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A B S T R A C T   

Predicting dispersal and quantifying ecological connectivity are increasingly referenced as fundamental to un
derstanding how biodiversity is structured across space and time. Dispersal models can provide insight, but their 
predictions are influenced by our capacity to simulate the biology and physics known to influence dispersal. In a 
marine context, vertical swimming behaviour is considered important in influencing the spatial organisation of 
species across seascapes, but the mechanisms underpinning these movements remain unresolved, making it 
unclear how best to incorporate behaviour within models. Here, using a 3-D hydrodynamic model coupled with a 
Lagrangian particle tracker, we show how different modelled larval behaviours, alongside spatial and temporal 
hydrodynamic changes, influence larval dispersal predictions. Additionally, we compare the application of a 
novel approach of reverse-engineered larval swimming behaviour against two commonly modelled behaviours: 
passive dispersal and tidal vertical migration (TVM). We used statistical models (LME and GAM) to test the 
effects of change in tidal state conditions, season, and planktonic larval duration in conjunction with behavioural 
parameters on dispersal. For shorter PLDs (i.e., 1 day), we find that passive models match ‘behaving’ model 
outputs, but for longer PLDs, excluding behaviour leads to overestimates of dispersal; an effect that increases 
with time. Our results highlight the sensitivity of biophysical models to behavioural inputs, specifically how 
vertical migration behaviour can significantly reduce dispersal distance - especially for species with longer 
planktonic durations. This study demonstrates the disproportionate effects that even a single behaviour - vertical 
swimming - can have on model predictions, our understanding of ecosystem functioning, and ultimately, the 
ecological coherence of marine systems.   

1. Introduction 

In marine systems, the production and dispersal of planktonic life- 
history stages creates connections fundamental to the spatial organisa
tion of species across local and seascape scales (Baguette et al. 2013) for 
a range of taxa (Blanco et al. 2019; Zeng et al. 2019). Increasingly, 
ensuring ecological connectivity is promoted as one solution to biodi
versity loss and considered a key feature of sustainable ecological net
works (Gonzalez et al. 2017), but assessment is often challenging - 
especially when considering small planktonic organisms that are diffi
cult to track. Predicting dispersal of planktonic organisms requires the 
use of genetics (Gilg and Hilbish, 2003), geochemical markers (Thorrold 
et al., 2007) or increasingly, biophysical models, which combine hy
drodynamics and biological processes (see Swearer et al., 2019 for 

review) to simulate movement. These models are used for a range of 
theoretical and applied questions, but their accuracy is reliant on our 
understanding of and ability to reproduce abiotic and biotic mechanisms 
that drive directed movement in nature. 

Biophysical models of larval dispersal can be implemented by 
adopting relatively simple advection-diffusion models (Hill, 1990; 
Cowen et al, 2000) or by combining a general ocean circulation model 
describing local hydrodynamics with an individual particle tracker to 
incorporate biological traits (e.g., Schlag and North, 2012; Paris et al., 
2013). In recent years, advances in computational power and efficiency 
have allowed for circulation models to include greater spatial and/or 
temporal resolution, allowing complex velocity flow fields over intricate 
topography to be resolved. Due to this, dispersal modelling using ocean 
circulation models has become the dominant method of larval dispersal 
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research in order to capture realistic hydrodynamics as experienced by 
the larvae (Swearer et al, 2019). However, increasingly it is the 
parameterisation of biological traits or ‘behaviours’ assigned to indi
vidual particles within the particle-tracking component of the model 
that continues to attract research attention - given the potential of those 
traits to influence model predictions (Hill 1990; Cowen et al., 2000; 
Phelps et al., 2015; Daigle et al, 2016; Gary et al., 2020), and decouple 
model predictions from patterns in nature (Marshall et al. 2010, James 
et al. 2019). 

Biological parameterisation has previously relied heavily on the re
sults of laboratory studies and current literature to infer traits and larval 
behaviours. Typically, larval behaviours and behavioural triggers are 
parameterised using directly observed values from the laboratory (e.g. 
Robins et al., 2013; Phelps et al., 2015; Daigle et al., 2016; Bode et al., 
2019; Gary et al., 2020), for instance to quantify swimming speeds 
(Fisher and Wilson, 2004; Chang et al. 2018). It is argued, however, that 
laboratory-derived swim speeds and behaviours are unlikely to repre
sent realistic behaviours in nature due to an absence of one or more 
exogenous cues in those contrived contexts, but which likely influence 
the expression of behaviour in natural settings (e.g. Bonar et al. 1990; 
Kingsford et al. 2002; Queiroga & Blanton 2005; Morello and Yund, 
2016). Recent research has endeavoured to bridge the gap between in
dividual larval ability and behavioural manifestation in nature by 
considering how realistic in-situ swimming speeds can best be incorpo
rated within dispersal models (James et al., 2019; Leis, 2020). These 
studies have shown that laboratory-derived behaviours fail to accurately 
capture how larvae behave in the field, and critically, affect the vertical 
position of larvae, which has repeatedly been shown to be an important 
mechanism for transport in a number of taxa (e.g. Garrison et al. 1999; 
Knights et al. 2006; Ospina-Alvarez et al. 2018). Indeed, Swearer et al. 
(2019) suggest that behaviour should not be considered as an individual 
metric, but instead as a product of its environment in any given space 
and at any given time. Given that biophysical models are increasingly 
being applied to fisheries management and marine conservation efforts, 
effective decision-making and confidence in those interventions requires 
accurate models (Botsford et al., 2009; Knights et al. 2014), and a 
mismatch between modelled dispersal and realised ecological connec
tivity (Marshall et al., 2010; James et al. 2019) may undermine man
agement and conservation efforts. Given behaviour may well be critical 
to this mismatch, some suggest the omission of behaviour in its entirety 
may well be preferential to the inclusion of one or more inaccurate 
behaviours (Bode et al., 2019). 

Recreating the complexity of the natural environment: identification 
of the cues used to govern when and where behaviour is expressed, and 
assessment of the relative importance of each cue to the organism when 
multiple cues are present, realistically cannot be captured in a labora
tory setting. Studying larvae in their natural environment instead can 
provide insight. For instance, observed in-situ change in vertical distri
bution profiles (e.g. Knights et al. 2006) can be used in conjunction with 
a fine-scale one-dimensional ocean turbulence model (e.g. Brereton 
et al., 2018) to ‘reverse-engineer’ larval behaviours and generate esti
mates of larval swimming speeds under variable environmental contexts 
that allow replication of observed vertical distribution patterns (see 
James et al. 2019). This study found that if models are to match in-situ 
observations of vertical distribution profiles, larvae must actively 
modify swimming behaviour in response to changes in tidal forcing 
conditions. Importantly, this research showed that this swimming 
response would not be captured using a ‘simple’ behavioural rule often 
implemented in models, such as a tidal vertical migration (TVM) 
signature (i.e. upward swimming during flood and downwards swim
ming during ebb – or vice versa, sensu Forward et al., 2003; Kunze et al., 
2013). Further, James et al. (2019) revealed a 2.5-fold differential in 
upward and downward swimming speeds, suggesting differential 
response/capacity to utilise vertically stratified horizontal advection for 
transport. 

While James et al. (2019) revealed previously undescribed 

idiosyncrasies in larval swimming over temporal scales ordinarily not 
considered, the effect(s) of these nuanced ’behaviours’ on dispersal 
predictions have yet to be evaluated i.e. do they actually make a dif
ference to dispersal predictions? Here, we explore how this 
reverse-engineered swimming behaviour affects larval dispersal esti
mates within a biophysical model framework, and compare the output 
with those produced by a passive model (i.e. without ‘behaviour’) and a 
model implementing TVM behavioural rules. 

2. Methods 

2.1. The Study Area 

In-situ vertical distribution data of Mytilus spp. collected in the 
southern Irish Sea (described in Knights et al. 2006) were used to 
reverse-engineer temporal changes in larval swimming behaviour over a 
tidal cycle (described in James et al. 2019). Here, we assess the effect of 
differential behavioural parameterisation on dispersal using an ocean 
circulation model coupled to a particle tracking module for the same 
Irish Sea region (Fig. 1). Water depths in this region are typically less 

Fig. 1. Mean surface flows in (a) Spring 2005 (April 1st – June 30th) and (b) 
Summer 2005 (July 1st – September 30th) derived from v3.4 of the Nucleus of 
European Modelling of the Ocean (NEMO AMM7 (Met Office, UK)). Location of 
the in-situ sampling regime undertaken by Knights et al. (2006) on which 
reverse engineered behaviours were calculated (James et al., 2019) is indicated 
by the red dot and was the location for particle release within the 
model framework. 
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than 100 m, although depths can reach up to ~150 m in the central 
channel and tidal flows typically oscillate in the North-South direction. 
The Irish Sea represents a typical semi-enclosed tidally influenced 
coastal basin with dynamical length scales of 10-1000 km. 

2.2. The Hydrodynamic Model 

Hydrodynamics in the study domain were simulated using the 
Coastal Ocean version 5 (CO5, O’Dea et al. 2017) of the 7km Atlantic 
Margin Model (AMM7), which uses the NEMO (Madec et al., 2016) 
ocean circulation model. The NEMO AMM7 model was developed by the 
Met Office in collaboration with the National Oceanography Centre and 
has been extensively refined and validated against observations for the 
UK shelf seas region to be a good representation of the coastal ocean for 
the study region. This model resolves prognostic variables (velocity, 
turbulence, salinity, temperature) on a curvilinear orthogonal horizon
tal grid with a horizontal resolution of approximately 7 km, and a ver
tical grid derived from 51 stretched-σ levels with realistic GEBCO 
bathymetry (Madec et al., 2016; O’Dea et al., 2017). It includes atmo
spheric (ERA-interim), tidal (TPXO7.2), and open boundary 
(ORCA0083) forcing, providing realistic 3D current velocities. The 
AMM7 model domain encompasses the entire northwest European shelf 
region, but here we focus on the Irish Sea subregion for which a suitable 
subdomain was selected. The model was re-run for a 6-month period 
from 1st April 2005 to 31st September 2005 to coincide with the time
frame of an in-situ sampling programme undertaken by Knights et al. 
(2006) and hourly velocity fields were stored for the subdomain in order 
to capture the strong tidal flows present in the Irish Sea (Brown et al, 
2003). 

2.3. The Particle Tracking Model 

Particles were tracked using a version of the Lagrangian TRANSport 
model (LTRANS v.2: Schlag and North, 2012), in which larval behav
iours can be governed by the tidal state (see detailed explanation in the 
Swimming Behaviours subsection),modified to work with NEMO model 
output (Mayorga-Adame et al., 2022). LTRANS is an offline 
individual-based particle tracking model that runs with the stored pre
dictions of a 3D hydrodynamic model, tracking the trajectories of par
ticles in three dimensions based on advection, diffusion and individual 
particle behaviours. The model includes a 4th order Runge-Kutta scheme 
for the advection of particles and a random walk, scaled by the spatially 
and temporally variable vertical viscosity coefficient of the underlying 
hydrodynamic model to simulate vertical movement due to turbulence 
at sub-grid scales (Visser et al., 1997; Ross and Sharples, 2004). This 
scheme solves for the u, v, and w current velocities (representing the x, 
y, and z directions) at the location of each particle using an iterative 
process that incorporates velocities at previous and future times to 
provide the most robust estimate of the trajectory of particle motion in 
water bodies with complex fronts and eddy fields, such as the Southern 
Irish Sea (Dippner 2004). 

Preliminary convergence testing was undertaken to determine the 
appropriate number of particles to be released within the model. This 
test, following Robins et al. (2013), indicated that simulations with 10, 
000 particles were sufficient to capture variation within the population 
whilst maintaining computational efficiency. 

2.4. Swimming Behaviours 

Larval behaviours can be specified within LTRANS via the behaviour 
sub-routine. Modifications were made to the behavioural sub-routine to 
test two active swimming behaviours: (1) Applying a tidal vertical 
migration (TVM),whereby individuals are parameterised to swim-up 
during the flood tide and down during the ebb tide at a fixed rate of 1 
mms− 1 in alignment with values in the literature (e.g. Chia et al. 1984; 
Sprung, 1984; Young, 1995) and values used by other biophysical 

modelling studies focussing on bivalves (e.g. Robins et al., 2013; Daigle 
et al, 2016), and (2) Reverse-engineered swimming behaviour (REV), in 
which virtual larvae were configured to swim at a random speed taken 
from a normal distribution profile fitted over the Modelled Predictive 
Capability (MPC) for a range of swimming speeds for each tidal state 
(James et al, 2019). The MPC approach for calculating swimming speed 
is described in full in James et al. (2019). Approximations of best-fit 
swimming speeds were identified for three of the four tidal states 
(Fig. 2 top). Estimated swim speeds (mm s− 1) were: -0.91±0.2 (mid-
flood → HW); -0.74±0.07 (mid-ebb → low water); and 2.06 ± 0.5 (low 
water → mid-flood). For the 3-h tidal period ranging from high-water to 
mid-ebb, predictive capability of the MPC model was low. During this 
stage of the tide, particles were configured to swim downward at a fixed 
rate of 1.1mm s− 1, which was the speed that achieved the closest match 
based on lowest total sum of squares error (James et al. 2019). Both TVM 
and REV behavioural models were also compared against a passive 
model with no larval behaviour applied. 

The NEMO output was augmented with two additional gridded 
variables, as functions of time (hourly), latitude and longitude. These 
variables were: 1) ̀ stateid`, which stored the current tidal state ((a) mid 
flood to high water slack, (b) high water slack to mid ebb; (c) mid-ebb to 
low water slack; or (d) low-water slack to mid-flood. (See Fig. 2)); and 2) 
‘tchange’, which stored the time (in seconds) of the state change if it 
occurs during the gridded hour period. These variables were computed 
using the modelled sea surface height data. Every modelled hour, 
LTRANS was configured to read the variables ‘stateid’ and ‘tchange’ 
from the underlying hydrodynamic model. The ‘tchange’ variable was 
used so that if a change in the state occurred during the modelled hour, 
larval behaviour changed at this point, rather than at the next timestep. 
To achieve this, larval behaviour within the model was reconfigured at 
each internal timestep (30s). In the case of the REV simulation, the exact 
swimming speed of each individual particle was chosen randomly from a 
normal distribution around the best fit approximation, allowing repre
sentation of behavioural stochasticity within the larval population. This 
approach of quantifying the tidal state in space and time was chosen 
over simpler methods of determining the tidal state (i.e., using tidal 
charts and a time counter within the model: sensu Daigle et al., 2016), as 
at a single time-point (e.g., ‘Hour 1’), the tidal state could be funda
mentally different depending on its position within the study domain 
relative to an amphidromic point (Fig. 2 bottom) resulting in an incor
rect behavioural response in both space and time. 

2.5. Particle Release and Tracking 

The particle release location within the model was chosen to match 
the location of in-situ sampling (52.2N, 6.15W; Knights et al., 2006). 
Particles were released following observed proportional distribution 
patterns for each tidal state, binned according to the vertical grid of the 
hydrodynamic model (following the methodology of Daigle et al., 2016), 
and individual runs were undertaken for each starting profile correlating 
to the 4 identified tidal states. Runs simulating each of the three 
behavioural parameterisation approaches (namely: Passive, Tidal Ver
tical Migration (TVM), and Reverse-Engineered Vertical Migration 
(REV)) were undertaken for spring (April) and summer (July) to account 
for potential differences in dispersal due to seasonal stratification and 
the frontal system that develops in the Southern Irish Sea (Neill et al., 
2012). No difference in vertical distribution patterns of larvae with 
respect to tidal phase (i.e. neap vs. spring) were identified in the field 
(Knights et al., 2006), so phase was not considered here. Particles were 
released on the first spring tide following April 1st (spring) or July 1st 

(summer). Particles were tracked for a duration of 28 days, which is 
within the typical range for ciliated larvae (Siegel et al. 2003; Hartnett 
et al. 2007; Tian et al. 2009). LTRANS was configured to output the 
location (lat/lon) and depth of each updated particle every 30 minutes. 
Output files were then processed in MATLAB (v. 2020a) to calculate: (i) 
radial distance travelled by the particle from its source to its end point, 
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Fig. 2. Top. Bootstrap distributions of predicted larval swimming speed (mm s− 1) and direction (upward (+)/downward (-)) based on mean ± standard deviation 
estimates based on ‘best match’ observed vertical distribution profiles (after James et al. 2019) during each tidal state condition. *indicates no match determined 
based on Model Predictive Capacity testing and the best estimate shown. Bottom. Variation in spatio-temporal tidal propagation and state condition around an 
amphidromic point over a 12-h (Hour-1 to Hour-12) period. relative to the observation site (red dot on Hour-1 plot). Four state conditions are shown: mid -flood to 
high water slack (yellow); high water slack to mid -ebb (green); mid-ebb to low water slack (red); and low- water slack to mid-flood (blue). 
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and (ii) the cumulative distance travelled by the particle (i.e. the total 
path length), at 30 minute intervals. 

2.6. Statistical Analysis 

All analyses were undertaken in R (R Core Team, 2020). A Linear 
Mixed Effects (LME) model in the R package, ‘nlme’ (Pinheiro et al. 
2020), was used to test the effects of four fixed variables on mean dis
tance travelled by a particle. Model factors were: (1) Behaviour (levels: 
Passive; Tidal Vertical Migration; Reverse-engineered); (2) Season 
(levels: Spring; Summer); (3) Tidal State at Release (levels: flood; low 
water slack; ebb; high water slack); and (4) Prediction (levels: radial 
distance; cumulative distance). Time (days) was included as a random 
variable, and an autocorrelation structure (AR(1)) applied following 
identification of temporal/spatial autocorrelation using the 
auto-correlation function (ACF, package ‘nlme’; Pinheiro et al. 2020). 
The maximal model (AIC = 1289.2) was therefore as follows: 

Maximal Model ← LME
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

mean distance
√

∼ Behaviour∗ Season ∗ Tidal State at Release∗ Prediction, random =

∼ 1
⃒
⃒
⃒Time, correlation = corAR1()

)

(1) 

A stepwise model reduction approach based on Akaike Information 
Criterion (AIC; Sakamoto et al. 1986) and likelihood ratio (performed 
using the function anova() in R) was used to test the effect of model 
simplification on estimates (Appendix 1). The following reduced model 
was identified without loss of predictive power (AIC = 1225.7): 

Reduced Model ← LME
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

mean distance
√

∼ Behaviour∗ Prediction + Season + Tidal State at Release, random

= ∼ 1
⃒
⃒
⃒Time, correlation = corAR1()

(2) 

Generalised Additive Models (GAMs) were used to assess relation
ships between behaviour, tidal state, and season and their effect on 
radial distance and cumulative distance over a 28-day planktonic larval 
duration. The GAM modelling incorporated fitting a smooth function (a 
thin plate regression spline) to the timestep covariate (days since 
release) and followed a gamma distribution for each of the response 
variables. GAM models were fitted using the R package ‘mgcv’ (Wood, 
2011). By default, this package uses the log link function for gamma 
distributions which is a good fit as the log link can represent well un
derlying multiplicate process common in ecology (Anderson, 2014). 

Pettitt’s test (Pettitt, 1979) was used to estimate the mean time point 
for a shift in central tendency in radial distance over the time series, 
using the R package ‘trend’ (Pohlert, 2020). Pettitt estimates from model 
simulations were then compared using one-factor ANOVA on a rando
mised normally distributed sample (n=100 using the rnorm() function 
in R) of values based on the mean and standard deviations of the Pettitt’s 
test outcome. ANOVA and Tukey post-hoc pairwise comparison tests 
were used to compare the mean radial distances travelled for each 
explored timepoint and Mood’s Pairwise median tests (Mood, 1954) 
used to formally compare kernel medians of model outputs. 

The ‘meanm’ function in MATLAB (v.2020a) was used to calculate 
the central tendency of the dispersal cloud as a lat/long coordinate for 
each season (spring/summer), behaviour (passive/REV/TVM) and day 
(1, 7, 14, 21, 28 days) combination, and the Euclidean distance between 
central tendencies calculated using the ‘sp’ package in R (Pebesma and 
Bivand, 2005). The ‘meanm’ function calculates the geographic mean 
position of input latitude and longitude coordinates while correcting for 
the sphericity of the Earth (modelled as an ellipsoid) thereby calculating 
the geographic mean rather than an arithmetic mean. Full details of this 
correction can be found here (https://uk.mathworks.com/help/map 

/geographic-statistics-for-point-locations-on-a-sphere.html). The ‘cor’ 
function in R was used to calculate the correlation between the central 
tendencies and correlation plots were formally tested using Spearman’s 
rank correlation coefficient (Spearman, 1904). 

3. Results 

3.1. LME modelling 

There was a significant interaction between behaviour and predic
tion method (LME (Behaviour × Prediction): F2,226 8.16, p <0.001) on 
mean dispersal distance. Season and tidal state of release had no sig
nificant effect on mean dispersal distance (Table 1). Mean radial and 
cumulative distances after 28 days were greatest in passive simulations, 
travelling on average 79 km from source and 1359 km along their path, 
respectively. REV particles travelled significantly shorter distances, 
travelling a mean radial distance of 33.7 km (2.3× shorter), and a mean 
cumulative distance of 359 km (3.8× shorter). Notably, mean radial 
distance of REV particles increased by only 1.6 km between 14 and 28 
days, with no significant difference in the radial distances between 14 
and 21 days (Tukey’s HSD: p = 0.329). In contrast, TVM particles 
travelled 52 km (+1.5× REV; -1.5× Passive) after 28 days, and a mean 
cumulative distance of 1024 km (+2.9× REV; -1.3× Passive) (Fig. 3). 

3.2. GAM fitting and identifying points of change 

In general, GAM models were a good fit, with behaviour, season, and 
tidal state explaining 75.7% of the deviance in radial distance travelled 
by particles from their source, and 97% of the deviance in cumulative 
distance travelled by particles along their dispersal path (Tables 2 and 
3). All incorporated covariates could significantly predict radial distance 
travelled from source (Table 2). Results demonstrated that both radial 
distance and cumulative distance path length differed with respect to 
behavioural modelling approach and season, although seasonal effects 
were only observed in passive model simulations, and not in behavioural 
models (Fig. 4). Differences between dispersal depending on tidal state 
release point occurred only in the passive model, with particles traveling 
greatest radial distances from source and shortest cumulative (path) 
distances when released on the ebb tide (Fig. 4b, h). 

Estimates of mean time point for a shift in central tendency of the 
time series indicated significant differences in the point of change for 
each behaviour × season interaction combination (Fig. 5). Passive par
ticles released in the spring were the latest to shift, occurring at 15.59 ±
0.57 days, and 1.7 days later than in the summer (13.91 ± 0.73 days). 
Shifts in the TVM model occurred at 14.92 days (± 0.15 days) and 14.42 
days (± 0.25 days) in Spring and Summer, respectively. REV particles 
exhibited a shift in central tendency after just 9.68 days (± 0.17 days) in 
Spring, but unlike the passive and TVM models, showed an increase to 
10.27 days (± 0.29 days) in Summer. 

3.3. Density Kernels (Probability Density Functions) 

Comparison of dispersal kernels revealed differences between the 
modelling approaches that increased in magnitude over time. Differ
ences in dispersal distance between behaviors were small when larval 

Table 1 
Effects of fixed factors in the reduced LME model [Eqn. 2] on mean distance 
travelled by a particle.  

Source of Variation numDF denDF F-value P-value 

Behaviour 2 226 232.62 < 0.0001 
Season 1 226 1.49 0.223 
Tidal State 3 226 0.02 0.995 
Prediction 1 226 112.16 < 0.0001 
Behaviour × Prediction 2 226 8.16 < 0.001  
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duration was <1 day: TVM particles travelled 1.8 km farther from source 
than REV particles, and 1.7 km farther from source than passive parti
cles, and the median distance travelled by TVM particles (5.3 km) was 
1.4 km and 1.5 km greater than REV and passive particles, respectively. 
After 7 days, median dispersal distance of REV particles (23 km) was 

significantly greater than that of passive or TVM models (both 18.2 km). 
After 14 days, there was a small, but significant difference (pairwise 
Moods median test, p <0.001) in the median dispersal distance between 
REV (31.9 km) and TVM particles (32.4 km). Interestingly, REV particles 
showed markedly lower propagule dispersion (SD = 5.5 km) in com
parison to passive (SD = 16.9 km) and TVM (SD = 9.6 km) simulations 
(Fig. 6) with 50% of the population within 4.3 km of the median, in 
contrast to passive (13.1 km) and TVM (12.9 km) simulations. REV 
particles became increasingly clustered over time, unlike in passive and 
TVM experiments, in which, particles continued to undergo dispersion 
over time (Fig. 6). After 28 days, there were significant differences in 
median radial dispersal distance for all models. REV particles travelled 
shortest distances (median distance: 32.9 km) and 50% off the popula
tion were aggregated between 30.5 km and 35.3 km from source. In 
contrast, median dispersal distance was 46.4 km (41% further) and 54.9 
km (67% further), and propagule dispersion 16.7× and 9.6× greater in 
passive and TVM simulations, respectively. 

3.4. Biogeography 

The modelling approach implemented led to markedly different 
biogeographic distributions of larvae, both in terms of biogeographic 
spread and direction of travel (Fig. 6). REV simulations suggested a net 
south-westerly movement, whereas the TVM model predicted a net 
northward movement over time. Passive simulations indicated a 
considerable effect of season on dispersal, with particles travelling 
offshore in spring, and both north and southwest in summer, and with a 
change in central tendency of up to 217 km (Fig. 8). There were strong 
positive correlations between behavioural models and seasons for short 
planktonic durations, lasting up to 14-d in summer, and just 7-d in 
spring (Fig. 7). 

4. Discussion 

The capacity of biophysical models to predict dispersal and allow 
spatial and temporal assessment of connectivity are currently at the 
forefront of larval dispersal research and central to on-going manage
ment and conservation efforts. Yet understanding if, when, and how to 
parameterise the ‘biological’ component of these models and the po
tential effects of inaccurate representation of biological traits on model 
predictions has remained a key challenge (Metaxas and Saunders, 2009). 
It is largely accepted that larval behaviour plays a key role in larval 
transport and wider ecological functioning but despite this recognised 
importance, many dispersal models still assume passive dispersal (see 
Swearer et al., 2019 for review). There is clear recognition of the need to 
include behaviour in biophysical models (e.g. Garland et al., 2002; 
Phelps et al., 2015; Daigle et al., 2016; Mayorga-Adame et al., 2017; 
Bode et al., 2019; James et al. 2019) but how behaviour should be 
incorporated remains debatable. Here, we highlight the sensitivity of 
model predictions to modification of just a single behaviour, larval 
swimming, that results in markedly different dispersal predictions. 

It has long been recognised that small changes in the vertical position 
of a larva could greatly influence dispersal trajectory due to depth- 
related differences in the magnitude and direction of the current 
(Pringle, 2007; Correll et al., 2012; Torres et al., 2018), and that some 
organisms actively migrate in the vertical in order to take advantage of 
favourable currents (i.e. Selective Tidal Stream Transport: Forward 
et al., 2003; Knights et al., 2006; Kunze et al., 2013; Peterio and Shanks, 
2015), avoid predation (i.e. Diel Vertical Migration – Lampbert, 1993; 
Scheuerell and Schindler, 2003; Gibson et al., 2016; Pinti and Visser, 
2019), and access available food sources (Gibson et al., 2016). However, 
what remains uncertain is the extent to which a larva can manipulate its 
position in-situ. Here, we incorporated a state-of-art assessment of larval 
swimming behaviour (REV) based on statistical models of likelihood of 
match between model simulations and field-derived observations of 
vertical distribution profiles after James et al. (2019); an approach 

Fig. 3. Left column. Radial distance (km ± SD) travelled ‘as the crow flies’ from 
a single point source location. Right column. Mean path length (km ± SD) 
travelled by particles after 1, 7, 14, 21 and 28 day planktonic larval durations 
for each model scenario (passive (red); reverse-engineered (green); TVM (blue)) 
aggregating over both release seasons and all states of the tide. 

Table 2 
Summary of the GAM log(RadialDistance + 1) ~ s(Days) + Behaviour + Season 
+ TidalState.  

Parametric Coefficients Estimate Std. Error T value Pr (>|t|) 

(Intercept) 3.318387 0.005069 654.54 <2e-16 *** 
Behaviour REV -0.053756 0.004693 -11.45 <2e-16 *** 
Behaviour TVM 0.062178 0.004693 13.25 <2e-16 *** 
Season Summer 0.085295 0.003832 22.26 <2e-16 *** 
TidalState Flood 0.120265 0.005419 -22.19 <2e-16 *** 
TidalState HW -0.085168 0.005419 -15.72 <2e-16 *** 
TidalState LW -0.071867 0.005419 -13.26 <2e-16 *** 
Smooth Terms Edf Ref.df F p-value 
S(Days) 8.95 8.999 11815 <2e-16 *** 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 

Table 3 
summary of the GAM log(PathTravelled + 1) ~ s(Days) + Behaviour + Season 
+ TidalState.  

Parametric Coefficients Estimate Std. Error T value Pr (>|t|) 

(Intercept) 6.2108180 0.0029394 2112.935 <2e-16 *** 
Behaviour REV -1.2002112 0.0027214 -441.03 <2e-16 *** 
Behavior TVM -0.5749442 0.0027214 -221.269 <2e-16 *** 
Season Summer 0.0585558 0.0022220 26.353 <2e-16 *** 
TidalState Flood 0.187068 0.0031424 5.953 2.66e-09 *** 
TidalState HW 0.0040826 0.0031424 1.229 0.194 
TidalState LW 0.0005868 0.0031424 0.187 0.852 
Smooth Terms Edf Ref.df F p-value 
S(Days) 8.997 9 102768 <2e-16 *** 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
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Fig. 4. Fitted Generalised Additive Model (GAM) of (a-f) radial distance from source over time (days), and (g-l) path length (km) grouped by modelled behaviour 
(passive, reverse engineered, tidal vertical migration) and season (Spring; Summer). Vertical dashed lines on plots (a-f) and accompanying text indicate the estimated 
mean time point for a shift in distributional central tendency of the time series based on Pettitt’s test outcomes. 
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developed to address some of the limitations of laboratory observations 
of behaviour, specifically their failure to capture ’real-life’ interactions 
between larvae and their environment (Bowler and Benton, 2005) and 
subsequent expression of a behaviour as movement. There is also 
mounting evidence that not all larvae are equal (see Toonen and Pawlik, 
2001; Marshall et al., 2010 and Nanninga and Berumen, 2014 for re
views) with a high degree of intra-specific variability. The REV method 
of behavioural parameterisation developed in James et al. (2019) 
inherently captures this intra-population variation by stochastically 
assigning behaviours within the larval cohort based on a range of likely 
swimming speeds inferred from the field; an approach previously 
advocated by Fisken et al. (2007). Interestingly, we demonstrate that 
even with inclusion of intra-population variability in capacity to 
’behave’, the dispersal of REV particles displayed the lowest variance 
and dispersal distances of all three model scenarios, with particles 
travelling considerably shorter distances than passive or TVM equiva
lents (on average 1000 km less than passive particles and 665 km less 
than TVM particles). These results further reinforce the potential for 
active behaviours such as vertical migration (Knights et al. 2006) to be 
an effective transport mechanism for even small, relatively 
slow-swimming organisms despite exposure to flow-fields that are often 
orders of magnitude faster. 

Our results suggest that for organisms with short planktonic dura
tions (i.e., 1 day), dispersal predictions are largely the same irrespective 
of the exclusion/inclusion of behaviour, suggesting that a passive 

dispersal model will provide comparable dispersal predictions to 
behaviourally complex models. Over time, however, we show that the 
incorporation of (a) behaviour, and (b) differences in behaviour 
parameterisation, become increasingly important. James et al. (2019) 
suggested that inaccurate parameterisation of behaviours would lead to 
additive errors in model predictions as a function of time. Here, all 
model comparisons, but especially that of REV vs. TVM simulations 
reinforce this concern, where after 14 days, the REV modelling approach 
results in biogeographic ‘stability’ and promotes localised retention 
irrespective of time, whereas the TVM and passive models indicate 
continued dispersal away from source over time (Fig. 3). 

4.1. Cohort clustering 

Implementation of the REV approach led to rapid early dispersal 
followed by high levels of clustering and short median dispersal dis
tances from their source. Clustering of the larval cohort has ecological 
pros and cons; it can provide advantages, such as allowing organisms to 
evade predation and offer protection through a ‘safety in numbers’ 
approach but may lead to increased mortality due to intraspecific 
competition for resources (Hixon and Jones, 2005). Mortality was not 
considered here as its inclusion was beyond the scope of our objectives 
but it is a key factor to consider in estimating population dynamics from 
dispersal models (Treml et al., 2015), and hence the design of 
connectivity-informed conservation agendas should endeavour to 

Fig. 5. Estimated time to shift in central tendency (days) following Pettitt’s test for each of model approach × season combination. Dots indicate outliers in the data. 
All pairwise comparisons are significantly different from each other (p < 0.001). 
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Fig. 6. Biogeographic predictions of larval dispersal over time (1-28d) modelled in LTRANS v2.0 using three behavioural classifications (red - passive; green - 
reverse-engineered; blue - TVM) in spring (left) and summer (right). Larvae are dispersed from the same single-point source (orange dot). The centre of gravity (CoG) 
for each of the dispersal clouds are shown by an ‘X’ and indicated with a coloured arrow. 
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include temporal and spatial species-specific mortality rates (Carr et al., 
2017). 

4.2. Biogeography – the need for a 3D approach 

Inspection of the tidal hydrogeography (Fig 2) illustrates spatial 
gradients in the timing of the tides, and errors in particle placement 
manifested as differences in behavioural cue timing. Clearly then, it is 
unsurprising that passive particles will have a different dispersive kernel 
when compared to TVM or REV that respond to the tides and which are 
not significantly different from one another. There is also a notable 
difference between the seasons for the passive particles. These particles, 
which are not being vertically mixed, remain at their initial depths. On 
the other hand, TVM and REV particles experience a degree of vertical 
homogenisation because of the particle behaviours. In summer, the 
stratification results in enhanced surface currents which persistently 

advect the surface cohort of passive particles southwards (Fig 1). In the 
spring the water column is more evenly mixed and so there is no surface 
intensification of the mean drift currents.. It is likely that specific details 
of the local hydrogeography lead to the TVM and REV particles being 
more retentive than passive particles, and that differences in the spatial 
distribution of the dispersal clouds of REV and TVM particles were also 
the result of regionally-dependent phenomena. For example, when tidal 
ellipses change direction with depth (Soulsby 1983; for examples in 
Liverpool Bay, see Polton et al 2011: Fig 3), we might expect the par
ticles that respond to tidal cues to be more dispersive as both ebb and 
flood could send the particles in the same direction. 

Spatial mapping of the dispersal clouds revealed a marked difference 
between the TVM and REV models not identified by the dispersal kernel, 
specifically a net north-easterly movement by TVM particles and a net 
south-westerly movement of REV particles. Using a single, non-spatial 
resolved metric like radial dispersal distance in this instance failed to 
differentiate between the two behavioural models, which without a 
spatial analysis as performed here, would provide misleading informa
tion with respect to the size and/or positioning of a spatial management 
intervention, such as a Marine Protected Area. Furthermore, distance 
travelled from source was also an order of magnitude shorter than cu
mulative distance travelled (path length), irrespective of behaviour and 
timing of release. We therefore strongly advocate for the use of a 
Lagrangian approach for predicting dispersal that couples local circu
lation models with individual based models (Cowen et al., 2006; 
Rochette et al., 2012) over other ‘simplified’ approaches that apply 
mean estimates of dispersal distance (Lockwood et al., 2002; Sala et al, 
2002; White et al., 2010) or distance = speed × time calculations (Shanks 
et al, 2003; Shanks, 2009). 

4.3. Implications 

Despite the importance of dispersal to the ecological and evolu
tionary success of marine organisms, our results highlight our limited 
understanding of the role of behaviour in dispersal predictions and the 
need to integrate in-situ and modelled data more effectively. Dispersal is 
a key consideration in estimates of population connectivity and models 
continue to play a critical theoretical and applied role in science today, 
whether being used to design Marine Protected Areas (MPAs: Gaines et 
al, 2003; 2010; Almany et al, 2009; Kaplan et al., 2009; Costello et al., 
2010; Krueck et al., 2017; Ross et al. 2017), identify pathways of inva
sion (Viard et al., 2006; Kitchens et al., 2017), or understand meta
population dynamics and biogeography (Sanvicente-Añorve et al., 
2018). We consider models to be an invaluable tool in these endeavours, 
but the results here highlight the disproportionate effects that even a 

Fig. 7. Correlation matrix of the dis
tance of centre of gravity of the 
dispersal clouds for each day × season 
× behaviour combination. Labels 
denote the day and the behavioural 
mode. Pairwise comparisons range from 
strong positive correlation (close prox
imity of centre of gravity of dispersal 
clouds) to strong negative correlation 
(large distances between centre of 
gravity of dispersal clouds). Pairs with 
no significant correlation (Spearman’s 
rank correlation coefficient: p > 0.05) 
denoted by ‘X’   

Fig. 8. Heatmap of Euclidean distance (km) between central tendencies of 
paired dispersal kernels generated over time (1, 7, 14, 21 and 28 days) from 
model predictions using passive, reverse-engineered (REVM) and tidal vertical 
migration (TVM) behaviour in spring and summer. Boxes with thick borders are 
comparisons between seasons for the same model class (behaviour). The colour 
ramp indicates minimum (0 km) and maximum (217 km) distances between 
centre of gravity pairs. 
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single behaviour - larval swimming - can have on model predictions, our 
understanding of ecosystem functioning, and ultimately, the ecological 
coherence of marine systems (Jonsson et al., 2020). Although the 
question of which behavioural modelling approach is best still remains, 
the results of our REV model are in broad alignment with the findings of 
other studies (Woodson and McManus, 2007; Shanks 2009; Sundelöf & 
Jonsson, 2011) and reinforces our thinking that: (1) active larval 
behaviour does serve as a mechanism to reduce larval dispersal; (2) 
coastal marine systems, and even physically dynamic systems like the 
Irish Sea can be relatively ’closed’ (sensu Cowen et al., 2000), and (3) 
MPAs and other coherent networks may need to be closer together to 
ensure coherence. Our results suggest that management decisions made 
on incorrect behavioural assumptions in dispersal models may over
estimate the connectivity between local populations, in contention with 
the suggestions of Costello and Connor (2019) and Manel et al., (2019) 
who argue that the spatial scale of marine connectivity is under
estimated, leading to a false sense of security in the ecological coherence 
of protected networks. Although further work is needed, we suggest that 
- in the meantime - best estimates of dispersal, and specifically bioge
ography, requires (i) use of a Lagrangian particle-tracking approach 
coupled with localised circulation models, and ii) empirical data of 
vertical distribution profiles that allow estimation of larval swimming 
speeds likely to occur in-situ to be resolved and their subsequent appli
cation in model simulations. 

5. Conclusion 

Dispersal models play a critical role in theoretical and applied sci
ence and remain invaluable tools, contributing to our understanding and 
management of sustainable ecological networks. The work undertaken 
in this study provides a novel framework that describes i) implementa
tion of field-derived descriptors of larval behaviours in a dispersal model 
and ii) comparative analysis of such behaviours against other methods of 
behavioural parameterisation in these models. To the best of our 
knowledge, our study is the first to use field data both to inform larval 
behaviour in a dispersal model, and to seed the ‘behaving’ particles at 
the same location as the field study – bridging the gap between models 
and nature, and providing a unique insight into how the manifestation of 
larval behaviour in-situ may influence dispersal. 

The methodologies and analytical techniques designed in this study 
can be applied to any species with a planktonic dispersal phase in any 
location, and provide an important step towards improving the biolog
ical ‘realism’ of behavioural parameterisation in dispersal models. 

CRediT authorship contribution statement 

MKJ: Conceptualization, Methodology, Software, Formal analysis, 
Investigation, Writing – Original draft preparation; GMA: Software, 
Data Curation, Writing – Review and editing; JAP: Software, IT Re
sources, Data Curation, Writing – Review and editing; KLH: Writing – 
Review and editing; AMK: Conceptualization, Formal analysis, Writing 
– Review and editing, Supervision, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

Data will be made available on request. 

Acknowledgements 

We would like to thank the editor for taking the time to read this 
paper and to colleagues at the Marine Biology and Ecology Research 
Centre for constructive discussions during the writing of the manuscript. 
Simulations were carried out on the in-house HPC cluster at the National 
Oceanography Centre, UK 

Funding 

This research was supported by a grant awarded to AMK. by the 
School of Biological and Marine Science, University of Plymouth, as part 
of the PhD research of MKJ.  

Appendix 

Appendix 1. ANOVA of the best fit linear mixed-effects model (sqrt(meandist) ~ ReleaseState * Season * Behaviour * method, random=~1|days, 
correlation=corAR1()).   

Intercept 1 188 19.849 <0.0001 
Behaviour 2 188 206.705 <0.001 
Distance metric 1 188 94.079 <0.001 
State : Behaviour 6 188 0.157 0.988 
Season : Behaviour 2 188 2.038 0.133 
State : Distance metric 3 188 0.19 0.903 
Season : Distance metric 1 188 1.712 0.192 
Behaviour : Distance metric 2 188 6.162 0.003 
State : Season : Behaviour 6 188 0.107 0.996 
State : Season : Distance metric 3 188 0.182 0.909 
State : Behaviour : Distance metric 6 188 0.109 0.995 
Season : Behaviour : Distance metric 2 188 0.219 0.803 
State : Season : Behaviour : Distance metric 6 188 0.192 0.978  
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