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Abstract

We extend the results of antecedent literature on quadratic Metric-Affine Gravity by studying

a new quadratic gravity action in vacuum which, besides the usual (non-Riemannian) Einstein-

Hilbert contribution, involves all the parity even quadratic terms in torsion and non-metricity

plus a Lagrangian that is quadratic in the field-strengths of the torsion and non-metricity vector

traces. The theory result to be equivalent, on-shell, to a Vector-Tensor theory. We also discuss

the sub-cases in which the contribution to the Lagrangian quadratic in the field-strengths of the

torsion and non-metricity vectors just exhibits one of the aforementioned quadratic terms. We

then report on implications of our findings in the context of F (R,T,Q,T ,D) gravity.
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1 Introduction

The emergence of non-Euclidean geometry led to extraordinary progresses in Mathematics and

Physics. In particular, the development of Riemannian geometry allowed the rigorous mathe-

matical formulation of general relativity (GR), Einstein’s well-celebrated theory of gravity. Nev-

ertheless, the latter is not devoid of limitations and open questions. In these regards, diverse

alternative/modified theories of gravity have been proposed. A propitious setup in the spirit of

gravity geometrization is that of non-Riemannian geometry [1,2], where the Riemannian assump-

tions of metric compatibility and torsionlessness of the connection are released. The inclusion of

torsion and non-metricity in gravity models has provided useful applications in various mathe-

matical and physical contexts, ranging from a clearer understanding of the geometrical features

of manifolds involving torsion and non-metricity to cosmological aspects of alternative/modified

theories of gravity, among which, e.g., the results presented in [3–27]. The literature on the subject

is huge, and here we report just some recent developments. Moreover, non-Riemannian geometry

constitues the geometric setup underlying Metric-Affine Gravity (MAG) [28–37], a particularly

promising and rather general framework in which the metric and the general affine connection are

considered, a priori, as independent fields and the matter Lagrangian depends on the connection

as well, which leads to introduce the so-called hypermomentum tensor [38–40]. The extensive
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study of MAG has started a few decades ago and it is now known that many alternative theories

of gravity can be obtained as special cases of MAG. Nevertheless, there are some open issues

regarding the very general MAG setup that still need and deserve to be addressed, whose under-

standing could provide remarkable insights in the context of alternative theories of gravity, where

torsion and non-metricity may also play a key role in explaining cosmological and astrophysical

aspects of our Universe, such as the origin of dark matter and dark energy.

With this in mind, in the present work we extend some results of antecedent literature [41–50]

by studying a general quadratic MAG action in vacuum (namely in the absence of matter) in n

spacetime dimensions. More precisely, in [45,46] the authors examined a quadratic theory involving

also a piece quadratic in the so-called homothetic curvature tensor, while in [47] only contributions

quadratic in the torsion tensor were considered. The theory we consider here involves, besides

the usual (non-Riemannian) Einstein-Hilbert contribution, all the parity even quadratic terms in

torsion and non-metricity plus a Lagrangian quadratic in the field-strengths of the torsion and non-

metricity vectors. The gravitational action represents a generalization of the one studied in [45,46]

and an extension of the quadratic model analyzed in [50] by including quadratic contributions

in all the aforementioned field-strengths. The paper is organized as follows: In Section 2 we

review the geometric framework, adopting the same notation and conventions of [31]. In Section

3 we write the action of the model and derive its field equations. Consequently, we consider

the sub-cases in which the contribution to the Lagrangian quadratic in the field-strengths of the

torsion and non-metricity vectors just exhibits one of the aforementioned quadratic terms. By

analyzing the full quadratic theory we show that the latter propagates three additional degrees of

freedom in comparison to GR. In particular we show that the quadratic theory (with the kinetic

terms included) is on-shell equaivallent to GR with three interacting Proca fields propagating in

spacetime. The masses of these Proca fields and the strengths of their interactions depend on

the parameters of the theory. Continuing, in Section 5 we provide implications of the formulation

to the case of (linear) F (R,T,Q,T ,D) gravity, also known in the literature as Metric-Affine

Myrzakulov Gravity VIII (MAMG-VIII), in vacuum, see, e.g., [22] and the recent review [23].

Section 6 is devoted to some final remarks and possible future developments. In Appendix A we

collect some useful formulas and results of intermediate calculations.

2 Torsion and non-metricity decomposition

We consider n spacetime dimensions. Our metric convention is mostly plus. A general affine

connection can be decomposed as (µ, ν, . . . = 0, 1, . . . , n)

Γλ
µν = Γ̃λ

µν +Nλ
µν , (2.1)

where

Nλ
µν =

1

2
gρλ (Qµνρ +Qνρµ −Qρµν)

︸ ︷︷ ︸

deflection (or disformation)

− gρλ (Sρµν + Sρνµ − Sµνρ)
︸ ︷︷ ︸

contorsion :=Kλ
µν

(2.2)
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is the distortion tensor and

Γ̃λ
µν =

1

2
gρλ (∂µgνρ + ∂νgρµ − ∂ρgµν) (2.3)

is the Levi-Civita connection. The torsion and non-metricity tensors in (2.2) are respectively

defined as follows:

Sµν
ρ := Γρ

[µν] ,

Qλµν := −∇λgµν = −∂λgµν + Γρ
µλgρν + Γρ

νλgµρ ,
(2.4)

where ∇ denotes the covariant derivative associated with the general affine connection Γ. Here, let

us recall the trace decomposition of torsion and non-metricity, since it will be particularly useful

in the following. In n dimensions it reads

Sλµ
ν =

2

1− n
δ[λ

νSµ] + Tλµ
ν ,

Qαµν =
[(n+ 1)Qα − 2qα]

(n+ 2)(n − 1)
gµν +

2
[
nq(µgν)α −Q(µgν)α

]

(n+ 2)(n − 1)
+ Ωλµν ,

(2.5)

where Qλ := Qλµ
µ and qν := Qµ

µν are the non-metricity vectors and Sλ := Sλσ
σ is the torsion

vector, while Tλµ
ν and Ωλµν are the traceless parts of torsion and non-metricity, respectively. We

adopt the following definition of the Riemann tensor for a general affine connection Γλ
µν :

Rµ
ναβ := 2∂[αΓ

µ
|ν|β] + 2Γµ

ρ[αΓ
ρ
|ν|β] . (2.6)

Correspondingly, Rµν = Rρ
µρν and R = gµνRµν are, respectively, the Ricci tensor and the scalar

curvature of Γ. Let us also mention that in the following we will need the variation of the

torsion and non-metricity with respect to the metric tensor and the general affine connection

Γλ
µν , namely [31]

δgQραβ = ∂ρ (gµαgνβδg
µν)− 2gλµgν(αΓ

λ
β)ρδg

µν ,

δgSµν
α = 0 ,

δΓQραβ = 2δνρδ
µ
(αgβ)λδΓ

λ
µν ,

δΓSαβ
λ = δ[µα δ

ν]
β δΓλ

µν .

(2.7)

Then, from (2.7), one can derive the variation of the torsion and non-metricity vectors with respect

to the metric and the general affine connection (see [31]).

3 The quadratic theory

We shall start by considering the following action in n dimensions:

S[g,Γ] =
1

2κ

∫

dnx
√
−g

[

R+ b1SαµνS
αµν + b2SαµνS

µνα + b3SµS
µ

+ a1QαµνQ
αµν + a2QαµνQ

µνα + a3QµQ
µ + a4qµq

µ + a5Qµq
µ

+ c1QαµνS
αµν + c2QµS

µ + c3qµS
µ + LFS

]

=
1

2κ

∫

dnx
√
−g

[

R+ L2 + LFS

]

,

(3.1)
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where R is the scalar curvature of the general affine connection Γλ
µν , L2 contains all the torsion

and non-metricity scalar terms and

LFS = k1R̂µνR̂
µν + k2qµνq

µν + k3SµνS
µν (3.2)

is the Lagrangian contribution given in terms of the field-strengths

R̂µν := ∂[µQν] , qµν := ∂[µqν] , Sµν := ∂[µSν] . (3.3)

Here, R̂µν the homothetic curvature tensor, while qµν and Sµν are the field-strengths of qµ and

Sµ, respectively.

Some comments are in order regarding L2. In fact, notice that, restricting to L2, for the

parameter choice b1 = 1, b2 = −2, b3 = −4, ai = cj = 0 (i = 1, 2, . . . , 5, j = 1, 2, 3) and

imposing vanishing curvature and zero non-metricity, one recovers the teleparallel equivalent of

GR. In addition, demanding vanishing curvature and zero torsion and taking a1 = −a3 = 1
4 ,

a2 = −a5 = −1
2 , a4 = 0, bj = cj = 0, L2 reduces to the symmetric teleparallel equivalent of GR.

Furthermore, if we pick b1 = 1, b2 = −1, b3 = −4, a1 = −a3 = 1
4 , a2 = −a5 = −1

2 , a4 = 0,

c1 = −c2 = c3 = 2 and impose only vanishing curvature, L2 boils down to a generalized equivalent

to GR that admits both torsion and non-metricity. For the sake of generality, however, here we

will not make any assumptions about the parameters of the theory and will consider the complete

action (3.1). We now move on to the study of the field equations of the theory by varying (3.1)

with respect to the general affine connection Γλ
µν and the metric tensor, independently.

The connection field equations of (3.1) read

Pλ
µν +Ψλ

µν +Bλ
µν = 0 , (3.4)

being Pλ
µν the Palatini tensor, which can be written in terms of torsion and non-metricity [31],

and where we have defined

Ψλ
µν := Hµν

λ + δ
µ
λk

ν + δνλh
µ + gµνhλ + f [µδ

ν]
λ , (3.5)

with

Hµν
λ := 4a1Q

νµ
λ + 2a2(Q

µν
λ +Qλ

µν) + 2b1S
µν

λ + 2b2Sλ
[µν] + c1(S

νµ
λ − Sλ

νµ +Q[µν]
λ) , (3.6)

kµ = 4a3Qµ + 2a5qµ + 2c2Sµ ,

hµ = a5Qµ + 2a4qµ + c3Sµ ,

fµ = c2Qµ + c3qµ + 2b3Sµ ,

(3.7)

together with

Bλ
µν :=

1√−g

δ (
√−gLFS)

δΓλ
µν

= −2
[

2k1δ
µ
λ(DαR̂

αν) + k2(g
µνgβλ + δ

µ
βδ

ν
λ)(Dαq

αβ) + k3(DαS
α[µδ

ν]
λ )

]

,

(3.8)
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where we have also introduced the operator

Dα(. . .) :=
1√−g

∂α(
√
−g(. . .)) . (3.9)

Then, let us compute the different traces of (3.4). For the Ψλ
µν sector we get

Ψν
(1) := Ψµ

µν =
[

4a1 −
c1

2
+ 4na3 + 2a5 +

(1− n)

2
c2

]

Qν

+
[

4a2 +
c1

2
+ 2na5 + 4a4 +

(1− n)

2
c3

]

qν

+
[

− 2b1 + b2 + 2c1 + 2nc2 + 2c3 + (1− n)b3

]

Sν ,

(3.10)

Ψµ

(2) := Ψν
µν =

[

2a2 +
c1

2
+ 4a3 + (n+ 1)a5 +

(n− 1)

2
c2

]

Qν

+
[

4a1 + 2a2 −
c1

2
+ 2a5 + 2(n+ 1)a4 +

(n− 1)

2
c3

]

qν

+
[

2b1 − b2 − c1 + 2c2 + (n+ 1)c3 + (n− 1)b3

]

Sν ,

(3.11)

Ψλ
(3) := gλρΨρ

µνgµν =
[

2a2 + 4a3 + (n+ 1)a5

]

Qλ + 2
[

2a1 + a2 + (n+ 1)a4 + a5

]

qλ

+
[

2c2 − c1 + (n+ 1)c3

]

Sλ .
(3.12)

Analogously, for Bλ
µν we find

Bν
(1) = −2Dα

(

2k1nR̂
αν + 2k2q

αν +
(1− n)

2
k3S

αν
)

, (3.13)

B
µ
(2) = −2Dα

(

2k1R̂
αµ + (n+ 1)k2q

αµ +
(n− 1)

2
k3S

αµ
)

, (3.14)

Bλ
(3) = −2Dα

(

2k1R̂
αλ + (n+ 1)k2q

αλ
)

. (3.15)

Concerning the trace contributions from the Palatini tensor we have (see, e.g., [31])

P ν
(1) = 0 , (3.16)

P
µ

(2) =
1

2
(1− n)Qµ + (n− 1)qµ + 2(2− n)Sµ , (3.17)

P λ
(3) =

1

2
(n− 3)Qλ + qλ + 2(n − 2)Sλ . (3.18)

Therefore, taking the traces of (3.4) and using all the above, we obtain the following set of

equations:

N1Q
ν +N2q

ν +N3S
ν = 2Dα

(

2k1nR̂
αν + 2k2q

αν +
(1− n)

2
k3S

αν
)

,

N4Q
µ +N5q

µ +N6S
µ = 2Dα

(

2k1R̂
αµ + (n+ 1)k2q

αµ +
(n− 1)

2
k3S

αµ
)

,

N7Q
λ +N8q

λ +N9S
λ = 2Dα

(

2k1R̂
αλ + (n+ 1)k2q

αλ
)

,

(3.19)
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where the explicit expressions of the coefficients N1, N2, . . . , N9 in terms of the parameters of

the theory are collected in Appendix A. We may now express the above system in matrix form

according to

A ~X = B~Y , (3.20)

where ~X = (Qµ, qµ, Sµ)T and ~Y = (DαR̂
αµ,Dαq

αµ,DαS
αµ)T and A and B are the coefficient

matrices of the system of equations. Assuming the general setting in which k1 6= 0, k2 6= 0,

k3 6= 0 (together with n 6= 1 and the obvious n 6= −2), the determinant of B is non-vanishing and

therefore the inverse B−1 exists. Then, by formally multiplying (3.20) with B−1 from the left, we

get
~Y = C ~X , (3.21)

with C = B−1A. More explicitly, this means that we are left with the following Proca-like

equations for the torsion and non-metricity vectors:

DαR̂
αµ = c11Q

µ + c12q
µ + c13S

µ ,

Dαq
αµ = c21Q

µ + c22q
µ + c23S

µ ,

DαS
αµ = c31Q

µ + c32q
µ + c33S

µ ,

(3.22)

where the c coefficients are given in terms of the parameters of the theory in Appendix A. Such

coefficients play the role of (squared) masses in the Proca-like equations (3.22). Consequently,

using (2.5) and plugging back this result into (3.4), the latter boils down to

(4a2−2)Ωλ
µν+(4a2+c1)Ω

µ ν
λ +(8a1−c1)Ω

ν µ
λ +2(b2−2)Tλ

µν+2(2b1−c1)T
µν

λ−2(b2+c1)Tλ
νµ = 0 ,

(3.23)

which relates the traceless parts of non-metricity and torsion. Taking the completely antisymmet-

ric part of (3.23) we get

(b1 + b2 − 1)T[λµν] = 0 ⇒ b1 + b2 − 1 = 0 ∨ T[λµν] = 0 , (3.24)

while considering the completely symmetric part of (3.23) we obtain

(4a1 + 4a2 − 1)Ω(λµν) = 0 ⇒ 4a1 + 4a2 − 1 = 0 ∨ Ω(λµν) = 0 . (3.25)

Notice, in particular, that (3.23) can be solved by requiring

Ωλµν = 0 , Tλµ
ν = 0 , (3.26)

without binding any parameters. On the other hand, it can also be solved by fixing the parameters

as follows:

a1 = −1

4
, a2 =

1

2
, b1 = −1 , b2 = 2 , c1 = −2 , (3.27)

without constraining Ωλµν and Tλµ
ν . However, the latter would just fix five out of the fourteen

parameters of the theory, namely those that do not explicitly involve the torsion a non-metricity

vectors in (3.1). But this would mean having some specific symmetry underlying the theory
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from the start, therefore we simply neglect this case. Moreover, the solution (3.26) appears more

appealing, as it reduces the number of degrees of freedom of the theory, eliminating the traceless

components of torsion and non-metricity, in such a way that we are just left with the Proca-like

equations (3.22) involving Qµ, qµ, and Sµ.

Let us now move on to the variation of (3.1) with respect to gµν . Before proceeding, we define,

on the same lines of [31], the following quantities (also referred to as “superpotentials”):

Ξαµν := a1Q
αµν + a2Q

µνα + a3g
µνQα + a4g

αµqν + a5g
αµQν ,

Σαµν := b1S
αµν + b2S

µνα + b3g
µνSα ,

Παµν := c1S
αµν + c2g

µνSα + c3g
αµSν ,

(3.28)

together with

LQ := QαµνΞ
αµν ,

LS := SαµνΣ
αµν ,

LQS := QαµνΠ
αµν .

(3.29)

By using this, we have

L2 = LQ + LS + LQS (3.30)

and, consequently, the action (3.1) can be rewritten as

S[g,Γ] =
1

2κ

∫

dnx
√
−g

[

R+ LQ + LS + LQS + LFS

]

. (3.31)

Then, the variation of (3.31) with respect to the metric reads

δgS[g,Γ] =
1

2κ

∫

dnx

[

δg
√
−g (R+ L2 + LFS)

+
√
−g (δgR+ δgLQ + δgLS + δgLQS + δgLFS)

]

,

(3.32)

that is

δgS[g,Γ] =
1

2κ

∫

dnx

[

√
−g

(

R(µν) −
1

2
gµνR

)

(δgµν)− 1

2

√
−ggµν (L2 + LFS) (δg

µν)

+
√
−g (δgLQ + δgLS + δgLQS + δgLFS)

]

.

(3.33)
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Hence, the metric field equations of the theory are

R(µν) −
1

2
gµν (R+ L2 + LFS) +

1√−g
∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν) + C(µν)

+ 2k2

{[
1

2
gγδ

(

∂τg
γδ
)

qτβ − ∂τ q
τβ

](

g(ν|β∂
αgµ)α + Γλ

(µν)gλβ − gρσΓα
ρσg(µ|αgν)β

)

+
1√−g

(
∂(µ∂τ

√
−g

)
qτ |ν) −

1

2
gγδ

(

∂τg
γδ
)

∂(µq
τ
|ν) −

1

2
gγδ

(

∂(µg
γδ
)

gν)β∂τq
τβ

+
(
∂(µgν)β

)
∂τq

τβ + g(ν|β∂µ)∂τq
τβ

}

+ 2k1R̂(µ|σR̂
σ

ν) + 2k2q(µ|σqν)
σ + 2k3S(µ|σSν)

σ = 0 ,

(3.34)

where we have introduce the derivative

∇̂µ = 2Sµ −∇µ (3.35)

and defined

Wα
(µν) :=2a1Q

α
µν + 2a2Q(µν)

α + (2a3Q
α + a5q

α)gµν + (2a4q(µ + a5Q(µ)δ
α
ν) ,

Aµν :=a1(QµαβQν
αβ − 2QαβµQ

αβ
ν)− a2Qαβ(µQ

βα
ν) + a3(QµQν − 2QαQαµν)

− a4qµqν − a5q
αQαµν ,

Bµν :=b1(2SναβSµ
αβ − SαβµS

αβ
ν)− b2SναβSµ

βα + b3SµSν ,

Cµν :=ΠµαβQν
αβ − (c1SαβνQ

αβ
µ + c2S

αQαµν + c3S
αQµνα)

=c1(Qµ
αβSναβ − SαβµQ

αβ
ν) + c2(SµQν − SαQαµν) ,

(3.36)

Taking the trace of (3.34) we obtain the following equation (note that the contribution between

braces in (3.34) is traceless):
(

1− n

2

)

(R+ L2) +
(

2− n

2

)

LFS − ∇̃α

(

Πα +Wα
)

= 0 , (3.37)

where ∇̃ is the Levi-Civita covariant derivative and

Πα :=Πα
µνg

µν = (c1 + nc2 + c3)S
α ,

Wα :=Wα
µνg

µν = (2a1 + 2na3 + a5)Q
α + (2a2 + 2a4 + na5)q

α .
(3.38)

Observe that the contribution in LFS in (3.37) vanishes if one considers n = 4 dimensions. Plugging

eq. (3.37) back into (3.34), thus eliminating the term R+ L2, we are left with

R(µν) −
1

n− 2
gµν

[

LFS − ∇̃α (Π
α +Wα)

]

+
1√−g

∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν)

+ C(µν) + 2k2

{[
1

2
gγδ

(

∂τg
γδ
)

qτβ − ∂τq
τβ

](

g(ν|β∂
αgµ)α + Γλ

(µν)gλβ − gρσΓα
ρσg(µ|αgν)β

)

+
1√−g

(
∂(µ∂τ

√
−g

)
qτ |ν) −

1

2
gγδ

(

∂τg
γδ
)

∂(µq
τ
|ν) −

1

2
gγδ

(

∂(µg
γδ
)

gν)β∂τ q
τβ

+
(
∂(µgν)β

)
∂τ q

τβ + g(ν|β∂µ)∂τq
τβ

}

+ 2k1R̂(µ|σR̂
σ

ν) + 2k2q(µ|σqν)
σ + 2k3S(µ|σSν)

σ = 0 .

(3.39)
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The latter relates the Ricci tensor of the Levi-Civita connection Γ̃λ
µν with the metric and the

non-Riemannian quantities (i.e., the torsion and non-metricity vectors) of the theory. Finally, one

may use formulas (A.4)-(A.6) of Appendix A, that is perform the post-Riemannian expansion, to

further simplify the above equations, splitting Riemannian and non-Riemannian contributions. In

particular, upon use of (A.5) into (3.37), the latter becomes

R̃+

(

a1 +
1

4

)

QαµνQ
αµν +

(

a2 −
1

2

)

QαµνQ
µνα +

(

a3 −
1

4

)

QµQ
µ + a4qµq

µ +

(

a5 +
1

2

)

Qµq
µ

+ (b1 + 1)SαµνS
αµν + (b2 − 2)SαµνS

µνα + (b3 − 4)SµS
µ + (c1 + 2)QαµνS

αµν + (c2 − 2)QµS
µ

+ (c3 + 2) qµS
µ + ∇̃µ [(2a2 + 2a4 + na5 + 1) qµ + (2a1 + 2na3 + a5 − 1)Qµ]

+ ∇̃µ [(c1 + nc2 + c3 − 4)Sµ] +
(

2− n

2

)

LFS = 0 .

We conclude by observing that, considering (3.26), the final form for the affine connection

Γλ
µν is

Γλ
µν = Γ̃λ

µν +
1

2
gρλ (Qµνρ +Qνρµ −Qρµν)− gρλ (Sρµν + Sρνµ − Sµνρ) , (3.40)

with

Qαµν =
[(n + 1)Qα − 2qα]

(n+ 2)(n − 1)
gµν +

2
[
nq(µgν)α −Q(µgν)α

]

(n+ 2)(n − 1)
,

Sλµ
ν =

2

1− n
δ[λ

νSµ] ,

(3.41)

where the vectors Qµ, qµ, and Sµ obeys the Proca-like equations (3.22). It is worth stressing out

that the above connection is dynamical with the extra degrees of freedom given by the Proca

fields.

All of the above describes the theory in the most general setting. Let us now focus on the

particular sub-cases in which the contribution LFS in (3.1) just exhibits one of the quadratic terms

in the field-strengths.

3.1 Sub-case in which LFS contains only the homothetic curvature

In this case, the action (3.1) reduces to

S(1) =
1

2κ

∫

dnx
√
−g

[

R+ b1SαµνS
αµν + b2SαµνS

µνα + b3SµS
µ

+ a1QαµνQ
αµν + a2QαµνQ

µνα + a3QµQ
µ + a4qµq

µ + a5Qµq
µ

+ c1QαµνS
αµν + c2QµS

µ + c3qµS
µ + k1R̂µνR̂

µν
]

=
1

2κ

∫

dnx
√
−g

[

R+ L2 + L(1)
FS

]

,

(3.42)

where the only non-vanishing contribution in LFS with respect to (3.1) is the one along k1 (k1 6= 0),

that is L(1)
FS = k1R̂µνR̂

µν .
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From the variation of (3.42) with respect to the general affine connection Γλ
µν we get

Pλ
µν +Ψλ

µν − 4k1δ
µ
λDαR̂

αν = 0 , (3.43)

Taking the various traces of (3.43) we find

N1Q
ν +N2q

ν +N3S
ν = 4nk1DαR̂

αν ,

N4Q
µ +N5q

µ +N6S
µ = 4k1DαR̂

αµ ,

N7 +Qλ +N8q
λ +N9S

λ = 4k1DαR̂
αλ ,

(3.44)

where the explicit expressions of the coefficients N1, N2, . . . , N9 are given in Appendix A. These

equations can be combined in such a way to obtain

qµ = A1Q
µ ,

Sµ = A2Q
µ ,

(3.45)

together with the following Proca-like equation for Qµ:

DαR̂
αµ = A3Q

µ , (3.46)

A3 playing the role of the mass squared of Qµ. The coefficients A1, A2, and A3 are given in

terms of the parameters of the theory.1 Therefore, in this case we have just one independent

non-Riemannian vector in the theory. In particular, the torsion vector Sµ and the non-metricity

vector qµ can be completely expressed in terms of the non-metricity trace Qµ, the latter obeying

the Proca-like equation (3.46). Using all of the above into the connection field equations, we are

left with (3.23), which, in particular, is solved by (3.26).

On the other hand, variation with respect to the metric field yields

R(µν) −
1

2
gµν

(

R+ L2 + L(1)
FS

)

+
1√−g

∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν) + C(µν)

+ 2k1R̂(µ|σR̂
σ

ν) = 0 ,

(3.47)

whose trace, in turn, gives
(

1− n

2

)

(R+ L2) +
(

2− n

2

)

L(1)
FS − ∇̃α

(

Πα +Wα
)

= 0 . (3.48)

Finally, plugging eq. (3.48) back into (3.47), we obtain

R(µν) −
1

n− 2
gµν

[

L(1)
FS − ∇̃α (Π

α +Wα)
]

+
1√−g

∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν)

+ C(µν) + 2k1R̂(µ|σR̂
σ

ν) = 0 .

(3.49)

1Since the explicit expressions for A1, A2, and A3 in terms of the parameters of the model are huge, we do not

report them here. The key point, in fact, is that the Proca-like equations (3.22), in the case in which only the term

along k1 survives, reduces to a single Proca-like equation for the non-metricity vector Qµ, without involving the

other non-Riemannian vectors of the theory. The latter are indeed expressed in terms of Qµ too (see eq. (3.45)).
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Note that plugging the post-Riemannian expansion (A.5) into (3.48) the latter boils down to

R̃+

(

a1 +
1

4

)

QαµνQ
αµν +

(

a2 −
1

2

)

QαµνQ
µνα +

(

a3 −
1

4

)

QµQ
µ + a4qµq

µ +

(

a5 +
1

2

)

Qµq
µ

+ (b1 + 1)SαµνS
αµν + (b2 − 2)SαµνS

µνα + (b3 − 4)SµS
µ + (c1 + 2)QαµνS

αµν + (c2 − 2)QµS
µ

+ (c3 + 2) qµS
µ + ∇̃µ [(2a2 + 2a4 + na5 + 1) qµ + (2a1 + 2na3 + a5 − 1)Qµ]

+ ∇̃µ [(c1 + nc2 + c3 − 4)Sµ] +
(

2− n

2

)

L(1)
FS = 0 .

In the case at hand, the final form for the affine connection Γλ
µν can be written as (3.40),

where now

Qαµν =
(n+ 1− 2A1)

(n+ 2)(n − 1)
Qαgµν +

(2nA1 − 1)

(n+ 2)(n − 1)
Q(µgν)α ,

Sλµ
ν =

2A2

1− n
δ[λ

νQµ] ,

(3.50)

with the non-metricity vector Qµ, that now is the only independent non-Riemannian vector, obey-

ing the Proca-like equation (3.46). Interestingly enough from the last expressions we see that

there exists a parameter choice for which the whole torsion vanishes (i.e., for A2 = 0) but, on the

other hand, there is no value for A1 that would yield a vanishing non-metricity. Note also that

for A1 =
1
2n the non-metricity is restricted to be of the Weyl type.

3.2 Sub-case in which LFS contains only the field-strength of the 2nd non-

metricity vector qµ

Here the action (3.1) boils down to

S(2) =
1

2κ

∫

dnx
√
−g

[

R+ b1SαµνS
αµν + b2SαµνS

µνα + b3SµS
µ

+ a1QαµνQ
αµν + a2QαµνQ

µνα + a3QµQ
µ + a4qµq

µ + a5Qµq
µ

+ c1QαµνS
αµν + c2QµS

µ + c3qµS
µ + k2qµνq

µν
]

=
1

2κ

∫

dnx
√
−g

[

R+ L2 + L(2)
FS

]

,

(3.51)

where the only non-vanishing contribution in LFS with respect to (3.1) is the one along k2 (k2 6= 0),

that is L(2)
FS = k2qµνq

µν .

The connection field equation now reads

Pλ
µν +Ψλ

µν − 2k2(g
µνgβλ + δ

µ
βδ

ν
λ)Dαq

αβ = 0 . (3.52)

Taking the various traces of (3.52), in this case we get

N1Q
ν +N2q

ν +N3S
ν = 4k2Dαq

αν ,

N4Q
µ +N5q

µ +N6S
µ = 2(n + 1)k2Dαq

αµ ,

N7Q
λ +N8q

λ +N9S
λ = 2(n+ 1)k2Dαq

αλ ,

(3.53)
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being the explicit expressions of the coefficients N1, N2, . . . , N9 collected in Appendix A. These

equations can be combined in such a way to obtain

Qµ = B1q
µ ,

Sµ = B2q
µ ,

(3.54)

along with the Proca-like equation

Dαq
αµ = B3q

µ , (3.55)

where B3 plays the role of the mass squared of qµ. The coefficients B1, B2, and B3 are given

in terms of the parameters of the model. Hence, here again we have just one independent non-

Riemannian vector. In particular, the torsion vector Sµ and the non-metricity vector Qµ can be

expressed in terms of qµ, where the latter fulfills the Proca-like equation (3.55). Plugging the

above results back into the connection field equations, we obtain once again (3.23), solved by

(3.26).

The final form for the affine connection Γλ
µν can be written as (3.40), where now we have

Qαµν =
[B1(n+ 1)− 2]

(n+ 2)(n − 1)
qαgµν +

(2n−B1)

(n+ 2)(n − 1)
q(µgν)α ,

Sλµ
ν =

2B2

1− n
δ[λ

νqµ] ,

(3.56)

the only independent vector, qµ, fulfilling the Proca-like equation (3.55). Similarly to the case

of the previous subsection (with the inclusion of homothetic curvature) there exists a parameter

configuration (namely B2 = 0) for which the full torsion vanishes, while for the choice B1 = 2n

the non-metricity is restricted to be of Weyl type. Again, there is no parameter choice that makes

the full non-metricity vanish.

The variation of (3.51) with respect to the metric yields

R(µν) −
1

2
gµν

(

R+ L2 + L(2)
FS

)

+
1√−g

∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν) + C(µν)

+ 2k2

{[
1

2
gγδ

(

∂τg
γδ
)

qτβ − ∂τq
τβ

] (

g(ν|β∂
αgµ)α + Γλ

(µν)gλβ − gρσΓα
ρσg(µ|αgν)β

)

+
1√−g

(
∂(µ∂τ

√
−g

)
qτ |ν) −

1

2
gγδ

(

∂τg
γδ
)

∂(µq
τ
|ν) −

1

2
gγδ

(

∂(µg
γδ
)

gν)β∂τq
τβ

+
(
∂(µgν)β

)
∂τ q

τβ + g(ν|β∂µ)∂τq
τβ

}

+ 2k2q(µ|σqν)
σ = 0 .

(3.57)

Taking the trace of (3.57) we obtain

(

1− n

2

)

(R+ L2) +
(

2− n

2

)

L(2)
FS − ∇̃α

(

Πα +Wα
)

= 0 . (3.58)
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Plugging (3.58) back into (3.57), the latter becomes

R(µν) −
1

n− 2
gµν

[

L(2)
FS − ∇̃α (Π

α +Wα)
]

+
1√−g

∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν)

+ C(µν) + 2k2

{[
1

2
gγδ

(

∂τg
γδ
)

qτβ − ∂τq
τβ

] (

g(ν|β∂
αgµ)α + Γλ

(µν)gλβ − gρσΓα
ρσg(µ|αgν)β

)

+
1√−g

(
∂(µ∂τ

√
−g

)
qτ |ν) −

1

2
gγδ

(

∂τg
γδ
)

∂(µq
τ
|ν) −

1

2
gγδ

(

∂(µg
γδ
)

gν)β∂τq
τβ

+
(
∂(µgν)β

)
∂τq

τβ + g(ν|β∂µ)∂τq
τβ

}

+ 2k2q(µ|σqν)
σ = 0 ,

(3.59)

which can be interpreted as expressing the Ricci tensor of the Levi-Civita connection in terms of

the vector field Qµ and its derivatives. Finally, observe that using the post-Riemannian expansion

(A.5) into (3.58) the latter becomes

R̃+

(

a1 +
1

4

)

QαµνQ
αµν +

(

a2 −
1

2

)

QαµνQ
µνα +

(

a3 −
1

4

)

QµQ
µ + a4qµq

µ +

(

a5 +
1

2

)

Qµq
µ

+ (b1 + 1)SαµνS
αµν + (b2 − 2)SαµνS

µνα + (b3 − 4)SµS
µ + (c1 + 2)QαµνS

αµν + (c2 − 2)QµS
µ

+ (c3 + 2) qµS
µ + ∇̃µ [(2a2 + 2a4 + na5 + 1) qµ + (2a1 + 2na3 + a5 − 1)Qµ]

+ ∇̃µ [(c1 + nc2 + c3 − 4)Sµ] +
(

2− n

2

)

L(2)
FS = 0 .

3.3 Sub-case in which LFS contains only the field-strength of the torsion vector

In this sub-case the theory reads

S(3) =
1

2κ

∫

dnx
√
−g

[

R+ b1SαµνS
αµν + b2SαµνS

µνα + b3SµS
µ

+ a1QαµνQ
αµν + a2QαµνQ

µνα + a3QµQ
µ + a4qµq

µ + a5Qµq
µ

+ c1QαµνS
αµν + c2QµS

µ + c3qµS
µ + k3SµνS

µν
]

=
1

2κ

∫

dnx
√
−g

[

R+ L2 + L(3)
FS

]

,

(3.60)

where the only non-vanishing contribution in LFS with respect to (3.1) is the one along k3 (k3 6= 0),

that is L(3)
FS = k3SµνS

µν .

In this case, the connection field equation is

Pλ
µν +Ψλ

µν − 2k3DαS
α[µδ

ν]
λ = 0 . (3.61)

Taking the various traces of (3.61), we obtain

N1Q
ν +N2q

ν +N3S
ν = (1− n)k3DαS

αν ,

N4Q
µ +N5q

µ +N6S
µ = (n− 1)k3DαS

αµ ,

N7Q
λ +N8q

λ +N9S
λ = 0 ,

(3.62)
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where the explicit expressions of the coefficients N1, N2, . . . , N9 are written in Appendix A. These

equations can be combined in such a way to obtain

Qµ = C1S
µ ,

qµ = C2S
µ ,

(3.63)

together with the following Proca-like equation for Sµ:

DαS
αµ = C3S

µ , (3.64)

where C1, C2, and C3 are given in terms of the parameters appearing in (3.60). In particular, C3

plays the role of the mass squared of Sµ. Therefore, also in this case we have just one independent

non-Riemannian vector in the theory, as the non-metricity vectors Qµ and qµ can be expressed in

terms of the torsion vector Sµ, the latter satisfying the Proca-like equation (3.64). Again, using

the equations above into the connection field equation (3.61) we are left with (3.23), solved by

(3.26).

The metric field equations obtained from (3.60) read

R(µν) −
1

2
gµν

(

R+ L2 + L(3)
FS

)

+
1√−g

∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν) + C(µν)

+ 2k3S(µ|σSν)
σ = 0 .

(3.65)

Taking the trace, which yields
(

1− n

2

)

(R+ L2) +
(

2− n

2

)

L(3)
FS − ∇̃α

(

Πα +Wα
)

= 0 , (3.66)

and substituting the latter back into (3.65), we are left with

R(µν) −
1

n− 2
gµν

[

L(3)
FS − ∇̃α (Π

α +Wα)
]

+
1√−g

∇̂α

[√
−g(Wα

(µν) +Πα
(µν))

]

+A(µν) +B(µν)

+ C(µν) + 2k3S(µ|σSν)
σ = 0 .

(3.67)

Besides, plugging the post-Riemannian expansion (A.5) of the scalar curvature into (3.48), the

latter yields

R̃+

(

a1 +
1

4

)

QαµνQ
αµν +

(

a2 −
1

2

)

QαµνQ
µνα +

(

a3 −
1

4

)

QµQ
µ + a4qµq

µ +

(

a5 +
1

2

)

Qµq
µ

+ (b1 + 1)SαµνS
αµν + (b2 − 2)SαµνS

µνα + (b3 − 4)SµS
µ + (c1 + 2)QαµνS

αµν + (c2 − 2)QµS
µ

+ (c3 + 2) qµS
µ + ∇̃µ [(2a2 + 2a4 + na5 + 1) qµ + (2a1 + 2na3 + a5 − 1)Qµ]

+ ∇̃µ [(c1 + nc2 + c3 − 4)Sµ] +
(

2− n

2

)

L(3)
FS = 0 .

Finally, the affine connection Γλ
µν in the present case can be written as in (3.40), where now

Qαµν =
[C1(n+ 1)− 2C2]

(n+ 2)(n − 1)
Sαgµν +

2(C2n− C1)

(n+ 2)(n − 1)
S(µgν)α ,

Sλµ
ν =

2

1− n
δ[λ

νSµ] .

(3.68)
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The torsion vector Sµ is the only independent vector of the theory and obeys the Proca-like

equation (3.64). Intriguingly, in this case there is no parameter choice that renders a vanishing

torsion configuration, that is torsion is always there. On the other hand, and in contrast to the

previous cases where the non-metricity field strengths were involved, here for the choice C1 =

0 = C2 the full non-metricity vanishes. This seems to be another form of manifestation of the

torsion/non-metricity duality that was reported in [5]. For the above parameter choice, after

developing a post-Riemannian expansion and using the above results, the original action (3.60) is

on-shell (and up to boundary terms) equivalent to

S
(3)
equiv. =

1

2κ

∫

dnx
√
−g

[

R̃+ k3SµνS
µν +

1

2
m2SµS

µ
]

, (3.69)

with the mass term given by

m2 = 2
4 + 2b1 − b2 + (n− 1)(b3 − 4)

(n− 1)
, (3.70)

and where R̃ is the Ricci scalar of the Levi-Civita connection. The latter action represents a

Vector-Tensor theory where the vector involved is Sµ.

4 On-shell equivalence to Vector-Tensor theories

Let us now establish an on-shell equivalence between the Metric-Affine theory (3.1) and a specific

family of Vector-Tensor theories. To this end we start with the expressions (3.41) for torsion

and non-metricity. Then, computing each quadratic term and also performing a post-Riemannian

expansion of the Ricci scalar, the action (3.1) may be brought into the (on-shell and up to boundary

terms) equivalent form

Sequiv. =
1

2κ

∫

dnx
√
−g

[

R̃+d1AµA
µ+d2AµB

µ+d3BµB
µ+d4SµS

µ+d5SµA
µ+d6SµB

µ+Lkin

]

,

(4.1)

where we have set Qµ = nAµ + 2Bµ and qµ = Aµ + (n+ 1)Bµ. The parameters di, i = 1, 2, . . . , 6,

depend on the initial parameters of the quadratic theory and the spacetime dimensions. For

completeness we report them in Appendix A. In terms of the torsion and non-metricity vectors

the above action reads

Sequiv. =
1

2κ

∫

dnx
√
−g

[

R̃+
1

2
m2

1QµQ
µ +

1

2
m2

2qµq
µ +

1

2
m2

3SµS
µ

+ βQSQµS
µ + βqSSµq

µ + βQqQµq
µ + Lkin

]

,

(4.2)

where we have abbreviated

m2
1 = 2λ2

1

[

(n + 1)2d1 − (n+ 1)d2 + d3

]

,

m2
2 = 2λ2

1

[

4d1 − 2nd2 + n2d3

]

,

m2
3 = 2d4 ,

(4.3)
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with

λ1 :=
1

2− n(n+ 1)
, (4.4)

and

βQS = λ1(d6 − (n+ 1)d5) ,

βqS = λ1(2d5 − nd6) ,

βQq = λ2
1

[

−4(n + 1)d1 +
(

2 + n(n+ 1)
)

d2 − 2nd3

]

,

(4.5)

while Lkin collects all the kinetic terms along the coefficients k1, k2 and k3. From the above

we conclude that if m1, m2 and m3 are to be considered as the masses of the Proca fields, their

positiveness will impose certain constraints on the parameters of the quadratic theory. In addition,

the very presence of βQS, βqS and βQq indicates that the involved vector fields are, in general,

interacting. However, there exists a parameter space for which all of the couplings vanish and

the Proca fields become non-interacting. We shall discuss such cases in what follows. To recap

this section, the quadratic MAG theory given by (3.1) is on-shell equivalent to the Vector-Tensor

theory (4.2) consisting of three, in general, massive and interacting Proca fields existing in a

Riemannian background. Let us also emphasize that one could use a field redefinition to get rid of

the interaction terms. Indeed, by simply diagonalizing the matrix corresponding to the quadratic

vector terms one could then define new vector fields that would be linear combinations of Sµ, Qµ

and qµ for which new fields no interaction term would occur. However, the price to pay in doing

so is that by performing such a field redefinition we would generate unusual derivative couplings

in the kinetic terms such as ∂[µSν]∂
µQν , for instance. Therefore, the interactions are essential and

unavoidable in the general setting where all kinetic terms are there. However, in some particular

instances these interaction terms are absent, as we discuss below.

5 On F (R, T,Q, T ,D) gravity plus field-strength contributions

In this section we provide an application to the case of (linear) F (R,T,Q,T ,D) gravity in vacuum.

Before proceeding with this discussion, let us briefly sketch Metric-Affine F (R,T,Q,T ,D) gravity,

also known as Metric-Affine Myrzakulov Gravity VIII (MAMG-VIII), and its sub-cases.

Following the idea that considering alternative geometric frameworks one can effectively gain

better insights towards a deeper and more complete understanding of gravity than the one provided

by GR, a rather general class of gravity theories has been developed in the literature, whose action

is characterized by a generic function F of non-Riemannian scalars (the scalar curvature R of the

general affine connection, the torsion scalar T , the non-metricity scalar Q, and, besides, the

energy-momentum trace T ), which takes different form depending on the specific model. The

most general of these models, which are also known as Myrzakulov gravity theories (MG-N, with

N = I, II, . . . ,VIII) [51–53], is F (R,T,Q,T ) gravity, corresponding to MG-VIII. The other are sub-

cases. Such theories have been generalized to the Metric-Affine framework in [22, 23], including

also a dependence on the divergence of the dilation current D, the latter being a trace of the
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hypermomentum tensor [38–40], in F . In Table 1 the reader can find a summary of the Metric-

Affine Myrzakulov Gravity (MAMG) theories that have been developed and analyzed (Lm in Table

1 denotes the matter action).

Table 1: Metric-Affine Myrzakulov Gravity theories.

Acronym Action

MAMG-I S = 1
2k

∫
dnx

√−g [F (R,T,D) + 2kLm]

MAMG-II S = 1
2k

∫
dnx

√−g [F (R,Q,D) + 2kLm]

MAMG-III S = 1
2k

∫
dnx

√−g [F (T,Q,D) + 2kLm]

MAMG-IV S = 1
2k

∫
dnx

√−g [F (R,T,T ,D) + 2kLm]

MAMG-V S = 1
2k

∫
dnx

√−g [F (R,T,Q,D) + 2kLm]

MAMG-VI S = 1
2k

∫
dnx

√−g [F (R,Q,T ,D) + 2kLm]

MAMG-VII S = 1
2k

∫
dnx

√−g [F (T,Q,T ,D) + 2kLm]

MAMG-VIII S = 1
2k

∫
dnx

√−g [F (R,T,Q,T ,D) + 2kLm]

Such theories have been analyzed mainly in four spacetime dimension and provided relevant

applications in the cosmological context. For an exhaustive review of cosmological features of

(MA)MG models and the way in which they offer solutions to diverse issues in the context of

cosmology we refer the reader to [23] and references therein. We shall now focus on F (R,T,Q,T )

gravity in some particular cases in which the function F is linear in R, Q, and T , in vacuum, to

highlight some implications of the previously discussed quadratic formulation in such model.

5.1 Implications of the general formulation on the linear case in vacuum:

Model− 1

Let us now consider the vacuum case in which the function F is linear in R, Q, and T , and given

by the following expression:

F = R−Q− T −M ,

where we have defined the torsion and non-metricity scalars as

T := SµναS
µνα − 2SµναS

αµν − 4SµS
µ ,

Q :=
1

4
QαµνQ

αµν − 1

2
QαµνQ

µνα − 1

4
QµQ

µ +
1

2
Qµq

µ ,
(5.1)

respectively. In addition, we have extended F by also including the QT scalar containing mixed

terms and defined as

M := 2QαµνS
αµν − 2SµQ

µ + 2Sµq
µ . (5.2)

Hence, we are going to study the implications of the contributions along k1, k2, and k3 into the

gravitational action. Note that the combination T+Q+M simply picks specific coefficients for the

quadratic invariants. In particular, it corresponds to the parameter choice a1 = −2a2 = −a3 =

2a5 = −1
4 , a4 = 0, b1 = −1, b3 = 2b2 = 4 and c1 = −c2 = c3 = −2. For such an arrangement,
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using the post-Riemannian expansion of the Ricci scalar and the above results, our quadratic

action (3.1) boils down to

S[g,Γ] =
1

2κ

∫

dnx
√
−g

[

R̃+ LFS

]

. (5.3)

In other words, the quadratic terms contained in R have all been canceled out by the specific

combinations appearing in the sum T + Q. Interestingly in this case the Proca fields become

massless (i.e., photon-like). Then, obviously, the action (5.3) corresponds simply to GR with 3

non-interacting “photon” fields associated to torsion and non-metricity. It is important to point

out that the appearance of these extra fields was not imposed by hand but they rather emerged

as a consequence of the generalized geometry. All three come from geometry. In conclusion, for

the F = R − T − Q −M case, the three Proca fields become non-interacting and massless. Let

us emphasize that the reason for these last conclusions lies precisely in the fact that we have also

included the mixed scalar M . Its absence changes the picture drastically, as we will show with

the following example.

5.2 Implications of the general formulation on the linear case in vacuum:

Model− 2

We shall now consider the linear case

F = R−Q− T . (5.4)

In this case the post-Riemannian expansion of R cancels all pure torsion and pure non-metricity

scalars, but the mixed combinations remain there. In fact we have,

R− T −Q = R̃+ 2QαµνS
αµν − 2SµQ

µ + 2Sµq
µ . (5.5)

We see, therefore, that in this case the vector fields become massless but they interact with each

other. That is, the simultaneous subtraction of both T and Q from R produces massless fields.

5.3 Implications of the general formulation on the linear case in vacuum:

Model− 3

Let us finally take the sub-case

F = R− T . (5.6)

Now the post-Riemannian expansion of R cancel all pure torsion terms leaving the torsion vector

massless. Additionally, the two non-metricity vectors remain massive and all three torsion and

non-metricity vectors are interacting. Similarly, for the sub-case

F = R−Q (5.7)

the non-metricity vectors become massless while the torsion vector retains its mass. Interestingly,

in this case the non-metricity fields do not interact with each other but only with the torsion

vector.
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6 Conclusions

In this paper we have extended the results presented in antecedent literature [48], considering a

novel quadratic gravity action which, besides the usual Einstein-Hilbert contribution, involves all

the parity even quadratic terms in torsion and non-metricity plus a Lagrangian that is quadratic

in the field-strengths of the torsion and non-metricity vectors.

In the most general case given by (3.1), in particular, we have obtained the Proca-like equations

(3.22) involving all the non-Riemannian vectors of the theory, namely the torsion trace Sµ and the

non-metricity vectors Qµ and qµ. Subsequently, we have discussed the three sub-cases in which

only one of the terms quadratic in the field-strengths is included into the action. When we only

include the contribution quadratic in the homothetic curvature tensor, that is the field-strength

of Qµ, the connection field equation yields a Proca-like equation for Qµ, while the vectors qµ

and Sµ are linearly related to the latter vector. In fact, this is in accordance with the results

obtained in [45, 46]. Similarly, in the sub-case in which the only contribution quadratic in the

field-strengths is given by the one involving the field-strength of the non-metricity vector qµ, we

are left with a Proca-like equation for the latter, while the vectors Qµ and Sµ are non-dynamical

and proportional to qµ. Finally, the same scenario occurs if one includes into the quadratic theory

just the term quadratic in the field-strength of the torsion vector Sµ, and the result is a Proca-like

equation for the latter. In this case, the non-metricity vectors are expressed in terms of Sµ. In this

latter case, there exist a consistent parameters choice for which the whole non-metricity vanishes

and the action results to be on-shell equivalent (up to boundary terms) to a Vector-Tensor model

in which the vector involved is Sµ. The mass-squared contribution in the action is given in terms

of the parameters of the quadratic theory.

Therefore, when one considers a MAG theory (in vacuum) involving the Einstein-Hilbert term

for the non-Riemannian scalar curvature R plus all the parity even quadratic terms in torsion

and non-metricity, along with a quadratic Lagrangian contribution given in terms of just one

of the field-strengths of the non-Riemannian vectors of the model, the result is an independent

dynamical vector (the one whose field-strength appears in the quadratic action) fulfilling a Proca-

like equation, while the other non-Riemannian vectors are non-dynamical and can be expressed in

terms of the dynamical one. We have then proved that the quadratic MAG theory given by (3.1)

is on-shell equivalent to the Vector-Tensor theory (4.2) consisting of three, in general, massive and

interacting Proca fields in a Riemannian background.

Subsequently, we have provided implications of the aforementioned formulation on the case

of linear F (R,T,Q,T ,D) gravity in vacuum. In particular, in the case F = R − Q − T − M

the quadratic terms in R are canceled out by the specific combinations appearing in T +Q, and

the theory results to be equivalent to GR with three non-interacting, massless Proca fields (that

are the torsion and non-metricity vectors). On the other hand, in the case in which the mixed

terms are not subtracted from R, that is F = R − Q − T , the vector fields are turn out to be

massless but interacting. Finally, for F = R−T the torsion vector results to be massless, while the

non-metricity vectors are massive, and all three torsion and non-metricity vectors are interacting;
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analogously, in the case F = R−Q the non-metricity vectors become massless, while the torsion

vector is massive. However, in this last case, remarkably, the non-metricity vectors do not interact

with each other but only with the torsion vector field.

Future developments of the present work may consist in the study of cosmological solutions of

the model we have analyzed and the inclusion of matter couplings.
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A Useful formulas and coefficients in the quadratic theory

For the sake of convenience, let us report in the following the explicit expressions of the coefficients

appearing in eqs. (3.19), (3.44), (3.53), and (3.62) of Section 3:

N1 = 4a1 −
c1

2
+ 4na3 + 2a5 +

(1− n)

2
c2 ,

N2 = 4a2 +
c1

2
+ 2na5 + 4a4 +

(1− n)

2
c3 ,

N3 = −2b1 + b2 + 2c1 + 2nc2 + 2c3 + (1− n)b3 ,

N4 = 2a2 +
c1

2
+ 4a3 + (n+ 1)a5 +

(n− 1)

2
(c2 − 1) ,

N5 = 4a1 + 2a2 −
c1

2
+ 2a5 + 2(n+ 1)a4 +

(n− 1)

2
(c3 + 2) ,

N6 = 2b1 − b2 − c1 + 2c2 + (n+ 1)c3 + (n− 1)b3 + 2(2− n) ,

N7 = 2a2 + 4a3 + (n+ 1)a5 +
(n− 3)

2
,

N8 = 2
[

2a1 + a2 + (n+ 1)a4 + a5 +
1

2

]

,

N9 = 2c2 − c1 + (n+ 1)c3 + 2(n− 2) .

(A.1)
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Besides, the coefficients appearing in (3.22) read

c11 =
5− 4a2 − n2 + 4a1(n+ 1) + 4a3(n− 1)(n + 2)

4k1(n− 1)(n + 2)
,

c12 =
−4− 8a1 + n(−1 + 4a2 + n) + 2a5(n− 1)(n + 2)

4k1(n− 1)(n + 2)
,

c13 =
4 + c1 + c2(n− 1)− 2n

2k1(n− 1)
,

c21 =
−4− 8a1 + n(−1 + 4a2 + n) + 2a5(n− 1)(n + 2)

4k2(n− 1)(n + 2)
=

k1

k2
c12 ,

c22 =
1 + a2(n− 2) + 2a1n+ a4(n− 1)(n + 2)

k2(n − 1)(n+ 2)
,

c23 =
−4− c1 + c3(n − 1) + 2n

2k2(n− 1)
,

c31 =
4 + c1 + c2(n− 1)− 2n

2k3(n− 1)
=

k1

k3
c13 ,

c32 =
−4− c1 + c3(n − 1) + 2n

2k3(n− 1)
=

k2

k3
c23 ,

c33 =
8 + 2b1 − b2 + b3(n− 1)− 4n

k3(n− 1)
,

(A.2)

while the di coefficients, with i = 1, 2, . . . , 6 we have introduced in (4.1) are

d1 = −(n− 1)(n − 2)

4
+ (a1 + a5 + na3) + a2 + a4 ,

d2 = 4(a1 + na3) + (n+ 1)
[

2a2 + 2a4 + na5 +
n

2

]

+ 2(a5 − n) + 1 ,

d3 = (n+ 1)
[

2a1 + (n+ 1)a4 + 2a5

]

+ (n+ 3)a2 + 4a3 + (n− 1) ,

d4 =
4 + 2b1 − b2

n− 1
+ b3 − 4 ,

d5 = c1 + c3 + 4 + nc2 − 2n ,

d6 = 2c2 − c1 − 6 + (n+ 1)(c3 + 2) .

(A.3)
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Finally, let us write the following post-Riemannian expansions (cf. also [54]):

Rµν = R̃µν +
[

− (−12− 7n+ 2n2 + n3)

4[(n − 1)(n + 2)]2
QλQ

λ +
(−10− 7n+ n3)

2[(n − 1)(n + 2)]2
Qλqλ +

2(n+ 1)

[(n− 1)(n + 2)]2
qλq

λ

− 2(n2 − 5)

n3 − 3n+ 2
QλSλ +

2(n2 − n− 4)

n3 − 3n + 2
qλSλ − 4(n− 2)

(n− 1)2
SλS

λ − (n+ 3)

2(n − 1)(n + 2)
∇̃λQ

λ

+
(n+ 1)

(n− 1)(n + 2)
∇̃λq

λ − 2

n− 1
∇̃λS

λ
]

gµν +
(n3 − 7n − 10)

4[(n − 1)(n + 2)]2
QµQν

+
4(n + 1)

[(n− 1)(n + 2)]2
Q(µqν) −

(n2 + n+ 2)

[(n− 1)(n + 2)]2
qµqν +

2(n2 − n− 4)

n3 − 3n+ 2
Q(µSν)

+
8

n3 − 3n+ 2
q(µSν) +

4(n− 2)

(n− 1)2
SµSν +

(n+ 1)

2(n − 1)(n + 2)
∇̃µQν −

(n2 − 3)

2(n− 1)(n + 2)
∇̃νQµ

− 2

(n− 1)(n + 2)
∇̃(µqν) −

2(n− 2)

n− 1
∇̃νSµ ,

(A.4)

R = R̃− (n2 − 5)

4(n − 1)(n + 2)
QλQ

λ +
(n2 − n− 4)

2(n− 1)(n + 2)
Qλqλ +

1

(n− 1)(n + 2)
qλq

λ

− 2(n − 2)

n− 1
QλSλ +

2(n − 2)

n− 1
qλSλ − 4(n− 2)

n− 1
SλSλ − ∇̃λQ

λ + ∇̃λq
λ − 4∇̃λS

λ .

(A.5)

where R̃µν and R̃ are the Ricci tensor and Ricci scalar of the Levi-Civita connection, respectively,

and we recall that ∇̃ is the Levi-Civita covariant derivative. Besides, we have

R(µν) = R̃µν +
[

− (−12− 7n+ 2n2 + n3)

4[(n − 1)(n + 2)]2
QλQ

λ +
(−10− 7n+ n3)

2[(n − 1)(n + 2)]2
Qλqλ

+
2(n + 1)

[(n − 1)(n+ 2)]2
qλq

λ − 2(n2 − 5)

n3 − 3n+ 2
QλSλ +

2(n2 − n− 4)

n3 − 3n + 2
qλSλ −

4(n− 2)

(n− 1)2
SλS

λ

− (n+ 3)

2(n − 1)(n + 2)
∇̃λQ

λ +
(n+ 1)

(n− 1)(n + 2)
∇̃λq

λ − 2

n− 1
∇̃λS

λ
]

gµν

+
(n3 − 7n − 10)

4[(n − 1)(n + 2)]2
QµQν +

4(n + 1)

[(n− 1)(n + 2)]2
Q(µqν) −

(n2 + n+ 2)

[(n− 1)(n + 2)]2
qµqν

+
2(n2 − n− 4)

n3 − 3n+ 2
Q(µSν) +

8

n3 − 3n+ 2
q(µSν) +

4(n− 2)

(n− 1)2
SµSν +

(4− n2 + n)

2(n − 1)(n + 2)
∇̃(µQν)

− 2

(n− 1)(n + 2)
∇̃(µqν) −

2(2− n)

n− 1
∇̃(µSν) ,

(A.6)

which is useful to reproduce the final results reported in the main text.
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