sediment archives has been linked to Holo-
cene cold periods in central Greenland and winter storminess in 
southern Scandinavia (Björckl and Clemmensen, 2004; Jackson 
et al., 2005; Kylander et al., 2016) associated with expansion of 
the polar vortex or intensified meridional airflow (O'Brien et al., 
1995). Within these palaeo-environmental records, regional 
(100–1000 km) and local (<10 km) aeolian inputs typically dom-
inate. Iceland is a contemporary major source of dust to the 
North Atlantic (Prospero et  al., 2012) and recent accelerated 
retreat of Iceland’s ice caps and ongoing glacio-fluvial activity 
result in high dust emissions estimated at 4.6 (Groot Zwaaftink 
et al., 2016) to 40 Tg/year (Arnalds et al., 2016). At present Ice-
landic dust is transported throughout the mid- to high latitude 
North Atlantic and has been recorded in Svalbard (Moroni et al., 
2018), Greenland (Drab et al., 2002) and Ireland (Ovadnevaite 
et al., 2009).

In this paper we detail the first terrestrial archive of Icelandic 
Holocene dust deposition in Scotland and examine linkages 
between mineral dust deposition, Icelandic glacier fluctuations 
and climate change/storminess in the North Atlantic. We hypoth-
esise that the quantity and distribution of Icelandic dust emissions 
is likely to have fluctuated during the Holocene in parallel with 
(or in response to) glacial activity. Modelling and air-parcel tra-
jectory analysis indicate clear dust transport pathways from Ice-
land to northern Scotland (Baddock et al., 2017; Groot Zwaaftink 
et  al., 2016) where the climate is strongly influenced by North 
Atlantic storms driven by the seasonal position of the polar front 
jet stream. There are extensive areas of peat in northern Scotland 

from which continuous and sensitive indicators of dust load and 
dust source, alongside climate proxy data, can be extracted and 
analysis of these peat records is used to test our hypothesis. Ice-
landic tephras have also been identified in Scotland’s peat bogs 
and provide important chronological marker horizons (Dugmore 
et al., 1995).

Methods
The minerogenic aeolian dust record was isolated in two peat 
profiles, where fluvial sediment inputs were topographically 
excluded, and local accumulation solely comprised of organic 
matter (Figure 1). The Shebster mire (N58°33″06.6″, 
W003°42″39.0″, altitude 82 m) is located in northern Caith-
ness and underlain by Middle Devonian sandstone of the Big-
house Formation (Auton et  al., 2005). Kedills Mire 
(N60°41″12.8″, W001°02″52.8″, altitude 67 m) is a blanket 
mire on the island of Yell, Shetland underlain by Moine psam-
mite (metamorphosed sandstone and siltstone).

Continuous peat cores (to 6.08 m depth at Shebster and 4.26 m 
depth at Kedills Mire) were sampled using a 1 m, 75 mm diameter, 
Russian D-section corer (Jowsey, 1966) and aligned by depth 
from the surface datum. Cores were sealed in lay-flat tubing and 
stored at a constant 4°C. Contiguous 2 cm3 samples were acid 
digested to isolate the minerogenic material (Dugmore et  al., 
1992) which was analysed using an Olympus BX43 light micro-
scope at 400× magnification.

Atmospheric dust comprises particles deflated from a surface 
that travel by suspension and may include mineral particles and 
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Figure 1.  Map of NE Atlantic region showing location of field sites in northern Scotland (Shebster and Kedills Mire), major dust pathways and 
recent volcanic ash pathways from Iceland (Prospero et al., 2012). Base map imagery: Google Maps.
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resuspended volcanic ash as well as other natural and anthropo-
genic particles (Pye, 1987). Icelandic aeolian sediments are 
known to include both glacio-fluvial material and resuspension of 
material deposited following volcanic eruptions (Arnalds et  al., 
2016). To investigate the relationship between glacial activity and 
dust emissions we excluded deposits associated with direct volca-
nic emissions. The mineral dust residue was classified visually by 
its morphological characteristics and its abundance was measured 
using a quantitative percentage-based score (Terry and Chilinger, 
1995). Particle-size analysis using a Beckman-Coulter LS280 
shows 59%–100% of mineral particles (by volume) are <20 μm 
diameter which is consistent with long distance atmospheric 
transport (Stuut and Prins, 2014) although larger particles can 
also be transported considerable distances (Varga et  al., 2021). 
Cryptotephra layers were identified during analysis of the mineral 
residue based on morphology, vesicularity and isotropism of glass 
shards under plane-polarised light. In Scotland cryptotephra lay-
ers are extremely thin and unlikely to be locally remobilized on a 
peat bog. Tephra layers were identified by the peak concentration 
of the glass component, geochemically identified to a specific 
Icelandic eruption (Dugmore et al., 1995) and used as isochrones. 
We can not fully separate tephra minerals from mineral dust but 
excluded volcanic glass from the measurements of dust abun-
dance to ensure the peak in mineral dust layers could not be 
caused by tephra. This approach is likely to underestimate total 
dust deposition. The major element geochemical composition of 
each tephra sample was categorised by electron microprobe anal-
ysis using the SX100 Cameca Electron Microprobe at The Uni-
versity of Edinburgh (Hayward, 2012). A minimum of 10 tephra 
shards were analysed to provide a representative geochemical 
signature (Hunt and Hill, 1993). Correlation of the cryptotephra 
layers to previously dated volcanic eruptions was facilitated by 
TephraBase (Newton, 1996).

Five samples from the Shebster core were radiocarbon dated 
using Accelerated Mass Spectrometry (AMS) and supplemented 
by the identification of the Hekla 4 tephra layer. Five samples 
were AMS dated from the Kedills Mire core and supplemented by 
the Hekla 4, Kebister, Glen Garry and Hekla 1158 tephra layers. 
Calibrated Bayesian age-depth models are used to constrain both 

dust records using Bacon (Blaauw and Christen, 2011) and the 
IntCal20 radiocarbon calibration curve (Reimer et  al., 2020) 
(Table 1).

The Earth’s crust and mantle have distinct ranges of isotopic 
ratios owing to their different mineral assemblages. Iceland 
almost exclusively comprises young volcanic rocks and has a 
strong geochemical signature from the upper mantle with rela-
tively low ⁸⁷Sr/⁸⁶Sr ratios. Scotland is geologically much older, 
formed predominantly of terrane fragments of continental crust 
with higher 87Sr/86Sr ratios (Banner, 2004). To identify the prov-
enance of dust peaks in the cores radiogenic isotope analysis was 
conducted at the Geochronology and Tracers Facility (formerly 
part of the NERC Isotope Geosciences Laboratory), British Geo-
logical Survey, Keyworth. Strontium (87Sr/86Sr) and neodymium 
(εNd) isotope composition was measured using a Thermo Scien-
tific Triton thermal ionisation mass spectrometer, and a Thermo 
Scientific Neptune + plasma ionisation mass spectrometer, 
respectively. Strontium data were obtained for both cores. How-
ever, neodymium data could only be obtained for the Kedills Mire 
core as concentrations were too low to be measured in the Sheb-
ster core (Supplemental Table S1. Detailed analytical methods are 
presented in supplementary material).

Results and discussion
We compared the radiogenic isotope data from Kedills Mire to 
potential dust sources in Iceland, North Africa and China, local 
Shetland basement rock and other dust isotope records (Figure 2). 
The 87Sr/86Sr and εNd isotope data plot on an unusual trend, with 
εNd values ranging from −6.90 to +4.87 at a high, near constant 
87Sr/86Sr value of c. 0.72. This trend cannot be explained simply 
by mixing of dust derived from available geological sources and 
must involve a process leading to an increase in the radiogenic Sr 
component. Jung et al. (2004) and Garçon et al. (2014) discuss the 
effects of mineralogical sorting and grain size issues on 87Sr/86Sr 
ratios (finer-grained fractions have higher 87Sr/86Sr values) as 
well as the effect of weathering (materials subjected to higher 
degrees of chemical weathering have lower 87Sr/86Sr values). It is 
likely that the observed Sr-isotope compositions reflect transport 

Table 1.  Conventional radiocarbon ages, calibrated age ranges (Calib ver 8.2 Stuiver and Reimer, 1993), and modelled age ranges for Kedills 
Mire and Shebster peat records. The IntCal20 calibration curve was applied (Reimer et al., 2020) and deposition model performed using Bacon 
ver 2.5.5 (Blaauw and Christen, 2011), as described in the main text.

Laboratory code Depth (cm) Material 14C year BP (1σ) δ13CVPDB‰ Unmodelled (calibrat-
ed) age range (95.4%) 
cal year BP1

Modelled (calibrated) age 
range (mean) at 95.4%  
confidence (cal year BP)2

Kedills Mire
SUERC-63942 40 Bulk peat 649 ± 35 −28.1 555–669 94–(200)–310
Hekla AD1158 120.5 n/a n/a n/a 792 786–(792)–797
SUERC-63936 193 Bulk peat 1172 ± 37 −27.7 974–1176 1116–(1223)–1301
SUERC-63935 243 Bulk peat 1821 ± 35 −29.1 1622–1823 1648–(1772)–1920
Glen Garry 265 n/a 2120 ± 60 n/a 1936–2308 1989–(2166)–2327
Kebister 330.5 n/a 3550 ± 50 n/a 3695–3975 3671–(3844)–4010
Hekla 4 344.5 n/a 3826 ± 12 n/a 4151–4290 4103–(4194)–4289
SUERC-63934 390 Bulk peat 4352 ± 36 −28.0 4845–5036 4847–(4947)–5191
SUERC-63933 426 Bulk peat 5027 ± 35 −28.7 5660–5896 5387–(5681)–5846
Shebster
Beta − 251972 150 Wood frag. 1740 ± 40 −28.3 1570–1819 1540–(1644)–1786
Beta − 251973 271 Wood frag. 3010 ± 40 3166–3368 3040–(3206)–3346
Hekla 4 346 n/a 3826 ± 12 n/a 4151–4290 4105–(4194)–4286
Beta − 251974 406 Wood frag. 4110 ± 40 −29.4 4579–4838 4629–(4779)–4865
Beta − 251975 500 Wood frag. 5730 ± 40 −25.6 6410–6647 6358–(6509)–6645
Beta − 251976 612 Wood frag. 7530 ± 50 −24.7 8198–8412 7988–(8226)–8392
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of fine-grained material in an aeolian environment. The samples 
analysed, which span multiple years, are likely to reflect mixed 
inputs at the decadal scale but dominant regional sources can be 
identified associated with particular time periods (Figures 2 and 
3). We interpret samples from Kedills Mire with positive εNd val-
ues as dominated by an Icelandic isotopic signature, suggesting 
episodic periods of higher dust load in the North Atlantic related 
to climate-driven environmental changes.

The stratigraphic analyses of dust abundance at the two sites 
show distinct episodes of higher (peak) dust deposition separated 
by longer periods of reduced dust input (Figure 3).

The basal peak in dust at Shebster (c. 8.1 ka) coincides with 
the end of a period of regional rapid climate change (RCC) 
between c. 9.0 and 8.0 ka (Mayewski et al., 2004). However, we 
cannot exclude mixing from the underlying minerogenic lacus-
trine sediment into the lowermost basal peat layers and so this 
event is treated with caution. There is a period of sustained higher 
dust input at Shebster, between c. 7.7 and 6.9 ka. The absence of 
radiogenic isotopic data prevents identification of the source of 
this dust peak. However, this is a quiescent period during the 
Holocene thermal maximum, with Icelandic glaciers probably at 
their minimum extent, making an Icelandic source unlikely. Coin-
ciding with the African Humid Period, this dust peak is also 
unlikely to originate from the Sahara, although it is broadly con-
temporaneous with a major dust peak in central Europe (Le Roux 
et al., 2012) suggesting a third, as yet unidentified regional source 
of dust at this time.

There is a very large and sustained period of dust deposition 
at Kedills Mire between c. 5.4 and 5.1 ka. The basal dust (c. 
5.7–5.5 ka) may have been derived from local substrate, indi-
cated by the negative εNd value (−1.75). However, the large 
dust peak at Kedills Mire between c. 5.4 and 5.1 ka yielded a 
positive εNd value (4.60) and coincides with an increase in Na+ 

Figure 2.  Sr and Nd isotopic data for Iceland (Farmer et al., 2003 and this study), Kedills Mires (numbered points correspond to the sampled 
dust peaks in Figure 3) and Shetland base rocks (Walker et al., 2016). The isotopic signatures of other regional dust sources are taken from 
Thevenon et al. (2012). Uncertainties on the new data are smaller than the plotted datapoints, and are as follows: 87Sr/86Sr: ±0.000043, 
Epsilon Nd: ±0.3 (both 2 SD).

(deepening of the Icelandic low) and Ca+ (increased dust flux) 
in the GISP2 Greenland ice core and a phase of increased North 
Atlantic storminess (Stewart et  al., 2017). The dust peak 
recorded at Shebster at c. 5.2 ka is smaller in magnitude and 
duration and may reflect the different trajectories of dust com-
ing from the north (Baddock et al., 2017). Icelandic glacier and 
lake sediment records (Figure 3) suggest this period of increased 
dust deposition occurred at the start of the mid-Holocene transi-
tion which ushered in the onset of Neoglaciation in Iceland and 
elsewhere. Mountain glaciers in central and southern Iceland 
grew, coalescing to form embryonic ice caps, as the regional 
snowline descended between c. 5.5and 5.0 ka (Geirsdóttir et al., 
2009; Kirkbride and Dugmore, 2006). This accords with other 
regional records suggesting this time interval was a period of 
RCC more widely in the Northern Hemisphere (Mayewski et al., 
2004). We note the likelihood that most evidence for renewed 
‘neoglaciation’ has not been preserved in the Icelandic glacial 
landform record owing to removal or censure by subsequent 
erosional (glacial and fluvial) events.

During a quiescent period lasting approximately 1000 years, 
between c. 5.0 and 4.0 ka, low dust deposition is recorded in both 
peat cores and coincides with a prolonged period of positive NAO 
and reduced North Atlantic storminess during the second half of 
the mid-Holocene transition (Stewart et  al., 2017). At Kedills 
Mire this period is ended by a brief dust peak at c. 4.0–3.9 ka fol-
lowed by a sustained rise in background dust levels between c. 4.0 
and 1.8 ka punctuated by numerous short dust peaks. At Shebster 
a significant dust peak is also recorded at c. 4.0–3.9 ka but this 
manifests as a brief interruption to the Mid-Holocene quiescent 
phase which continues to c. 3.4 ka. The c. 4.0–3.9 ka event was 
too short for radiogenic isotopic analysis, but it coincides with a 
phase of RCC, deepening Icelandic low and a wider signature of 
Icelandic glacier growth as neoglaciation continued. Hereafter, 
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the dust records at Kedills Mire and, to a lesser degree, Shebster 
are characterised by higher background levels of dust and a 
greater frequency of dust peaks in both cores.

The largest sustained dust peak recorded at Shebster at c. 2.8–
2.6 ka occurs during the latter part of a RCC period between c. 3.5 
and 2.5 ka (Mayewski et  al., 2004). There is a comcomitant 
increase in dust at Kedills Mire, but not of the same magnitude, 
and the associated εNd value is the highest (i.e. most similar to 
Iceland) for the whole record (4.87). Icelandic glaciers advanced 
significantly between c. 3.0 and 2.5 ka, some reaching their Holo-
cene maxima (Geirsdóttir et al., 2009). This coincided with a sus-
tained shift to a negative NAO index (Olsen et al., 2012), although 
the GISP2 Na+ and Ca+ curves do not record marked changes in 
North Atlantic atmospheric pressure systems (Mayewski, 1999).

A ~500-year quiescent period occurs in the Kedills Mire 
record between c. 1.8 and 1.3 ka, with minimal dust deposition at 
both sites coinciding with reduced North Atlantic storminess, a 
benign Icelandic Low (in GISP2 data) and a generally neutral 
NAO index. We relate this period of low dust flux to the centuries 
between the Roman Warm Period (c. 2.3 and 2.0 ka) and Mediae-
val Climate Anomaly (1.2–0.7 ka) (Patterson et al., 2010) when 
Iceland’s glaciers were significantly smaller than in the proceed-
ing millennium and atmospheric circulation was generally stable 
across northern Europe (Geirsdóttir et al., 2009).

Between c. 1.2 ka and present there is an increase in the fre-
quency and magnitude of dust peaks recorded at Kedills Mire and 

Shebster. Dust peaks at c. 1.1 and 0.3 ka (at Kedills Mire) coincide 
with periods of RCC and significant glacier fluctuations in Ice-
land during the 10th Century and Little Ice Age (LIA). These dust 
peaks also have positive εNd values (i.e. more Icelandic). How-
ever, there are peaks that occur outside of the RCC periods (c. 1.0 
and 0.7 ka) with negative εNd values, resulting in a marked switch 
from a positive to negative εNd values in less than ~100 years. We 
suggest that this variability reflects the high-frequency, high-
amplitude, possibly high-seasonality, climatic changes experi-
enced in the North Atlantic region during the last 1.5 ka 
(Hernández et al., 2020; Patterson et al., 2010). The dust record at 
Shebster remains high during the LIA and into the 20th century 
but the uppermost dust peak at Kedills Mire (mid-20th century to 
present day) has the most negative εNd value of the entire record 
which probably reflects 20th century anthropogenic environmen-
tal change and a variety of dust sources (Fagel et al., 2014).

Conclusion
Iceland is a substantial source of mineral dust to the North Atlan-
tic which could play an important role in ocean fertilisation and 
enhanced marine productivity. This paper reconstructs the Holo-
cene dust deposition records from two peat bogs in northern Scot-
land 200 km apart and demonstrates that the mineral dust 
originates from both low-latitude, probably Saharan, and high-
latitude, probably Icelandic, sources. Our well-dated record 
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indicates that during the mid-Holocene climate transition and 
neoglacial periods (centred c. 5.2 and 2.7 ka respectively) the 
dominant dust source was Iceland, with dust peaks reflecting peri-
ods of glacier expansion, driven by climate change, and borne by 
strong North Atlantic winds. From c. 1.1 ka onwards the fre-
quency of dust peaks increases, with the dominant source switch-
ing from the Sahara (c. 1.0–0.6 ka) to Iceland since c. 0.3 ka in 
response to renewed Little Ice Age glaciation and a more vigorous 
Icelandic Low-pressure system. Finally, modern (mid-20th cen-
tury onwards) mineral dust deposition may reflect anthropogenic 
activity from a range of different sources.
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