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Abstract—Single-cell multimodal technologies are becoming
the hot topic of single-cell heterogeneity and function studies,
promising to unravel the hidden relationship and functionalities
of different aspects of the cells. Among the plethora of single-
cell technologies, interesting is the patch-seq technology, which
simultaneously performs Patch clamp measures and scRNA-seq
on the same cells. However, given the experimental limitations of
throughput of Patch clamp, the scRNA-seq analysis is challenging
because it requires more samples to investigate cellular hetero-
geneity. Usually, the solution is associating the cells with the cell
types in an existing scRNA-seq dataset. However, doing so loses
part of the single cell resolution of the multimodal technique.
Therefore, this work proposes a procedure leveraging the Seurat
Integration process to find from a reference dataset the most
similar cells to the ones from the patch-seq. The similarity is
how much gene expression profiles are identical, and to evaluate
that, this work defines various metrics based on Rand Index.
In this way, one obtains a selection of suitable Reference cells
to enrich the number of cells on which to perform multimodal
investigation.

Index Terms—Patch-seq, dataset enrichment, scRNA-seq, mul-
timodal technologies

I. INTRODUCTION

A brain is an incredible machine, composed of specific ele-
ments which define its highly specialized functions [1]. Even if
the general brain cell categories are few (inhibitory/excitatory
neurons and non-neuronal cells), there is a constellation of
cellular subtypes differing in functionality and scope [2]. So
far, a complete taxonomy of the cortical cell population is
an almost unreachable goal in neuroscience, a relevant and
impending obstacle in this field [3].

There are many differences, even considering only neuronal
cells in the brain cortex. Historically, researchers investigate
cells’ dissimilarities based on morphology [4], location [5],
electrophysiological characteristics [6], and molecular markers
[7]. More recently, Next Generation Sequencing (NGS) tech-
nologies provide additional insight into the cells. In particular,
single-cell profiling techniques, like single-cell RNA sequenc-
ing (scRNA-seq), help the cellular heterogeneity investigation
[8]. However, these technologies often lead to cell-type char-
acterizations that are not trivially overlapping [9].

For this reason, the research on cellular heterogeneity now
focuses on multi-modal approaches, meaning a simultaneous
analysis with two or more methodologies, allowing a direct
comparison of the different results. In this regard, one of the
latest technologies is Patch-sequencing (patch-seq) [10], which
combines patch clamp, measuring electrophysiological prop-
erties, and scRNA-seq, which investigates gene expression.
This technique can unravel the relationship between electro-
physiological states and genome-wide transcriptomic profiles.
However, these two technologies have different throughputs.
scRNA-seq can profile tens of thousands of cells at once.
Instead, a patch clamp rarely goes over 100 cells since it
requires long and manual measurements on each cell.

The fact that the number of cells in a patch-seq dataset is
bounded by the throughput of the patch clamp technique poses
a caveat to the use of these datasets for transcriptomic data
analysis, which usually requires a high amount of cells [11].

A common strategy to overcome this problem is to increase
the number of cells for the gene expression analysis by



mapping the patch-seq cells to existing reference datasets of
cell types [12]. Nonetheless, this method has the drawback
of assigning cells to the general cell types of the reference
dataset and generalizing their electrophysiological features to
groups. This loses part of the multi-modal dataset resolution,
particularly the direct and single-cell relation between the two
modalities. Moreover, neuron electrophysiology studies aim to
identify functional cell states (e.g., activity states or plasticity
states [13]) not necessarily related to cell types. Therefore this
bulk-fashion cell type-related method to increase the number
of cells is not ideal.

As a first step to going beyond this limitation, this paper
presents a single-cell data sample size enrichment tailored for
patch-seq datasets with low cell numerosity. The proposed
method is based on data integration analysis. It starts from the
idea of integrating the patch-seq dataset with an appropriate
reference dataset, finding and taking from it the most similar
cells, and coupling them with the original ones. Based on
the assumption that the connected cells are in the same
state, the electrophysiological features and labels from the
original dataset can be transferred to cells from the reference
dataset (reference cells). The main advantage is maintaining
the single-cell resolution in the multi-modal information, guar-
anteeing a more direct relation between electrophysiology and
reference cells. The paper focuses on the methodology to find
the correct cells from the reference dataset, the metrics to
measure how similar they are to cells in the patch-seq dataset,
and finally on the application in different case studies.

II. BACKGROUND

Patch-sequencing data are an incredible source of biological
information about neurons. However, their low throughput is
incompatible with the sample size required for gene expression
analysis. The general solution to enrich the dataset for gene ex-
pression analysis is to employ an external scRNA-seq dataset
selecting cells with the same cell type as the patch-seq data.
This usually relies on two available methodologies. The first
is the implementation of a classifier, trained on the external
dataset, to assign cell types labels to the patch-seq cells [12].
The second is label transfer through data integration, i.e.,
integrating the datasets to obtain a joint visualization and
clustering of all the cells [14]. Integration can be implemented
leveraging Satija lab’s R package Seurat [15].

Independently from the methodology, each patch-seq cell is
associated with a whole cluster or cell-type group. Therefore,
all the multi-modal downstream analyses associate the single-
cell electrophysiological features with entire groups of cells,
losing part of the single-cell resolution in favor of a bulk
approach. This work aims to find an alternative method to
enrich the patch-seq data conserving at least in part the single
cell resolution.

III. METHODS

This work proposes a procedure to enrich the number
of cells of a low-throughput patch-seq dataset referred to
as Query Dataset (QD) with cells from a high-quality and

highly-characterized external scRNA-seq dataset referred to
as Reference Dataset (RD), maintaining as much as possible
the multi-modal single-cell properties. The procedure lever-
ages the data integration approach to find the cells in RD
(reference cells) that are most similar to the cells in QD (query
cells) based on their gene expression profiles. Data integration
leverages the functionality of Seurat, an R package from Satija
lab becoming a staple in single-cell analysis [15].

Following the workflow presented in Fig. 1, Section III-A
presents how to select, preprocess and prepare the datasets,
Section III-B explains how to perform data integration, Section
III-C illustrates how to choose the cells, and Section III-D
defines the metrics to evaluate the similarity between cells.
Section IV finally presents experimental results.

A. Dataset Selection and Processing

The proposed workflow requires finding an external and
suitable scRNA-seq dataset to use as RD to enrich a low-
throughput QD (Fig.1-A). RD must have high experimental
quality, ensuring its cells are well-characterized (i.e., high
sequencing depth and accurate cell types labels). Fortunately,
many projects study the brain, its functionality, and its cell type
landscape, and they provide top-quality and freely available
scRNA-seq datasets [16].

Patch clamp electrophysiology data derive from measures
taken on neurons, whether excitatory or inhibitory. However,
neurons are not the only cell type the brain comprises. In
general, scRNA-seq datasets from cortex samples contain cells
like Astrocytes and Oligodendrocytes that are not part of the
patch-clamp experiments. Therefore, it is advisable to filter
RD from non-neuronal cells before integration, thus reducing
the possibility of integration with wrong cell types.

Both QD and RD must be preprocessed before integration.
One crucial step is normalization. While the common practice
is to perform log-normalization based on pseudo counts, an
interesting alternative is using the SCTrasform technique pro-
posed by Satija Lab and implemented in Seurat. SCTrasform
is a “modeling framework for the normalization and variance
stabilization of molecular count data from scRNA-seq exper-
iments” [17]. It is an alternative normalization and scaling
method, particularly effective in case of high differences
in sequencing depth. As suggested by Seurat, performing
SCTrasform on both QD and RD can improve the integration,
limiting the effect of technical differences between them.

B. Finding Anchors and Data integration

Once QD and RD are correctly processed, data integration
takes place. Seurat relies on the concept of anchors to perform
data integration. The integration workflow consists of selecting
features, finding anchors (Fig.1-B), and integrating the data
(Fig.1-C). An anchor is a couple of cells from two different
datasets assigned to the same functional state. Finding anchors
allows us to identify the cell states existing in both datasets.
In particular, finding anchors allows inferring the query cells
type from the paired reference cells.



Fig. 1. Workflow. (A) QD and RD are first preprocessed in preparation for the following steps. (B) The procedure identifies the optimal anchors between QD
(red) and RD (light blue), meaning couples of cells likely to share a cell state. (C) Integration of the data allows a joint 2D visualization of all the cells. (D)
Selection of the reference cells related to the query cells, looking at Nearest Neighbors in the joint UMAP visualization and the integration anchors found in
step B. (E) Calculate the similarity metrics based on the Rand Index of all identified couples. (F) Selection of the best reference cells (based on the Rand
Index) to add to QD for downstream analyses.

Finding anchors requires a set of features to pair cells. This
work uses the genes with high expression variability in both
datasets. These genes are the ones that mainly characterize the
cellular heterogeneity of the gene expression data, and anchors
should find cells with similar gene variability patterns.

Anchors are identified using the Weighted-Nearest Neigh-
bor (WNN) analysis, an unsupervised framework to learn
the relative utility of each data type in each cell, en-
abling an integrative analysis of multiple modalities [18].
In particular, this work exploits the Seurat function
FindIntegrationAnchors rather than the other similar
function FindTransferAnchors even if it is computation-
ally more expensive. This is because the first procedure aims
for full data integration and not just a transfer of information
(e.g., metadata such as cell type labels) from RD to QD. More-
over, Seurat recommends the FindTransferAnchors
function when datasets are similar, with conserved cell type
populations, and not too different in the number of cells, which
is not the case considered in this paper.

The FindIntegrationAnchors function takes as input
the two datasets and the previously selected features (i.e.,
genes with high expression variability). It produces the an-
chors, i.e., the couples of cells from the two datasets (Fig.1-B).
In the case of datasets with comparable numbers of cells, this
process would find several anchors and filter them to retain
the best ones based on an internal score. However, when the
query cells are few, none are filtered out, and the result is a
list of about five reference cells per query cell.

Anchors can be used to perform datasets integration. Inte-
gration refers to combining the datasets at the data level for
a joint analysis. This work implements it through the Seurat

IntegrateData function, which computes a centered and
corrected version of the data, starting from the expression dif-
ferences of the anchor cells and modifying the expression data
for all the other cells. This produces an integrated data matrix,
where the features are the same set of genes, the cells are the
two combined groups, and the data are a jointly corrected
version of the original ones. This matrix can be analyzed as a
gene expression matrix [19], obtaining a joint 2D visualization
that in this paper is a Uniform Manifold Approximation and
Projection (UMAP) (Fig.1-C), which allows investigating the
query cells’ position compared to the reference cells. This can
be used to assess the query cell types based on their neighbors,
which is fair to assume of the same kind.

C. Choosing cells
After obtaining the integrated dataset, it is, in principle,

possible to link the electrophysiology data from the query cells
with the reference cell types. However, a direct relationship
between the gene expression profile and electrophysiological
features is inaccurate. The only possible correlation is between
electrophysiology data and neuron cell types, under the non-
obvious hypothesis that neurons classified with the same cell
type are in the same electrophysiological cell state. Indeed,
cell states and cell types do not trivially correlate.

Therefore, this work aims to select only a few specific cells
from RD that are “similar” to cells in QD to employ in the
actual multi-modal study (Fig. 1-D). The cells in question must
have the gene expression profiles similar to the query cells, so
you can transfer whatever single-cell analysis was performed
on QD to the reference coupled cells.

The main question is: which are the best cells to choose
from RD? To answer this question, leveraging on the previous



computations, there are two options: (1) using the Nearest
Neighbors (NN) concept and (2) employing the anchors.

NN are the cells with a lower euclidean distance from the
query cells in the joint 2D UMAP. In this approach, the shorter
the distance, the higher the cellular similarity (i.e., near cells
likely are in the same cell state). This paper only considers
the first NN, obtaining one neighbor reference cell for each
query cell.

The anchors are couples of cells from the two datasets,
and their computation process (see Section III-B) is naturally
linked to cells sharing the same state between datasets. Thus,
they are perfect candidates. There are several anchors for each
query cell, each characterized by a score. Therefore, it is
possible to decide how many of them to take based on this
score. This ends up with 1 up to 4-5 reference cells per query
cell.

Even if these two possible cell subgroups seem similar, they
tend to consist of very different cells. Therefore, it is advised
to understand which are the best, meaning the ones sharing
the most similar gene expression profiles to the query cells.
The following section proposes a set of metrics to accomplish
this task.

D. Similarity Metrics

This paper relies on quantitative metrics to define the
optimal reference cells for each query cell. The goal is to
investigate if the cells identified in Section III-C have gene
expression profiles comparable with their related query cells
(Fig. 1-E). This is not a trivial problem. First, gene expressions
range in a continuum, meaning it is impossible to assess their
similarity through a simple comparison. Second, the difference
in sequencing depth makes comparisons even harder. The wide
discrepancies in data sparsity lead to genes detected in one
dataset and not in others due to the experimental setup rather
than to the biological information [11].

To overcome these limitations, this paper proposes to em-
ploy the Rand Index (RI) as a similarity metric. RI is used
in data clustering to measure the similarity of data partitions
[20]. Given two partitions, X and Y , of the same group S of
n elements, RI is defined as:

RI(X,Y ) =
C(
n
2

) (1)

where C is the number of agreements between X and Y . In
our problem, S is the set of considered genes, while X and
Y are the gene expression profiles of two cells. RI cannot
be computed on continuum values. The employed solution is
to binarize the expression profiles (i.e., a gene can be either
expressed or not expressed). RI indicates if two cells express
the same set of genes, evaluating how much their expression
profiles match.

When applied to the specific problem presented in this
paper, RI can be calculated in different flavors. Let us denote
with CQ|G|×|Q| the binarized raw count matrix of QD and
CR|G|×|R| the binarized raw count matrix of RD, where G
is the set of genes, Q the set of query cells, and R the set

of reference cells. The standard RI between two cells q ∈ Q
and r ∈ R is computed using (1) between the two vectors
CQ|G|×q , and CR|G|×r.

Due to the high variability of scRNA-seq data, considering
all genes in the datasets makes it hard to identify identical
profiles between cells. Therefore, it is compelling to restrict the
analysis to a reduced set of cell-state-related genes (relevant
for downstream analyses) and have a higher chance of being
concordant between cells. The proposed solution is to look
at the genes with high expression variability coming from
the pre-integration selection in Section III-B and a list of
synaptic protein-related genes employed by Fuzik et al. in [12].
These synaptic protein-related genes are specific for patch-seq
downstream functional analysis. In general, the approach is
to look for functionally peculiar genes related to the target
investigation. This led to the definition of two specific RI
versions defined as:

RIvar(CQ|V |×q,CR|V |×r)

RIeph(CQ|E|×q,CR|E|×r)
(2)

where V ⊆ G is the subset of the variable genes and E ⊆ G
is the subset of electrophysiology-related genes.

In case QD has a significantly low depth, very few RNA
molecules may be detected, and too many genes appear not
expressed in the cells. A good solution, in this case, is to
define the strict RI between two cells q and r computed on
the subset of genes expressed in the query cells to ensure the
comparison of something experimentally detected:

RIs(CQ|Sq|×q,CR|Sq|×r) (3)

where Sq ⊆ G is the subset of genes such that CQsq×q = 1
with sq ∈ Sq , meaning all the genes expressed in cell q. Based
on this definition, it is possible to define the strict version
RIsvar and RIseph of the two metrics defined in (2).

Finally, it is possible to calculate RI for two cells q and r
on the integrated data:

RIi(ID|G|×q, ID|G|×r) (4)

where ID|G|×|I| is the integrated data matrix, and I = Q∪R is
the ensemble of query and reference cells. Again, it is possible
to compute the integration version RIivar and RIieph of the two
metrics defined in (2).

The proposed method computes all these metrics between
the query cells and their respective reference cells from
Anchors and NN couples. Given the multitude of variations of
the metric, it is fair, for explanation purposes, to investigate the
mean values of all of them. In particular, the mean between
the three different features subsets on the standard version
RImean, on the strict version RIsmean, and the integration
version RIimean. This estimation clarifies which are the most
similar cells to each query cell, to which it is fair to assign
the labels and analysis results from electrophysiology. The fol-
lowing section presents the results of the proposed procedure
and the metrics obtained from two examples.



IV. RESULTS

The proposed methodology was tested on two use cases.
The first use case aimed at performing cross-validation using

an ad hoc scRNA-seq dataset created from the Allen Brain
Map database [16] consisting of 14,249 cells from the motor
and visual cortex of a mouse brain sample [21]. The Allen
Institute provides very high-quality experimental data for
various brain analyses. In particular, single-cell data are high-
throughput and have high sequencing depth, therefore are the
perfect candidates to be used as RD. As discussed in Section
III-A, non-neuronal cells were removed from the dataset using
only cells labeled as “Glutamatergic” or “Gabaergic.” The
resulting dataset comprising 13,411 cells was used to create
QD and QD.

The second use case consisted of a patch-seq dataset of 83
neurons from a mouse used as QD. The scRNA-seq part of
the data is freely available on the NCBI’s Gene Expression
Omnibus (GEO) portal with the accession code GSE70844.
The full dataset of 13,411 neurons from the first use case was
used as RD.

A. Cross-validation: Allen Subset vs. Allen

n
QD was created by randomly selecting 80 cells from the

Allen dataset (after removing the non-neuronal cells), creating
a synthetic analogous of a patch-seq dataset.

As a preliminary cross-check, RD was created considering
all 13,411 cells, including those in QD, to assess that each
query cell had one anchor corresponding to its copy in RD,
confirming the capability of the approach to identify identical
cells correctly.

The remaining part of the cross-validation was conducted by
building RD from the 13,411 available neurons and removing
the 80 selected query cells.

Fig. 2 shows the embeddings of RD (left) and QD (right)
after applying preprocessing (see Section III-A). From RD,
one can appreciate the different neuron subtypes, which com-
pose the excitatory and inhibitory neurons of the cortex. In the
case of QD, the 80 cells are equally divided into two groups,
likely identifying only the two general types of neurons and
not distinguishing all the different subtypes. This highlights
how low-throughput datasets do not have a sufficient sample
size to detect cellular heterogeneity properly.

The next step was SCTrasform, which resulted in a
17,419x80 matrix for QD and a 34,401x13,331 matrix for
RD. The selection of the shared variable genes resulted in
400 genes. Employing RD, the anchor function returned 400
anchor couples, corresponding to about five reference cells for
each query cell.

The next step was to check that the anchor couples were
consistent in cell type, meaning the query cells were linked
to the right cell types guaranteeing at least some similarity.
This was trivially done by checking the labels of query and
reference cells (which, in this case, come from the same
dataset). Then, the actual integration followed. The result was
a 2,000x13,491 data matrix containing the corrected gene

expression values for all cells. Proceeding with the process-
ing of the integrated matrix yielded the joint embedding of
the cells. In the visualization, the general structure of the
embedding remained relatively unchanged from that of RD
alone, given the small number of cells added from QD. The
query cells were spread across all the different cell subtypes
clusters. Based on this UMAP embedding, the search for the
NN of the query cells that, as explained in Section III-C, are
good candidates for integration identified 80 reference cells,
one for each query cell. The NN cells did not correspond
to the anchors; they were a separate subset of cells. This
highlights how identifying the best candidate cells for the
query dataset enrichment is far from trivial. Therefore, the RI
metrics investigation is fundamental. The best case scenario
is to find couples of cells with RI ideally between 0.9 and
1, meaning they make an almost perfect match. Since the
calculated RI metrics are many, to jointly account for their
contribution to the quality of cell couples matching, this step
considered their mean values (already explained at the end of
Section III-D).

Fig. 3 shows a scatterplot of the cells visualizing their
RImean against their RIsmean. The plot includes all the NN
and the top 80 anchors (based on mean RI). One can observe
that, in general, the identified cells have pretty high metrics
values (around 0.8). Moreover, it appears that the anchors
(in red) tend to have better similarity with QD than the
NN (in light blue). Fig. 4 plots cells using RImean against
RIintmean. Here, cells appear to be more scattered, and the
higher RI values of anchors are less evident yet still present.
As last Fig. 5 shows RIvarmean(the mean between versions
of RI on the variable features) against RIephmean (the mean
between versions of RI on the electrophysiology genes) which
are relevant and characterizing versions for the similarity
investigation between cells. Again, the cells represented have
both high metrics (around 0.8-0.9).

B. Patch-seq vs. Allen

The second use case applied the same analysis presented for
the cross-validation to a 83 cells QD obtained from a patch-seq
dataset [12], and the 13,249 cells RD mouse brain cortex Allen
dataset already used for cross-validation [21].

Analyzing QD alone results in Fig. 6 show a population of
cells that were not clearly divided into subgroups, making it
difficult to distinguish between excitatory and inhibitory neu-
rons, hampering cell type investigation and thus highlighting
the need to enrich the sample size. Applying the proposed
method, the first step was the SCTrasform of QD, resulting in
an 8,853x83 matrix. Using this matrix, we could identify 415
anchor couples, corresponding, similarly to the previous case,
to about 5 reference cells per query cell. At this point, the first
differences from the prior case appeared. The scores attributed
to the anchor cells were lower (with a mean of 0.53 among
all cells, against 0.6 in the previous case). This was probably
due to the more significant difference between QD and RD
and the consequent higher difficulty in finding the proper
anchors. The following step, i.e., data integration, created a



Fig. 2. UMAP visualization of the RD (left) and the 80 cells QD (right). The cell types indicated in the legend are all Excitatory and Inhibitory neuron
subtypes. The analysis of the QD results in two groups, even if the low number of cells is insufficient for a more precise cellular heterogeneity analysis.

Fig. 3. Graph of the RImean against RIsmean. It highlights how the anchors
appear to have overall better performances, especially for RIsmean.

2,000x13,574 matrix with the corrected integrated data. After
processing it, we obtained a 2D joint visualization (Fig. 7),
where again, there are not many differences with the RD alone,
given the prevalence of reference cells compared to query
cells. Interestingly, the query cells were not homogeneously
divided across all cell types. There was an unbalance between
query cells in the Vip/Lamp5 inhibitory neuron clusters to
Pvalb/Sst inhibitory neuron clusters, which is in line with
what was found by [12] on the same dataset. Again, it was
trivial to find the 83 NN of the query cells based on this
UMAP embedding. After identifying both the anchors and the
NN, the procedure investigated their similarity with the query
cells. Given the high discrepancy in sequencing depth and the
consequent difference in the sparsity of the two datasets, cells
could diverge in gene expression profile due to batch effects
and not for actual discrepancies. For this reason, the strict
version of RI, which considers only genes expressed in the

Fig. 4. Graph of the RImean against RIint
mean. On the integrated version,

the anchors are not better than the NN couples, but the latter has lower metrics
in some isolated cases (bottom left).

query cells, is the best fit to measure the similarity. In this
regard, Fig. 8 represents the NN and the top 83 anchors (by
mean RI) in a graph of RImean against RIsmean.

Again, the anchors were the reference cells with higher
performances, showing that they are the preferable cells to
consider for integration. The RImean against RIintmean graph
is not much different, showing high values for the RI metrics.
Likewise, the RI metrics of RIvarmean and RIephmean were
optimal (around 0.8), highlighting that these cells have gene
expression similarities with the query cells on these relevant
features, crucial for downstream analyses.

In both case studies, it was evident that the proposed method
identified cells from RD with very similar gene expression pro-
files to QD, properly handling the differences in experimental
quality between the two datasets. In particular, the anchors
found by the integration process were the highest performing



Fig. 5. Graph of the RIvarmean against RIephmean. These metrics
are precious to investigating the relevant features for downstream analyses.
The performances are quite high (especially for the anchors), ensuring the
similarity of the couples of cells on these genes.

Fig. 6. patch-seq cells after processing. Even if not separated, one can identify
two groups of cells, identifying Excitatory and Inhibitory neurons, but the
study of the heterogeneity is limited.

ones, even if the NN found in the integrated visualization were
also good candidates (Fig. 10).

V. CONCLUSIONS

In conclusion, this work proposed a procedure to enrich the
sample size of low-throughput scRNA-seq experiments, and
in particular multi-modal experiments like patch-seq, where
manual experimental procedures limit the throughput. The
method aimed to go beyond the standard practices based on
cell-type transfer that employ an external reference dataset
and associate query cells to clusters of reference cells through
their cell-type label. This bulk-fashion analysis is not opti-
mal for specific electrophysiology investigations since elec-
trophysiological cell states are not trivially correlated with
cell types. Therefore, this paper presented a procedure to find
the most similar reference cells to the query cells, providing
a single-cell sample enrichment. The method employed data
integration analysis (through Seurat). Throughout this process,
it was possible to find two types of cell couples, the anchors
and the Nearest Neighbors. Moreover, the paper proposed

Fig. 7. Joint visualization of Query and Reference. The Query cells are not
homogeneously divided between all cell types (as in the previous case), but
there is a prevalence of them on Vip/Lamp5 Inhibitory neurons, which is in
line with what was detected in [12]

a series of metrics based on the Rand Index to assess the
similarities of the gene expression profiles of the coupled cells.
These metrics were suitable to investigate cell similarities
in case of high experimental differences between QD and
RD, e.g., differences in sequencing depth and subsequent
sparsity discrepancies. In particular, some of these metrics
focused on specific sets of genes related to general cellular
heterogeneity (such as variable features) and function (such
as electrophysiology-related genes). The proposed method
applied for cross-validation and to a patch-seq dataset led to
interesting results. The technique generally identified optimal
couples between query and reference cells, which showed
overall high values on all the metrics. Interestingly, the anchors
performed better than NN couples, highlighting a higher-
performance type of couple.

For future works, it would be interesting to test this method
between two patch-seq datasets, thanks to new strategies which

Fig. 8. Graph of the RImean against RIsmean. It highlights, again, how the
anchors appear to have overall better performances, especially for RIsmean.



Fig. 9. Graph of the RIvarmean against RIephmean. These metrics
are precious to investigating the relevant features for downstream analyses.
The performances are quite high (especially for the anchors), ensuring the
similarity of the couples of cells on these genes.

Fig. 10. Bar plots of the mean of RImean and RIint
mean on all the Anchors

and NN couples. It shows how the Anchors generally have better metrics
than NN couples. It also shows how the strict version better uncovers the
similarities of the cells.

promise to allow higher throughput for this technology [22].
Therefore, one could test that the chosen reference cells also
have the same electrophysiological characteristics.

To conclude, this preliminary work aimed to highlight a
different, more specific way to enrich low-throughput experi-
ments as an alternative to the standard bulk-fashion integration
methods. The results emphasized how this procedure is feasi-
ble and a promising approach for solving this problem.

VI. DATA AND CODE AVAILABILITY

The source code and all data required to reproduce
the results presented in this paper and to apply the
same procedure to other datasets are available on an
Open Access repository: https://github.com/smilies-polito/
patch-seq-sample-enrichment.
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