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Abstract: In this paper, two identification methods are proposed for a ground robotic system. A
Gaussian process regression (GPR) model is presented and adopted for a system identification frame-
work. Its performance and features were compared with a wavelet-based nonlinear autoregressive
exogenous (NARX) model. Both algorithms were compared and experimentally validated for a small
ground robot. Moreover, data were collected throughout the onboard sensors. The results show better
prediction performance in the case of the GPR method, as an estimation algorithm and in providing a
measure of uncertainty.

Keywords: system identification; NARX; Gaussian process; wavelet

1. Introduction

Gaussian process regression (GPR) is a nonlinear modeling technique that has recently
received interest in various fields of engineering. It provides a non-parametric and proba-
bilistic model fully described by its mean and covariance functions. One of the advantages
of the GP approach over traditional methods is its ability to provide information for the
system even in off-equilibrium regions, where limited data are available. Moreover, with
this method, the hyperparameters can be directly learned from the data points [1]. Further-
more, the analytic expression of the model uncertainty provided by GP models as well as
the robustness against overfitting are useful for model-based control strategies.

GPs were first employed in the representation of the geostatistics field (also known
as kriging) and then widespread in machine learning [2,3], robotics, controls, and system
identification frameworks [4,5]. Models for various spatial and temporal problems, such as
Brownian motion, Langevin processes, and Wiener processes are examples of GP applica-
tions [6]. A consistent number of publications can be found about the use of parametric
prediction methods to obtain a mathematical model of a dynamic system from observed
input—output data. Considering classical approaches, such as prediction error methods
(PEM), statistical properties of prediction error are used to build an optimal model by
selecting a proper model structure, as in [7]. Linear structures, such as black box structures,
include the FIR model (finite impulse response model), OE model (output error model),
ARX model (autoregressive with an external input model), ARMAX model (autoregressive
moving average with external input model), and BJ model (Box—Jenkins model), but
nonlinear black box modeling techniques are also available (see [8] for an overview). Some
of the examples that can be found in the literature are neural networks, fuzzy logic-based
models, and wavelet expansions. They is evidence of the influence of machine learning
techniques in system identification fields. A survey of different techniques can be found
in [9]. Furthermore, some research is focused on the non-convex optimization problem that
provides the model parameters, and on methods to improve convergence to the optimal
solution. In [10], the authors provide an overview on the use of evolutionary strategies and
swarm algorithms in the field of system identification. In a more recent contribution [11],
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a novel fractional hierarchical gradient descent algorithm was used to find the NARX
model parameters.

The use of the GP model in nonlinear system identification is documented in [12],
where Gaussian processes are presented as alternatives to other black box structures with
the advantages of having a small number of required training parameters, a facilitated
structure determination, and a confidence estimation for the model. A complete discussion
about system identification and control using GPs is also provided in [13]. The application
of GP for system identification can be seen in [14], where this approach is used for online
target tracking and smoothing, and in [15], where it allows the description of the target
dynamics in which external disturbances are explicitly incorporated. Unfortunately, GP
is subjected to the “curse of dimensionality”, and it requires high computational power
both for training and prediction, which scales with O(n3) and with n the number of data
points. As a consequence, classic GP is not suitable for large datasets or online computation.
Several methods have been proposed to solve this problem, such as sparse GPs [16] and
recursive GPs [17,18].

The novelty of this research lies in the application of GPR in the system identification
framework for modeling ground robots. Starting from [12] and considering the variety
of application fields in which the method has already been tested, this paper extends
the application of Gaussian process models for the identification of complex nonlinear
systems, such as mobile robots and exploiting real onboard sensors for measurement.
A comparison in terms of accuracy and features was performed with a NARX model
obtained by exploiting a wavelet network. The goal was to demonstrate the validity of
the Gaussian process model as an alternative to the more traditional ones. Moreover, even
if the computational effort of the GP is high compared with that of a NARX model, we
show that a reduced number of training datapoints provides good results when the GP
is used as identification method. Finally, the results show that the GP method is a more
suitable estimation method, including the evaluation of model uncertainties. A discussion
on the implementation limitations of the control system design is also included. The GP
identification method can be useful for the tuning of control parameters and avoiding
expensive and time consuming methods for building a real model.

The paper is organized as follows. In Section 2, some general concepts related to
GPs are reported. A general structure for a GP regression and some characteristics of its
parameters are discussed. A system identification framework is introduced in Section 3,
together with the GP-NARX model and the wavelet-based NARX (WANARX) model
structures. An overview of the system identification process is also offered. Section 4
discusses the experimental setup and an experiment, with highlights of the significant
aspects for the identification of the robot model. Results and considerations are also
reported. Finally, some future work is proposed to solve critical issues of the GP approach
for identification purposes.

2. Theoretical Background
2.1. Gaussian Process Regression

A Gaussian process regression can be used to identify input–output relationships
among observed data. The aim is to obtain a function f (·) that approximates the given
data points fully characterized by the mean and variance.

Consider the dataset D = {zk, yk)}N
k=1 containing N pairs of input–output noisy data.

The regression problem is of the form [3]:

yk = f (zk) + ek, ek ∼ N (0, σ2
n) (1)

where
f (z) ∼ GP

(
m(z), k(z, z′)

)
(2)
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is a stochastic process with mean m(z) and covariance k(z, z′):

m(z) = E[ f (z)] (3)

k(z, z′) = E[( f (z)−m(z))
(

f (z′)−m(z′)
)
] (4)

corrupted by Gaussian noises with variance σ2
n .

The mean and covariance functions are selected a priori. Usually, a function m(z) = 0
is considered [5]. For Equation (4), also called kernel, a squared exponential covariance
function is usually employed:

k(z, z′) = σ2
f exp

(
−‖z− z′‖2

2l2

)
+ σ2

nI (5)

with σ2
f and l defining the magnitude and characteristic length scales of the regressor

functions, respectively. Together with the variance σ2
n , they are known as hyperparameters

of the GP. Let Z = {z1, . . . , zN} be a training dataset, with z ∈ Rd, i, j = 1, . . . , N, and
Z∗ = {z∗1, . . . , z∗M} a test dataset. The goal is to find the predictive distribution of the test
dataset based upon the set of N training input–output data pairs. Under the assumption of
independence between noises and function values, the joint distribution of the observed
values and the unknown function values can be written as(

y
f (Z∗)

)
∼ N

((
m(Z)
m(Z∗)

)
,
(
(K + σ2

nI) kT
∗

k∗ k∗∗

))
(6)

where y is the vector of training targets, K is the covariance matrix denoted by elements
Kij = k(zi, zj), k∗ = k(Z∗, Z) is the matrix of covariances between training data and test
data, and k∗∗ = k(Z∗, Z∗) is the autocovariance matrix of the test data.

The posterior conditional distribution of the function values can be obtained by
conditioning this joint Gaussian distribution on the observations y:

f (Z∗)|Z, y, Z∗ ∼ N
(
f̄∗, cov(f∗)

)
(7)

where

f̄∗ = k∗[K + σ2
nI]−1y (8)

Cov(f∗) = k∗∗ − k∗[K + σ2
nI]−1kT

∗ (9)

are the mean and the covariance of the normal distribution, respectively.

2.2. Hyperparameter Selection

The selection of a kernel and its hyperparameters is referred to as model training
and determines the properties of the Gaussian process function, such as stationarity and
smoothness. The selected SE kernel is an example of a stationary and smooth function
with unknown parameters (l, σ2

f , σ2
n) to be identified. In particular, the characteristic length

scale l represents the length along which data points are strongly correlated [19], while σ2
f

and σ2
n are the magnitude of the covariance function and the magnitude of the noise term,

respectively. As in [3], all the unknown parameters are considered hyperparameters. A
possible method of parameter identification uses the definition of logarithmic marginal
likelihood log p(y|Z)

log p(y|Z) =

= −1
2

yT [K + σ2
nI]−1y− 1

2
log(|K + σ2

nI|)−
N
2

log(2π)
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where K + σ2
nI is the covariance matrix for noisy targets y, the term log(|K + σ2

nI|) is a
penalty depending on covariance and inputs and N

2 log(2π) is a normalization constant
depending on N the number of observations.

The value of the hyperparameters is found by maximizing the log function. This
optimization problem is non-convex, requiring the use of algorithms, such as gradient
descent or Broyden–Fletcher–Goldfarb–Shanno (BFGS) [20].

2.3. Data Curation

During GP training, the inversion of the kernel matrix K is required. The compu-
tational cost of this operation is O(N3), while GP prediction computational cost scales
linearly with N for the predictive mean and with O(N2) for the predictive variance. To
improve training speed, some techniques are available. The most used one is sparsification
of the training dataset. Sparse GP [16,21,22] only uses m samples for training, which can be
considered as hyperparameters and, thus, determined through parameter learning. In this
way, the computational cost is reduced to O(mN2) for training and O(m2) for prediction.

3. System Identification

System identification is able to provide a mathematical description of the system
dynamics valid for a wide variety of operating scenarios. The identification procedure
requires several steps:

• Model purpose identification;
• Design of the experiment;
• Collection of data;
• Choice of the model structure;
• Selection of the model parameters estimation method;
• Model training;
• Validation of the obtained model.

It is an iterative procedure in which the a priori assumptions and the structure selection
are tested and rectified until a satisfactory model behavior is not achieved. The candidate
models are selected based on a priori knowledge, engineering experience, or physical
background, and the decision must reflect the purpose of the model.

Suppose there is a nonlinear relationship between the current output, the past output,
and input values. The general identification problem can be expressed as a nonlinear
autoregressive with the moving average and exogenous input model (NARMAX) as

yk = f (yk−1, . . . , yk−na , uk−nk
, . . . , uk−nk−nb

, ek−1, . . . , ek−ne) + ek (10)

with yk the current output value, yk−i, the past output values, i = 1, . . . , na, uk−j the input
values, j = nk, . . . , nb, nk, the delay, ek, the noise term, ne, and the number of considered
noise terms; they are included to accommodate the presence of the measurement noise,
uncertainties in the model, or other unknown disturbances. When a linear independent
additive noise term ek ∼ N (0, Σe) is considered, a simplification can be done and a
nonlinear autoregressive with exogenous input model (NARX) can be obtained. This is
expressed as [4]

yk = f (yk−1, . . . , yk−na , uk−nk
, . . . , uk−nk−nb

) + ek (11)

Parameters na and nb are referred to as the orders of the NARX model and repre-
sent the number of past time instances that influenced the current system output. They
are degrees of freedom in the model structure settings, together with the selection of
the nonlinear relationship f (·) and the nk delay value. In the following, two kinds of
nonlinear mapping are considered. The first one is a Gaussian process-based NARX model,
the second one a wavelet-based NARX, in which a GP function and a wavelet network are
employed, respectively.
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3.1. GP-NARX Model

In order to perform multiple steps ahead of prediction, it is necessary to make iterative
one-step-ahead predictions while feeding back the predicted output and the measured
input at previous steps. The fed-back data are organized in a vector zk, defined as:

zk = (yk−1, . . . , yk−na , uk−1, . . . , uk−nb
)T (12)

A Gaussian process is introduced to model the relationship between such a vector, also
called model regressor, and the actual output. By rearranging Equation (11) and imposing
Equation (12), a GP-NARX model in the form of Equation (1) can be obtained, with a
schematic representation, as in Figure 1.

Figure 1. GP-NARX scheme.

3.2. WANARX Model

The approximation capability associated with wavelet functions is well known, so a
wavelet network is selected as a nonlinearity estimator for the NARX model. To compact
the notation, the regressors vector xk ∈ Rm is introduced:

xk = (yk−1, . . . , yk−na , uk−nk
, . . . , uk−nk−nb+1)

T (13)

where nk is the input delay. By rewriting Equation (11) according to the WANARX structure,
one obtains:

yk = f (xk) + (xk − x̄)TPθ+ l + ek (14)

where x̄ is the regressor mean, θ the p-by-1 vector of linear coefficients, P an m-by-p
projection matrix, l the scalar output offset, and

f (xk) = W(xk) + S(xk)

the nonlinear function constituted by dilated and translated wavelets and dilated and
translated scaling functions (to improve the regularity of the estimator [23]). The nonlinear
block f (xk) and the linear block (xk − x̄)TPθ+ l are combined together in a series-parallel
structure to improve the estimation results.

Wavelets are functions located both in time and frequency. A finite energy signal
can be decomposed into different frequency components by the superposition of func-
tions obtained through scaling and translating an initial function ψ known as the mother
wavelet [23]. A radial function ψw depending on the squared magnitude of vector x is
chosen as the mother wavelet function for the relationship described by W(·):

W(x) =
dw

∑
i=1

wiψw(bi(x− x̄)TQ− Ci) (15)

where
ψw(X) = (dim(X)− XXT)e−XXT/2 (16)

and Q is a m-by-q projection matrix, m ≥ q, w1, . . . , wdw the wavelet coefficients, b1, . . . , bdw

the wavelet dilations parameters, C1, . . . , Cdw the 1-by-q row vectors of wavelet translations,
m the dimension of the regressors vector, x̄ the mean of x and dw the total number of
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wavelets. For the relationship described by S(·), a radial function ψs is chosen as the scaling
mother function:

S(x) =
ds

∑
i=1

siψs(di(x− x̄)TQ− Ei) (17)

where
ψs(X) = e−XXT/2 (18)

in which s1, . . . , sds are the scaling coefficients, d1, . . . , dds the scaling dilations parame-
ters, E1, . . . , Eds the 1-by-q row vectors of scaling translations, and ds the total number of
scaling functions.

Structures in Equations (15) and (17) are very similar to the ones adopted by a neural
network: a the wavelet network can be seen as a one-hidden-layer neural network with ψ
as the activation function of the hidden layer [24]. A schematic representation is reported
in Figure 2.

Figure 2. WANARX scheme.

3.3. System Identification Process Overview

Experiments were carried out to create a training dataset consisting of system input–
output data pairs. As for all black box identification approaches, the design of the experi-
ment was carefully planned and the sampling time was carefully chosen. The aim of the
data collection is to fully capture the system dynamics, since a model-based approach is
proposed. The collected dataset was preprocessed (normalization, mean removal) to cancel
the influence of different measuring scales and to reduce the weight of outliers.

The model structure selection was addressed by choosing the regressor vector form,
basis functions, and their parameters. For the WANARX model, orders na, nb and delay nk
were selected. The covariance function and its hyperparameters were instead set for the
GP-NARX model.

Fitting models to training data allows estimating the unknown parameters and ob-
taining the system model.The model quality must be tested through suitable validation
criteria applied to a testing dataset, i.e., a set of independent input–output data collected
during experiments and not used for training. It is common practice to split the collected
dataset into two parts in order to have a training and a testing dataset and perform a model
cross-validation.

In this paper, the root mean squared error (RMSE) between the predicted and measured
output as well as the FIT percentage value were selected as quality indicators:

RMSE =

√
∑N

i=1(ŷi − yi)2

N
(19)
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FIT =

(
1−

√
∑N

i=1(yi − ŷi)2

∑N
i=1(yi − ȳi)2

)
× 100 (20)

where ŷi is the predicted output, yi is the measured output, N is the number of samples and

ȳi =
1
N

N

∑
i=1

yi (21)

The FIT is derived from the normalized root mean square error (NRMSE) using the

relationship FIT = (1−NRMSE)× 100, where NRMSE =

√
∑N

i=1(yi−ŷi)2

∑N
i=1(yi−ȳi)2 . The best model

has the smaller RMSE and the higher FIT.

4. Experimental Validation

The objective is the identification of the PWM-angular velocity relationship that
characterizes the motion of a small UGV equipped with tracks (Figure 3). The robotic
platform is moved by two geared DC motors, one for the left and one for the right side,
the behavior of which is assumed identical in this discussion. Each DC motor has an
encoder integrated with the shaft. A pulse width modulation (PWM) technique is used
for driving them: the signal is generated by a microcontroller, amplified by the H-bridge
and used to power the motors and consequently move the tracks. The use of encoders
allows the collection of the angular velocity, while the PWM duty cycle is obtained from the
recording of the commands sent to the robot from a remote controller. The complexity of
the system suggests the use of a black box approach instead of a classic lumped-parameter
approach. In particular, a nonlinear model is selected to capture all nonlinearities and
guarantee model fidelity. The model of the robot is completed by the introduction of a
kinematic model (see [25]), which establishes the relationship between the angular speed
of the tracks and the linear and angular velocities of the platform, thus giving the position
and the orientation of the vehicle.

Figure 3. Aerospace autonomous robots with onboard intelligent algorithms (STREAMS) Lab Robot
(https://sites.google.com/view/streamrobotics-polito/home, accessed on 3 October 2022).

4.1. Experimental Setup

The data necessary for identification were collected, ranging over the whole space of
the PWM duty cycle (from −20,000 µs to 20,000 µs). The goal was to define the relationship
of the PWM and angular speed of the DC motor. The PWM values were selected as
the model input u and the angular speed values as the model output y. A dataset of
input–output vectors was created and observations were collected to train and test the
dataset. The training dataset with N = 401 input–output observation pairs was created

https://sites.google.com/view/streamrobotics-polito/home
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from a 80 s long sample, in which the robot moved on a flat surface controlled by a radio
controller. A sampling time of 0.2 s was adopted, which took into account the processing
and communication capabilities of the robotic platform. A short mission of about 25 s was
used to compare the model performance in the MATLAB environment.

4.2. WANARX Model

The WANARX model was trained using the MATLAB “System Identification Toolbox”.
The available training dataset was normalized and arranged to create standard regressors
with the structure reported below:

xk = (yk−1, uk−1, uk−2)
T (22)

with na = 1, nb = 2 and nk = 1. The choice of model orders was made based on a
combination of prior knowledge of the system and trial and error. A five-unit wavelet
network was implemented, with the main parameters reported in Table 1. A FIT value
of 89.2388% with the training dataset was observed. In Figure 4, a comparison between
the measured and predicted output was reported as validation upon a testing dataset of
M = 128 data points.

Table 1. WANARX parameters.

l Output offset 0.5240
θ Linear parameters (0.5097, −0.0615, −0.012)T

w Wavelet coefficients (0.0487, −0.0675, −0.0343, 0.0244, 0.0397)T

b Wavelet dilations (1, 2, 1, 4 , 4)T

C Wavelet translations


0 −1 1
1 0 0
−1 0 0
−1 0.25 −0.25
0.75 0 0
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Figure 4. Comparison between measured output (red line) and WANARX model predicted output
(green line).

4.3. GP-NARX Model

The GP model was trained using the MATLAB “Statistics and Machine Learning
Toolbox”, which finds the optimal hyperparameters maximizing the log-likelihood as well.
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A set of training inputs Z was created by rearranging the structure reported in Equation (12).
Choosing na = 3 and nb = 3, each input vector is as follows:

zk = (yk−1, yk−2, yk−3, uk−1, uk−2, uk−3). (23)

The output vector of training targets is equal to y = (y4, y5, . . . yN). A squared exponential
kernel was selected (Equation (5) and its hyperparameters were established as reported
in Table 2.

Table 2. GP-NARX hyperparameters.

l Characteristic scale length 0.8335
σf Magnitude 0.4170
σn Noise variance 0.0181

In Figure 5, the comparison between the measured and predicted output on the testing
dataset was reported. Prediction intervals (95% confidence level) of the GP model predicted
output are shown in Figure 6.
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Figure 5. Comparison between measured output (red line) and GP model predicted output
(green line).

Figure 6. Prediction intervals (95% confidence level) of GP model predicted output.
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4.4. Discussion of Results

Figure 7 shows a comparison between the two proposed models. It can be noted that
the GP model follows more accurately the measured shaft angular speed than the WANARX
model, in particular during sharp changes. The overall performance was assessed using
the quality indicators of Equations (19) and (20). The results are reported in Table 3. It
can be observed that both models are characterized by a FIT value higher than 80%, with
low RMSE values of 1.2955 rad/s for the WANARX model and 0.7169 rad/s for the GP-
NARX. The GP-NARX model is more accurate in the prediction, with a high confidence
in its estimation demonstrated by the narrow width of the uncertainty band around the
average value.

The performance of the WANARX model is also good but a lower performance can be
observed compared with the GP method. Interesting considerations can be made if we look
at the size of the training dataset: doubling the training samples and retraining the network
while keeping the regressor structure unchanged, the FIT value refers to the same testing
dataset rises to 88.1142% against a value of 92.457% for the GP-NARX. This shows that
the WANARX model increases its predictive capability as the number of training points
increases, but also that the GP is very effective even with small datasets. Both methods
suffer from the “curse of dimensionality”, in particular the GP-NARX model doubles the
execution time on the training dataset with respect to WANARX.

Nevertheless, it proves to be an accurate model for describing the relationship between
PWM and angular velocity.

Table 3. Performance comparison.

Performance WANARX GP-NARX

RMSE 1.2955 0.7169
FITval 81.344% 90.333%

Time on training dataset [s] 0.047529 0.089865
Time on testing dataset [s] 0.020124 0.002090
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Predicted WA

Figure 7. Comparison between measured output (black line) and models predicted output (green
line for GP-NARX, red for WANARX).

5. Discussion on Control System Design

If a nonlinear dynamic system is considered, the implementation limitations of control
algorithms should be discussed. The control system design involves aspects related to
robot dynamics, actuator behavior, noise characteristics, and an adequate modeling of these
aspects is necessary for model-in-the-loop (MITL) or software-in-the-Loop (SITL) testing.
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The effectiveness of the control system depends strictly on the model on which the testing
is carried out.

The selection of data driven identification techniques ensures that uncertainties in
parameters; delays or constructive mechanical imperfections are included in the tuning
of the control parameters during the simulation. The advantage lies in the possibility of
employing both state-of-the-art techniques [26] and emerging ones (genetic algorithm (GA),
particle swarm optimization (PSO) method, and artificial neural network (ANN) [27]) to
obtain optimized gain factors on a faithful model of the system.

Here, we discuss the possibility of employing the model identified by the Gaussian
process regression for control algorithm tuning.

GP models are widely employed together with model predictive control strategies.
Advantages are linked to the computation of a prediction variance, which is an effective
measure of the uncertainty of the learned model. They are less susceptible to overfitting,
and they have, under certain circumstances, universal approximation capabilities for a large
number of functions [28]. In [29], a model predictive control (MPC) based on a Gaussian
process model was implemented for a pH neutralization process control example. An
interesting aspect is the inclusion of variance information in the optimization process as
a constraint to controller actions. In [30], a GP-based MPC framework was introduced
in an overtaking scenario at highway curves. A GP model was developed to learn the
unknown dynamics and to acquire information about the unexplored discrepancy between
the nominal vehicle model and the real vehicle dynamics. The combination with a MPC
strategy results in safe and stable control under changing friction road conditions. In [31], a
learning-based control approach for underactuated balance robots was considered and a
GP regression model was incorporated to enhance robustness to modeling errors.

In the case of an exam, a combination of a guidance and control algorithms, such as
an artificial potential field (APF) and a proportional integrative derivative control (PID)
have been implemented and tested using the previously introduced GP-NARX model. The
performance of the system has been evaluated on the tracking capability of a reference
signal generated in real time by the APF algorithm. Control requirements have been
formulated in terms of rise time, settling time, overshoot, and steady state errors. The
effectiveness of tuning has been demonstrated by the comparison between simulation data
and experiments conducted with the robot.

6. Conclusions

In this paper, a Gaussian process regression model was proposed as nonlinear mod-
eling technique for system identification for ground robots. The model was trained and
validated using the robotic platform in our laboratory to assess its performance and its
applicability to UGV dynamics modeling.

The GP framework was firstly introduced, then a practical implementation was re-
ported to demonstrate the validity of the method alongside a classic NARX. In particular, a
comparison was performed with a wavelet-based NARX model and some considerations
about time effort and prediction accuracy on a test dataset were reported. The experimental
results show that the GP model performance is better than the WANARX model. Moreover,
GP-NARX models are able to provide the measure of uncertainty on the results. However,
the training time is high due to the computational complexity of the matrix inversion.
Finally, a brief discussion about different control strategies applied to data driven identifi-
cation techniques was carried out. In particular, it was noted how the GP can effectively
improve system performances in a great variety of engineering applications.

As part of future work, we propose the use of a recursive algorithm for the online
estimation of the GP model and its hyperparameters. Indeed, the recursive GP method
should be computationally efficient to be run on the robotic platform. Moreover, the system
identification structures based on state-space representation will be considered.
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