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Abstrat

Mathematial modelling of ell movement has traditionally foussed on a single

population of ells, often moving in response to various hemial and environmental

ues. In this paper, we onsider models for movement in two or more interating

ell populations. We begin by disussing intuitive ideas underlying the extension

of models for a single ell population to two interating populations. We then

onsider more formal model development using transition probability methods, and

we disuss how the same equations an be obtained as the limiting form of a veloity-

jump proess. We illustrate the models we have developed via two examples. The

�rst of these is a generi model for ompeting ell populations, and the seond

onerns aggregation in ell populations moving in response to hemial gradients.
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1 Introdution

Mathematial modelling of ell movement has a long and suessful history. A key early

paper was that of Keller and Segel (1970), who developed a partial di�erential equation

model to study the biohemial regulation of baterial movement. Their highly inuential

equations have been the basis for models of phenomena as diverse as slime mould aggre-

gation (H�ofer et al. (1995)), tumour angiogenesis (Chaplain and Stuart (1993)), primitive

streak formation (Painter et al. (2000)) and wound repair (Pettet et al. (1996)). In the

1980s, a separate area of researh developed, in whih models were proposed for the move-

ment of isolated single ells. This work was lead initially by Oster (Oster (1984); Oster

and Perelson. (1985)), and has subsequently been developed by a range of authors (Bot-

tino and Faui (1998); Bottino et al. (2002)). In priniple, these two modelling approahes

should onverge to give a marosopi model that reets in detail mirosopi ell be-

haviour. There have been a number of reent papers in this diretion; e.g. Othmer and

Stevens (1997) and Shnitzer et al. (1990) explore the derivation of marosopi equations

for hemotaxis from a biased random walk inorporating detailed mirosopi behaviour

rules, while Dallon and Othmer (1997) onsiders the individual movement of disrete ells

in a ontinuous hemial �eld.

In this paper, we onsider modelling a di�erent aspet of ell movement, namely

behaviour in a mixture of two interating ell populations. This is a very ommon senario

in physiologial ontexts. For example, tumour ells typially move through and interat

with the surrounding population of untransformed ells, and wound healing in the orneal

epithelium depends on the migration into the wound of interating sub-populations of

epithelial ells. In development, the reorganisation of undi�erentiated ells of the early

embryo into multiple-tissue types during gastrulation requires the oordinated movement

of distint subpopulations.

Despite these and other important examples, very little previous work has been done in

this area. Most models of interating ell populations inlude movement very simply, via

independent linear di�usion of eah population (Sherratt and Nowak (1992); Pettet et al.

(1996); Ga�ney et al. (1999)). This will typially be appropriate when the individual ells

are widely separated. However when ells are lose enough for regular ontats, those of
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one type will inevitably inuene the movement of the other ell population. The objetive

of this paper is to onsider how this an be best reeted in partial di�erential equation

models. In x2 we disuss intuitive ideas behind models for interating ell populations,

and in x3 we develop model equations using a spae-jump approah. In x4 we onsider

suitable funtional forms for motility oeÆients and their biologial impliations, and in

x5 we disuss the possibility of deriving the equations using the alternative veloity-jump

formalism. Finally, in x6 and x7 we present two examples of the appliation of our model

to partiular types of ell behaviour.

2 Intuitive onsiderations

2.1 One ell population

When individual ells in a population are widely separated, they will have little diret

interation. Therefore one an reasonably assume that in the absene of external ues

biasing their motion, eah ell will undergo an unbiased random walk. At the population

level, this implies that di�usion is the appropriate mathematial model. As the ell

density inreases, individual ells will interat more often, with an inevitable e�et on

motility. However, in the absene of external ues their motion will remain unbiased, so

that one expets a di�usion-like term to still be appropriate. This suggests a model with a

nonlinear di�usion oeÆient, dependent on ell density. Denoting this density by u(x; t),

the appropriate model is thus

�u=�t = Dr � [Q(u)ru℄ : (1)

(We omit any ell kineti terms at this stage to fous on motility). It is most onvenient

to de�ne D as the di�usion oeÆient when the individual ells are widely separated; this

implies that Q(0) = 1. As the ell density goes up, we expet the di�usion oeÆient to

derease as a result of ell-ell interations, so that Q(:) dereases.
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2.2 Multiple ell populations

In the ase of interating ell populations, modelling is again straightforward when indi-

vidual ells are widely separated. If there are no external ues biasing motion, we an

again reasonably assume that eah ell undergoes an unbiased random walk, whih means

that at the population level, the appropriate model is linear di�usion for eah population.

As the ell density inreases, ell-ell interations will again a�et movement. The sim-

plest ase to onsider is when the two ell populations have idential movement properties.

If we take u(x; t) and v(x; t) to be the densities of the two ell types, then the total ell

density u+ v will satisfy the nonlinear di�usion equation (1)

�(u + v)=�t = Dr � [Q(u+ v)r(u+ v)℄ : (2)

To separate this into equations for u and for v, it is helpful to reonsider the interpretation

of the nonlinear di�usion. At a marosopi level, (1) implies that ells move down

gradients of their own density, at a rate that depends on that density via the funtion

Q(:). In the ase of two ell populations, ells may move in response to either the gradient

in their own density, or the gradient in total ell density. This will depend on the details

of ell behaviour. In general, we an divide the term Q(u + v)r(u + v) in (2) into two

parts: A(u + v)r(u + v) whih is the movement of ells down gradients of their own

density, and B(u + v)r(u + v) whih is the movement of ells down gradients of total

ell density. Here A + B = Q. The �rst term implies a ontribution A(u + v)ru to the

movement of the u ell population, and A(u+v)rv to the movement of the v population.

The seond term will divide between the two populations simply aording to the ratio

of their densities, giving ontributions

u

u+v

B(u + v)r(u + v) and

v

u+v

B(u + v)r(u + v)

to the movement of the two populations. Therefore the overall equations governing ell

movement are

�u

�t

= Dr �

�

A(u+ v)ru+

u

u+ v

B(u+ v)r(u+ v)

�

(3a)

�v

�t

= Dr �

�

A(u+ v)rv +

v

u+ v

B(u+ v)r(u+ v)

�

: (3b)

The forms of the funtions A(:) and B(:) will depend on the details of ell behaviour, and

some potential funtions are disussed below. Intuitively we expet that, like the funtion
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Q(:) disussed above, A(:) and B(:) will be dereasing funtions, whih beome zero at

u+ v = u

max

, orresponding to losely-paked ells.

3 Jump probability alulations

Continuous equations for ell movement are ommonly derived from two lasses of move-

ment, oined \veloity-jump" and \spae-jump" in Othmer et al. (1988). The former

models movement as periods of smooth motion puntuated by reorientations, while the

latter assumes a sequene of disrete jumps in spae. Both approahes enable ontinuum

equations to be derived in appropriate limits, but this proess is more straightforward

for the spae-jump formalism. Therefore we onsider this �rst, and return briey to the

veloity-jump approah in x5.

To derive our model for movement, we employ the method of Othmer & Stevens (for

more details, see Othmer and Stevens (1997) and the referene therein), where a master

equation for a ontinuous-time, disrete-spae random walk on a one-dimensional equi-

distant lattie is onsidered. We de�ne u

i

(t) to be the probability of a ell to be at i 2 Z

at time t, onditioned on beginning at i = 0 at t = 0. We assume this evolves aording

to the ontinuous-time disrete-spae equation:

�u

i

�t

= T

+

i�1

u

i�1

+ T

�

i+1

u

i+1

� (T

+

i

+ T

�

i

) u

i

: (4)

In the above, T

�

i

(�) de�nes the transitional-probabilities per unit time of a one-step jump

to i � 1. The above model simply desribes the hanging ell numbers as individuals

enter or leave a site, and herein we shall equate the probability distribution with the ell

density.

The simplest assumption is that the jump probability is equal in either diretion and

uniform aross the lattie, i.e. T

�

i

= �, onstant. Thus,

�u

i

�t

= �(u

i�1

+ u

i+1

� 2u

i

:) (5)

We set x = ih, reinterpret x as a ontinuous variable and extend the de�nition of u

i

aordingly. By introduing a saling of the transition-probabilities suh that T

�

= �T

�

,
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and expanding the right-hand side as Taylors Equations in funtions of x we obtain

�p

�t

= �h

2

�

�

2

p

�x

2

+O(h

4

):

As the spatial sale h is hanged, the transitional probabilities of a jump must be hanged

aordingly. Thus we assume that the following limit exists:

lim

h!0

�!1

�h

2

= onstant � ;

and one derives the di�usion equation:

�u

�t

= D

u

�

2

u

�x

2

where D

u

= � is a onstant.

The assumption of a uniform isotropi jump probability is inappropriate for most ell

populations, whose movement is strongly inuened by interation with environmental

signals (e.g. hemials, gravity, light), or ontat with other ells (e.g. ontat inhibition,

adhesion). This an be inorporated into the above model by assuming a dependene

in the jump probabilities. This was studied in the ontext of hemosensitive movement

in Othmer and Stevens (1997), where di�erent marosopi (PDE) models were derived,

depending on the loal strategy for environment sensing.

3.1 Strategies for sensing

Here, we develop a general model for the biased movement of a ell on a lattie, where

the jump probabilities depend on a variety of environmental fators (e.g. other ell pop-

ulations or hemials). For present, we keep the approah general, but later we shall

expliitly onsider the ase where ell movement depends on the total ell density. We

denote by E the matrix of the environmental ues, where E

j;i

indiates the density or

onentration of the jth-fator at lattie site i. For example, for the situation disussed

in x2, j would only take the value 1, with E

1;i

being the total ell density at site i.

We onsider four sensing strategies:

1. Stritly-loal: information only at the present position is onsidered.
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2. Neighbour-based: onsiders information at the target jump site.

3. Loal-average: onsiders the average of the information between the partiles present

and target site.

4. Gradient: onsiders the loal di�erene in information between the target and loal

site.

Of ourse, this by no means haraterises all the strategies a ell may employ. In parti-

ular, other mehanisms may inorporate longer ranging information, for example if a ell

extends �lopodia out into its environment.

1. Stritly-Loal Models

For stritly loal rules, we hoose T

+

i

= T

�

i

= f(E

i

) where E

i

represents the information

at i. The Master Equation beomes:

�u

i

�t

= f(E

i+1

)u

i+1

� 2f(E

i

)u

i

+ f(E

i�1

)u

i�1

Under the appropriate saling, the following PDE is derived:

�u

�t

= D

�

2

�x

2

(f(E)u) (6)

2. Neighbour-based

For neighbour-based rules we assume T

�

i

= g(E

i�1

), resulting in the following Master

Equation:

�u

i

�t

= g(E

i

)(u

i+1

+ u

i�1

)� u

i

(g(E

i+1

) + g(E

i�1

));

and in the PDE limit we derive:

�u

�t

=

�

�x

"

g(E)

�u

�x

� u

�g(E)

�x

#

(7)

Phenomelogially, for dereasing g, this models proesses suh as \spae-limitation", in

whih a ell is only able to move into a neighbouring site if there is suÆient spae

available.

3. Loal-average
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We assume T

�

i

= h

�

E

i�1

+E

i

2

�

. If substituted into the master equation we obtain:

�u

i

�t

= h

�

E

i+1

+ E

i

2

�

(u

i+1

� u

i

)� h

�

E

i

+ E

i�1

2

�

(u

i

� u

i�1

)

and the PDE equation is derived as:

�u

�t

=

�

�x

 

h(E)

�u

�x

!

(8)

4. Gradient-based models

The gradient based-model assumes transitional probabilities of the form:

T

�

i

= � + � (�(E

i

)� �(E

i�1

))

and the resulting PDE is:

�u

�t

=

�

�x

"

D

�u

�x

+ u

d�

dE

�

dE

dx

#

(9)

The above equation has been employed extensively to model tati responses in ell pop-

ulations, suh as hemotaxis, haptotaxis or phototaxis.

5. Combined models

Sine ell movement involves the proessing of multiple signals, eah of whih may at on

the ell in di�erent ways, a ombination of the above strategies may be neessary to most

aurately reet ell movement. While the mathematial form of the equations quikly

beomes omplex, the derivation is relatively straightforward. For example, ombining

eah of the loal, neighbour and gradient based models above gives

T

�

i

= f(E

i

)g(E

i

�1) (� + � (�(E

i

)� �(E

i�1

)))

The PDE orresponding to this ombined movement rule is

�u

�t

=

�

�x

"

g(E)

�

�x

(f(E)u)� f(E)u

�g(E)

�x

+ ug(E)f(E)

d�

dE

�

dE

dx

#

: (10)
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4 Forms of motility funtions for interating ell populations

We now onsider the ase outlined in Setion 2, where two ell populations u and v interat

via the movement depending on the total ell density, w = u+ v. Cases (1-4) above thus

give rise to the following equations for the dynamis of the u population:

�u

�t

=

�

�x

 

f(w)

�u

�x

+ u

�f(w)

�w

�w

�x

!

�u

�t

=

�

�x

 

g(w)

�u

�x

� u

�g(w)

�w

�w

�x

!

�u

�t

=

�

�x

 

h(w)

�u

�x

!

�u

�t

=

�

�x

 

D

�u

�x

+ u�(w)

�w

�x

!

In the above, �(w) = 

d�

dw

. Clearly, all of the above models �t into the intuitively derived

forms, Equations 3.

How ould the total ell density a�et the movement properties of the ells? Here

we shall restrit our attention to those mehanisms whih may lead to dispersal of the

population (i.e. we ignore adhesive type proesses). We onsider the following general

mehanisms:

� \Population-pressure". We assume that a high ell density results in inreased

probability of a ell being \pushed" from a site, for example due to the pressure

exerted by neighbouring ells. This might be ahieved phenomelogially using the

stritly loal formulation and f(w) inreasing.

� \Limited-spae". Here we assume that no more ells an enter a site above a total

ell density. In the ontext of the loal rules, above, this may be ahieved with

either the neighbour or average-based model, and hoosing g(w) or h(w) suh that

there exists some T for whih g(T ) = 0 when w = T .

� \Gradient" detetion. Cells may detet and respond to a loal gradient in the ell

density, in whih ase we assume the gradient model. To ensure that ells move

down gradients in the total density (i.e. homogenising) we require �(w) > 0. If we

assumed further that movement ours only when a gradient is deteted then we

would hoose D = 0.
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Sheme Example Funtion A(w) B(w)

Loal f = w w w

Neighbour g = 1� w=T 1� w=T w=T

Average h = 1� w=T 1� w=T 0

Gradient � > 0, D = 0 0 �w

Table 1: Table illustrating how the terms of the generi model vary for di�erent loal

rules. ; T; � and D are all assumed onstant.

For simple hoies of the funtional forms, the above mehanisms give rise to the forms

for A and B given in Table 1. Note that for the above mehanisms A and B are � 0

(providing w � T ). Thus we expet the equations to be well-de�ned.

4.1 Cell-marking experiments

We �rst illustrate the e�et ell{ell interations by omparing the movements of a ell

population for a model in whih this is inorporated (we use the \neighbour" sheme form

of Table 1) to the independent movement senario (i.e. A � 1, B � 0 in Equations 3). To

monitor the mixing, we assume a hypothetial experimental set-up in whih a population

of idential ells is seeded at high density at one end and a low density at the other (see

shemati in Figure 1). A proportion of the ells are marked in a manner suh that those

ells form a homogeneous distribution. Under independent movement, while the total ell

density evolves to a homogeneous movement, no net movement is observed in the marked

subpopulation, Figure 1, (a). When interation is inluded, however, although the total

ell density evolution is the idential, lear distintion an be seen in the movements of

marked/unmarked subpopulations, with the marked ells experiening a ux due to the

total ell density gradient, Figure 1, (b). We note that when the ells are seeded at muh

lower densities (i.e. suh that the total ell density � T ), this e�et is less pronouned:

away from the maximum paking, ell ontat is less frequent, and we are loser to the

independent movement senario.

We now address the question of whether di�erenes in the loal mehanisms onsidered

in Table 1 an be understood through the behaviour of the marosopi equations by

onsidering two hypothetial experimental set-ups. In the �rst, Figure 2 (a), a population
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(a) Independent diffusion

(b) Interaction through "Neighbour" rules

Figure 1: Comparison of independent (i.e. A � 1, B � 0) and interating senarios. Top

row; shemati showing distribution of marked (blak, v)/unmarked (white ells, u). (a)

Evolution for independent di�usion (A = 1, B = 0). (b) Evolution for interating senario

(hoosing \neighbour" sheme from Table 1, with T = 2). In both sets, time shown are

t = 0 (dotted line), t = 100 (solid), t = 1000 (dot-dash) and t = 10000 (dashed)

.

of (motile) idential ells are seeded with a gradient in the ell density. A fration of these

ells are labelled with a marker suh that the density of labelled ells is uniform. In the

seond set-up, Figure 2 (b), the population is initially seeded at a uniform density, while

the marked fration is set in a graded manner.

In Figure 2 we summarise the results of the experiments. The loal and neighbour-

based rules show very similar behaviour, as may be expeted by the omparatively lose

forms of the PDE, see Figure 2. For type I experiments, u has a uniform distribution, yet

the total density varies. The resulting ux from the total density indues a net migration

of u ells down this gradient, before both populations eventually beome homogeneously
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Figure 2: Comparison between the various movement rules for two hypothetial experi-

ment set ups. Top rows: Shemati showing distribution of marked (blak) / unmarked

(white) ells for the experiments. Bottom rows: Snapshots in the time evolution for

di�erent shemes, with A(w) and B(w) forms orresponding to those given in Table 1,

showing: Total ell density (solid), marked ell density (dashed) and unmarked ell den-

sity (dotted). The T = 10000 plots indiate the steady state solutions. Simulations use

T = 2;  = 1; � = 1 where appropriate.
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distributed. For type II experiments, the total ell density is onstant; and thus eah

population moves down its own gradient. A di�erene an be seen when looking at the

behaviour at the maximum paking density, where the limited-spae model predits that

no movement an our and ells are �xed in the initial on�guration.

In ontrast, if there is no ux ontribution due to the total ell gradient (i.e. average

based model), di�erenes in behaviour an learly be seen in the type I experiment, Figure

2. Despite a gradient in total ell density, u, the ells remain homogeneously distributed.

The type II set-up shows the same behaviour as desribed above.

The gradient system an also be easily distinguished. Here, ells respond only to the

total density gradient. Thus for type II experiments, no movement ours, and the ell

populations remain in the initial on�guration. For type I experiments, mixing ours

until the total ell density beomes homogeneous, though the subpopulations themselves

may remain inhomogeneously mixed.

5 Veloity-jump alulations

Before presenting the appliation of our equations to spei� situations, we onsider briey

the possibility of deriving model equations using the \veloity jump" approah (Othmer

et al. (1988)). This assumes that ells undergo periods of smooth motion puntuated by

reorientations. In one spae dimension, this means that movement an be haraterised

by three parameters: the ell speed (s say), and the rates at whih ells moving to the left

and right hange diretion (�� Æ, say). Any di�erene between these last two parameters

(i.e. Æ 6= 0) indiates a direted omponent to the movement.

Hillen and oworkers (Hillen (2002)) have studied in detail the development of par-

tial di�erential equations to desribe veloity-jump proesses. In partiular, Hillen and

Stevens (2000)

2

showed that in the limit of high ell speed and high turning rate with

s

2

=� remaining �nite, the underlying telegraph equation approahes a paraboli limit,

2

The derivation of the paraboli limit in Hillen and Stevens (2000) assumes that the quantity 2� �

(1=s)�s=�t is independent of x. More generally, although the underlying telegraph equation is di�erent,

the same paraboli equation emerges in the limit of high ell speed and turning rate (Hillen, personal

ommuniation).

12



given by

�u

�t

=

�

�x

"

s

3

2s�� �s=�t

�u

�x

+

s

2

(�s=�x + 2Æ)

2s�� �s=�t

u

#

: (11)

In appliations to interating ell populations, s, � and Æ will be funtions of total ell

density w and its derivatives. For simpliity we assume that they depend only on w, w

x

and w

t

(but not higher derivatives). In this ase (11) has the form (3a) provided that s,

� and Æ have the following forms

s = s(w) an arbitrary funtion

� =

1

2

"

s(w)

2

A(w)

+

s

0

(w)

s(w)

�w

�t

#

! =

1

2

"

B(w)s(w)

wA(w)

� s

0

(w)

�w

�x

#

:

Thus the mean turning rate depends on both the total ell density and its rate of hange,

while the di�erene in left and right turning rates depends on the total density and its

spatial gradient.

6 Example 1: ompeting ell fronts

A useful illustration of the movement terms derived above is given by onsidering two

ell populations whose kinetis are of ompetition type. This may be ompetition for a

nutrient, or simply for physial spae. We retain our assumption that the two populations

have idential movement properties, but we assume that the v ells have a ompetitive

advantage over the u ells. On a one-dimensional domain, the appropriate model equations

for this situation are

�u

�t

= D

�

�x

"

A(u+ v)

�u

�x

+

u

u+ v

B(u+ v)

�(u+ v)

�x

#

+ u(1� u� v) (12a)

�v

�t

= D

�

�x

"

A(u+ v)

�v

�x

+

v

u+ v

B(u+ v)

�(u+ v)

�x

#

+ v( � u� v) : (12b)

where  > 1 reets the ompetitive advantage of the v ells. A spei� instane to

whih this model ould be applied is early tumour growth. Here u and v would be the

density of untransformed and tumour ells respetively;  would represent the proliferative

advantage given by an onogeni mutation.
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Figure 3: Travelling wave solutions for di�erent interations in the two-ell ompetition

model. Top row: Independent linear di�usion (A = 1; B = 0). Centre row: \Neighbour-

rule", (A = 1 � (u + v)=3; B = (u + v)=3). Bottom row: \Loal-rules", (A = (u +

v)=3; B = (u + v)=3). Numerial alulation indiated waves speeds of 2, 1.63 and 1.15

respetively, on�rming validity of the analytial expression. Other parameters were set

at D = 1;  = 2 and wave pro�les are plotted at time intervals of 2.
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Figure 3 illustrates a typial solution of (12) for A and B determined using the loal

and neighbour based funtions from Table 1. We use initial onditions onsisting of

uniform densities of the two ell populations in adjaent regions of spae. This initial

solution evolves into an advaning wave front in v and a reeding front in u, reeting the

ompetitive advantage of the v population. For omparison, we also show in Figure 3 the

solution of (12) in the ase of ell populations whih undergo independent linear di�usion,

whih is given by setting A � 1 and B � 0. The qualitative form of the solution is the

same, but the speed of the wave front is notieably higher in this ase; this reets the

inhibitory e�et of ell-ell interations in ell movement.

A simple analytial argument gives an indiation of the di�erene in wave speed in

the ases shown in Figure 3. Following a standard approah for travelling wave problems

of this kind, we linearise (12) about the steady state v = 0, u = 1, whih is the limiting

solution ahead of the wave. The linearised v equation deouples, to give

�v

�t

=

�

�x

"

A(1)

�v

�x

#

+ ( � 1)v +O(v

2

) :

By analogy with standard theory for salar equations suh as the Fisher equation, we thus

expet the wave speed to be 2[A(1)( � 1)℄

1=2

. This formula is on�rmed by numerial

simulation, and indiates that the ratio of the speeds between the independent and non-

independent ases in Figure 3 is

q

A(1). Note that this relation does not apply in the

speial ase A � 0; alulation of the wave speed is more ompliated in this ase, and is

disussed in detail in Sherratt (2000).

7 Example 2: aggregation in tissues

As a seond example, we explore how the interations in movement may a�et proesses

of aggregation. Chemotaxis is employed by both bateria and eukaryoti ells for direted

movement and organisation: for example, the aggregation of Dityosytelium ells under

starvation onditions is initiated by hemotati movement up gradients of self-produed

AMP hemial waves, while in embryoni development guided ell movement is essential

in many proesses of spatial patterning and morphogenesis.

The majority of ontinuous treatments of hemotaxis have ignored how the omplexity

15



of the tissue environment may inuene the movement dynamis. We use the framework

here to address some of these issues.

The most ommonly employed models for hemotaxis are based on the PDE systems

proposed in Keller and Segel (1971):

�u

�t

= D

u

r

2

u�r � (u�()r) + f(u; )

�

�t

= D



r

2

+ g(u; )

where u and  represent ell density/hemoattratant onentrations. The funtion �()

is ommonly referred to as the hemotati sensitivity funtion. This system has been

studied extensively, in partiular for its ability to exhibit pattern formation/self organ-

isation under suitable hemial kinetis. For example, for the hoie of f(u; ) = 0,

g(u; ) = u � Æ and � suÆiently strong, an initially homogeneous ell distribution

forms a spatial pattern of ell aggregations. This is intuitively understood through the

self-reinforing mehanism in whih ells move up gradients of a hemial they are seret-

ing. Variations of the model have been used to model a variety of proesses of aggregation

in bateria populations (e.g. Tyson et al. (1999)) or development (e.g. Painter et al.

(2000)).

Of ourse, the above formulation also assumes independent movement by the ells,

and thus does not realistially desribe the behaviour of ells under aggregation. This

is elegantly demonstrated by the tendeny of the above systems to exhibit \blow-up"

behaviour, in whih aggregations of in�nite ell density form. To develop a more realisti

model for ell behaviour a model for hemotaxis was proposed by (Painter and Hillen

(2003); Hillen and Painter (2001)). Their model inorporated the idea of \limited-spae",

as disussed above but within the ontext of a single ell population. The inhibition of

movement at higher densities prevented the \blow-up" behaviour observed in previous

models and smooth aggregations developed (f Figure 4 (a) vs (b)).

As our seond example, we onsider the situation where the tissue omprise two ell-

types, u and v, of whih at least one is hemotatially stimulated by gradients of a

hemial . By assuming movement is inuened via ombination of loal, neighbour and

gradient rules, we an derive the following two-ell model for hemotaxis using Equation
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10:

�u

�t

=

�

�x

"

D

u

g(w)

�f(w)u

�x

�D

u

uf(w)

�g(w)

�x

� ug(w)f(w)�

�

�x

#

(13a)

�v

�t

=

�

�x

"

D

v

g(w)

�f(w)v

�x

�D

v

vf(w)

�g(w)

�x

� vg(w)f(w)�

�

�x

#

(13b)

�

�t

= D



�

2



�x

2

+ 

1

u+ 

2

v � Æ (13)

where 

1

; 

2

; Æ; �; �;D

u

; D

v

and D



are all assumed onstant and w = u + v. Initially

we shall restrit our attention to the ase where the ell-ell interation ours through

\neighbour" rules only, and we therefore hoose g(w) = 1�w=T and set f(w) � 1. Note

that the onstant hemotati sensitives above are derived by onsidering � = � or �

for u and v respetively in Equation 10. We assume zero-ux boundary onditions on the

one-dimensional domain [0; L℄.

The inorporation of two ell populations allows us to study a number of relevant

biologial senarios aording to whether \autorine"or \pararine" behaviours are in

operation. Here, the term autorine refers to a situation where a single ell type both

seretes the hemial and migrates in response, while pararine indiates a response in

whih one population seretes the hemial and the other migrates. The onditions under

whih we an expet aggregation an be alulated by performing a linear stability analysis

on the above equations, and we refer to the appendix for details.

7.1 Case 1: Autorine (� = 0, 

2

= 0)

We assume one ell both seretes and is attrated by the hemial (\auto-aggregation"):

the seond ell population is passive, and an only inuenes the dynamis via its \ob-

strution".

For omparison, we have inluded the equivalent independent movement senario

(ahieved by additionally setting g(w) = 1 above). This gives rise to the \lassial"

hemotaxis model, and for suitable parameters an initially homogeneous distribution of

u develops into a sharp ell aggregation. The v population remains unperturbed from its

homogeneous distribution, and has no e�et either on the ability of patterns to form or

the timesale of patterning. Typial simulations are shown in Figure 4 (a).
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Figure 4: Autorine (auto-aggregation) ase. (a) Two non-interating ell populations (i.e.

linear di�usion). (b) - (d) Interation through spae-limitation for T = 5:0 for (b) v

i

= 0:0,

() v

i

= 1:0, (d) v

i

= 3:9. Other parameters are � = 1:0, 

1

= Æ = D



= 1:0; 

2

= � = 0:0,

D

u

= D

v

= 0:1 on a domain of L = 5. Initial onditions are given by u(x; 0) = 1,

v(x; 0) = v

i

and (x; 0) = 1:0 � 0:01 os(2�x=L). Bold dashed line = total ell density,

solid line = u density, dotted line = v density.

Aggregation also ours for the orresponding model inorporating the limited spae

interation (we hoose g(w) = 1 � w=T ). The ondition for aggregation is given by the

following equation (see appendix for details):

� >

ÆD

u



1

u

�

(1� u

�

=T )

Clearly, the passive population does not a�et the onditions for spatial patterning to

our. This is shown by hoosing three initial densities for the v distribution. In the ab-

sene of v ells (Fig 4 (b)) the u ells aggregate into a smooth distribution, with the spae

limitation preventing the sharp aggregates harateristi of the linear ase. This situa-

tion has been studied in detail in (Painter and Hillen (2003); Hillen and Painter (2001)).

Inreasing the density of v-ells does not a�et the shape of the resulting aggregation of

u-ells, (Fig 4 (-d)), but it learly hanges the time for the aggregation to form. This

follows intuitively from the ideas behind the limited spae models.
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7.2 Case 2: Pararine (� = 0, 

2

= 0)

We now explore the pararine ase, in whih u seretes the hemial, and v migrates in

response to it. The omparable independent movement ase is shown in Figure 5 (a):

Pattern formation (see appendix for the analysis) is not possible in this model, sine the

sereting ell population remains homogeneously distributed throughout spae.

The orresponding model inorporating interation of the ells through spae-limitation,

however, does admit the possibility of pattern formation. This an intuitively be under-

stood through the inuene of the total ell density gradients on both populations, whih

results in the sereting ell population beoming inhomogeneously distributed. The linear

stability analysis predits that aggregation ours under the following ondition:

� < �

TÆD

v

u

�

v

�



1

Thus, pattern formation is only possible for a hemorepulsion response to the hemial.

The density of the non-hemotating population is ruial, and at low densities no ag-

gregation is possible. Typial simulations at di�erent densities of the non-hemotating

population (u) are shown in Figure 5 (b)-().

7.3 Case 3: Autorine + Pararine (

2

= 0)

Finally, we onsider a ombined autorine and pararine response. Here the instability

ondition is

D

v

(1� u

�

=T )��

D

u

v

�

T

� >

ÆD

u

D

v

u

�



1

The sign struture of � � � inuenes the type of pattern that develops. If both ells

are attrated by the hemial, the autorine attration (�) must be suÆiently large suh

that these ells an \overome" the pararine population and aggregation take plae. The

resulting patterns take the form shown in Figure 6 (a), with the autorine ells forming

the aggregation ore, and the pararine ells on�ned mainly to the boundary.

For the autorine population attrated (� > 0) and the pararine population repelled

(� < 0), the total ell density has multiple peaks, with attratant ells forming a ore
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Figure 5: Pararine ase. (a) Two non-interating ell populations (i.e. linear di�usion).

(b)-() Interation through spae-limitation for T = 5:0 for (a) u

i

= 0:25, (b) u

i

= 1:0.

Other parameters are given by � = �1:0, 

1

= Æ = D



= 1:0, 

2

= � = 0:0, T = 5:0

D

u

= D

v

= 0:1 on a domain of L = 10. Initial onditions are given by v(x; 0) = 1,

u(x; 0) = u

i

and (x; 0) = 1:0 � 0:1 os(2�x=L). Bold dashed line = total ell density,

solid line = u density, dotted line = v density.

aggregation in the entre of the domain, and the v ells repelled away to form aggregations

at the hemial minima.

Patterning an even our when the autorine population is repelled by the hemial

gradients (� < 0), provided that the pararine ells show suÆiently strong hemorepul-

sion. A typial pattern is shown in Figure 6 ()

7.4 Inlusion of other total density e�ets

In the above, the only tissue inuene on movement resulted from spae-limitation. It

is, of ourse, highly likely that other e�ets may our at higher densities. For example,

highly motile ells may fore other ells out of the way as they pull themselves through

the tissue environment. We inorporate suh an e�et phenomelogially by also inluding

a \population-pressure" term in whih a ell inreases its tendeny to move from a site as

the density inreases. Thus, we now additionally assume f to be an inreasing funtion
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Figure 6: Steady state aggregations for two hemotating populations (a) � = 2:0; � = 1:0

(b) � = 2:0; � = �2:0 () � = �1:0; � = �8:0. Other parameters are given by 

1

= Æ =

D



= 1:0, 

2

= 0:0, T = 5:0 D

u

= D

v

= 0:1 on a domain of L = 5, with initial onditions

u(x; 0) = 1, v(x; 0) = 1:0 and (x; 0) = 1:0 � 0:01 os(2�x=L). Bold dashed line = total

ell density, solid line = u density, dotted line = v density.

of the total ell density, in addition to the previously hosen forms of g, � in Equations

13.

As a test senario, we onsider the same generi ase as illustrated in Figure 6 (a),

where both ells are hemotatially attrated by gradients in the hemial onentration

(though one ell shows dereased sensitivity). A hoie of linear f does not signi�antly

hange the behaviour, Figure 7 (a). However, it may be more appropriate to onsider a

form for f suh that it has little e�et at low densities (i.e. when ells are widely spread

out), but a strong e�et when they are losely paked. For suh forms, the results show

a similar behaviour, but now the ells whih have less sensitivity are \pushed" from the

ore of the aggregation to the periphery.

8 Disussion

Continuum models provide a onvenient tool for desribing the movements of populations.

While detailed modelling of the movement in a tissue environment must inorporate a me-

hanial desription of the various fores exerted by the ells, by adopting a phenomolog-

ial approah we have explored how interation between di�erent ell types may inuene

the marosopi movements of ell populations. Our work here has foussed on senarios

for whih the tissue exerts an equal e�et on all ell populations. In reality, di�erent
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Figure 7: Steady state aggregations for two hemotating populations inluding a \loal

pressure" e�et. (a) f(w) = aw (b) f(w) = 1+exp(2(w�3)) () f(w) = 1+exp(10(w�3))

where � = 2:0; � = 1:0,  = � = D



= 1:0, T = 5:0 D

u

= D

v

= 0:1 on a domain of

where L = 5, with initial onditions u(x; 0) = 1, v(x; 0) = 1:0 w

0

= 2 and (x; 0) =

1:0� 0:01 os(2�x=L).

populations vary in fators suh as their adhesion to the matrix or the deformability of

the membrane. Suh variations may easily be inorporated into the framework here by

hoosing di�erent funtional forms/parameters in the movement equations.

The ase studies in x6 and x7 illustrate the importane of inorporating the interation

between ell populations into models for ell movement. In x6, this was demonstrated by

the e�et on the speed of wave propagation. In x7, a number of di�erenes emerged in

senarios of aggregating ell populations. For example, in the \pararine" problem, ag-

gregation was only possible when interations with another ell population were inluded.

The equations for ompeting ell populations given in x6 are highly generi, but the

movement terms we have presented ould be adapted to a range of more spei� models.

For example, ompetition between di�erent subpopulations of ells is an integral part of

the early growth of solid tumours. As well as the ompetition between tumour and normal

ells, the ells within the tumour are a mixture of dividing and quiesent populations,

whih are self-organised into a harateristi layered struture. These various proesses

demand relatively sophistiated modelling of movement in interating ell populations,

and provide a potential ase study for the ideas developed in this paper.

The simulation results of x7.4 bear similarities to proesses of \ell sorting", in whih

an aggregate of initially mixed multiple ell types reorganise to form distint regions, suh

that one ell type forms the ore of the aggregate while the other ells form the boundary.

Explanations have primarily foussed on the \di�erential adhesion hypothesis" proposed
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by Steinberg (e.g. Steinberg (1970)), in whih di�erenes in the levels of adhesion between

the ells lead to the sorting. The results here suggest that the response to a di�usible

hemial signal may also be a viable mehanism for ertain sorting proesses. In fat, suh

mehanisms has been shown to drive ell sorting of pre-stalk and pre-spore ells during

Dityostelium mound formation, (e.g. Weijer (1999))
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Appendix

Here we detail the results of a linear stability analysis on the model for multi-ell hemo-

taxis, Equations 13, with f(w) � 1. Assuming zero-ux boundary onditions on the

one-dimensional domain [0; L℄, then for suitable initial onditions (i.e. non negative) these

equations have a single homogeneous steady state, (u

�

; v

�

; 

�

), where u

�

and v

�

are deter-

mined as u

�

=

R

L

0

u(x; 0)dx=L, v

�

=

R

L

0

v(x; 0)dx=L and 

�

=



1

u

�

+

2

v

�

Æ

.

Independent ase

If there is no diret interation between the ells through the movement (i.e. g(w) = 1),

then a linearisation of Equations 13 about the homogeneous steady state determines the

following eigenvalue problem:

�

�

�

�

�

�

�

���D

u

k

2

0 �u

�

k

2

0 ���D

v

k

2

�v

�

k

2



1



2

��� k

2

D



� Æ

�

�

�

�

�

�

�

= 0

where � is the (temporal) eigenvalue and k is the wavenumber (or spatial eigenvalue) (e.g.

see Murray (1993) for more details). Thus the dispersion relation is a ubi polynomial

of the form:

�

3

+ a(k

2

)�

2

+ b(k

2

)�+ (k

2

) = 0

Instability of the homogeneous solution, and thus the possibility of spatial pattern forma-

tion, ours for IR(�) > 0. Sine we an determine a(k

2

) > 0 for all positive k

2

, then this

an only our if there exists a range of k

2

for whih b(k

2

) < 0 or (k

2

) < 0. We note that
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for b(k

2

) < 0 and (k

2

) > 0 the eigenvalue may have imaginary omponents implying, at

least initially, (temporally) osillating solutions. For (k

2

) < 0 we need

D

u

D

v

Æ < D

u



2

�v

�

+D

v



1

�u

�

and for b(k

2

) < 0:

D

v

Æ +D

u

Æ < 

2

�v

�

+ 

1

�u

�

(A.1)

In this paper, we onentrate on senarios where at least one of 

1

; 

2

; � or � is zero.

Under this onstraint, it is easy to show that if b(k

2

) < 0 then we must also have (k

2

) < 0.

Thus the ondition for instability of the homogeneous solution is given by Equation A.1

alone and positive eigenvalues are real.

Sine all parameters are positive, it an be seen immediately from the above that

aggregation is only possible if there is at least one autorine response (i.e. 

2

and � non

zero or 

1

and � non zero) - this orresponds to Cases 1 and 3 in Setion 6. For the pure

pararine problem, (e.g.. 

1

and � non zero, 

2

= � = 0), then the linear analysis does

not predit spatial patterning.

Interation through neighbour rules

A similar analysis an be performed for the ase where the ells diretly inuene eah

others movement. Here we set g(w) = 1 � w=T for w = u + v, and stipulate that

u(x; 0) + v(x; 0) � T (thus w

�

� T ). By linearisation about the homogeneous steady

state, we now yield the following eigenvalue problem:

�

�

�

�

�

�

�

��� k

2

(D

u

(1� v

�

=T )) �

D

u

u

�

k

2

T

�u

�

(1� w

�

=T ) k

2

�

D

v

v

�

k

2

T

��� k

2

(D

v

(1� u

�

=T )) �v

�

(1� w

�

=T ) k

2



1



2

��� k

2

D



� Æ

�

�

�

�

�

�

�

= 0

Again, we yield a ubi dispersion relation, and the onditions for (k

2

) < 0 and b(k

2

) < 0

are, respetively:

�u

�

D

u

(

1

T � v

�



2

� u

�



1

) +

�v

�

D

v

(

2

T � v

�



2

� u

�



1

) > TÆ (A.2)

and



1

�u

�

+ 

2

�v

�

>

D

u

Æ(1� v

�

=T ) +D

v

Æ(1� u

�

=T )

(1� (u

�

+ v

�

)=T )

(A.3)
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Again we onentrate on the onditions for the two main senarios in Setion 6. For

the pure pararine problem (Case 2), it is lear that A.3 an not be satis�ed. Thus

stability an only be lost through ondition A.2 being satis�ed.

For the autorine ase (Case 1) we set � = 

2

= 0. Equations A.2 and A.3 redue to:

�u

�



1

(1� u

�

=T ) > D

u

Æ and �u

�



1

>

D

u

Æ(1� v

�

=T ) +D

v

Æ(1� u

�

=T )

1� (u

�

+ v

�

)=T

By multiplying through by 1�(u

�

+v

�

)=T in the latter it is easy to demonstrate that if the

seond ondition holds, then so does the former. Thus, one again we do not expet any

temporally osillating solutions to the linearised system and we an redue our stability

riteria to the single ondition.

In the senario where only one of �; �; 

1

or 

2

is zero, then it also possible to determine

parameter values suh that b(k

2

) < 0 while (k

2

) > 0. In suh senarios, we may have

imaginary eigenvalues, leading to the possibility of temporally osillating patterns.
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