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Abstra
t

Mathemati
al modelling of 
ell movement has traditionally fo
ussed on a single

population of 
ells, often moving in response to various 
hemi
al and environmental


ues. In this paper, we 
onsider models for movement in two or more intera
ting


ell populations. We begin by dis
ussing intuitive ideas underlying the extension

of models for a single 
ell population to two intera
ting populations. We then


onsider more formal model development using transition probability methods, and

we dis
uss how the same equations 
an be obtained as the limiting form of a velo
ity-

jump pro
ess. We illustrate the models we have developed via two examples. The

�rst of these is a generi
 model for 
ompeting 
ell populations, and the se
ond


on
erns aggregation in 
ell populations moving in response to 
hemi
al gradients.
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1 Introdu
tion

Mathemati
al modelling of 
ell movement has a long and su

essful history. A key early

paper was that of Keller and Segel (1970), who developed a partial di�erential equation

model to study the bio
hemi
al regulation of ba
terial movement. Their highly in
uential

equations have been the basis for models of phenomena as diverse as slime mould aggre-

gation (H�ofer et al. (1995)), tumour angiogenesis (Chaplain and Stuart (1993)), primitive

streak formation (Painter et al. (2000)) and wound repair (Pettet et al. (1996)). In the

1980s, a separate area of resear
h developed, in whi
h models were proposed for the move-

ment of isolated single 
ells. This work was lead initially by Oster (Oster (1984); Oster

and Perelson. (1985)), and has subsequently been developed by a range of authors (Bot-

tino and Fau
i (1998); Bottino et al. (2002)). In prin
iple, these two modelling approa
hes

should 
onverge to give a ma
ros
opi
 model that re
e
ts in detail mi
ros
opi
 
ell be-

haviour. There have been a number of re
ent papers in this dire
tion; e.g. Othmer and

Stevens (1997) and S
hnitzer et al. (1990) explore the derivation of ma
ros
opi
 equations

for 
hemotaxis from a biased random walk in
orporating detailed mi
ros
opi
 behaviour

rules, while Dallon and Othmer (1997) 
onsiders the individual movement of dis
rete 
ells

in a 
ontinuous 
hemi
al �eld.

In this paper, we 
onsider modelling a di�erent aspe
t of 
ell movement, namely

behaviour in a mixture of two intera
ting 
ell populations. This is a very 
ommon s
enario

in physiologi
al 
ontexts. For example, tumour 
ells typi
ally move through and intera
t

with the surrounding population of untransformed 
ells, and wound healing in the 
orneal

epithelium depends on the migration into the wound of intera
ting sub-populations of

epithelial 
ells. In development, the reorganisation of undi�erentiated 
ells of the early

embryo into multiple-tissue types during gastrulation requires the 
oordinated movement

of distin
t subpopulations.

Despite these and other important examples, very little previous work has been done in

this area. Most models of intera
ting 
ell populations in
lude movement very simply, via

independent linear di�usion of ea
h population (Sherratt and Nowak (1992); Pettet et al.

(1996); Ga�ney et al. (1999)). This will typi
ally be appropriate when the individual 
ells

are widely separated. However when 
ells are 
lose enough for regular 
onta
ts, those of
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one type will inevitably in
uen
e the movement of the other 
ell population. The obje
tive

of this paper is to 
onsider how this 
an be best re
e
ted in partial di�erential equation

models. In x2 we dis
uss intuitive ideas behind models for intera
ting 
ell populations,

and in x3 we develop model equations using a spa
e-jump approa
h. In x4 we 
onsider

suitable fun
tional forms for motility 
oeÆ
ients and their biologi
al impli
ations, and in

x5 we dis
uss the possibility of deriving the equations using the alternative velo
ity-jump

formalism. Finally, in x6 and x7 we present two examples of the appli
ation of our model

to parti
ular types of 
ell behaviour.

2 Intuitive 
onsiderations

2.1 One 
ell population

When individual 
ells in a population are widely separated, they will have little dire
t

intera
tion. Therefore one 
an reasonably assume that in the absen
e of external 
ues

biasing their motion, ea
h 
ell will undergo an unbiased random walk. At the population

level, this implies that di�usion is the appropriate mathemati
al model. As the 
ell

density in
reases, individual 
ells will intera
t more often, with an inevitable e�e
t on

motility. However, in the absen
e of external 
ues their motion will remain unbiased, so

that one expe
ts a di�usion-like term to still be appropriate. This suggests a model with a

nonlinear di�usion 
oeÆ
ient, dependent on 
ell density. Denoting this density by u(x; t),

the appropriate model is thus

�u=�t = Dr � [Q(u)ru℄ : (1)

(We omit any 
ell kineti
 terms at this stage to fo
us on motility). It is most 
onvenient

to de�ne D as the di�usion 
oeÆ
ient when the individual 
ells are widely separated; this

implies that Q(0) = 1. As the 
ell density goes up, we expe
t the di�usion 
oeÆ
ient to

de
rease as a result of 
ell-
ell intera
tions, so that Q(:) de
reases.
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2.2 Multiple 
ell populations

In the 
ase of intera
ting 
ell populations, modelling is again straightforward when indi-

vidual 
ells are widely separated. If there are no external 
ues biasing motion, we 
an

again reasonably assume that ea
h 
ell undergoes an unbiased random walk, whi
h means

that at the population level, the appropriate model is linear di�usion for ea
h population.

As the 
ell density in
reases, 
ell-
ell intera
tions will again a�e
t movement. The sim-

plest 
ase to 
onsider is when the two 
ell populations have identi
al movement properties.

If we take u(x; t) and v(x; t) to be the densities of the two 
ell types, then the total 
ell

density u+ v will satisfy the nonlinear di�usion equation (1)

�(u + v)=�t = Dr � [Q(u+ v)r(u+ v)℄ : (2)

To separate this into equations for u and for v, it is helpful to re
onsider the interpretation

of the nonlinear di�usion. At a ma
ros
opi
 level, (1) implies that 
ells move down

gradients of their own density, at a rate that depends on that density via the fun
tion

Q(:). In the 
ase of two 
ell populations, 
ells may move in response to either the gradient

in their own density, or the gradient in total 
ell density. This will depend on the details

of 
ell behaviour. In general, we 
an divide the term Q(u + v)r(u + v) in (2) into two

parts: A(u + v)r(u + v) whi
h is the movement of 
ells down gradients of their own

density, and B(u + v)r(u + v) whi
h is the movement of 
ells down gradients of total


ell density. Here A + B = Q. The �rst term implies a 
ontribution A(u + v)ru to the

movement of the u 
ell population, and A(u+v)rv to the movement of the v population.

The se
ond term will divide between the two populations simply a

ording to the ratio

of their densities, giving 
ontributions

u

u+v

B(u + v)r(u + v) and

v

u+v

B(u + v)r(u + v)

to the movement of the two populations. Therefore the overall equations governing 
ell

movement are

�u

�t

= Dr �

�

A(u+ v)ru+

u

u+ v

B(u+ v)r(u+ v)

�

(3a)

�v

�t

= Dr �

�

A(u+ v)rv +

v

u+ v

B(u+ v)r(u+ v)

�

: (3b)

The forms of the fun
tions A(:) and B(:) will depend on the details of 
ell behaviour, and

some potential fun
tions are dis
ussed below. Intuitively we expe
t that, like the fun
tion
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Q(:) dis
ussed above, A(:) and B(:) will be de
reasing fun
tions, whi
h be
ome zero at

u+ v = u

max

, 
orresponding to 
losely-pa
ked 
ells.

3 Jump probability 
al
ulations

Continuous equations for 
ell movement are 
ommonly derived from two 
lasses of move-

ment, 
oined \velo
ity-jump" and \spa
e-jump" in Othmer et al. (1988). The former

models movement as periods of smooth motion pun
tuated by reorientations, while the

latter assumes a sequen
e of dis
rete jumps in spa
e. Both approa
hes enable 
ontinuum

equations to be derived in appropriate limits, but this pro
ess is more straightforward

for the spa
e-jump formalism. Therefore we 
onsider this �rst, and return brie
y to the

velo
ity-jump approa
h in x5.

To derive our model for movement, we employ the method of Othmer & Stevens (for

more details, see Othmer and Stevens (1997) and the referen
e therein), where a master

equation for a 
ontinuous-time, dis
rete-spa
e random walk on a one-dimensional equi-

distant latti
e is 
onsidered. We de�ne u

i

(t) to be the probability of a 
ell to be at i 2 Z

at time t, 
onditioned on beginning at i = 0 at t = 0. We assume this evolves a

ording

to the 
ontinuous-time dis
rete-spa
e equation:

�u

i

�t

= T

+

i�1

u

i�1

+ T

�

i+1

u

i+1

� (T

+

i

+ T

�

i

) u

i

: (4)

In the above, T

�

i

(�) de�nes the transitional-probabilities per unit time of a one-step jump

to i � 1. The above model simply des
ribes the 
hanging 
ell numbers as individuals

enter or leave a site, and herein we shall equate the probability distribution with the 
ell

density.

The simplest assumption is that the jump probability is equal in either dire
tion and

uniform a
ross the latti
e, i.e. T

�

i

= �, 
onstant. Thus,

�u

i

�t

= �(u

i�1

+ u

i+1

� 2u

i

:) (5)

We set x = ih, reinterpret x as a 
ontinuous variable and extend the de�nition of u

i

a

ordingly. By introdu
ing a s
aling of the transition-probabilities su
h that T

�

= �T

�

,
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and expanding the right-hand side as Taylors Equations in fun
tions of x we obtain

�p

�t

= �h

2

�

�

2

p

�x

2

+O(h

4

):

As the spatial s
ale h is 
hanged, the transitional probabilities of a jump must be 
hanged

a

ordingly. Thus we assume that the following limit exists:

lim

h!0

�!1

�h

2

= 
onstant � 
;

and one derives the di�usion equation:

�u

�t

= D

u

�

2

u

�x

2

where D

u

= 
� is a 
onstant.

The assumption of a uniform isotropi
 jump probability is inappropriate for most 
ell

populations, whose movement is strongly in
uen
ed by intera
tion with environmental

signals (e.g. 
hemi
als, gravity, light), or 
onta
t with other 
ells (e.g. 
onta
t inhibition,

adhesion). This 
an be in
orporated into the above model by assuming a dependen
e

in the jump probabilities. This was studied in the 
ontext of 
hemosensitive movement

in Othmer and Stevens (1997), where di�erent ma
ros
opi
 (PDE) models were derived,

depending on the lo
al strategy for environment sensing.

3.1 Strategies for sensing

Here, we develop a general model for the biased movement of a 
ell on a latti
e, where

the jump probabilities depend on a variety of environmental fa
tors (e.g. other 
ell pop-

ulations or 
hemi
als). For present, we keep the approa
h general, but later we shall

expli
itly 
onsider the 
ase where 
ell movement depends on the total 
ell density. We

denote by E the matrix of the environmental 
ues, where E

j;i

indi
ates the density or


on
entration of the jth-fa
tor at latti
e site i. For example, for the situation dis
ussed

in x2, j would only take the value 1, with E

1;i

being the total 
ell density at site i.

We 
onsider four sensing strategies:

1. Stri
tly-lo
al: information only at the present position is 
onsidered.
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2. Neighbour-based: 
onsiders information at the target jump site.

3. Lo
al-average: 
onsiders the average of the information between the parti
les present

and target site.

4. Gradient: 
onsiders the lo
al di�eren
e in information between the target and lo
al

site.

Of 
ourse, this by no means 
hara
terises all the strategies a 
ell may employ. In parti
-

ular, other me
hanisms may in
orporate longer ranging information, for example if a 
ell

extends �lopodia out into its environment.

1. Stri
tly-Lo
al Models

For stri
tly lo
al rules, we 
hoose T

+

i

= T

�

i

= f(E

i

) where E

i

represents the information

at i. The Master Equation be
omes:

�u

i

�t

= f(E

i+1

)u

i+1

� 2f(E

i

)u

i

+ f(E

i�1

)u

i�1

Under the appropriate s
aling, the following PDE is derived:

�u

�t

= D

�

2

�x

2

(f(E)u) (6)

2. Neighbour-based

For neighbour-based rules we assume T

�

i

= g(E

i�1

), resulting in the following Master

Equation:

�u

i

�t

= g(E

i

)(u

i+1

+ u

i�1

)� u

i

(g(E

i+1

) + g(E

i�1

));

and in the PDE limit we derive:

�u

�t

=

�

�x

"

g(E)

�u

�x

� u

�g(E)

�x

#

(7)

Phenomelogi
ally, for de
reasing g, this models pro
esses su
h as \spa
e-limitation", in

whi
h a 
ell is only able to move into a neighbouring site if there is suÆ
ient spa
e

available.

3. Lo
al-average
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We assume T

�

i

= h

�

E

i�1

+E

i

2

�

. If substituted into the master equation we obtain:

�u

i

�t

= h

�

E

i+1

+ E

i

2

�

(u

i+1

� u

i

)� h

�

E

i

+ E

i�1

2

�

(u

i

� u

i�1

)

and the PDE equation is derived as:

�u

�t

=

�

�x

 

h(E)

�u

�x

!

(8)

4. Gradient-based models

The gradient based-model assumes transitional probabilities of the form:

T

�

i

= � + � (�(E

i

)� �(E

i�1

))

and the resulting PDE is:

�u

�t

=

�

�x

"

D

�u

�x

+ u

d�

dE

�

dE

dx

#

(9)

The above equation has been employed extensively to model ta
ti
 responses in 
ell pop-

ulations, su
h as 
hemotaxis, haptotaxis or phototaxis.

5. Combined models

Sin
e 
ell movement involves the pro
essing of multiple signals, ea
h of whi
h may a
t on

the 
ell in di�erent ways, a 
ombination of the above strategies may be ne
essary to most

a

urately re
e
t 
ell movement. While the mathemati
al form of the equations qui
kly

be
omes 
omplex, the derivation is relatively straightforward. For example, 
ombining

ea
h of the lo
al, neighbour and gradient based models above gives

T

�

i

= f(E

i

)g(E

i

�1) (� + � (�(E

i

)� �(E

i�1

)))

The PDE 
orresponding to this 
ombined movement rule is

�u

�t

=

�

�x

"

g(E)

�

�x

(f(E)u)� f(E)u

�g(E)

�x

+ ug(E)f(E)

d�

dE

�

dE

dx

#

: (10)
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4 Forms of motility fun
tions for intera
ting 
ell populations

We now 
onsider the 
ase outlined in Se
tion 2, where two 
ell populations u and v intera
t

via the movement depending on the total 
ell density, w = u+ v. Cases (1-4) above thus

give rise to the following equations for the dynami
s of the u population:

�u

�t

=

�

�x

 

f(w)

�u

�x

+ u

�f(w)

�w

�w

�x

!

�u

�t

=

�

�x

 

g(w)

�u

�x

� u

�g(w)

�w

�w

�x

!

�u

�t

=

�

�x

 

h(w)

�u

�x

!

�u

�t

=

�

�x

 

D

�u

�x

+ u�(w)

�w

�x

!

In the above, �(w) = 


d�

dw

. Clearly, all of the above models �t into the intuitively derived

forms, Equations 3.

How 
ould the total 
ell density a�e
t the movement properties of the 
ells? Here

we shall restri
t our attention to those me
hanisms whi
h may lead to dispersal of the

population (i.e. we ignore adhesive type pro
esses). We 
onsider the following general

me
hanisms:

� \Population-pressure". We assume that a high 
ell density results in in
reased

probability of a 
ell being \pushed" from a site, for example due to the pressure

exerted by neighbouring 
ells. This might be a
hieved phenomelogi
ally using the

stri
tly lo
al formulation and f(w) in
reasing.

� \Limited-spa
e". Here we assume that no more 
ells 
an enter a site above a total


ell density. In the 
ontext of the lo
al rules, above, this may be a
hieved with

either the neighbour or average-based model, and 
hoosing g(w) or h(w) su
h that

there exists some T for whi
h g(T ) = 0 when w = T .

� \Gradient" dete
tion. Cells may dete
t and respond to a lo
al gradient in the 
ell

density, in whi
h 
ase we assume the gradient model. To ensure that 
ells move

down gradients in the total density (i.e. homogenising) we require �(w) > 0. If we

assumed further that movement o

urs only when a gradient is dete
ted then we

would 
hoose D = 0.
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S
heme Example Fun
tion A(w) B(w)

Lo
al f = 
w 
w 
w

Neighbour g = 1� w=T 1� w=T w=T

Average h = 1� w=T 1� w=T 0

Gradient � > 0, D = 0 0 �w

Table 1: Table illustrating how the terms of the generi
 model vary for di�erent lo
al

rules. 
; T; � and D are all assumed 
onstant.

For simple 
hoi
es of the fun
tional forms, the above me
hanisms give rise to the forms

for A and B given in Table 1. Note that for the above me
hanisms A and B are � 0

(providing w � T ). Thus we expe
t the equations to be well-de�ned.

4.1 Cell-marking experiments

We �rst illustrate the e�e
t 
ell{
ell intera
tions by 
omparing the movements of a 
ell

population for a model in whi
h this is in
orporated (we use the \neighbour" s
heme form

of Table 1) to the independent movement s
enario (i.e. A � 1, B � 0 in Equations 3). To

monitor the mixing, we assume a hypotheti
al experimental set-up in whi
h a population

of identi
al 
ells is seeded at high density at one end and a low density at the other (see

s
hemati
 in Figure 1). A proportion of the 
ells are marked in a manner su
h that those


ells form a homogeneous distribution. Under independent movement, while the total 
ell

density evolves to a homogeneous movement, no net movement is observed in the marked

subpopulation, Figure 1, (a). When intera
tion is in
luded, however, although the total


ell density evolution is the identi
al, 
lear distin
tion 
an be seen in the movements of

marked/unmarked subpopulations, with the marked 
ells experien
ing a 
ux due to the

total 
ell density gradient, Figure 1, (b). We note that when the 
ells are seeded at mu
h

lower densities (i.e. su
h that the total 
ell density � T ), this e�e
t is less pronoun
ed:

away from the maximum pa
king, 
ell 
onta
t is less frequent, and we are 
loser to the

independent movement s
enario.

We now address the question of whether di�eren
es in the lo
al me
hanisms 
onsidered

in Table 1 
an be understood through the behaviour of the ma
ros
opi
 equations by


onsidering two hypotheti
al experimental set-ups. In the �rst, Figure 2 (a), a population

9
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(a) Independent diffusion

(b) Interaction through "Neighbour" rules

Figure 1: Comparison of independent (i.e. A � 1, B � 0) and intera
ting s
enarios. Top

row; s
hemati
 showing distribution of marked (bla
k, v)/unmarked (white 
ells, u). (a)

Evolution for independent di�usion (A = 1, B = 0). (b) Evolution for intera
ting s
enario

(
hoosing \neighbour" s
heme from Table 1, with T = 2). In both sets, time shown are

t = 0 (dotted line), t = 100 (solid), t = 1000 (dot-dash) and t = 10000 (dashed)

.

of (motile) identi
al 
ells are seeded with a gradient in the 
ell density. A fra
tion of these


ells are labelled with a marker su
h that the density of labelled 
ells is uniform. In the

se
ond set-up, Figure 2 (b), the population is initially seeded at a uniform density, while

the marked fra
tion is set in a graded manner.

In Figure 2 we summarise the results of the experiments. The lo
al and neighbour-

based rules show very similar behaviour, as may be expe
ted by the 
omparatively 
lose

forms of the PDE, see Figure 2. For type I experiments, u has a uniform distribution, yet

the total density varies. The resulting 
ux from the total density indu
es a net migration

of u 
ells down this gradient, before both populations eventually be
ome homogeneously
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Figure 2: Comparison between the various movement rules for two hypotheti
al experi-

ment set ups. Top rows: S
hemati
 showing distribution of marked (bla
k) / unmarked

(white) 
ells for the experiments. Bottom rows: Snapshots in the time evolution for

di�erent s
hemes, with A(w) and B(w) forms 
orresponding to those given in Table 1,

showing: Total 
ell density (solid), marked 
ell density (dashed) and unmarked 
ell den-

sity (dotted). The T = 10000 plots indi
ate the steady state solutions. Simulations use

T = 2; 
 = 1; � = 1 where appropriate.
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distributed. For type II experiments, the total 
ell density is 
onstant; and thus ea
h

population moves down its own gradient. A di�eren
e 
an be seen when looking at the

behaviour at the maximum pa
king density, where the limited-spa
e model predi
ts that

no movement 
an o

ur and 
ells are �xed in the initial 
on�guration.

In 
ontrast, if there is no 
ux 
ontribution due to the total 
ell gradient (i.e. average

based model), di�eren
es in behaviour 
an 
learly be seen in the type I experiment, Figure

2. Despite a gradient in total 
ell density, u, the 
ells remain homogeneously distributed.

The type II set-up shows the same behaviour as des
ribed above.

The gradient system 
an also be easily distinguished. Here, 
ells respond only to the

total density gradient. Thus for type II experiments, no movement o

urs, and the 
ell

populations remain in the initial 
on�guration. For type I experiments, mixing o

urs

until the total 
ell density be
omes homogeneous, though the subpopulations themselves

may remain inhomogeneously mixed.

5 Velo
ity-jump 
al
ulations

Before presenting the appli
ation of our equations to spe
i�
 situations, we 
onsider brie
y

the possibility of deriving model equations using the \velo
ity jump" approa
h (Othmer

et al. (1988)). This assumes that 
ells undergo periods of smooth motion pun
tuated by

reorientations. In one spa
e dimension, this means that movement 
an be 
hara
terised

by three parameters: the 
ell speed (s say), and the rates at whi
h 
ells moving to the left

and right 
hange dire
tion (�� Æ, say). Any di�eren
e between these last two parameters

(i.e. Æ 6= 0) indi
ates a dire
ted 
omponent to the movement.

Hillen and 
oworkers (Hillen (2002)) have studied in detail the development of par-

tial di�erential equations to des
ribe velo
ity-jump pro
esses. In parti
ular, Hillen and

Stevens (2000)

2

showed that in the limit of high 
ell speed and high turning rate with

s

2

=� remaining �nite, the underlying telegraph equation approa
hes a paraboli
 limit,

2

The derivation of the paraboli
 limit in Hillen and Stevens (2000) assumes that the quantity 2� �

(1=s)�s=�t is independent of x. More generally, although the underlying telegraph equation is di�erent,

the same paraboli
 equation emerges in the limit of high 
ell speed and turning rate (Hillen, personal


ommuni
ation).
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given by

�u

�t

=

�

�x

"

s

3

2s�� �s=�t

�u

�x

+

s

2

(�s=�x + 2Æ)

2s�� �s=�t

u

#

: (11)

In appli
ations to intera
ting 
ell populations, s, � and Æ will be fun
tions of total 
ell

density w and its derivatives. For simpli
ity we assume that they depend only on w, w

x

and w

t

(but not higher derivatives). In this 
ase (11) has the form (3a) provided that s,

� and Æ have the following forms

s = s(w) an arbitrary fun
tion

� =

1

2

"

s(w)

2

A(w)

+

s

0

(w)

s(w)

�w

�t

#

! =

1

2

"

B(w)s(w)

wA(w)

� s

0

(w)

�w

�x

#

:

Thus the mean turning rate depends on both the total 
ell density and its rate of 
hange,

while the di�eren
e in left and right turning rates depends on the total density and its

spatial gradient.

6 Example 1: 
ompeting 
ell fronts

A useful illustration of the movement terms derived above is given by 
onsidering two


ell populations whose kineti
s are of 
ompetition type. This may be 
ompetition for a

nutrient, or simply for physi
al spa
e. We retain our assumption that the two populations

have identi
al movement properties, but we assume that the v 
ells have a 
ompetitive

advantage over the u 
ells. On a one-dimensional domain, the appropriate model equations

for this situation are

�u

�t

= D

�

�x

"

A(u+ v)

�u

�x

+

u

u+ v

B(u+ v)

�(u+ v)

�x

#

+ u(1� u� v) (12a)

�v

�t

= D

�

�x

"

A(u+ v)

�v

�x

+

v

u+ v

B(u+ v)

�(u+ v)

�x

#

+ v(
 � u� v) : (12b)

where 
 > 1 re
e
ts the 
ompetitive advantage of the v 
ells. A spe
i�
 instan
e to

whi
h this model 
ould be applied is early tumour growth. Here u and v would be the

density of untransformed and tumour 
ells respe
tively; 
 would represent the proliferative

advantage given by an on
ogeni
 mutation.
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Figure 3: Travelling wave solutions for di�erent intera
tions in the two-
ell 
ompetition

model. Top row: Independent linear di�usion (A = 1; B = 0). Centre row: \Neighbour-

rule", (A = 1 � (u + v)=3; B = (u + v)=3). Bottom row: \Lo
al-rules", (A = (u +

v)=3; B = (u + v)=3). Numeri
al 
al
ulation indi
ated waves speeds of 2, 1.63 and 1.15

respe
tively, 
on�rming validity of the analyti
al expression. Other parameters were set

at D = 1; 
 = 2 and wave pro�les are plotted at time intervals of 2.
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Figure 3 illustrates a typi
al solution of (12) for A and B determined using the lo
al

and neighbour based fun
tions from Table 1. We use initial 
onditions 
onsisting of

uniform densities of the two 
ell populations in adja
ent regions of spa
e. This initial

solution evolves into an advan
ing wave front in v and a re
eding front in u, re
e
ting the


ompetitive advantage of the v population. For 
omparison, we also show in Figure 3 the

solution of (12) in the 
ase of 
ell populations whi
h undergo independent linear di�usion,

whi
h is given by setting A � 1 and B � 0. The qualitative form of the solution is the

same, but the speed of the wave front is noti
eably higher in this 
ase; this re
e
ts the

inhibitory e�e
t of 
ell-
ell intera
tions in 
ell movement.

A simple analyti
al argument gives an indi
ation of the di�eren
e in wave speed in

the 
ases shown in Figure 3. Following a standard approa
h for travelling wave problems

of this kind, we linearise (12) about the steady state v = 0, u = 1, whi
h is the limiting

solution ahead of the wave. The linearised v equation de
ouples, to give

�v

�t

=

�

�x

"

A(1)

�v

�x

#

+ (
 � 1)v +O(v

2

) :

By analogy with standard theory for s
alar equations su
h as the Fisher equation, we thus

expe
t the wave speed to be 2[A(1)(
 � 1)℄

1=2

. This formula is 
on�rmed by numeri
al

simulation, and indi
ates that the ratio of the speeds between the independent and non-

independent 
ases in Figure 3 is

q

A(1). Note that this relation does not apply in the

spe
ial 
ase A � 0; 
al
ulation of the wave speed is more 
ompli
ated in this 
ase, and is

dis
ussed in detail in Sherratt (2000).

7 Example 2: aggregation in tissues

As a se
ond example, we explore how the intera
tions in movement may a�e
t pro
esses

of aggregation. Chemotaxis is employed by both ba
teria and eukaryoti
 
ells for dire
ted

movement and organisation: for example, the aggregation of Di
tyosytelium 
ells under

starvation 
onditions is initiated by 
hemota
ti
 movement up gradients of self-produ
ed


AMP 
hemi
al waves, while in embryoni
 development guided 
ell movement is essential

in many pro
esses of spatial patterning and morphogenesis.

The majority of 
ontinuous treatments of 
hemotaxis have ignored how the 
omplexity
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of the tissue environment may in
uen
e the movement dynami
s. We use the framework

here to address some of these issues.

The most 
ommonly employed models for 
hemotaxis are based on the PDE systems

proposed in Keller and Segel (1971):

�u

�t

= D

u

r

2

u�r � (u�(
)r
) + f(u; 
)

�


�t

= D




r

2


+ g(u; 
)

where u and 
 represent 
ell density/
hemoattra
tant 
on
entrations. The fun
tion �(
)

is 
ommonly referred to as the 
hemota
ti
 sensitivity fun
tion. This system has been

studied extensively, in parti
ular for its ability to exhibit pattern formation/self organ-

isation under suitable 
hemi
al kineti
s. For example, for the 
hoi
e of f(u; 
) = 0,

g(u; 
) = 
u � Æ
 and � suÆ
iently strong, an initially homogeneous 
ell distribution

forms a spatial pattern of 
ell aggregations. This is intuitively understood through the

self-reinfor
ing me
hanism in whi
h 
ells move up gradients of a 
hemi
al they are se
ret-

ing. Variations of the model have been used to model a variety of pro
esses of aggregation

in ba
teria populations (e.g. Tyson et al. (1999)) or development (e.g. Painter et al.

(2000)).

Of 
ourse, the above formulation also assumes independent movement by the 
ells,

and thus does not realisti
ally des
ribe the behaviour of 
ells under aggregation. This

is elegantly demonstrated by the tenden
y of the above systems to exhibit \blow-up"

behaviour, in whi
h aggregations of in�nite 
ell density form. To develop a more realisti


model for 
ell behaviour a model for 
hemotaxis was proposed by (Painter and Hillen

(2003); Hillen and Painter (2001)). Their model in
orporated the idea of \limited-spa
e",

as dis
ussed above but within the 
ontext of a single 
ell population. The inhibition of

movement at higher densities prevented the \blow-up" behaviour observed in previous

models and smooth aggregations developed (
f Figure 4 (a) vs (b)).

As our se
ond example, we 
onsider the situation where the tissue 
omprise two 
ell-

types, u and v, of whi
h at least one is 
hemota
ti
ally stimulated by gradients of a


hemi
al 
. By assuming movement is in
uen
ed via 
ombination of lo
al, neighbour and

gradient rules, we 
an derive the following two-
ell model for 
hemotaxis using Equation
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10:

�u

�t

=

�

�x

"

D

u

g(w)

�f(w)u

�x

�D

u

uf(w)

�g(w)

�x

� ug(w)f(w)�

�


�x

#

(13a)

�v

�t

=

�

�x

"

D

v

g(w)

�f(w)v

�x

�D

v

vf(w)

�g(w)

�x

� vg(w)f(w)�

�


�x

#

(13b)

�


�t

= D




�

2




�x

2

+ 


1

u+ 


2

v � Æ
 (13
)

where 


1

; 


2

; Æ; �; �;D

u

; D

v

and D




are all assumed 
onstant and w = u + v. Initially

we shall restri
t our attention to the 
ase where the 
ell-
ell intera
tion o

urs through

\neighbour" rules only, and we therefore 
hoose g(w) = 1�w=T and set f(w) � 1. Note

that the 
onstant 
hemota
ti
 sensitives above are derived by 
onsidering � = �
 or �


for u and v respe
tively in Equation 10. We assume zero-
ux boundary 
onditions on the

one-dimensional domain [0; L℄.

The in
orporation of two 
ell populations allows us to study a number of relevant

biologi
al s
enarios a

ording to whether \auto
rine"or \para
rine" behaviours are in

operation. Here, the term auto
rine refers to a situation where a single 
ell type both

se
retes the 
hemi
al and migrates in response, while para
rine indi
ates a response in

whi
h one population se
retes the 
hemi
al and the other migrates. The 
onditions under

whi
h we 
an expe
t aggregation 
an be 
al
ulated by performing a linear stability analysis

on the above equations, and we refer to the appendix for details.

7.1 Case 1: Auto
rine (� = 0, 


2

= 0)

We assume one 
ell both se
retes and is attra
ted by the 
hemi
al (\auto-aggregation"):

the se
ond 
ell population is passive, and 
an only in
uen
es the dynami
s via its \ob-

stru
tion".

For 
omparison, we have in
luded the equivalent independent movement s
enario

(a
hieved by additionally setting g(w) = 1 above). This gives rise to the \
lassi
al"


hemotaxis model, and for suitable parameters an initially homogeneous distribution of

u develops into a sharp 
ell aggregation. The v population remains unperturbed from its

homogeneous distribution, and has no e�e
t either on the ability of patterns to form or

the times
ale of patterning. Typi
al simulations are shown in Figure 4 (a).
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Figure 4: Auto
rine (auto-aggregation) 
ase. (a) Two non-intera
ting 
ell populations (i.e.

linear di�usion). (b) - (d) Intera
tion through spa
e-limitation for T = 5:0 for (b) v

i

= 0:0,

(
) v

i

= 1:0, (d) v

i

= 3:9. Other parameters are � = 1:0, 


1

= Æ = D




= 1:0; 


2

= � = 0:0,

D

u

= D

v

= 0:1 on a domain of L = 5. Initial 
onditions are given by u(x; 0) = 1,

v(x; 0) = v

i

and 
(x; 0) = 1:0 � 0:01 
os(2�x=L). Bold dashed line = total 
ell density,

solid line = u density, dotted line = v density.

Aggregation also o

urs for the 
orresponding model in
orporating the limited spa
e

intera
tion (we 
hoose g(w) = 1 � w=T ). The 
ondition for aggregation is given by the

following equation (see appendix for details):

� >

ÆD

u




1

u

�

(1� u

�

=T )

Clearly, the passive population does not a�e
t the 
onditions for spatial patterning to

o

ur. This is shown by 
hoosing three initial densities for the v distribution. In the ab-

sen
e of v 
ells (Fig 4 (b)) the u 
ells aggregate into a smooth distribution, with the spa
e

limitation preventing the sharp aggregates 
hara
teristi
 of the linear 
ase. This situa-

tion has been studied in detail in (Painter and Hillen (2003); Hillen and Painter (2001)).

In
reasing the density of v-
ells does not a�e
t the shape of the resulting aggregation of

u-
ells, (Fig 4 (
-d)), but it 
learly 
hanges the time for the aggregation to form. This

follows intuitively from the ideas behind the limited spa
e models.
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7.2 Case 2: Para
rine (� = 0, 


2

= 0)

We now explore the para
rine 
ase, in whi
h u se
retes the 
hemi
al, and v migrates in

response to it. The 
omparable independent movement 
ase is shown in Figure 5 (a):

Pattern formation (see appendix for the analysis) is not possible in this model, sin
e the

se
reting 
ell population remains homogeneously distributed throughout spa
e.

The 
orresponding model in
orporating intera
tion of the 
ells through spa
e-limitation,

however, does admit the possibility of pattern formation. This 
an intuitively be under-

stood through the in
uen
e of the total 
ell density gradients on both populations, whi
h

results in the se
reting 
ell population be
oming inhomogeneously distributed. The linear

stability analysis predi
ts that aggregation o

urs under the following 
ondition:

� < �

TÆD

v

u

�

v

�




1

Thus, pattern formation is only possible for a 
hemorepulsion response to the 
hemi
al.

The density of the non-
hemota
ting population is 
ru
ial, and at low densities no ag-

gregation is possible. Typi
al simulations at di�erent densities of the non-
hemota
ting

population (u) are shown in Figure 5 (b)-(
).

7.3 Case 3: Auto
rine + Para
rine (


2

= 0)

Finally, we 
onsider a 
ombined auto
rine and para
rine response. Here the instability


ondition is

D

v

(1� u

�

=T )��

D

u

v

�

T

� >

ÆD

u

D

v

u

�




1

The sign stru
ture of � � � in
uen
es the type of pattern that develops. If both 
ells

are attra
ted by the 
hemi
al, the auto
rine attra
tion (�) must be suÆ
iently large su
h

that these 
ells 
an \over
ome" the para
rine population and aggregation take pla
e. The

resulting patterns take the form shown in Figure 6 (a), with the auto
rine 
ells forming

the aggregation 
ore, and the para
rine 
ells 
on�ned mainly to the boundary.

For the auto
rine population attra
ted (� > 0) and the para
rine population repelled

(� < 0), the total 
ell density has multiple peaks, with attra
tant 
ells forming a 
ore

19



0 2 4 6 8 10
0

1

2

3

4

5

c
e
ll 

d
e
n
s
it
y

T = 0

0 2 4 6 8 10
0

1

2

3

4

5

c
e
ll 

d
e
n
s
it
y

T = 0

0 2 4 6 8 10
0

1

2

3

4

5

c
e
ll 

d
e
n
s
it
y

T = 10000

0 2 4 6 8 10
0

1

2

3

4

5

c
e
ll 

d
e
n
s
it
y

T = 2000

0 2 4 6 8 10
0

1

2

3

4

5
T = 0

ce
lld

e
n
si

ty

0 2 4 6 8 10
0

1

2

3

4

5
T=10000

ce
lld

e
n
si

ty

(a) (b) (c)

Figure 5: Para
rine 
ase. (a) Two non-intera
ting 
ell populations (i.e. linear di�usion).

(b)-(
) Intera
tion through spa
e-limitation for T = 5:0 for (a) u

i

= 0:25, (b) u

i

= 1:0.

Other parameters are given by � = �1:0, 


1

= Æ = D




= 1:0, 


2

= � = 0:0, T = 5:0

D

u

= D

v

= 0:1 on a domain of L = 10. Initial 
onditions are given by v(x; 0) = 1,

u(x; 0) = u

i

and 
(x; 0) = 1:0 � 0:1 
os(2�x=L). Bold dashed line = total 
ell density,

solid line = u density, dotted line = v density.

aggregation in the 
entre of the domain, and the v 
ells repelled away to form aggregations

at the 
hemi
al minima.

Patterning 
an even o

ur when the auto
rine population is repelled by the 
hemi
al

gradients (� < 0), provided that the para
rine 
ells show suÆ
iently strong 
hemorepul-

sion. A typi
al pattern is shown in Figure 6 (
)

7.4 In
lusion of other total density e�e
ts

In the above, the only tissue in
uen
e on movement resulted from spa
e-limitation. It

is, of 
ourse, highly likely that other e�e
ts may o

ur at higher densities. For example,

highly motile 
ells may for
e other 
ells out of the way as they pull themselves through

the tissue environment. We in
orporate su
h an e�e
t phenomelogi
ally by also in
luding

a \population-pressure" term in whi
h a 
ell in
reases its tenden
y to move from a site as

the density in
reases. Thus, we now additionally assume f to be an in
reasing fun
tion
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Figure 6: Steady state aggregations for two 
hemota
ting populations (a) � = 2:0; � = 1:0

(b) � = 2:0; � = �2:0 (
) � = �1:0; � = �8:0. Other parameters are given by 


1

= Æ =

D




= 1:0, 


2

= 0:0, T = 5:0 D

u

= D

v

= 0:1 on a domain of L = 5, with initial 
onditions

u(x; 0) = 1, v(x; 0) = 1:0 and 
(x; 0) = 1:0 � 0:01 
os(2�x=L). Bold dashed line = total


ell density, solid line = u density, dotted line = v density.

of the total 
ell density, in addition to the previously 
hosen forms of g, � in Equations

13.

As a test s
enario, we 
onsider the same generi
 
ase as illustrated in Figure 6 (a),

where both 
ells are 
hemota
ti
ally attra
ted by gradients in the 
hemi
al 
on
entration

(though one 
ell shows de
reased sensitivity). A 
hoi
e of linear f does not signi�
antly


hange the behaviour, Figure 7 (a). However, it may be more appropriate to 
onsider a

form for f su
h that it has little e�e
t at low densities (i.e. when 
ells are widely spread

out), but a strong e�e
t when they are 
losely pa
ked. For su
h forms, the results show

a similar behaviour, but now the 
ells whi
h have less sensitivity are \pushed" from the


ore of the aggregation to the periphery.

8 Dis
ussion

Continuum models provide a 
onvenient tool for des
ribing the movements of populations.

While detailed modelling of the movement in a tissue environment must in
orporate a me-


hani
al des
ription of the various for
es exerted by the 
ells, by adopting a phenomolog-

i
al approa
h we have explored how intera
tion between di�erent 
ell types may in
uen
e

the ma
ros
opi
 movements of 
ell populations. Our work here has fo
ussed on s
enarios

for whi
h the tissue exerts an equal e�e
t on all 
ell populations. In reality, di�erent
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Figure 7: Steady state aggregations for two 
hemota
ting populations in
luding a \lo
al

pressure" e�e
t. (a) f(w) = aw (b) f(w) = 1+exp(2(w�3)) (
) f(w) = 1+exp(10(w�3))

where � = 2:0; � = 1:0, 
 = � = D




= 1:0, T = 5:0 D

u

= D

v

= 0:1 on a domain of

where L = 5, with initial 
onditions u(x; 0) = 1, v(x; 0) = 1:0 w

0

= 2 and 
(x; 0) =

1:0� 0:01 
os(2�x=L).

populations vary in fa
tors su
h as their adhesion to the matrix or the deformability of

the membrane. Su
h variations may easily be in
orporated into the framework here by


hoosing di�erent fun
tional forms/parameters in the movement equations.

The 
ase studies in x6 and x7 illustrate the importan
e of in
orporating the intera
tion

between 
ell populations into models for 
ell movement. In x6, this was demonstrated by

the e�e
t on the speed of wave propagation. In x7, a number of di�eren
es emerged in

s
enarios of aggregating 
ell populations. For example, in the \para
rine" problem, ag-

gregation was only possible when intera
tions with another 
ell population were in
luded.

The equations for 
ompeting 
ell populations given in x6 are highly generi
, but the

movement terms we have presented 
ould be adapted to a range of more spe
i�
 models.

For example, 
ompetition between di�erent subpopulations of 
ells is an integral part of

the early growth of solid tumours. As well as the 
ompetition between tumour and normal


ells, the 
ells within the tumour are a mixture of dividing and quies
ent populations,

whi
h are self-organised into a 
hara
teristi
 layered stru
ture. These various pro
esses

demand relatively sophisti
ated modelling of movement in intera
ting 
ell populations,

and provide a potential 
ase study for the ideas developed in this paper.

The simulation results of x7.4 bear similarities to pro
esses of \
ell sorting", in whi
h

an aggregate of initially mixed multiple 
ell types reorganise to form distin
t regions, su
h

that one 
ell type forms the 
ore of the aggregate while the other 
ells form the boundary.

Explanations have primarily fo
ussed on the \di�erential adhesion hypothesis" proposed
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by Steinberg (e.g. Steinberg (1970)), in whi
h di�eren
es in the levels of adhesion between

the 
ells lead to the sorting. The results here suggest that the response to a di�usible


hemi
al signal may also be a viable me
hanism for 
ertain sorting pro
esses. In fa
t, su
h

me
hanisms has been shown to drive 
ell sorting of pre-stalk and pre-spore 
ells during

Di
tyostelium mound formation, (e.g. Weijer (1999))
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Appendix

Here we detail the results of a linear stability analysis on the model for multi-
ell 
hemo-

taxis, Equations 13, with f(w) � 1. Assuming zero-
ux boundary 
onditions on the

one-dimensional domain [0; L℄, then for suitable initial 
onditions (i.e. non negative) these

equations have a single homogeneous steady state, (u

�

; v

�

; 


�

), where u

�

and v

�

are deter-

mined as u

�

=

R

L

0

u(x; 0)dx=L, v

�

=

R

L

0

v(x; 0)dx=L and 


�

=




1

u

�

+


2

v

�

Æ

.

Independent 
ase

If there is no dire
t intera
tion between the 
ells through the movement (i.e. g(w) = 1),

then a linearisation of Equations 13 about the homogeneous steady state determines the

following eigenvalue problem:

�

�

�

�

�

�

�

���D

u

k

2

0 �u

�

k

2

0 ���D

v

k

2

�v

�

k

2




1




2

��� k

2

D




� Æ

�

�

�

�

�

�

�

= 0

where � is the (temporal) eigenvalue and k is the wavenumber (or spatial eigenvalue) (e.g.

see Murray (1993) for more details). Thus the dispersion relation is a 
ubi
 polynomial

of the form:

�

3

+ a(k

2

)�

2

+ b(k

2

)�+ 
(k

2

) = 0

Instability of the homogeneous solution, and thus the possibility of spatial pattern forma-

tion, o

urs for IR(�) > 0. Sin
e we 
an determine a(k

2

) > 0 for all positive k

2

, then this


an only o

ur if there exists a range of k

2

for whi
h b(k

2

) < 0 or 
(k

2

) < 0. We note that
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for b(k

2

) < 0 and 
(k

2

) > 0 the eigenvalue may have imaginary 
omponents implying, at

least initially, (temporally) os
illating solutions. For 
(k

2

) < 0 we need

D

u

D

v

Æ < D

u




2

�v

�

+D

v




1

�u

�

and for b(k

2

) < 0:

D

v

Æ +D

u

Æ < 


2

�v

�

+ 


1

�u

�

(A.1)

In this paper, we 
on
entrate on s
enarios where at least one of 


1

; 


2

; � or � is zero.

Under this 
onstraint, it is easy to show that if b(k

2

) < 0 then we must also have 
(k

2

) < 0.

Thus the 
ondition for instability of the homogeneous solution is given by Equation A.1

alone and positive eigenvalues are real.

Sin
e all parameters are positive, it 
an be seen immediately from the above that

aggregation is only possible if there is at least one auto
rine response (i.e. 


2

and � non

zero or 


1

and � non zero) - this 
orresponds to Cases 1 and 3 in Se
tion 6. For the pure

para
rine problem, (e.g.. 


1

and � non zero, 


2

= � = 0), then the linear analysis does

not predi
t spatial patterning.

Intera
tion through neighbour rules

A similar analysis 
an be performed for the 
ase where the 
ells dire
tly in
uen
e ea
h

others movement. Here we set g(w) = 1 � w=T for w = u + v, and stipulate that

u(x; 0) + v(x; 0) � T (thus w

�

� T ). By linearisation about the homogeneous steady

state, we now yield the following eigenvalue problem:

�

�

�

�

�

�

�

��� k

2

(D

u

(1� v

�

=T )) �

D

u

u

�

k

2

T

�u

�

(1� w

�

=T ) k

2

�

D

v

v

�

k

2

T

��� k

2

(D

v

(1� u

�

=T )) �v

�

(1� w

�

=T ) k

2




1




2

��� k

2

D




� Æ

�

�

�

�

�

�

�

= 0

Again, we yield a 
ubi
 dispersion relation, and the 
onditions for 
(k

2

) < 0 and b(k

2

) < 0

are, respe
tively:

�u

�

D

u

(


1

T � v

�




2

� u

�




1

) +

�v

�

D

v

(


2

T � v

�




2

� u

�




1

) > TÆ (A.2)

and




1

�u

�

+ 


2

�v

�

>

D

u

Æ(1� v

�

=T ) +D

v

Æ(1� u

�

=T )

(1� (u

�

+ v

�

)=T )

(A.3)
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Again we 
on
entrate on the 
onditions for the two main s
enarios in Se
tion 6. For

the pure para
rine problem (Case 2), it is 
lear that A.3 
an not be satis�ed. Thus

stability 
an only be lost through 
ondition A.2 being satis�ed.

For the auto
rine 
ase (Case 1) we set � = 


2

= 0. Equations A.2 and A.3 redu
e to:

�u

�




1

(1� u

�

=T ) > D

u

Æ and �u

�




1

>

D

u

Æ(1� v

�

=T ) +D

v

Æ(1� u

�

=T )

1� (u

�

+ v

�

)=T

By multiplying through by 1�(u

�

+v

�

)=T in the latter it is easy to demonstrate that if the

se
ond 
ondition holds, then so does the former. Thus, on
e again we do not expe
t any

temporally os
illating solutions to the linearised system and we 
an redu
e our stability


riteria to the single 
ondition.

In the s
enario where only one of �; �; 


1

or 


2

is zero, then it also possible to determine

parameter values su
h that b(k

2

) < 0 while 
(k

2

) > 0. In su
h s
enarios, we may have

imaginary eigenvalues, leading to the possibility of temporally os
illating patterns.
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