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Density-based Clustering by Means of Bridge
Point Identification

Luca Colomba, Luca Cagliero, Member, IEEE, and Paolo Garza, Member, IEEE

Abstract— Density-based clustering focuses on defining clusters consisting of contiguous regions characterized by similar densities of
points. Traditional approaches identify core points first, whereas more recent ones initially identify the cluster borders and then
propagate cluster labels within the delimited regions. Both strategies encounter issues in presence of multi-density regions or when
clusters are characterized by noisy borders. To overcome the above issues, we present a new clustering algorithm that relies on the
concept of bridge point. A bridge point is a point whose neighborhood includes points of different clusters. The key idea is to use bridge
points, rather than border points, to partition points into clusters. We have proved that a correct bridge point identification yields a
cluster separation consistent with the expectation. To correctly identify bridge points in absence of a priori cluster information we
leverage an established unsupervised outlier detection algorithm. Specifically, we empirically show that, in most cases, the detected
outliers are actually a superset of the bridge point set. Therefore, to define clusters we spread cluster labels like a wildfire until an
outlier, acting as a candidate bridge point, is reached. The proposed algorithm performs statistically better than state-of-the-art
methods on a large set of benchmark datasets and is particularly robust to the presence of intra-cluster multiple densities and noisy
borders.

Index Terms—Density-based Clustering, Outlier detection, Unsupervised learning.

F

1 INTRODUCTION

C LUSTERING is among the most popular unsupervised
data mining tasks. It addresses the definition of groups

of data points, where each group contains highly similar
points whereas points in separate groups are dissimilar [1].
Density-based methods encompass a large body of clus-
tering algorithms focused on analyzing the neighborhood
of each data point. The pioneering DBSCAN algorithm [2]
analyzes the density of points within the neighborhood of
a given point to decide whether the latter can be classified
as a core point, i.e., a point with a high density of points
in the surrounding region, and used as starting point for
defining a new cluster. Although several DBSCAN variants
have been proposed in literature (e.g., OPTICS [3], HDB-
SCAN [4]), they show limited performances in presence of
multi-density regions, i.e., clusters consisting of a variety of
regions with different densities of points [5]. In particular,
the presence of variable densities of points within the same
cluster (i.e., the intra-cluster multiple density) is known to
be particularly challenging.

Recently, the data mining community has explored al-
ternative density-based strategies aimed at identifying the
points lying in the cluster border first, namely the border
points [6], [7]. A correct detection of the border points has
shown to be effective in identifying inter-cluster multiple-
density regions. However, the performances can be subopti-
mal while coping with either intra-cluster multiple densities
or clusters with noisy borders. The main reason is that the
clustering algorithm likely overestimate the number of bor-
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der points thus yielding an excessive cluster fragmentation.
The present work focuses on addressing the aforesaid

issues by introducing a new type of data points, namely
the bridge point. A bridge point is a point whose neighbor-
hood includes points of different clusters. They symbolically
provide inter-cluster connections, thus acting as bridges be-
tween separate clusters. The key idea behind this work is to
identify bridge points first as they indicate clusters’ frontiers
more explicitly than border points. In Section 4 we will
prove that a preliminary bridge point identification yields a
cluster separation that is consistent with the expected clus-
tering outcome (i.e., the generated clusters do not include
points with different cluster labels in the ground truth).

In an unsupervised context, bridge points are a apriori
unknown. Hence, we leverage outlier detection methods to
discover candidate bridge points. Specifically, since points
lying in cluster frontiers are likely to be detected by out-
lier detection methods we propose a clustering algorithm
that performs outlier detection first to identify candidate
bridge points, and then assigns cluster labels to data points
accordingly. The underlying hypothesis that bridge points
are a subset of the outlier set is confirmed by empirical
evidence achieved on a large set of synthetic and real-world
benchmark datasets.

We spread cluster labels within regions delimited by can-
didate bridge points. To prevent excessive cluster fragmen-
tation, label propagation is stopped only when all points
in its local neighborhood are outliers (i.e., candidate bridge
points). In such a way, the clustering algorithm achieves a
robustness to intra-cluster multiple densities and noisy bor-
ders superior to existing approaches. The performance com-
parisons with state-of-the-art algorithms were conducted
on 35 synthetic and 10 real-world benchmark datasets [11]
included in the ClueMiner project [12].
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(a) Ground Truth (b) BAC - Our approach (c) Border Peeling [6]

(d) DBSCAN [2] (e) HDBSCAN [4] (f) OPTICS [3]

(g) AUTOCLUST [8] (h) DADC [9] (i) DenMune [10]

Fig. 1: Complex9 dataset: comparison between the outcomes of different clustering algorithms.

The main paper contributions can be summarized as
follows.

• A new type of data point. We introduce the bridge
point concept and use it to identify density-based
clusters. We also empirically show that outlier de-
tection methods achieve a very high recall in de-
tecting bridge points. Therefore, they are particularly
suitable for detecting candidate bridge points in an
unsupervised context.

• New clustering pipeline. We design and develop a
new clustering algorithm that exploits outlier detec-
tion methods to identify candidate bridge points first
and then uses candidate bridge points to define clus-
ters. Assuming that the complete set of bridge points
is given, we also prove the algorithm correctness, i.e.,
we are able to separate points belonging to different
clusters (see Theorem 1).

• Extensive experimental evaluation. We compare the
performance of the proposed clustering algorithm
with both traditional and recent approaches on a
large set of synthetic and real-world benchmark
datasets. The results show that the proposed ap-
proach performs significantly better than state-of-
the-art approaches and is particularly robust to the
presence of intra-cluster multi-density regions and
noisy borders.

The remainder of the paper is organized as follows.
Section 2 presents a motivating example. Section 3 reviews
the prior work. Section 4 introduces the concept of bridge
point and provides a data-driven characterization whereas

Section 5 describes how to leverage an outlier detection
step to identify candidate bridge points. Sections 6 and 7
respectively present the clustering pipeline relying on can-
didate bridge points and summarize the empirical results
achieved on benchmark datasets characterized by various
data distributions. Finally, Section 8 draws conclusions and
discusses the future research agenda.

2 MOTIVATING EXAMPLE

We present here the outcomes of various clustering algo-
rithms on a prime example, i.e., a dataset characterized by
two main issues: (i) some regions have different densities
and (ii) cluster borders are quite noisy. We will show that the
data distribution described above is particularly challenging
for existing density-based approaches, including traditional
density-based algorithms (e.g., [2], [3], [4]), recently pro-
posed approaches based on border point identification (e.g.,
Border Peeling [6]), and density-peak clustering (e.g., [9],
[10]).

In Figure 1a we show the expected clusters (denoted
by Ground Truth). They are characterized by heterogeneous
shapes, variable densities (particularly, the ring-like clus-
ter in the center), and not well defined borders (particu-
larly, the clusters on the right-hand side). The outcomes
of the density-based algorithms, which are depicted in Fig-
ures 1d, 1e, and 1f exemplify the difficulties encountered by
the respective algorithms to cope with multi-density regions
(e.g., the ring-like cluster is split into several parts). Figure 1c
depicts the clusters defined by Border Peeling [6]. Unlike
DBSCAN and OPTICS, Border Peeling is able to correctly
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(a) Bridge points

(b) Outliers

Fig. 2: Our approach: an insight into bridge points and
outliers. Complex9 dataset.

separate the clusters with less pronounced borders, but fails
to correctly define the ring-like cluster due to the presence of
intra-cluster variable density regions. Figure 1h reports the
clusters produced by DADC [9], which encounters problems
while trying to merge regions with variable density of
points or to split clusters with similar densities. Finally,
DenMune [10] splits some of the clusters characterized by
intra-cluster multiple densities (see Figure 1i).

Our clustering approach (see Figure 1b) produces well
separated clusters thanks to the application of outlier detec-
tion followed by bridge point identification. To gain insights
into the clustering process, Figures 2a and 2b respectively
show the red colored bridge points and the detected out-
liers. For example, the bridge points placed inside and in
the right-hand side of the ring-like cluster are useful for
separating it from the two nested globular clusters and from
the external one. The outlier detection step has been shown
to accurately detect a superset of the bridge points, thus
yielding an effective cluster separation.

3 RELATED WORKS

The study and development of clustering techniques have
received indisputable interest from the data mining and
machine learning communities. Clustering algorithms have
been already applied to a wide range of application con-
texts and data types, including, for instance, geo-spatial
data [13], social and multimedia data [14], and Big data
collections [15].

According to [16], clustering algorithms can be classified
as partitional, if they produce unnested clusters where each
data point belongs to exactly one cluster, or hierarchical,
otherwise. An alternative categorization divides the clus-
tering algorithms as complete or partial [16]. Specifically, in a
complete clustering every object is assigned to at least one
cluster, whereas in a partial clustering points can remain
unassigned. The clustering approach proposed in this paper
is partitional and complete.

Among the partitional algorithms, one notable group
consists of the density-based approaches. They aim at gen-
erating clusters based on the density of points in the regions
of the input data space. DBSCAN [2] was the pioneer-
ing density-based algorithm. It focuses on first discovering
points with a dense neighborhood (i.e., the core points),
generate clusters from core points, and then assign the
remaining points to the previously defined clusters. The
aforesaid approach may encounter problems while dealing
with multi-density regions. OPTICS [3] and HDBSCAN [4]
tried to alleviate the problem of multi-density clustering
by using ad hoc structures, i.e., the reachability plots and
hierarchical structures. However, since they do not consider
the border of a dense region in the aggregation phase, they
tend to label a large number of border points as noise [17].

To specifically cope with datasets characterized by multi-
density regions, a relevant research effort has been devoted
to detecting density peaks (DPs) (e.g., [18], [19], [20], [21]).
As a drawback, the aforesaid algorithms tend to over-
fragment the clusters in the presence of intra-cluster regions
with variable density. The works presented in [9], [22], [23]
focused on overcoming the issue by proposing optimized
neighbor search methods, whereas in [20] DPs are detected
using decision graphs. Although domain-adaptive density
measurements can reveal the presence of multiple density
maximums within the same cluster [9], they may encounter
issues in defining the cluster backbone.

Alternative approaches (e.g., [10], [24], [25]) proposed to
identify clusters’ backbones and assign labels based on the
presence of density-peak regions. Specifically, the authors
in [10] adopted the K-Mutual-Neighbors consistency [26]
and a voting mechanism to classify points as strong, weak
and noise points. Consequently, cluster backbones are ex-
panded starting from strong points to weak points. In-
stead, [24] proposed a fuzzy neighborhood kernel to com-
pute local densities, determine cluster centers, and identify
cluster backbones. In other works, researchers focused on
improving density-peak clustering by providing different
definitions of density [25], [27]. Specifically, [25] used only
relative density relationships to mitigate the negative effects
of inter-cluster multiple-density, meanwhile [27] redefined
DP clustering based on a weighted k-Nearest Neighbors
distance and on a geodesic-based δ distance. Instead, [28]
focused their work on the automated analysis of the decision
graph using a gap-based methodology to automatically
identify clusters’ centers.

A clustering strategy that complements density peak
detection methods has been recently presented in [6]. The
authors aimed at identifying cluster borders first, rather
than density peaks, and then peel the borders until the clus-
ter core is reached. The latter approach has been shown to
be particularly effective in handling clusters with different
densities, but tends to produce an undesired cluster frag-
mentation when multi-density regions are included within
the same cluster.

Distance graphs can be also exploited to identify con-
nected regions of points. For instance, AUTOCLUST [8]
performed clustering by leveraging a graph-based data
representation, where edges connecting pairs of points are
weighted by the corresponding pairwise distance. The pro-
posed algorithm extracts connected components from a
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pruned graph version, which excludes edges correspond-
ing to too close or faraway connections (e.g., connections
between points located in different space regions).
Summary of differences with prior works.

• DBSCAN [2],OPTICS [3] and HDBSCAN [4]: they
identify core points with a dense neighborhood
rather than bridge points representing cluster fron-
tiers.

• Density-peak clustering [9], [10], [18], [19], [20], [21],
[24], [25]: our approach prioritizes the identification
of points that are likely to lie on cluster borders.
In this sense, it is complementary to density-peak
clustering strategies.

• Border Peeling [6]: our main goal is not to detect
and peel cluster borders, but rather to identify bridge
points, which represent cluster frontiers (not necessar-
ily lying on the border). The proposed solution fo-
cuses on preventing excessive cluster fragmentation.
To the best of our knowledge, this work is the first
attempt to exploit bridge points and outlier detection
to define clusters.

• AUTOCLUST [8]: our purpose is to detect bridge
points by means of outlier detection rather than sim-
ply considering the connected subgraphs. To avoid
producing excessive cluster fragmentation we relax
the arbitrary assumption that bridges among cluster
consist of short links. Furthermore, we inherently
manage the cases when different clusters are asso-
ciated with multiple bridge paths.

• Semi-supervised clustering (e.g., [29]): this paper
addresses the clustering problem in an unsupervised
context.

4 BRIDGE POINT TYPE DEFINITION AND CHARAC-
TERIZATION

This section formalizes the problem addressed in this paper,
introduces the new type of data points, and describes their
main properties.

Problem statement. Let D={p1, p2, . . . , pn} be an input
dataset, where pi=(xi1,xi2, . . ., xid)∈ Rd [1 ≤ i ≤ n] will be
hereafter denoted as data point, whereas xij will be the value
of its j-th dimension [30].

We address the hard partitional clustering problem,
which entails finding a q-partition of D, namely C =
{C1, C2, . . . , Cq} (q ≤ n) such that

• Cj 6= ∅, j=1, . . . , q
•

⋃q
j=1 Cj = D

• Cj ∩ Cl = ∅ j, l = 1, . . . , q and j 6= l

Without any loss of generality, hereafter we will denote
every partition in C as a cluster. The clustering algorithm
assigns each data data point pi ∈ D to a cluster Ci, i ∈
[1, . . . , q]. pi is labeled as ci.

Hereafter, unless otherwise specified, we will consider a
Euclidean space.

Neighborhood of a data point. Density-based clustering
relies on the concept of local neighborhood of data point,
which is formalized below.
Definition 1 (k-nearest neighborhood). Let k ∈ Z+ be a user-

specified positive integer value and let pi ∈ D be an

arbitrary data point. The k-nearest neighborhood of pi,
hereafter denoted as NN k(pi), is the set of its k nearest
points.

For our convenience, we represent the relationship be-
tween a data point and its k neighbors using a graph-based
model.
Definition 2 (k-nearest neighborhood graph). Let D be an

input dataset and let G be an undirected graph whose
nodes are data points in D whereas edges link pairs of
points pi, pj ∈ D such that either pj ∈ NN k(pi) or pi ∈
NN k(pj).

Bridge point. We now introduce the concept of bridge
point. A bridge point is a data point pi whose ‘true’ cluster
label differs from the true cluster label of at least one of the
points in its k-nearest neighborhood. In a nutshell, bridge
points represent cluster “frontiers” because in their neigh-
borhoods there are points not belonging to the same clusters
of the bridge points. A more formal definition follows.
Definition 3 (Bridge point). Let D be a dataset, C be the

optimal clustering1 for D and ci be the cluster label
assigned in C to an arbitrary point in pi ∈ D. pi is a
bridge point if

∃pj ∈ NN k(pi) | ci 6= cj

Examples of bridge points, for different values of k, are
shown in Figures 3b and 3d. Bridge points are depicted as
red triangles. According to Definition 3, the higher k the
higher the number of bridge points. The reason is that by
increasing the neighborhood size the likelihood of finding
points labeled with a different cluster increases as well.

Regardless of the value of k, bridge points indicate
the frontier between two clusters. Thus, their identification
is deemed as particularly useful for cluster definition, as
empirically shown later on.

Bridge-aware clustering. We now refine the concept of
neighborhood graph introduced earlier by assuming to have
already correctly identified all bridge points in the input
dataset.

A bridge-aware k-nearest neighborhood graph connects
data points to all the points in the local neighborhood of a
given data point, except for the bridge points.
Definition 4 (Bridge-aware k-nearest neighborhood graph).

Let D be an input dataset and let G be a k-nearest
neighborhood graph built on D. Let Ce be the expected
clustering outcome for D and let B be the corresponding
set of bridge points in D. The bridge-aware k-nearest
neighborhood graph Gba is the graph derived from G
by pruning all the edges in G that connect each bridge
point in B to any other point, except for its nearest point
in D.

By assigning a different cluster label to each connected
component in Gba, we can yield a clustering outcome that
preserves cluster separation according to the expected out-
come.
Theorem 1 (Clustering based on bridge-aware k-nearest

neighborhood graph). Let D be an input dataset, let B

1. It corresponds to the ”expected” outcome.
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(a) Ground Truth (b) Bridge points (red triangles),
k = 7

(c) Outliers (red triangles), k = 7

(d) Bridge points (red triangles),
k = 20

(e) Outliers (red triangles), k = 20

Fig. 3: Examples of bridge points and outliers (candidate bridge points). Diamond9 dataset.

be set of bridge points defined in compliance with the
expected clustering outcome Ce, and let Gba be the cor-
responding bridge-aware k-nearest neighborhood graph
generated on top ofD, where each connected component
has a distinct cluster label. Any clustering outcome C
such that
(i) each cluster consists of the subset of points corre-
sponding to a connected component in Gba and
(ii) every bridge point is assigned to the same cluster as
the nearest point in its neighborhood
preserves cluster separation given by Ce, i.e., there exist
not pairs of points belonging to different clusters in Ce
that have the same cluster label in C.

Proof of Theorem 1. By contradiction. Let (pr , ps) be an
arbitrary pair of non-bridge data points in D. Let (cer , ces)
and (cr , cs) be the pairs of the corresponding cluster labels
in Ce and C, respectively. There exists at least one pair (pr ,
ps) satisfying the following properties:
(1) cer 6= ces
(2) cr = cs

According to (1) and in compliance with Definition 4,
pr and ps do not belong to the same connected component
in Gba, whereas according to (2) pr and ps must belong to
the same connected component in Gba because, according
to Point (i) of Theorem 1, each cluster in C is a subset of a
connected component in Gba. This is a contradiction. �

Therefore, bridge point identification allows us to
achieve a desirable cluster separation. Unfortunately, bridge
point classification is a priori unknown in an unsupervised
context. In Section 5 we will address the use of outlier
detection methods to identify candidate bridge points.

Notice that the notable property of the clustering result
stated in Theorem 1 is a necessary but not sufficient condition

to achieve exactly the expected clustering, because a single
cluster in the expected outcome may be further split into
more than one clusters according to the clustering generated
on the basis of the bridge-aware data representation.

5 BRIDGE POINT IDENTIFICATION BASED ON OUT-
LIER DETECTION

To identify bridge points we propose to exploit unsuper-
vised outlier detection methods. Outliers are instances of
data that deviates significantly from the normal objects [1].
According to the type of considered outlier, normal objects
may include either the rest of the data set (in this scenario
significant deviations are commonly denoted by global out-
liers) or a selected context (data inconsistencies are here
denoted by contextual outliers).

Our main goal is to find inconsistencies in data points
with respect to their local region. We address this task using
either global or contextual outlier detection methods (as
long as the concept of context is properly defined). Hence,
hereafter we will disregard the case of collective outliers, in
which a group of data objects deviates significantly from the
normal case even if individual objects may not be outliers.

Bridge points belonging to clusters’ “frontiers” are likely
to be deemed as deviations from the normal objects within
the local area. Hence, we explore the relation between bridge
points and outliers, empirically showing that the outliers
detected by the most established methods (e.g., [31], [32],
[33], [34], [35]) are actually a superset of the bridge point
set. Then, in Section 6 we will present a cluster labeling
procedure that will be applied on top of the outlier detection
step to define the output clusters.

In Figure 4 we plot the scatter plot showing the dis-
tribution of the analyzed benchmark datasets by varying
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Fig. 4: Dataset distribution. Clustering performance vs. re-
call of the bridge point identification step based on outlier
detection. Performance metric: Adjusted Rand Score. Outlier
detection method: LOF [37].

the recall of the bridge point identification step, i.e., the
percentage of bridge points that have been identified by
the outlier detection step, and the clustering performance
achieved by our method (measured by the adjusted rand
score index [36]). More details about the clustering algo-
rithm, the analyzed dataset and the used evaluated metrics
will be reported in Sections 6 and 7, respectively.

The takeaways from this experiments can be summa-
rized as follows: (i) On ∼70% of the analyzed datasets
the outlier detection step was able to recognize over 75%
of the bridge points, and (ii) on average, the higher the
recall the outlier detection achieves, the better the clustering
performance.

Result (i) supports the use of outlier detection methods
to perform candidate bridge point identification. Result (ii)
strengthens the hypothesis, previously discussed in Sec-
tion 4, that bridge point identification is particularly relevant
to achieve high-quality clustering performance.

5.1 Relation between detected outliers and noise data
Outliers are different from noise data. Outliers’ deviation
from normal data is commonly due to a different data
generation mechanism, whereas noise is random error or
variance in a measured variable [1].

We empirically study the relation between detected out-
liers and noise points on a subset of synthetic datasets in
which labeled noise points are injected2. The outliers auto-
matically detected by the unsupervised approach averagely
cover 83% of the noise points. More detailed results can be
found in Appendix B. Since the presence of noise points in
the cluster frontiers may bias the process of bridge point
identification, as future work we plan to filter out noise
using ad hoc strategies prior to/during the outlier detection
step (see Section 8).

6 THE BRIDGE-AWARE CLUSTERING PIPELINE

This section presents a new density-based clustering
pipeline, namely Bridge-Aware Clustering (BAC), which is

2. cluto-t4-8k, cluto-t2-4k, cluto-t5-8k, cluto-t8-8k, cluto-t4-10k [11]

focused on the identification of cluster frontiers consisting
of bridge points.

BAC, whose pipeline is depicted in Figure 5, consists of
three main steps:

1) Candidate bridge point identification (see Section 6.1).
2) Bridge-aware k-nearest neighborhood graph creation (see

Section 6.2).
3) Cluster detection and labeling (see Section 6.3).

Step (1) leverages the outcomes of an outlier detection
step to identify candidate bridge points. Step (2) creates the
bridge-aware k-nearest neighborhood graph Gba, according
to Definition 4. It relies on the assumptions, previously
discussed in Section 5, that the outliers detected at Step (1)
include, in the majority of the datasets, the actual bridge
points. Finally, Step (3) clusters data points by assigning a
different cluster label to each connected component in Gba.

6.1 Candidate bridge point identification
This section addresses the identification of the bridge points,
which represent the clusters’ frontiers (e.g., the red triangles
in Figure 5). As discussed in Section 5, the aforesaid task is
conveniently accomplished by means of outlier detection.
Outliers have shown to be, to a good approximation, a
superset of the bridge point set including also border and
noise points. For the sake of clarity, hereafter we will denote
the outcome of the outlier detection step as the candidate
bridge points.

In principle, any unsupervised outlier detection method
can be integrated in BAC. Clearly, the choice is influenced
by the underlying data characteristics, in terms of, for
instance, dimensionality, complexity, and domains. These
features could make a specific outlier detection method
more appropriate than others. At this stage, the availability
of domain-specific knowledge is a clear advantage.

In Section 7 we explore the effect of using different
algorithms and parameter settings. Based on the results
achieved on a large set of benchmark datasets, Local Outlier
Factor (LOF) [37] turned out to be the recommended strat-
egy to identify candidate bridge points (unless otherwise
specified). LOF compares the local density of a point with
those of its neighbors and labels as outlier those points that
have a substantially lower density than their neighbors.

Figures 3c and 3e show the outliers (depicted as red
triangles) identified by LOF on a representative dataset
by setting two different k values. From the comparison
between the detected outliers and the actual bridge points
(depicted in Figures 3b and 3d) it turned out that LOF was
actually able to detect a superset of the bridge points mixed
with some border points.

6.2 Bridge-aware k-nearest neighborhood graph cre-
ation
Given the input dataset D and the set of candidate bridge
points returned by the previous step, we first create the k-
nearest neighborhood graph G and then the bridge-aware
k-nearest neighborhood graph Gba in compliance with Def-
initions 2 and 4. The creation of the k-nearest neighborhood
graph is a three-step process. (1) For each point we identify
its k-nearest neighbors. (2) We build a graph G where each
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Fig. 5: The Bridge-Aware Clustering pipeline

node corresponds to a data point and outgoing edges link
each point to its k-nearest neighbors. (3) In compliance with
Definition 4, G is pruned removing the edges connecting
bridge points with any other point, except for its nearest
point in D. Notice that Gba already embeds the information
about the cluster frontiers.

For example, the two clusters depicted in Figure 5 are
separated by two candidate bridge points (i.e., the red
triangles) detected at the previous step.

6.3 Cluster detection and labeling assignment
This step aims at producing the final clustering outcome.
It defines each cluster and then labels the corresponding
data point accordingly. The former step entails identifying
the connected components in the bridge-aware k-nearest
neighborhood graph Gba by means of a standard connected
component algorithm. Each connected component of the
graph represents a separate cluster thus in the next labeling
phase all nodes of the connected component are labeled
with the same cluster label.

Intuitively, since the input graph is already partitioned
according to the previously detected cluster frontiers, each
cluster label is propagated like a wildfire until an outlier,
acting as a candidate bridge point, is reached.

A corner case is the presence of connected components
consisting of candidate bridge points only. During the clus-
ter detection phase these connected components are not
considered as separate clusters but rather as “frontiers” of

other clusters. As a consequence, in the labeling phase we
manage the exception by labeling these candidate bridge
points as the nearest labeled point in their neighborhood.

6.4 Time complexity
We separately analyze the time complexity of each step of
the BAC pipeline.

• Outlier detection. The complexity of LOF is O(n2),
where n is the number of data points [37]. Alternative
outlier detection strategies have similar complexity.
More details can be found here [38].

• k-nearest neighborhood graph creation. To discover
the nearest neighbor of a data point, we exploited
the scikit-learn [39] implementation of the k-NN
algorithm based on the ball tree data structure [40].
To search k nearest neighbors for each of the n data
points, the compexity is O(kn · log(n)).

• Connected component finder. Finding connected
components in an undirected graph with n nodes
entails visiting the graph using either breadth- or
depth-first search. According to [41], the complexity
is O(E), where E is the number of graph edges.
On a fully connected graph we obtain O

(
n(n−1)

2

)
,

whereas for BAC the number of edges is known a
priori, leading to a complexity of O(k ·N).

Overall, the time complexity of BAC is O(n2). Notice
that it is roughly comparable to those of many popular
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density-based and density-peak algorithms. For instance,
the time complexity of HDBSCAN is O(n2), the one of
DBSCAN is O(n2) without any ad hoc data structures and
decreases to O(n · log(n)) if an indexing structure is used to
execute each neighborhood query in O(log(n)). The time
complexity of DADC is O(2n + C2

m), where Cm is the
number of points after the initial pruning step.3 Finally,
Border Peeling is O(T · (k · n + n · log(n)), where T is
the number of iterations and k is the number of considered
neighbors.

7 EXPERIMENTAL RESULTS

This section summarizes the experimental results achieved
on 45 datasets with different characteristics. Specifically,
Section 7.1 describes the experimental design and the an-
alyzed datasets, Sections 7.2 and 7.3 respectively report the
outcomes of the quantitative and qualitative performance
comparisons as well as the results of the statistical tests used
to justify our statements, whereas Section 7.4 discusses the
effect of the main algorithm parameters.

7.1 Experimental design

Environment. All the experiments were run on a Dell XPS
13 laptop with an Intel Core i7-7560U, 16GB of RAM and
512GB of SSD storage. The operating system was Ubuntu
18.04.4.

Project code and used libraries. The project code was
developed and tested in Python 3.6.10. It uses the function-
alities and algorithms provided by the scikit-learn 0.22.1 [39]
library for data management and preparation and k-nearest
neighbor definition, and by the PyOD 1.0.6 [42] library for
outlier detection. The source code of this project is avail-
able for research purposes at https://github.com/lccol/
bridge-clustering.

Datasets. The experiments were run on 35 synthetic
benchmark datasets and 10 real-world datasets. The datasets
were downloaded from the public GitHub repository [11].
A summary of the main dataset characteristics is reported
in Table 1. The characteristics of the selected datasets are
diversified in clusters’ shape, presence of high-density and
sparse regions, number of clusters, noise level, and number
of features.

Competitors. We compared our approach with (i) three
different traditional density-based algorithms, i.e., DB-
SCAN [2], HDBSCAN [4], and OPTICS [3], (ii) three density
peak detection methods, i.e., DADC [9], DenMune [10],
and MDPC [21], (iii) the recently proposed Border Peeling
clustering algorithm [6] and AUTOCLUST [8]. For both [9]
and [6] we relied on the official implementations released by
the respective papers’ authors. For DBSCAN and OPTICS
we used the implementations available in the scikit-learn
library [39]. For HDBSCAN, we used the HDBSCAN python
package available at https://pypi.org/project/hdbscan/
(latest access: July 2022), whereas for AUTOCLUST we re-
implemented the algorithm in Python to the best of our
knowledge. Since the MDPC results are not fully repro-
ducible, we rely on the numerical values reported on the

3. The order of magnitude of Cm is the same as n.

TABLE 1: Datasets summary information

Dataset #points #features #clusters

Synthetic

2d-20c-no0 1517 2 20
2d-3c-no123 715 2 3
2d-4c-no4 863 2 4
2d-4c-no9 876 2 4
aggregation 788 2 7
banana 4811 2 2
cluto-t8-8k 8000 2 9
complex8 2551 2 8
complex9 3031 2 9
cure-t0-2000n-2D 2000 2 3
cure-t1-2000n-2D 2000 2 6
cure-t2-4k 4200 2 7
dense-disk-3000 3000 2 2
diamond9 3000 2 9
disk-1000n 1000 2 2
disk-4000n 4000 2 2
disk-5000n 5000 2 2
elliptical 10 2 500 2 10
fourty 1000 2 40
golfball 4002 3 1
long1 1000 2 2
long2 1000 2 2
longsquare 900 2 6
pmf 649 3 5
smile2 1000 2 4
smile3 1000 2 4
spiralsquare 1500 2 6
triangle1 1000 2 4
triangle2 1000 2 4
twodiamonds 800 2 2
wingnut 1016 2 2
xclara 3000 2 3
zelnik1 299 2 3
zelnik5 512 2 4
zelnik6 238 2 3

Real-world

arrhythmia 452 262 13
balance-scale 625 4 3
cpu 209 6 116
heart-statlog 270 13 2
iono 351 34 2
segment 2310 19 7
thy 215 5 3
vehicle 846 18 4
wdbc 569 31 2
zoo 101 16 7

papers and reported a separate comparison with BAC in
Appendix C.

Configuration settings. Separately for each algorithm
we performed a grid search to find the configuration setting
that averagely performed best on the analyzed datasets.
Beyond varying the input parameter values, for non-
deterministic settings we shuffled the dataset a predefined
number of times to avoid introducing sampling bias.

For the Bridge-Aware Clustering algorithm we set the
contamination factor of the outlier detection method to 0.2
(20% of expected noise level), the number of neighbor points
to 15 and the k value for the labeling phase to 10.

The configuration settings chosen for the competitors via
grid search are enumerated below.

• DBSCAN: min points = 5. Separately for each dataset
we empirically set the value of ε using the k-distance
plot and the elbow principle [16].
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• HDBSCAN: min-cluster-size = 15, min-points = 5.
• OPTICS: min-points = 7%.
• BorderPeeling: k=20.
• DADC: k=5%, CFD thr=0.6.
• DenMune: k=20.

Evaluation metric. We compared algorithm performance
in terms of the Adjusted Rand Index (ARI) [36], which is a
commonly used cluster evaluation measure.

7.2 Performance comparison
We quantitatively compare the performance of BAC with
that of the existing algorithms. Table 2 reports the per-
dataset and mean results for all the tested algorithms.4

BAC performed best on 25 datasets out of 45 (on 8
of them on par with other algorithms). The comparisons
between the respective mean and median values confirmed
the effectiveness of the proposed approach (e.g., mean ARI
values: BAC 0.738 vs. HDBSCAN 0.645).5

Focusing the comparison on the subset of datasets char-
acterized by either multi-density regions or noisy borders
(i.e., complex9, 2d-4c-no4, 2d-20c-no0, longsquare), the per-
formance gap is significant (mean ARI values: BAC 0.993,
BP 0.7815, HDBSCAN 0.8348).

To verify the statistical significance of the performance
gaps between BAC and the other algorithms, we applied the
Friedman and Nemenyi statistical tests [44].6 Specifically,
we first computed the achieved rank of each algorithm per
dataset. In case of ties, the average rank is reported. Then,
we computed the p-value. For all the performed compar-
isons, the p-value is below 0.0001 thus the null hypothesis
is rejected at 95% significance level. The mean rankings of
each algorithm are summarized in Table 3.

We then compared the mean ranking Ri achieved by
BAC with those of each of the other clustering methods.
To evaluate the significance of the differences between the
clustering algorithms’ performance, we used the Nemenyi
test. The idea behind it is to verify whether the pairwise rank
differences between BAC and the considered competitor are
above the critical difference (CD). According to [44], the
critical difference was computed as follows.

CD = qα

√
k(k + 1)

6N

Since the average ranking differences between BAC and
the competitors are all greater than the critical difference
(CD = 1.124), then we can conclude that BAC performed
statistically better than all the tested competitors.

7.3 Qualitative clustering comparison
We report here some examples of clustering results achieved
on datasets characterized by different data distributions and
clusters’ shapes.

4. The missing values for DADC and AUTOCLUST, denoted by
N/A, are due to unsuccessful runs of the codes.

5. For the sake of completeness, we also reported the mean results
over the 36 datasets on which all competitors’ runs succeeded.

6. We omitted DADC and AUTOCLUST from the test because the
algorithms did not succeed in clustering all the tested datasets. How-
ever, the difference between BAC, DADC and AUTOCLUST, in terms
of average ARI, is notable (0.865 vs. 0.145 vs. 0.601).

Figure 1 shows the results achieved on the complex9
dataset by different clustering methods. As discussed in
Section 2, complex9 is representative of a data space includ-
ing clusters with various shapes and intra-cluster multiple
densities. State-of-the-art approaches encountered issues in
handling such a peculiar distribution, whereas BAC, thanks
to a correct identification of a superset of the bridge points,
properly separates all the clusters in the ground truth.

Figure 6 reports the results obtained on a representative
dataset consisting of clusters of multiple densities (dataset
2d-4c-no4). Thanks to correct bridge identification, the pro-
posed BAC algorithm (see Figure 6b) correctly defines
the points according to the ground truth (see Figure 6a).
Conversely, the other methods (see Figures 6c-6i) partly
misclassified the points belonging to the sparsest clusters.

Figure 7 compares the results achieved on a dataset
consisting of several small clusters, many of them char-
acterized by noisy borders. BAC turned out to effectively
cope with such a challenging data distribution (ARI = 0.994)
whereas the other approaches tend to misclassify noisy
points around the clusters’ borders.

Figure 8 compares the results obtained on a dataset
where two pairs of clusters are linked by few points in a row,
which BAC correctly labeled as bridges (as the points’ type
evokes). BP achieved high-quality results as well, whereas
all the other density-based approaches, mainly relying on
core point/density peak identification (rather than on bor-
der or bridge points), failed to separate at least one of the
connected cluster pairs.

7.4 Effects of parameter setting
The setup of the BAC pipeline entails configuring both
the anomaly detection algorithm and the cluster labeling
phase. Hence, with the twofold aim at verifying the practical
usability of the proposed approach and recommending to
end-users the most appropriate settings, we empirically
analyzed the sensitivity of BAC performance to its input
parameter values.

We reported here the results achieved by three represen-
tative unsupervised outlier detection methods: (i) Contex-
tual: Local Outlier Factor (LOF) [37], K-Nearest neighbors
(KNN) [45], [46]. (ii) Global: Histogram-based Outlier Score
(HBOS) [31]. Due to the lack of space, a more extensive
comparison among outlier detection algorithms is given in
Appendix A. All of the aforesaid methods require to set
the contamination factor value, which indicates the expected
percentage of outliers in the analyzed dataset. The complete
set of tested algorithms parameters and values is given in
Table 4.

Figures 9a, 9b and 9c show the ARI value of the cluster-
ing outcomes, averaged over all the tested datasets, sepa-
rately for each of the tested outlier detection algorithms by
varying the k value for the cluster labeling step between 3
and 15. For the outlier detection methods we considered the
following settings: contamination = 0.2, n. neighbors = 10
(kNN). n. neighbors = 15 (LOF). n. bins = 15 (HBOS).

Setting lower k values likely produces higher cluster
fragmentation, whereas higher k values tend to underes-
timate the actual number of clusters. The best k values are
in range [7,14] and depend on the chosen algorithm. We
recommend to set k to 10, whenever not otherwise specified.
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TABLE 2: Performance comparison between different clustering algorithms in terms of Adjusted Rand Score. Separately
for each dataset, the ARI score of the best performing methods are written in boldface.

BAC (our) DBSCAN [2] HDBSCAN [4] BP [43] DenMune [10] AUTOCLUST [8] OPTICS [3] DADC [9]

Synthetic dataset

2d-20c-no0 0.994 0.958 0.973 0.956 0.976 0.834 0.162 0.260
2d-3c-no123 0.979 0.772 0.783 0.977 0.984 0.795 0.787 0.158
2d-4c-no4 0.996 0.375 0.743 0.909 0.984 0.852 0.836 0.582
2d-4c-no9 0.966 0.785 0.909 0.802 0.971 0.787 0.947 0.539
aggregation 0.991 0.806 0.809 0.993 0.990 0.733 0.832 0.194
banana 0.876 0.955 1.000 0.061 0.726 0.714 0.597 N/A
cluto-t8-8k 0.945 0.636 0.636 0.140 0.868 0.883 0.000 0.266
complex8 0.914 0.984 0.372 0.339 0.703 0.816 0.216 0.178
complex9 0.995 0.881 0.681 0.343 0.984 0.820 0.251 0.194
cure-t0-2000n-2D 1.000 0.953 1.000 0.105 1.000 0.814 1.000 0.000
cure-t1-2000n-2D 0.958 0.978 0.885 0.234 0.993 0.909 0.990 0.000
cure-t2-4k 0.955 0.812 0.855 0.163 0.981 0.886 0.280 0.000
dense-disk-3000 0.843 0.801 0.825 0.045 0.011 0.682 0.000 -0.017
diamond9 0.886 0.707 0.837 0.513 0.996 0.495 0.040 0.368
disk-1000n 0.000 -0.001 0.033 0.071 0.000 -0.093 0.000 0.062
disk-4000n 1.000 0.900 0.933 0.045 0.000 0.415 0.000 0.032
disk-5000n 0.047 0.02 -0.003 0.021 -0.046 0.051 0.000 0.053
elliptical 10 2 0.669 0.667 0.669 0.929 0.797 0.526 0.801 0.000
fourty 1.000 0.992 0.998 0.000 0.998 0.728 0.000 0.000
golfball 1.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000
long1 1.000 0.912 0.984 0.234 0.781 0.659 0.810 0.000
long2 1.000 0.962 0.986 0.187 0.867 0.718 0.809 0.000
longsquare 0.987 0.797 0.942 0.918 0.910 0.829 0.286 0.564
pmf 0.964 0.952 0.964 0.944 0.617 0.860 0.964 0.000
smile2 1.000 0.998 1.000 0.550 0.875 0.700 0.866 0.002
smile3 1.000 0.907 1.000 0.933 0.695 0.311 0.888 0.048
spiralsquare 0.998 0.972 0.986 0.960 0.570 -0.017 0.510 0.000
triangle1 1.000 0.952 1.000 0.870 0.964 0.892 0.991 0.423
triangle2 0.974 0.515 0.939 0.659 0.952 0.794 0.966 0.396
twodiamonds 1.000 0.000 0.963 0.365 1.000 -0.000 0.941 0.073
wingnut 1.000 1.000 0.621 0.190 1.000 0.590 0.000 0.232
xclara 0.982 0.937 0.977 0.520 0.979 0.783 0.971 0.313
zelnik1 1.000 0.977 1.000 0.867 1.000 0.526 0.382 0.022
zelnik5 1.000 0.918 1.000 0.925 0.913 0.729 0.976 0.262
zelnik6 0.857 1.000 0.722 0.813 1.000 0.779 0.522 0.000

Real dataset

arrhythmia 0.000 0.063 0.000 0.119 0.000 N/A 0.000 0.078
balance-scale 0.000 0.000 0.017 0.000 0.035 -0.003 0.000 0.010
cpu 0.015 0.015 0.015 0.014 0.007 0.003 0.007 N/A
heart-statlog 0.000 -0.002 0.000 0.001 0.012 N/A 0.000 0.015
iono 0.000 0.673 0.423 0.344 -0.042 N/A -0.046 N/A
segment 0.405 0.105 0.260 0.379 0.259 N/A 0.000 N/A
thy 0.249 0.421 -0.158 0.313 0.03 0.568 0.547 0.008
vehicle 0.002 0.002 0.002 0.154 0.120 N/A 0.000 0.006
wdbc 0.012 0.009 0.01 0.015 0.012 N/A 0.006 -0.001
zoo 0.764 0.503 0.458 0.396 0.380 N/A 0.464 N/A

Mean (36 datasets) 0.865 0.757 0.747 0.495 0.733 0.601 0.544 0.145
Median (36 datasets) 0.989 0.903 0.897 0.439 0.932 0.729 0.667 0.051

Mean (All) 0.738 0.657 0.645 0.429 0.619 N/A 0.458 N/A
Median (All) 0.966 0.806 0.825 0.343 0.867 N/A 0.464 N/A

TABLE 3: Nemenyi test. Algorithms average rankings. Crit-
ical difference CD = 1.124

BAC HDBSCAN DM DBSCAN BP OPTICS
Mean
Rank 2.07 3.22 3.31 3.84 4.07 4.49

The heatmaps in Figures 9d, 9e and 9f show the ARI
values, averaged over all the tested datasets, by setting
a fixed k value and by varying the values of the main
parameters of the outlier detection methods. LOF turned out
to be the best performing method (e.g., average ARI=0.74
with contamination=0.2, n. neighbors=15 and k=10).

7.5 Scalability

We tested the BAC scalability by varying the number of
input data points and descriptive features, respectively.
The experiments were run on the synthetic blob datasets
generated by means of the scikit-learn library [39].

We varied the dimensionality between 2 and 1,000 and
the number of data points between 100 and 150,000.7

Figures 10 and 11 show the variation of the BAC’s
execution time. As expected, BAC scales approximately

7. Default setting: k = 10 (LOF), n = 20, 000, d = 2. Number of
independent runs: 5
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(a) Ground Truth (b) BAC (c) DBSCAN

(d) HDBSCAN (e) OPTICS (f) BP

(g) AUTOCLUST (h) DADC (i) DenMune

Fig. 6: Qualitative comparison of clustering outcomes. Multi-density dataset (2d-4c-no4).

TABLE 4: Parameters’ values used for the grid search.

Technique Parameter Values

All contamination factor

0.01, 0.02, 0.03, 0.04,
0.05, 0.06, 0.07, 0.08,

0.09, 0.1, 0.2, 0.3,
0.4, 0.5

LOF
KNN num. of neighbors 3, 5, 7, 10, 12, 15, 20

HBOS num. of bins
5, 10, 15, 20,

25, 30, 35,
40, 45, 50

BAC k 3, 4, 5, 7, 10, 12, 15

quadratically with the number of points and linearly with
the number of input features (see Section 6.4).

8 CONCLUSIONS AND FUTURE WORK

We presented a novel density-based clustering pipeline
relying on the concept of bridge point. Bridge points are a
newly proposed category of data points characterizing the
frontier between separate clusters.

Takeaways.

• Outlier detection methods have a high recall in iden-
tifying the candidate bridge points (see Figure 4). In
other words, they recognize most of the actual bridge
points despite their number is often overestimated.
Wrongly labeling a generic point as a bridge point
potentially yields a split of some actual clusters.
However, this happens only when the two sub-
regions of a cluster have some points in between and

all these points are erroneously labeled as candidate
bridge points. If at least one of the in-between points
is not labeled as a candidate bridge point, the two
sub-regions of the cluster remain connected thus the
outcome is not biased.

• The ARI scores of the BAC’s clusters are signifi-
cantly better than those achieved by state-of-the-art
approaches (see Tables 2 and 3).

• Thanks to the propagation mechanism of the cluster
labels BAC has shown to be robust to the presence
of noisy borders and multi-density regions (see Fig-
ures 6 and 7).

Future directions.

• Firstly, we will address the problem of clustering
high-dimensional data. Density-based algorithms are
likely to suffer from the curse of dimensionality. To
tackle the above issue, we plan to extend BAC by
leveraging ad hoc embedding techniques, e.g., [47].
Furthermore, we also plan to design BAC versions
suited to Big Data.

• Secondly, we plan to face the presence of noisy
data by integrating ad hoc pruning strategies prior
to/during the outlier detection step.

• Thirdly, we aim at adapting the proposed approach
to a semi-supervised context, where both outlier de-
tection and cluster labeling steps could benefit from
partly annotated data.

• Fourthly, we plan to improve our algorithm by ex-
ploiting spectral graph theory (e.g., [47], [48]).
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(a) Ground Truth (b) BAC (c) DBSCAN

(d) HDBSCAN (e) OPTICS (f) BP

(g) AUTOCLUST (h) DADC (i) DenMune

Fig. 7: Qualitative comparison of clustering outcomes. Dataset consisting of small clusters with noisy borders (2d-20c-no0).
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