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Abstract
Cells performdirectedmotion in response to external stimuli that they detect by sensing
the environment with their membrane protrusions. Precisely, several biochemical and
biophysical cues give rise to tactic migration in the direction of their specific targets.
Thus, this defines amulti-cue environment in which cells have to sort and combine dif-
ferent, and potentially competitive, stimuli. We propose a non-local kinetic model for
cell migration in which cell polarization is influenced simultaneously by two external
factors: contact guidance and chemotaxis.We propose two different sensing strategies,
and we analyze the two resulting transport kinetic models by recovering the appropri-
ate macroscopic limit in different regimes, in order to observe how the cell size, with
respect to the variation of both external fields, influences the overall behavior. This
analysis shows the importance of dealing with hyperbolic models, rather than drift-
diffusion ones. Moreover, we numerically integrate the kinetic transport equations in a
two-dimensional setting in order to investigate qualitatively various scenarios. Finally,
we show how our setting is able to reproduce some experimental results concerning
the influence of topographical and chemical cues in directing cell motility.
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1 Introduction

Cell migration is a fundamental mechanism in a huge variety of processes, such as
wound healing, angiogenesis, tumor stroma formation, and metastasis. During these
processes, cells sense the environment and respond to external stimuli orienting their
direction of motion toward specific targets. This mechanism is referred to as taxis, and
it results in the persistent migration in a certain preferential direction. The guidance
cues leading to directedmigrationmay be biochemical or biophysical. One example of
a biochemical cue is the concentration of soluble molecules in the extracellular space.
This cue gives rise to chemotaxis, which is considered a mono-directional stimulus.
Other cues generating mono-directional stimuli include electric fields (electrotaxis, or
galvanotaxis), light signals (phototaxis), bound ligands to the substratum (haptotaxis),
or the extracellular matrix (ECM) stiffness (durotaxis) (Lara and Schneider 2013).
Precisely, ECM stiffness can be counted as a biophysical cue, as well as the collagen
fiber alignment. In particular, the latter is shown to stimulate contact guidance (Friedl
and Brocker 2000; Friedl 2004), i.e., the tendency of cells to migrate by crawling
on the fibers and following the directions imposed by them. Contact guidance is a
bi-directional cue. In fact, if the fibers are not polarized, there is no preferential sense
of motion along them.

Inmany pathological and physiological processes, there are several directional cues
inducing different simultaneous stimuli. While the cell’s response to each of them has
been largely studied, the cell’s response to a multi-cue environment is much less
understood. Some studies have shown how there can be competition or cooperation
between these different stimuli. Thus, the fundamental issue concerns the way cells
rank, integrate, or hierarchize them, especially when these stimuli are competing (e.g.,
when they are not co-aligned) (Rajnicek et al. 2007). Therefore, with the present
work we propose a kinetic model aimed at analyzing cell behavior in response to two
different stimuli.We study theway the simultaneous sensing of two cues—chemotaxis
and contact guidance—influences the choice of the cell migratory direction. We take
into account non-local sensing of both cues, since cells extend their protrusions in
order to sense the environmental stimuli.

1.1 Biological Background

The coexistence of chemotaxis and contact guidance happens in vivo in a variety of
situations, like wound healing or cancer progression. For example, during wound heal-
ing, fibroblasts migrate efficiently along collagen or fibronectin fibers in connective
tissues. In tumor spread andmetastasis formation, cancer cells follow the aligned fibers
at the tumor-stroma interface and, thus, are facilitated to reach blood and lymphatic
vessels (Steeg 2016; Provenzano et al. 2006, 2009). In both cases, chemotactic gradi-
ents have been shown to accelerate and enhance these processes (Lara and Schneider
2013; Bromberek et al. 2002). Another important issue concerns the design of plat-
forms for controlling multiple directional cues and, in particular, soluble factors and
aligned fibers. In fact, there are not many experimental studies that look at the com-
bined effect of chemotaxis and contact guidance (Lara and Schneider 2013). In one
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of the first works on this topic (Wilkinson and Lackie 1983), the authors analyze con-
tact guidance of neutrophil leukocytes on fibrils of collagen, showing a more efficient
migration in the fiber direction, instead of in the perpendicular one. They also observe
that, in the presence of a chemoattractant, there is cooperation or competition between
the cues depending on their relative orientations. In the work by Bromberek et al.
(2002), the enhancement of the alignment along the fibers is observed in presence of a
co-aligned chemoattractant, while, in Maheshwari et al. (1999), the authors study the
effects of different fibronectin densities and growth factor (EGF) concentrations on the
quantitative regulation of random cell migration. An interesting 2D platform, allowing
to study contact guidance and chemotaxis, was proposed by Sundararaghavan et al.
(2013). Here, the authors demonstrate an additive effect of chemical gradients and
fiber alignment by measuring the persistence time and a stronger dominance of con-
tact guidance when the chemotactic gradient is aligned perpendicularly to the fibers.
Thus, as for multiple directional cues different scenarios may happen, a deep under-
standing of cell migrational responses is a key step for the comprehension of both
physiological and pathological processes.

1.2 Mathematical Models for Directed Cell Migration

There is a huge variety ofmathematicalmodels concerning different aspects of directed
cell migration. They range from microscopic (also called individual-based) models,
describing migration at the cell level, up to macroscopic ones, concerning collective
cell migration at a tissue level.

Among individual-based models, there are many examples regarding separately
chemotaxis (e.g., see Di Costanzo et al. 2020; Giniūnaitė et al. 2019 and references
therein) and migration on the ECM (Colombi et al. 2017; Scianna et al. 2013; Schlüter
et al. 2012). Concerning macroscopic settings, the famous Keller–Segel model is one
of the first examples of a drift-diffusion system postulated at the macroscopic level
for the study of the chemotactic effects (Keller and Segel 1970). Then, many efforts
were made in order to encompass some defects of this setting, as well as for deriving it
from lower scale models (e.g., see Painter 2019; Hillen and Painter 2008; Othmer and
Hillen 2002; Othmer and Stevens 2001; Bellomo et al. 2015 and references therein).
Between microscopic and macroscopic models, the mesoscopic settings represent an
intermediate scale, which includes microscopic dynamics and describes the statistical
distribution of the individuals. As in the case of kinetic theory, these models allow to
recover the appropriate macroscopic regime, which inherits some details of the micro-
scopic dynamics and, thus, gives more significance to some of the derived parameters
(e.g., see Othmer and Hillen 2002; Colombi et al. 2015; Chalub et al. 2004; Eftimie
2012 and references therein). The two major models describing contact guidance at
the mesoscopic level were proposed by Dickinson (2000) and Hillen (2006), and both
models are local in the physical space.

Although the wide literature concerning single-cue models, not many models exist
for multiple cues, especially settings describing in details the process of cell sensing.
Among the few examples of multiple-cue analysis, we recall the work proposed by
Painter et al. (2000), where amacroscopic drift-diffusionmodel is derived from a space
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jump process describing the response to multiple chemicals. A review of macroscopic
PDEs including multiple-taxis has been recently proposed by Kolbe et al. (2021).
Looking specifically at the combination of chemotaxis and contact guidance, inWagle
and Tranquillo (2000) one of the first models describing microscopic dynamics is pro-
posed, while, in Azimzade et al. (2019), a microscopic double-cue stochastic model
was introduced to analyze cell migration and classify tumor associated collagen sig-
natures (TACS). We also recall the kinetic models for cell–cell interactions on a fiber
network in presence of a tactic cue presented by Chauviere et al. (2007). Recently, an
extension of the M5 model (Hillen 2006) was extended in order to include chemo-
taxis, with the aim of showing network formation in the presence of a chemoattractant
(Thiessen and Hillen 2021). Non-locality in the description of cell sensing over a finite
neighborhood and in presence of two external cues was firstly introduced by Loy and
Preziosi (2020); Loy and Preziosi (2020). This non-local kinetic model takes into
account the dependence of the cell sensing on the cell size (e.g., on the maximum cell
protrusion length) and includes two cues, one affecting cell direction, while another
influencing cell speed.

1.3 Outline of the Paper

Due to the lack of mathematical models looking at the interplay between chemotaxis
and contact guidance from a non-local perspective and the biological relevance of this
topic, in this paper we develop a non-local kinetic model describing the combined
effect of these two directional cues on the choice of the direction of cell migration.
We propose a transport equation implementing a velocity-jump process in which the
transition probability describing the choice of the new velocity takes into account the
non-local sensing of the fiber network and a chemoattractant. In particular, we pro-
pose two possible sensing strategies: in the first case, cells can measure the guidance
cues independently and weight them differently; in the second case, cells measure
simultaneously the two cues and weight them equally. To the best of our knowledge,
this is the first time that a non-local sensing of the fibers distribution defined at a
mesoscopic level is considered and is coupled with a non-local sensed chemoattrac-
tant. As the kinetic approach allows to derive macroscopic models, we will discuss
how the choices of the transition probability, together with the size of the sampling
volume and the characteristic variability of the two cues, determine the macroscopic
behaviors. This analysis, along with the numerical simulations, will show how differ-
ent regimes can lead to very different macroscopic equations and that a drift-diffusion
model directly stated at the macroscopic level is not always capable of capturing this
dynamics.

Specifically, in Sect. 2.1 we present some mathematical preliminaries guiding the
reader toward a more clear understanding of the mathematical approach, while the
novel characteristic aspects of our transport models are introduced in Sect. 2.2. Then,
in Sect. 3 we derive the macroscopic models. Precisely, after the brief introduction
of Sect. 3.1 about the well known techniques based on asymptotic expansions we
use in the following sections, we shall analyze the possible macroscopic regimes in
Sect. 3.2, in relation to both cell size and characteristic lengths of variation of the
cues. In Sect. 3.3 and 3.4, we derive the macroscopic limits in the various regimes
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starting from the transport models implementing the two different sensing strategies.
In Sect. 4, we present different numerical tests, in which we numerically integrate the
kinetic transport equations in order to qualitatively investigate various scenarios in a
two-dimensional setting. We highlight the main features of our approach and make
some considerations about the derived macroscopic models. Finally, in Sect. 5, we
present an application of our model to an experimental setting, while in Sect. 6 we
shall draw some conclusions and illustrate the potential and the possible outcomes of
our work.

2 A Kinetic Model for Chemotaxis on a Fiber Network

2.1 Preliminaries

The cell population is described at a mesoscopic level through the distribution density
p = p(t, x, v, v̂) that, for every time t > 0 and position x ∈ � ⊆ R

d , gives the
statistical distribution of the speeds v ∈ [0, V ], where V is the maximal speed a cell
can achieve, and of the polarization directions v̂ ∈ S

d−1, being S
d−1 the unit sphere

boundary in R
d . Thus, the velocity vector will be given by v = vv̂. A macroscopic

description for the cell population can be classically (Cercignani 1987) recovered
through the definition of moments of the distribution function p. Precisely, we can
define the macroscopic cell density in the physical space

ρ(t, x) =
∫
Sd−1

∫ V

0
p(t, x, v, v̂) dv dv̂ , (1)

that is the expected mass in (t, x). The mass mean velocity that is given by the average
of the microscopic velocities of the normalized population p/ρ can be defined as
follows

U(t, x) = 1

ρ(t, x)

∫
Sd−1

∫ V

0
v p(t, x, v, v̂) dv dv̂ .

As a consequence, the first moment of p

ρ(t, x)U(t, x) =
∫
Sd−1

∫ V

0
v p(t, x, v, v̂) dv dv̂ (2)

may be seen as the mass flow. Concerning higher-order moments, we shall consider

D(t, x) =
∫
Sd−1

∫ V

0
(v − U) ⊗ (v − U) p(t, x, v, v̂) dv dv̂. (3)

Since we are not considering hard spheres, as instead classically done in particle
physics, and, in particular, cells are self-propelled entitieswith an inner energy,we shall
not refer to (3) as the energy tensor or momentum flow. In particular, we only consider

123



42 Page 6 of 46 M. Conte, N. Loy

(3) to be a diffusion tensor of the population that is given by the variance–covariance
matrix of the normalized population multiplied by the cell density. The latter gives
information about the breadth of the distribution of the microscopic velocities with
respect to the average velocity (Painter and Hillen 2018). The mesoscopic model
consists in the following transport equation for the cell distribution

∂ p

∂t
(t, x, v, v̂) + v · ∇ p(t, x, v, v̂) = J [p](t, x, v, v̂) (4)

where the operator ∇ denotes the spatial gradient, so that the term v · ∇ p takes into
account the free particle transport. The term J [p](t, x, v, v̂) is the turning operator
that describes the scattering of the microscopic velocity in direction and speed. In
the present case, the typical microscopic dynamics of the cell is the run and tumble
(Block et al. 1983; Berg 1983) that prescribes an alternation of runs over straight
lines and re-orientations. The choice of the new direction can be random or biased
by the presence of external factors, which might attract or repel the cells. The run
and tumble is classically modeled by a scattering of the microscopic velocity called
velocity jump process (Stroock 1974), characterized by a turning frequency μ and
a transition probability T . The latter models the probability of choosing a certain
direction v̂ and speed v after a reorientation. For our purposes, we assume that the
transition probability does not depend on the pre-reorientation velocity, as classically
done in the pioneering work concerning kinetic equations for velocity jump processes
(Stroock 1974; Othmer et al. 1988; Hillen 2006) and in the previous works with
non-local transition probabilities Loy and Preziosi (2020); Loy and Preziosi (2020).
Therefore, the turning operator reads

J [p](t, x, v, v̂) = μ(x)
(
ρ(t, x)T (x, v, v̂) − p(t, x, v, v̂)

)
. (5)

As T is a conditional probability, it satisfies ∀x ∈ �

∫
Sd−1

∫ V

0
T (x, v, v̂)dvdv̂ = 1. (6)

The mean macroscopic velocity after a tumble is given by the average of T

UT (x) =
∫
Sd−1

∫ V

0
v T (x, v, v̂) dv dv̂ (7)

and the variance–covariance matrix

DT (x) =
∫
Sd−1

∫ V

0
T (x, v, v̂)(v − UT ) ⊗ (v − UT )dv dv̂. (8)

Sincewe are going to consider two-dimensional bounded domainswithout loss of cells
and no cells coming in, we assume conservation of mass. Thus, we will require that
boundary conditions, which must be imposed at the kinetic level, implement no-flux
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boundary conditions at themacroscopic level (also named biological no-flux boundary
conditions) (Plaza 2019). Specifically, we consider, at the kinetic level, a particular
prototype kind of no-flux conditions that are specular-reflecting boundary conditions,
which means that cells are reflected with an angle of π/2 when they hit the wall, as
previously done by Loy and Preziosi (2020).

2.2 Structure of the Transition Probability

In this section, we introduce the transition probability modeling the decision process
of a cell in the presence of two directional guidance cues: a fibrous ECM and a
chemoattractant. We consider amoeboid cells moving by contact guidance without
proteolysis, i.e., cells hit a fiber and move along the direction of the fiber (Wolf et al.
2003). It has been shown experimentally, for example in the case of glioma cancer
cells (Johnson et al. 2009), that randomly disposed fibers imply isotropic cell diffusion,
while aligned fibers cause anisotropic diffusion of the cells along the direction of the
fibers. The first transport model (the M5model) for contact guidance was proposed by
Hillen (2006), further studied and developed in Painter (2008); Chauviere et al. (2007);
Chauviere et al. (2007), and applied to the study of glioma in Painter andHillen (2013);
Engwer et al. (2015, 2016, 2017); Conte et al. (2020). Following Hillen (2006), we
consider a distribution of fibers described as a distribution defined over the space of
directions given by the unit sphere in Rd ,

q = q(x, v̂), x ∈ �, v̂ ∈ S
d−1 (9)

that satisfies

Q1: q(x, v̂) > 0, ∀x ∈ �, v̂ ∈ S
d−1

Q2:
∫
Sd−1

q(x, v̂) dv̂ = 1, ∀x ∈ �

Q3: q(x, v̂) = q(x,−v̂), ∀x ∈ �, v̂ ∈ S
d−1.

The last condition means that we are considering a non-polarized network of fibers,
so that cells are able to go in both senses in each direction. Being, then, q(x, v̂) a
probability density distribution, we can define the mean direction of the fibers

Eq(x) =
∫
Sd−1

q(x, v̂) v̂ dv̂, (10)

and the variance–covariance matrix of q

Dq(x) =
∫
Sd−1

q(x, v̂) (v̂ − Eq) ⊗ (v̂ − Eq) dv̂ , (11)

that is proved to be the diffusion tensor of the fibers (Hillen 2006). As we consider a
non-polarized fiber network, we have that

Eq(x) = 0, (12)
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meaning that there is no mean direction in the dynamics. When q is a regular prob-
ability distribution, the tensor (11) is symmetric and positive definite and, thus, it is
diagonalizable. Each eigenvalue represents the diffusivity in the direction of the corre-
sponding eigenvector. This means that, if the eigenvalues are equal, there is isotropic
diffusion, while, if they are different, there is a preferential direction of motion, i.e.,
anisotropic diffusion. This allows to reproduce isotropic/anisotropic diffusion on a
non-polarized fiber network (Hillen 2006; Painter 2008). Concerning chemotaxis, we
consider a chemoattractant defined in the region � by a strictly positive definite func-
tion

S = S(x) : � �−→ R+. (13)

For both chemotaxis and contact guidance, we assume that the sensing performed by
the cells is non-local, as cells extend their protrusions, through which they sense the
environment, up to several cell diameters (Berg and Purcell 1977). The maximum
length R of a protrusion is called sensing radius. It has been firstly introduced by
Othmer and Hillen (2002) for modeling a non-local gradient of a chemical and, then,
used in a number of works for describing the sensing of macroscopic quantities (see
Chen et al. 2019 for a review and references therein). In particular, in Loy and Preziosi
(2020) and, later, in Loy and Preziosi (2020) it has been used for the non-local sensing
of the cues affecting cell polarization and speed.

In the present work, we extend the model proposed in Loy and Preziosi (2020)
dropping the effect of a cue on cell speed, which will be unbiased, and assuming
a double sensing of cues that affect cell polarization. Thus, we assume that both S
and q are non-locally sensed by a cell that, starting from its position x, extends its
protrusions in every direction v̂ ∈ S

d−1 up to the distance R. With respect to a local
sensing, assuming a non-local sensing of the fiber network allows to reproduce a wider
range of migration strategies that a cell can perform in order to cleverly move toward
the chemoattractant. Therefore, we consider the quantities

S(x + λv̂), q(x + λv̂, v̂), ∀ x ∈ �, ∀ v̂ ∈ S
d−1, λ ≤ R.

Next to the border of the domain �, we always consider λ such that x + λv̂ ∈ �.
The term q(x + λv̂, v̂) takes into account the possibility of sensing in direction v̂
radial fibers starting from the position x and up to a distance λ. For the cell speed, we
consider the probability density distribution ψ of the speeds defined on the interval
[0, V ] that thus satisfies ∫ V

0 ψ(v)dv = 1. Precisely, we define its mean speed, energy
and variance as

V̄ =
∫ V

0
v ψ(v) dv, D =

∫ V

0
v2 ψ(v) dv , σ 2

ψ = 1

2
(D − V̄ 2),

respectively.
Regarding the sensing of themicroenvironment, in general cells use different recep-

tors located on their membrane. For instance, the interactions between cells and fibers
aremediated by transmembrane receptors, such as the integrins, which allow cell–fiber
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bindings and the activation of related intracellular pathways. Instead, depending on
the chemotactic cue, other receptors or transmembrane units, rather than integrins, can
be recruited for the signal transduction. For example, endothelial cells use vascular
endothelial growth factor receptors (VEGFR -1 -2 -3) in response to the chemotactic
cue given by the vascular endothelial growth factors (VEGFs). Thus, on a first approx-
imation, we can assume that cells respond independently to the information given by
these different receptors and the choice of the new direction results from a combination
of these two responses. Instead, on a second approximation, we can assume that cells
mediate simultaneously the information coming from different receptors and the new
direction is the result of a unique weighting process of the measured information. For
these reasons, we propose two different transition probabilities to describe these two
different sensing strategies: in the first model, the sensing of q and S are independent,
while in the second model a unique sensing is performed.
In the first model, we introduce a transition probability that is the product of two
different independent sensing processes

T [q,S](x, v, v̂) = c(x)
∫
R+

γS(λ)S(x + λv̂) dλ

∫
R+

γq(λ) q(x + λv̂, v̂) dλψ(v) .

(14)

In this case, a cell located in position x extends its protrusions up to a distance R in
each direction v̂. Then, the cell measures the field S(x + λv̂) with specific receptors,
weighting the related information by γS , and, independently, it measures the quantity
q(x + λv̂, v̂), weighting the related information by γq . The sensing functions γS ≥ 0
and γq ≥ 0 have compact support in [0, R] and they may be Dirac deltas centered in
R, if the cell only measures the guidance cues on its membrane (only on x + Rv̂ for
every v̂), or Heaviside functions if the cell measures and gives the same weight to q
and S from x to x + Rv̂ in each direction. Formally, from a stochastic point of view
this choice describes an independence of the two phenomena and, thus, the transition
probability can be seen as the product of the independent probabilities of q and S, i.e.,
T [q,S] = T̂ [q] T̂ [S].

The second model prescribes a simultaneous averaging of the guidance cues S and
q, i.e.,

T [q,S](x, v, v̂) = c(x)
∫
R+

γ (λ)S(x + λv̂) q(x + λv̂, v̂)dλψ(v) . (15)

This transition probability describes a cell in position x that extends its protrusions and
measures in each direction v̂ the two quantities S(x + λv̂) and q(x + λv̂), weighting
both simultaneously with the same sensing function γ ≥ 0. Formally, as the two
sensing are not independent, the transition probability cannot be factorized. In (14)
and (15), c(x) is a normalization coefficient.

We refer to the transport model (4)-(5) with (14) as non-local independent sensing
model, inwhich the cell averages the two cues independently according to two different
sensing functions γq , γS . On the other hand, the transport model (4)-(5) with (15) is
defined as non-local dependent sensing model, describing cells that sense the two cues
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at the same time and average them with a unique sensing kernel γ . In the next section,
we briefly present some preliminaries concerning asymptotic limit procedures and,
then, we derive the hydrodynamics models in four different scenarios.We compare the
macroscopic settings obtained from the two different transition probabilities described
in this section.

3 Derivation of the Hydrodynamic Models

3.1 Preliminaries on Asymptotic Limit Procedures

In order to investigate the overall trend of the system, the macroscopic behavior is
typically analyzed.

Precisely, we are interested in the evolution of ρ(t, x) in the emerging regime of the
system that may correspond to a diffusion-driven regime or to a drift-driven regime.
Therefore, we shall consider a diffusive or a hydrodynamic scaling of the transport
equation (4) with (5), respectively, resulting from a proper non-dimensionalization of
the system. Diffusive and hydrodynamic limits for transport equations with velocity
jump processes have been widely treated by Hillen and Othmer (2000); Othmer and
Hillen (2002); Hillen (2006); Loy and Preziosi (2020); Bellomo et al. (2007); Filbet
et al. (2005). For the reader’s convenience, in the present section we briefly report a
well-known technique based on Hilbert expansions that are aimed at performing the
diffusive and hyperbolic limits of our transport models that we shall present in the
following sections. Formally, we introduce a small parameter ε � 1 and we re-scale
the spatial variable as

ξ = εx, (16)

being ξ the macroscopic spatial variable. According to the other characteristic quan-
tities of the system and up to an appropriate nondimensionlization, the macroscopic
time scale τ will be

τ = ε2t, (17)

corresponding to the parabolic scaling in the case of a diffusion dominated phe-
nomenon, or

τ = εt, (18)

corresponding to the hyperbolic scaling in the case of a drift driven phenomenon. As
widely treated by Othmer and Hillen (2002), we consider a framework in which, up
to the spatial scaling (16), we can expand the transition probability as

T (ξ , v, v̂) = T0(ξ , v, v̂) + εT1(ξ , v, v̂) + O(ε2).
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This means that there are different orders of bias. If we assume that μ = O(1), we
denote by J 0 and J 1 the corresponding operators defined by T0 and T1, respectively,
and we assume that

∫
Sd−1

∫ V

0
T0(ξ , v, v̂) dvdv̂ = 1, (19a)

and

∫
Sd−1

∫ V

0
Ti (ξ , v, v̂) dvdv̂ = 0 ∀i ≥ 1. (19b)

The corresponding first and second order moments are given by

Ui
T (ξ) =

∫
Sd−1

∫ V

0
Ti (ξ , v, v̂)v dvdv̂ (20)

and

D
i
T (ξ) =

∫
Sd−1

∫ V

0
Ti (ξ , v, v̂)(v − Ui

T ) ⊗ (v − Ui
T )dv dv̂ . (21)

Considering the Hilbert expansion of the distribution function p

p = p0 + ε p1 + O(ε2) , (22)

if there is conservation of mass, we have that all the mass is in p0 (Hillen and Othmer
2000), i.e.,

ρ0 = ρ, ρi = 0 ∀i ≥ 1 , (23)

where ρi = ∫
Sd−1

∫ V
0 pi dv dv̂. Furthermore, for performing the diffusive limit we

shall assume that
∫
Sd−1

∫ V
0 pi v dv dv̂ = 0 ∀i ≥ 2 (Hillen and Othmer 2000). The

fundamental property for performing the diffusive limit requires

U0
T = 0, (24)

meaning that the leading order of the drift velocity vanishes. This is coherent with the
fact that the time scale τ = ε2t is chosen because macroscopically the phenomenon
is diffusion-driven. Equation (4), rescaled according to (16)-(17), reads

ε2
∂ p

∂τ
(τ, ξ , v, v̂) + εv · ∇ p(τ, ξ , v, v̂) =J 0[p] + εJ 1[p] + O(ε2) , (25)

whereJ i [p] represents the turning operator defined by Ti (ξ , v, v̂). Equating the terms
of equal order in ε, we obtain the following system of equations.
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In ε0:

J 0[p0](ξ , v, v̂) ≡ μ
(
ρ0T0(ξ , v, v̂) − p0(τ, ξ , v, v̂)

)
= 0 (26)

In ε1:

∇ · (
p0(τ, ξ , v, v̂)v

) = J 0[p1](τ, ξ , v, v̂) + J 1[p0](τ, ξ , v, v̂)

= μ
(
ρ1T0(ξ , v, v̂) − p1(τ, ξ , v, v̂)

) + μρ0T1(ξ , v, v̂)
(27)

In ε2:

∂

∂τ
p0(ξ , v, v̂) + ∇ · (

p1(ξ , v, v̂)v
) = J 0[p2](ξ , v, v̂) + J 1[p1](ξ , v, v̂)

+J 2[p0](ξ , v, v̂) (28)

Eq. (26) implies

p0(τ, ξ , v, v̂) = ρ0(τ, ξ)T0(ξ , v, v̂) (29)

that is the equilibrium state of order zero. From Eq. (27), by inverting J 0, we get

p1(ξ , v, v̂) = − 1

μ
∇ · (

vp0
) + ρ0T1(ξ , v, v̂) . (30)

Precisely, the functional solvability condition necessary for inverting J 0 is

∫
Sd−1

∫ V

0

[
−∇ · 1

μ

(
vp0

) + ρ0T1(ξ , v, v̂)
]
dvdv̂ = 0 for a.e. ξ , (31)

which is satisfied because (24) and (19b) are satisfied.
Integrating (28) over Sd−1×[0, V ], we obtain themacroscopic diffusive limit given

by (dropping the dependencies)

∂

∂τ
ρ + ∇ ·

(
U1
T ρ

)
= ∇ ·

[
1

μ
∇ ·

(
D
0
T ρ

)]
, (32)

being D
0
T (ξ) the diffusion motility tensor. Equation (32) is a diffusion–advection

equation, whereU1
T is the drift velocity of first order. If (24) does not hold, a hyperbolic

scaling is more appropriate. In this case, rescaling the variables as in (16) and (18),
the transport equation (4) reads

ε
∂ p

∂τ
(ξ , v, v̂)+εv · ∇ p(ξ , v, v̂)=μ

[
ρ
(
T0(ξ , v, v̂)+εT1(ξ , v, v̂)

) − p(ξ , v, v̂)
]

. (33)

Since the equilibrium state is the same as before, we consider the Chapman–Enskog
expansion of p in the form
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p(ξ , v, v̂) = ρ0T0(ξ , v, v̂) + εg + O(ε2). (34)

where
∫
Sd−1

∫ V
0 g dvdv̂ = 0. Substituting (34) in (33) and integrating the equation at

the order ε1 over Sd−1 × [0, V ], we obtain
∂

∂τ
ρ + ∇ ·

(
ρU0

T

)
= 0 . (35)

This is an advection equation modeling a drift driven phenomenon. We address the
reader to Loy and Preziosi (2020) for further details about the derivation of the macro-
scopic model. Concerning the boundary conditions (Plaza 2019), at the macroscopic
level no flux boundary conditions for the diffusive limit read

(
D
0
T∇ρ − ρU1

T

)
· n = 0, on ∂�,

being n the outward normal to the boundary, whilst for the hyperbolic limit they are
given by

U0
T · n = 0, on ∂�.

3.2 Mesoscopic Analysis of Two Non-Local External Cues

In linewith the analysis proposed byLoy and Preziosi (2020); Loy and Preziosi (2020),
in order to qualitatively evaluate the effects of the non-locality at themacroscopic level,
we study the impact of both directional cues S and q with respect to the size of the
cell (which is related to the cell sensing radius R). Precisely, the following analysis
refers to spatially heterogeneous fiber networks and chemicals, as for homogeneous
cues there is a loss of significance in considering a non-local sensing. As in Loy and
Preziosi (2020), we introduce the characteristic length of variation of S

lS := 1

max
x∈�

|∇S|
S

. (36)

It allows to approximate S(x + λv̂) with a positive quantity

S(x + λv̂) ∼ S(x) + λ∇S · v̂ ≥ 0 ∀λ ≤ R if R < lS (37)

where we neglect higher-order terms in λ. Beside the above defined characteristic
length of variation of the chemoattractant, in the present work we define an analogue
quantity for the fibers distribution. We define in particular

lq := 1

max
x∈�

max
v̂∈Sd−1

|∇q·v̂|
q

. (38)
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In this case, we can approximate q(x + λv̂, v̂) with a positive quantity

q(x + λv̂, v̂) ∼ q(x, v̂) + λ∇q · v̂ ≥ 0 ∀λ < R if R < lq . (39)

This definition of lq takes into account the variation in directionality of the fibers in
space, which iswhat actually influences cell orientation,more than the spatial variation
in the density of the ECM.We analyze the possible scenarios depending on the relation
between R, lS and lq . For this purpose, let us introduce the parameters

ηS := R

lS
(40)

and

ηq := R

lq
(41)

that quantify the cell measuring capability with respect to the characteristic lengths of
variation of the guidance cues S and q. In particular, ηi < 1, i = q,S, means that the
sensing radius is smaller than the characteristic length of variation ofq (S, respectively)
and, thus, a single instantaneous sensing of the cell is not capable of catching the total
spatial variability of q (S, respectively). On the other hand, if ηi > 1, i = q,S, the
sensing radius is large enough to capture the spatial variability of q (S, respectively).
If we consider the two cues separately, in the first case we expect that the sensing of q
(S, respectively) induces a diffusive behavior, while in the second scenario the overall
behavior induced by q (S, respectively) is drift driven. However, as we are considering
the two guidance cues simultaneously affecting cell polarization, we have to take into
account four limit cases:

i) fast variation of both external cues: ηq , ηS � 1;
i i) slow variation of both external cues: ηq , ηS � 1;
i i i) fast q and slow S variation: ηS � 1, ηq � 1;
iv) fast S and slow q variation: ηS � 1, ηq � 1.

We remark that the concept of fast and slow variation refers to the cell sensing capa-
bility and it is intended with respect to the relation between cell sensing radius and
characteristic variation length of the cues.

In the next section,we analyze themacroscopic trends in the cases i)−iv). Precisely,
in case (i), a Taylor expansion for both cues cannot be used, since there is no guarantee
that the first order approximations are positive, aswell as in case (i i i) and (iv) for q and
S, respectively. A priori, in order to quantify the relative contribution of chemotaxis
to contact guidance, we introduce the parameter

η = ηq

ηS
(42)

that is larger than 1 if contact guidance prevails, whilst it is smaller then 1 if chemotaxis
is stronger. Due to (41) and (40), we have that, despite its definition, η does not depend
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on the size and sensing capability of the cell, but only on the characteristics of the
cues, as η = ηq/ηS = lS/lq . In particular, if lS is larger than lq , i.e., η > 1, it means
that the gradient of q is steeper than the one of S, thus enhancing a stronger effect of
contact guidance on the dynamics. We may also observe that in the case of fast q and
slow S variation (case (i i i)) we always have η > 1 while in the case of fast S and
slow q variation (case (iv)) we always have η < 1, i.e., contact guidance is weaker
than chemotaxis.

3.3 Amoeboid Motion and Chemotaxis: Non-Local Independent Sensing

We first consider the non-local independent sensing case (4)-(5) with (14). We recall
the expression of the transition probability

T [q,S](x, v, v̂) = c(x)
∫
R+

γS(λ)S(x + λv̂) dλ

∫
R+

γq(λ) q(x + λv̂, v̂) dλψ(v) .

The average of T , which is the equilibrium velocity of the cell population, is given by

UT (x) = c(x) Ū
∫
Sd−1

v̂
(∫

R+
γS(λ)S(x + λv̂) dλ

∫
R+

γq(λ) q(x + λv̂, v̂) dλ

)
dv̂ .

(43)

3.3.1 Case (i): Fast Variation of Both External Cues

In this case, we shall choose

ε = min

{
1

ηq
,
1

ηS

}
.

As a consequence of the fact that T cannot be expanded in powers of ε after the re-
scaling with (16), we have that the equilibrium velocity UT is directly given by (43).
Therefore, we perform a hyperbolic scaling that leads to the following macroscopic
equation for the cell density:

∂

∂τ
ρ(τ, ξ) + ∇ · (ρ(τ, ξ)UT (ξ)) = 0 , (44)

with UT (ξ) given by the re-scaling of (43) with (16).

3.3.2 Case (ii): Slow Variation of Both External Cues

In this case, we can expand both S(x+λv̂) and q(x+λv̂, v̂) and consider the approx-
imations (37) and (39) for λ < min{lq , lS}. Thus, we approximate the transition
probability by substituting (37) and (39) in (14), and we obtain the following approx-
imation for the turning kernel T [q,S] :
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T [q,S](x, v, v̂)

= c(x)
[

S
0 


q
0 S(x) q(x, v̂) + 
S

0 

q
1 S(x)∇q · v̂ + 
S

1 

q
0 q(x, v̂)∇S · v̂

]
ψ(v)

(45)

where we neglect higher orders terms in λ. In the latter,

c(x) = 1

S(x) 
S
0 


q
0

and


S
i :=

∫
R+

λiγS(λ) dλ i = 0, 1



q
i :=

∫
R+

λiγq(λ) dλ i = 0, 1 .

The quantities 

q
0 , 
S

0 are the weighted (by γq , γS) measures of the sensed linear
tracts in every direction, whilst 
q

1 , 
S
1 are the averages of γq , γS on [0, R]. Then, we

introduce the small parameter

ε = min{ηq , ηS} (46)

and re-scale the space variable as ξ = εx, getting

T0[q,S](ξ , v, v̂) = q(ξ , v̂)ψ(v) . (47)

This expression means that the equilibrium is determined by the fiber distribution.
Moreover,

T1[q,S](ξ , v, v̂) =
[

q ∇q · v̂ + 
S q(ξ , v̂)

∇S
S(ξ)

· v̂
]

ψ(v)

where


S := 
S
1


S
0

, 
q := 

q
1



q
0

.

It can be easily checked that T0 and T1 verify (19a) and (19b), respectively. Because
of (12) and (47), we get UT

0 (ξ) = 0, meaning that we are in a diffusive regime. The
diffusive limit leads to the advection-diffusion equation (32). The explicit form for the
zeroth-order macroscopic diffusion tensor is

D
0
T (ξ) = D

∫
Sd−1

q(ξ , v̂)v̂ ⊗ v̂ dv̂ = DDq(ξ) , (48)
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while for the macroscopic first-order velocity is

U1
T (ξ) = Ū

∫
Sd−1

(

q ∇q · v̂ + 
S ∇S

S(ξ)
· v̂ q(ξ , v̂)

)
v̂dv̂

= Ū 
q
∫
Sd−1

(∇q · v̂) v̂dv̂ + Ū 
S ∇S
S

∫
Sd−1

v̂ ⊗ v̂ q(ξ , v̂)dv̂

= Ū

[

q ∇ · Dq + 
S

Dq
∇S
S

]
.

(49)

Therefore, the resulting diffusion–advection equation reads (dropping the dependen-
cies)

∂

∂τ
ρ + ∇ ·

[(
χS

Dq∇S + χq∇ · Dq

)
ρ
]

= ∇ ·
[
1

μ
∇ · (

DDq ρ
)]

, (50)

where

χS(ξ) := Ū 
S

S(ξ)
, χq := Ū 
q (51)

are the sensitivities. The diffusion represented by the cell motility tensor (48) only
depends on the fibers distribution, while the advective term has two contributions
differently weighted by the sensitivities in (51).We remark that, in the diffusive regime
we obtain the same macroscopic behavior postulated by Keller and Segel (1970), with
the logarithmic chemotactic sensitivity χS given in (51). The term Dq∇S depends
on both the fibers distribution and the chemotactic field; it never vanishes if ∇S is
not the null vector, since it may be proved that Dq is invertible. In the isotropic case,
corresponding to randomly disposed fibers, i.e., whenDq is proportional to the identity
matrix, thenDq∇S is parallel to ∇S, which, thus, represents the anisotropy direction.
On the other hand, when Dq is anisotropic and ∇S is not parallel to the leading
eigenvector of Dq , then the migration does not follow the dominant direction of the
fibers, but rather its projection on ∇S. The second contribution in the drift term, i.e.,
∇ · Dq , is a measure of the velocity field induced by the spatial variation of the fiber
distribution,which determines the cellmicroscopic velocities. This termvanishes if the
fibers distribution is homogeneous in space. However, if q is homogeneous in space,
even in case of competing cues, i.e., Eq ⊥ ∇S, in general the advective termU1

T does
not vanish. Instead, in case of cooperating cues, i.e., when ∇S is an eigenvector of
Dq with eigenvalue D∇S , migration is in direction ∇S with a kinetic factor χSD∇S .
In intermediate scenarios, migration happens in the projection Dq∇S, but, if q is not
homogeneous, the dynamics is more complex and, even in case of cooperation, we
cannot conclude anything about additivity effects.
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3.3.3 Case (iii): Fast q and Slow S Variation

In this case, we can only expand with Taylor series the chemoattractant, as in (37),
and the turning kernel (14) can be approximated as

T [q,S](x, v, v̂) =
[


S
0

c0(x)
S(x)

∫
R+

γq(λ)q(x + λv̂, v̂) dλ + 
S
1

c1(x)
(∇S · v̂)

∫
R+

γq(λ)q(x + λv̂, v̂) dλ

]
ψ(v) (52)

where

c0(x) := 2
∫
Sd−1


S
0 S(x)

∫
R+

γq(λ)q(x + λv̂, v̂) dλ dv̂

and

c1(x) := 2
∫
Sd−1


S
1 (∇S · v̂)

∫
R+

γq(λ)q(x + λv̂, v̂) dλ dv̂ ,

are both different from zero. In this case we may choose

ε = min

{
1

ηq
, ηS

}
,

and, re-scaling the space variable as (16), we get T [q,S] = T0[q,S]. Let us now
introduce

q̃(ξ , v̂) := 1



q
0

∫
R+

γq(λ)q(ξ + λv̂, v̂) dλ (53)

a new probability density distribution describing a non-local average of the fibers
distribution according to the sensing kernel γq and normalized by the measure of the
sensed linear tract 
q

0 over the direction v̂. With this notation, we can define

D
0
q̃(ξ) :=

∫
Sd−1

q̃(ξ , v̂) v̂ ⊗ v̂ dv̂ , (54)

which is the corresponding diffusion tensor of the fibers, and

Eq̃(ξ) :=
∫
Sd−1

q̃(ξ , v̂) v̂ dv̂ , (55)

which is their corresponding mean direction. Precisely, both are defined taking into
account the whole neighborhood sensed by the cells. In this case, U0

T (ξ) does not
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vanish in general in �, as it is given by

U0
T (ξ) = Ū 
S

0

c0(ξ)
S(ξ)

∫
R+

γq(λ)

∫
Sd−1

v̂ q(ξ + λv̂, v̂) dv̂ dλ

+ Ū 
S
1

c1(ξ)
∇S

∫
R+

γq(λ)

∫
Sd−1

v̂ ⊗ v̂ q(ξ + λv̂, v̂) dv̂ dλ,

= Ū 
S
0 


q
0

c0(ξ)
S(ξ) Eq̃ + Ū 
S

1 

q
0

c1(ξ)
∇S D

0
q̃ .

(56)

Therefore, we perform a hyperbolic limit that leads to the drift equation (35) with
mean velocity (56). Precisely, this mean velocity is related to a non-local average of
the diffusion tensor of the fibers D0

q̃ projected on ∇S, and a non-local average of the
mean fiber direction depending on the local chemoattractant S. In this case, there is
not an evident additivity effect of the two cues and several scenarios are possible.

Remark In the particular case in which also the new introduced probability density
q̃ has the same symmetry property Q3 (described in Sect. 2.2), or if we consider
γq = δ0(λ) (local sensing of the fibers), a parabolic scaling could be performed
instead of a hyperbolic one. This would lead to a macroscopic diffusion–advection
equation with mean velocityU 1

T (ξ) ∝ D
0
q∇S. Without chemotaxis, we would recover

the classical model for contact guidance (Hillen 2006), which gives rise to a fully
anisotropic diffusive equation at the macroscopic level. The presence of a non-local
chemoattractant, even when R < lS , is responsible for the emergence of the drift
correction term.

3.3.4 Case (iv): Fast S and Slow q Variation

This last case only allows for the Taylor expansion of the distribution function q, as
in (39). Therefore, the turning kernel can be approximated as

T [q,S](x, v, v̂) =
[



q
0

c0(x)
q(x, v̂)

∫
R+
γS(λ)S(x + λv̂) dλ + 


q
1

c1(x)
(∇q · v̂)

×
∫
R+
γS(λ)S(x + λv̂) dλ

]
ψ(v)

(57)

where

c0(x) := 2
∫
Sd−1



q
0 q(x, v̂)

∫
R+

γS(λ)S(x + λv̂) dλ dv̂

and

c1(x) := 2
∫
Sd−1



q
1 (∇q · v̂)

∫
R+

γS(λ)S(x + λv̂) dλ dv̂ ,
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both different from zero. In this case we may choose

ε = min

{
1

ηS
, ηq

}

and, by re-scaling (57) with (16), we get T [q,S] = T0[q,S]. Hence U0
T (ξ) does not

vanish in �, as it is given by

U0
T (ξ) = Ū 


q
0

c0(ξ)

∫
Sd−1

v̂ q(ξ , v̂)
∫
R+

γS(λ)S(ξ + λv̂) dλ dv̂

+ Ū 

q
1

c1(ξ)

∫
Sd−1

v̂ ⊗ v̂∇q
∫
R+

γS(λ)S(ξ + λv̂) dλ dv̂ ,

(58)

and the macroscopic equation is given by (35). The mean velocity (58) is a linear
combinationof a non-localmeasure of the chemoattractantS over thefiber network and
a non-local measure of S weighted by the directional average of the spatial variability
of the fiber direction.

Remark If we consider a local sensing for the chemoattractant, i.e., γS = δ0(λ), we
obtain a macroscopic advection-diffusion equation. Here the macroscopic velocity
would be induced by the spatial variation of the fiber direction distribution ∇ · Dq ,
and the measure of S does not affect the choice of the direction. In this case, if ∇q
vanishes, the model would reduce to a fully anisotropic diffusive equation (Hillen
2006).

3.4 Amoeboid Motion and Chemotaxis: Non-Local Dependent Sensing

Concerning the non-local dependent sensing case (4)–(5) with (15), we recall the
expression of the transition probability

T [q,S](x, v, v̂) = c(x)
∫
R+

γ (λ)S(x + λv̂) q(x + λv̂, v̂)dλψ(v) ,

with

c(x) :=
∫
Sd−1

∫
R+

γ (λ)S(x + λv̂) q(x + λv̂, v̂)dλ .

The macroscopic velocity is here given by

UT (x) = c(x) Ū
∫
Sd−1

v̂
∫
R+

γ (λ)S(x + λv̂) q(x + λv̂, v̂)dλ dv̂ . (59)

The macroscopic limits can be performed analogously to the previous section and
using the techniques described in Sect. 3.1. The choice of the parameter ε for the
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cases (i) − (iv) will be the same of the non-local independent sensing model, since it
does not depend on the kind of model (independent or dependent sensing), but only on
ηS and ηq , i.e., on the rapidity of variation of S and q with respect to the cell sensing
capability.

3.4.1 Case (i): Fast Variation of Both External Cues

In this case, we cannot consider the expansions (39) and (37), and, thus, we cannot
expand the turning kernel. Its non-vanishing average is given by (59). Therefore, we
perform a hyperbolic limit leading to (35) with macroscopic velocity (59).

3.4.2 Case (ii): Slow Variation of Both External Cues

When, instead, the maximum sensing radius R is smaller than both characteristic
variation lengths, we consider the positive expansions (39) and (37) and substitute
them into (15). Neglecting the higher order terms in λ, we get the approximation

T [q,S](x, v, v̂) = c(x)
[
S(x) 
0 q(x, v̂) + S(x) 
1 ∇q · v̂ + 
1 q(x, v̂)∇S · v̂

]
ψ(v)

(60)

with

c(x) = 1

S(x) 
0

and


i :=
∫ R

0
λiγ (λ) dλ , i = 0, 1 .

Re-scaling the space variable as in (16), we find

T0[q,S](ξ , v, v̂) = q(ξ , v̂)ψ(v)

and

T1[q,S](ξ , v, v̂) = 

[
∇q · v̂ + q(ξ , v̂)

∇S
S · v̂

]
ψ(v)

with


 := 
1


0
.

It can be easily checked that T0 and T1 verify (19a) and (19b), respectively. Therefore,
UT
0 (ξ) = 0, because of (12), and we can perform a diffusive scaling that leads to the
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zero-order macroscopic diffusion tensor

D
0
T (ξ) = DDq(ξ) , (61)

and to the macroscopic first-order velocity

U1
T (ξ) = Ū 
 ∇ · Dq(ξ) + Ū 
Dq(ξ)

∇S
S . (62)

The macroscopic advection-diffusion equation (32) now reads (dropping the depen-
dencies)

∂

∂τ
ρ + ∇ ·

[
χ

(
∇ · Dq + Dq

∇S
S

)
ρ

]
= ∇ ·

[
1

μ
∇ · (

DDq ρ
)]

(63)

where

χ := Ū
 .

Similar observations to the case (i i) of the non-local independent sensing model may
be done, except that, here, there is a unique sensitivity χ that weights equally the two
contributions in the advection term (62).

3.4.3 Case (iii): Fast q and Slow S Variation

In this case, we expand only the chemoattractant S(x+λv̂), as in (37), and the turning
kernel (15) can be approximated as

T [q,S](x, v, v̂) =
[

1

c0(x)
S(x)

∫
R+

γ (λ)q(x + λv̂, v̂)dλ + 1

c1(x)
(∇S · v̂)

∫
R+

λ γ (λ)q(x + λv̂, v̂)dλ

]
ψ(v) (64)

with

c0(x) := 2
∫
Sd−1

S(x)
∫
R+

γ (λ)q(x + λv̂, v̂) dλ dv̂

and

c1(x) := 2
∫
Sd−1

(∇S · v̂)
∫
R+

λγ (λ)q(x + λv̂, v̂) dλ dv̂ ,

both different from zero. Re-scaling the space variable as (16), we find T [q,S] =
T0[q,S]. Let us define

Ēq(ξ) = 1


0

∫
Sd−1

∫
R+

γ (λ) q(ξ + λv̂, v̂) dλ v̂ dv̂ . (65)
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and

D̄
1
q(ξ) = 1


1

∫
Sd−1

∫
R+

λγ (λ)q(ξ + λv̂, v̂) v̂ ⊗ v̂ dv̂ , (66)

mean fiber direction and diffusion tensor, respectively. They are related to the average,
through the function γ , of the non-local fiber distribution evaluated on the whole
neighborhood sensed by the cells. Hence, in this case, U0

T (ξ) does not vanish in
general in �, as it is given by

U0
T (ξ) = Ū

c0(ξ)
S(ξ)

∫
R+

γ (λ)

∫
Sd−1

v̂q(ξ + λv̂, v̂) dv̂ dλ

+ Ū

c1(ξ)
∇S

∫
R+

λ γ (λ)

∫
Sd−1

q(ξ + λv̂, v̂)v̂ ⊗ v̂ dv̂ dλ,

= Ū 
0

c0(ξ)
S(ξ) Ēq(ξ) + Ū 
1

c1(ξ)
∇S D̄

1
q(ξ) .

(67)

Therefore, the macroscopic advection equation has an expression analogous to (35)
with macroscopic velocity (67), which represents a linear combination of a non-local
weighted average of the diffusion tensor of the fibers D̄1

q projected on ∇S, and a non-
local average of the mean fiber direction depending on the local chemoattractant S.
As for the independent sensing case, there is not a simple additivity effect of the two
cues and several scenarios are possible.

3.4.4 Case (iv): Fast S and Slow q Variation

In this case, again, we can only consider the positive approximation (39), and the
transition probability rewrites as

T [q,S](x, v, v̂) =
[

1

c0(x)
q(x, v̂)

∫
R+

γ (λ)S(x + λv̂) dλ

+ 1

c1(x)
∇q · v̂

∫
R+

λ γ (λ)S(x + λv̂) dλ

]
ψ(v)

(68)

where

c0(x) := 2
∫
Sd−1

q(x, v̂)
∫
R+

γ (λ)S(x + λv̂) dλ dv̂

and

c1(x) := 2
∫
Sd−1

(∇q · v̂)
∫
R+

λ γ (λ)S(x + λv̂) dλ dv̂ ,
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both different from zero. As before, by re-scaling (68) with (16), we get T [q,S] =
T0[q,S] and we have that the average velocityU0

T = UT �= 0. In particular, it is given
by

U0
T (ξ) : = Ū

c0(ξ)

∫
Sd−1

v̂ q(ξ , v̂)
∫
R+

γ (λ)S(ξ + λv̂) dλ dv̂

+ Ū

c1(ξ)

∫
Sd−1

v̂ ⊗ v̂∇q(ξ , v̂)
∫
R+

λ γ (λ)S(ξ + λv̂) dλ dv̂

(69)

and, thus, we perform a hyperbolic limit leading to (35). The mean velocity (69) is
a linear combination of a non-local measure of the chemoattractant S over the fiber
network and a non-local average of S weighted by the directional average of the fiber
direction spatial variability.

3.4.5 Comments

We can observe that, if γq = γS = γ = δR(λ), the two non-local transport models
for independent and dependent sensing are equal, while, if the sensing kernels are not
Dirac deltas (even if γq = γS = γ ), the transport models are always different. Instead,
at the macroscopic level, with any choice of the sensing functions the models coincide
only in case (i i), i.e., when we have a slow variation of both cues. In this case, in
fact, the macroscopic limits are different only if γq �= γS , while in the cases (i i i),
i.e., when we have fast q and slow S variation and iv), i.e., when we have fast S and
slow q variation, they are different if the sensing kernel are not Dirac deltas (even if
γS = γq = γ ). The relevant difference concerns the macroscopic transport velocities
(see (56) and (67) for the case (i i i) and (58) and (69) for the case (iv). In fact, in the
cases (i i i) and (iv), for the non-local dependent sensing model, since only one cue
is considered non-locally and both cues are averaged with the same sensing function
γ , we have a weighted average on λ of the non-local quantities, which results in the
weighted averages in the second terms of (67) and (69). Table 1 presents a general
summary of all the models we derived, while we summarized these remarks in Table 2.

4 Numerical Simulations

We now present simulations of the kinetic transport model (4)-(5) for non-local inde-
pendent sensing (14) and non-local dependent sensing (15) in order to show some key
model features. Precisely, we numerically integrate the transport equation to approxi-
mate the density distribution p, as in Filbet and Yang (2014); Loy and Preziosi (2020),
and in turn the corresponding macroscopic density via (1). For computational conve-
nience, we restrict to a rectangular 2D region � = [0, 5] × [0, 5].
We specify q using the standard circular distribution given by the bimodal von Mises
distribution (Mardia and Jupp 2009)

q
(
x, v̂

) = 1

4π I0(k(x))

(
ek(x)u(x)·v̂ + e−k(x)u(x)·v̂) , (70)
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Table 2 Summary of the comparison of themodels for different choices of the sensing functions.� indicates
the cases in which the models coincide, while ✗ the ones in which the models are different

γq = γS = γ = δ γq = γS = γ �= δ γq �= γS

Meso models (4)-(5)-(14) and (4)-(5)-(15) � ✗ ✗

Macro models case (i): fast S and q � ✗ ✗

Macro models case (i i): slow S and q � � ✗

Macro models case (i i i): fast q and slow S � ✗ ✗

Macro models case (iv): fast S and slow q � ✗ ✗

where Iν(k) is the modified Bessel function of first kind of order ν and

u(x) = (cos(θq(x)), sin(θq(x))).

It can be proved that the first trigonometric moment is Eq(x) = u(x) (Hillen et al.
2017), and, therefore, θq(x) is the mean direction of the fibers located at point x
(Mardia and Jupp 2009). This function also satisfies Q3 and its variance–covariance
matrix is given by Hillen et al. (2017)

Dq(x) = 1

2

(
1 − I2(k)

I0(k)

)
I2 + I2(k)

I0(k)
u ⊗ u,

where I2 is the identity tensor in R
2×2, while k and u are functions of x. Moreover,

the circular-variance is given by the scalar

Dq(x) =
(
1 − I1(k)

I0(k)

)

that represents the degree of alignment of the fibers at point x.
We propose three sets of numerical tests in which we integrate the kinetic transport

equation (4) and visualize the macroscopic density (1):

Test 1: a preliminary test for showing the effects of a non-local chemoattractant in
the presence of a local fiber network;

Test 2: a comparison between the two sensing strategies with different sensing ker-
nels;

Test 3: a set of simulations in different scenarios (i.e., for different lq , lS , R), allow-
ing to make some observations about the differences between the emerging
macroscopic regimes.

4.1 Test 1: Local ECM Sensing and Non-Local Chemotaxis

Test 1 is designed to highlight the effect of the presence of a chemoattractant on the
behavior of cells migrating by contact guidance over a non-polarized fiber network and
evaluating locally its alignment. This means that for this test we consider q = q(x, v̂).
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In the absence of additional cues, when fibers are sensed locally, even though the
distribution q is anisotropic, cells are distributed symmetrically in each given direction
as there is no drift induced by an asymmetric external cue (Hillen 2006; Painter 2008).
Conversely, in presence of a chemoattractant, if it is sensed non-locally, a chemotactic
velocity is imposed. Formally, we are dealing with (14) in which γq = δ0(λ). In
particular, we consider a region

�q = {x = (x, y) ∈ � s.t . x1 ≤ x ≤ x2} (71)

with x1 = 1.8 and x2 = 3.2 in which the fibers are strongly aligned along the
direction identified by θq = π/2. In particular, for (x, y) ∈ �q , k(x, y) = 700, such
that Dq = 5 ·10−3 . In the rest of the domain �−�q fibers are uniformly distributed.
The chemoattractant has a fixed Gaussian profile

S(x, y) = mS√
2πσ 2

S
e
− ((x, y) − (xS , yS))2

2σ 2
S . (72)

In particular, for Test 1 we chose (xS , yS) = (4, 4), mS = 10, σ 2
S = 0.1. The initial

condition for the cell population is a Gaussian

ρ0(x, y) = r0e
− ((x, y) − (x0, y0))2

2σ 2
0 (73)

with r0 = 0.1 and σ 2
0 = 0.1. In this first test, the initial condition for the cell population

is centered in (x0, y0) = (2.5, 2.5), i.e., the center of the region �q (see Fig. 1a).
We remark that without chemoattractant, cells would diffuse anisotropically in the
preferential direction of the fibers ±π/2, forming the well known ellipsis (Painter
2008), which represents cells moving with the same probability along directions π/2
and −π/2. In the present case, because of the presence of a chemoattractant, the
symmetry is broken, and, even if q describes a non-polarized fiber network, there
is a preferential sense of motion in direction π/2 (see Fig. 1d–f). Precisely, cells
migrate along the fibers in the direction identified by θq = π/2, corresponding to
the preferential sense imposed by the presence of the chemoattractant located in the
upper-right corner of the domain �. Given this directional setting, the cell population
dynamics is also greatly affected by the strength of the chemoattractant, which depends
on mS and σ 2

S , by the degree of the alignment Dq , which depends on k(x, y), and
by the sensing radius R. Another important aspect is the sensing function γS , which
influences the transient dynamics and, especially, the relaxation time. For example, in
the case of a Heaviside function, the relaxation time is twice the relaxation time needed
when γS is a Dirac delta (see also Loy and Preziosi 2020). Moreover, we analyzed the
average cell polarization at every position x, given by the mass flow (2), that is the
average velocity times the macroscopic cell density. The cell microscopic orientations
are initially randomly distributed and they start from a vanishing initial speed (see
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Fig. 1 Test 1: evolution of the initial cell distribution in (a) for local q and non-local S with sensing
function γS = δR(λ). The sensing radius of the cells is set to R = 0.5, while S is (72) with mS =
10, σ 2

S = 0.05 and (xS , yS ) = (4, 4). (b): initial cell orientations. (c): trajectory of the center of mass
of the cell population, where each black dot is plotted every �t = 1. (d–f): evolution of the macroscopic
density. (g–i): polarizations of the cells (color figure online)

Fig. 1b). Then, they start to orient and align along the fibers, migrating upward in the
direction individuated by the angle π/2, since cells sense the chemoattractant (see
Fig. 1g–h). Eventually, when cells reach the level y = 4, the microscopic directions
polarize toward the chemoattractant (see Fig. 1i). The center of mass plotted in Fig. 1c
stays in the region�q during cell migration along the fibers bundle in�q , and it moves
out of �q only when it reaches y = 4. The black dots are plotted every �t = 1 and
it is clear that the highest acceleration happens when cells are on the bundle of fibers,
while they are slowed down when they start to move out of the fibers stripe �q .

123



Multi-Cue Kinetic Model with Non-Local Sensing... Page 29 of 46 42

4.2 Test 2: Non-Local ECM Sensing and Chemotaxis

In this second test, we compare the non-local independent sensing model and the
non-local dependent sensing model. We assume fibers to be distributed similarly to
the previous test, i.e., fibers are highly aligned in �q , defined this time by x1 = 2.1
and x2 = 2.9 (see Fig. 2b). Here, for (x, y) ∈ �q , k(x, y) = 100, that corresponds
to Dq = 0.0025, and θq(x, y) = π/2. In the region � − �q fibers are uniformly
distributed. The initial condition of the cell population is (73) with (x0, y0) = (1, 0.5)
(see Fig. 2a) while the chemoattractant has a fixed profile located as in Test 1, with
mS = 10 and σ 2

S = 0.05. We compare the dynamics of the cell population in the
following four settings:

1. local fiber distribution and non-local chemoattractant, as in Test 1, i.e., (14) with
γq = δ0(λ) and γS = δR(λ);

2. non-local sensing with Dirac Deltas for both q and S, i.e., we integrate (4) with
(14) or (15) with γq = γS = γ = δR(λ);

3. non-local independent sensing with Heaviside sensing functions for both S and q,
i.e., (4)-(14) with γq = γS = H(R − λ);

4. non-local dependent sensing with Heaviside sensing function for q and S, i.e.,
(4)-(15) with γ = H(R − λ).

Results of these simulations are shown in Fig. 2.
We can observe that, in all settings, cells start from (1, 0.5), they are attracted by the

chemoattractant and, on their way towards S, they cross the aligned fibers region �q ,
climbing up this region in the direction π/2. Eventually, in all the cases, cells reach
the chemoattractant, but the dynamics, as well as the transient time, is influenced
by different sensing kernels and the local or non-local sensing strategy, even though
the differences are not extremely evident. Although settings 3 and 4 in Fig. 2, which
are related to the case of independent and dependent cues, respectively, do not seem
to show very strong differences, we can observe that in case 3 (see Fig. 2k–n) the
tendency of going in both the directions π/2, determined by q, and π/4, determined
by S, appears more marked because of the independent sensing. In contrast, this
behavior is less evident in case 4 and it results the least evident in the case in which
cells deal with a local sensing of the fibers (setting 1), with also a general slow down
of the dynamics.

4.3 Test 3: Non-Local Independent SensingModel for the Comparison of Cases
(i) − (iv)

Test 3 is designed to explore the extent to which the macroscopic cell behavior
changes depending on the relation between R, lS and lq . Precisely, we compare cases
(i), (i i), (i i i) and iv) according to different mutual variations of the external cues q
and S. The aim here is to illustrate the importance of choosing the most appropriate
macroscopic model, as the aggregate cell behavior can be very different according
to the regime prescribed by the system parameters. We perform the analysis for the
non-local independent sensing case with γq = γS = H(R−λ), as it is a case in which
the transport model is different from the dependent sensing model. Moreover, the
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Fig. 2 Test 2 Time evolution of the initial distribution given in Fig. 2a in the four settings 1-4. The sensing
radius of the cells is R = 0.5 and S is (72) with mS = 10, σ 2

S = 0.05 and (xS , yS ) = (4, 4). Setting
1 is represented in Figs. (c–f): local q and non-local S, γS = δR(λ). Setting 2 is represented in Figs.
(g–j): non-local q and S with sensing functions γq = γS = δR(λ). Setting 3 is represented in Figs. (k–n):
non-local q and S, independent sensing with γq = γS = H(R−λ). Setting 4 is represented in Figs. (o–r):
non-local q and S, dependent sensing with γ = H(R − λ) (color figure online)
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independence of the two sensing allows to visualize more efficiently the two distinct
directional effects (contact guidance and chemotaxis), as observed from the results of
Fig. 2.

We consider the turning kernel describing contact guidance with q given by (70),
θq(x, y) = 3π/4 ∀(x, y) ∈ �, and coefficient k(x, y), modulating the strength of the
alignment, given by the gaussian distribution

k(x, y) = mke
− ((x, y) − (xk, yk))2

2σ 2
k . (74)

Here, (xk, yk) = (2.5, 2.5) and σ 2
k = 0.15 (Fig. 3d). This choice describes a setting

in which fibers are more aligned in the central circular region of the domain and
uniformly disposed in the rest of it. We consider different values of mk in order to
obtain different values of lq : mk = 10 corresponds to lq ≈ 0.031 and mk = 100
corresponds to lq ≈ 0.0031. Details about the estimation of lq for a Bimodal Von
Mises distribution of fibers q are given in Appendix A. The chemoattractant has
the fixed profile (72) with (xS , yS) = (4.5, 4.5) and mS = 10. In the simulations,
we consider three different values for the chemoattractant variance σ 2

S in order to
obtain different values of lS : σ 2

S = 0.05, which corresponds to lS = 0.002 in Fig. 3a;
σ 2
S = 0.25, which corresponds to lS = 0.055 in Fig. 3b; σ 2

S = 1.8, which corresponds
to lS = 0.25 in Fig. 3c. The initial cell distribution for all the settings presented in
Figs. 4-8 is given by (73) with (x0, y0) = (1.5, 1.5), r0 = 0.1, σ 2

0 = 0.1. Precisely,
we present five sets of simulations that are summarized in Table 3.

In Fig. 4, we consider the case in which ηS , ηq � 1, i.e., fast variation of both
external cues (case i). This corresponds to a strongly hyperbolic macroscopic behavior
with macroscopic velocity given by (43). In Fig. 4 we can observe that cell behavior
is not diffusive and the cluster of cells is quite compact. Moreover, when cells reach
the central region where fibers are strongly aligned in the direction 3π/4 (as shown
in Fig. 3d), which is perpendicular to the favorable direction π/4 induced by S, they
surround this region and go over it toward S. In this setting, the parameter η defined in
(42) is slightly smaller then 1 and, in fact, chemotaxis prevails in the overall dynamics,
as the stationary state is clearly peaked on the chemoattractant profile, but the fibers
structure influences the transient.

In Fig. 5, we consider S with σ 2
S = 1.8 and, consequently, lS = 0.25 (see Fig. 3c).

Concerning the fibers, we have mk = 100, so that lq ≈ 0.0031, and the sensing
radius is R = 0.7. This setting falls again in case (i), i.e. fast variation of both cues,
but the behavior is different with respect to the previous simulation in Fig. 4. The
chemoattractant in Fig. 3c, in fact, is spread over the whole domain and, actually, the
quantity lS is almost 102 times the lS considered in Fig. 3a (and used for the simulation
in Fig. 4). Even though we are still in a hyperbolic case and cells are guided by the
strong drift (43), as R is slightly larger than lS and lS is large, the cell cluster diffuses
a bit more in the domain. When cells reach the region of strongly aligned fibers,
they start to surround it (see Fig. 5a–c), but, as ηS = 2.8 = O(1), some of them
do not surround the region, slow down and partially tend to align along the fibers.
In Fig. 5c, for instance, we have a high density of cells in the strongly aligned fiber
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Fig. 3 Test 3Three different chemoattractant distributions used for comparingmodels i)−iv). The chemoat-
tractant profile is given by (72) with mS = 10 and (a) σ 2

S = 0.05, corresponding to lS = 0.002, (b)

σ 2
S = 0.25, corresponding to lS = 0.055, and (c) σ 2

S = 1.8, corresponding to lS = 0.25. The fibers
distribution in sketched in (d) (color figure online)

region. Eventually, cells manage to overcome the area of highly aligned fibers and
they tend to converge to the chemoattractant profile (see Fig. 5d). In this setting, the
overall dynamics is greatly affected by the fibers and, in fact, η � 1.

The second scenario, illustrated in Fig. 6, refers to case (i i), i.e. slow variation of
both cues, since the sensing radius R = 0.02 is smaller than both lS = 0.055 and
lq ≈ 0.031. At the macroscopic level, the behavior of the system is described by the
diffusion–advection equation (50) with macroscopic velocity (49). Actually, in Fig. 6
we can observe a highly diffusive behavior, as the cell macroscopic density has invaded
almost half of the domain before even starting to feel the influence of the fibers. If we
compare the same time step in Figs. 5b and 6b, we see how cells are reaching in both
cases the fibers and feeling the region in which fibers are aligned the most. However,
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Fig. 4 Test 3 Case (i) (fast variation of both cues) with non-local q and S, sensed with an independent
sensing through the kernels γq = γS = H(R − λ). S is given in Fig. 3a with mS = 10 and σ 2

S = 0.05, so
that lS = 0.002. The fibers distribution q has a space dependent parameter k given by (74) withmk = 100,
so that lq ≈ 0.0031. The sensing radius of the cells is R = 0.7 (color figure online)

in Fig. 5b the cell cluster is much more compact than in Fig. 6b, where, instead, cells
already occupied half of the domain, because of diffusion, and we have a high density
of cells both in the region that is close to the strongly aligned fiber region and around
the initial position. Then, cells start surrounding the central region of strongly aligned
fibers, because they already sense the chemoattractant, and, once they have overcome
this area, they tend to the chemoattractant profile (see Fig. 6b–d). In particular, in the
transient time, cells accumulate the most at the sides of the region with highly aligned
fibers. In this specific setting, η > 1 and, in fact, contact guidance highly affects the
dynamics.

The third scenario, illustrated in Fig. 7, refers to the case i i i) describing fast q and
slow S variation, since the sensing radius R = 0.02 is smaller than lS = 0.25, but it
is larger than lq ≈ 0.0031. The macroscopic setting is described by a drift dominated
equationwith drift velocity given by (56). As ηS < 1, we have that the chemoattractant
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Fig. 5 Test 3 Case (i) (fast variation of both cues) with non-local q and S, independent and sensing with
γq = γS = H(R − λ). S is given in Fig. 3c that corresponds to lS = 0.25, while for the fiber distribution
mk = 100, so that lq ≈ 0.0031. The sensing radius of the cells is R = 0.7 (color figure online)

induces a strong diffusivity, but being ηq > 1, the alignment of fibers strongly affects
the dynamics (see Fig. 7c). Comparing, in addition, Figs. 6b and 7b, we have now that
the highest cell concentration is in the mean fiber direction θq = 3π/4 in the region
surrounding the center of the domain, where the fibers are alignedwith a higher degree.
As already observed in Sect. 3, this scenario prescribes η � 1 and, in fact, contact
guidance dominates again the dynamics.

Eventually, for a sensing radius R = 0.02 smaller than lq ≈ 0.031, but larger than
lS = 0.002, we are in the case of fast S and slow q variation and the macroscopic
behavior is approximated by a hyperbolic equation with drift velocity given in (58).
Results of the corresponding simulation are presented in Fig. 8. Here, the chemoat-
tractant has the fixed profile shown in Fig. 3a. Cells diffuse in the domain because ηq
is smaller than 1, and they start moving in a region with randomly disposed fibers (see
Fig. 8a). Then, theymainly follow the preferential directionπ/4 thanks to the presence
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Fig. 6 Test 3 Case (i i) (slow variation of both cues) with non-local q and S, independent and sensing with
γq = γS = H(R−λ). S is given in Fig. 3b that corresponds to lS = 0.055, while for the fiber distribution
mk = 10, so that lq ≈ 0.031. The sensing radius of the cells is R = 0.02 (color figure online)

of the chemoattractant. In fact, it induces a strong drift because of the high non-locality,
determining ηS � 1. Here chemotaxis is slightly dominating the dynamics and, in
fact, η < 1.

Lastly, we remark that, due to different parameter settings, the relaxation time
toward the final equilibrium configuration is different in the scenarios illustrated in
Figs. 4-8. Thus, in each figure, we reported the same intermediate time steps t =
2.5, 7.5, 10 for all the presented scenarios (corresponding to the subfigures (a)–(c))
and a different final time step (corresponding to the subfigure (d)) in order to catch the
final equilibrium configuration. Precisely, we observe that in Figs. 4 and 8 the time
variation is much faster with respect to the other cases. In these scenarios, in fact, we
have η < 1, i.e., chemotaxis is prevailing and cells move faster toward the equilibrium
configuration. Instead, in Figs. 5-7 we have η > 1, which means a stronger influence
of the contact guidance phenomenon. In particular, the fiber orientation is competing
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Fig. 7 Test 3 Case (i i i) (fast q and slow S variation) with non-local q and S, independent and with sensing
function γq = γS = H(R − λ). S is given in Fig. 3c, so that lS = 0.25, while for the fiber distribution
mk = 100, corresponding to lq ≈ 0.0031. The sensing radius of the cells is set to R = 0.2 (color figure
online)

with the preferential direction of movement given by the chemoattractant and cells
dynamics are slowed down, leading to much larger relaxation times. For better clarity,
videos of the simulations of Test 3 are included as Supplementary material.

5 Application: Cell Motility on a System of Electrospun Fibers Under a
Gradient of VEGFs

As it was mentioned in Introduction, an important aspect related to the study of multi-
cue environments concerns the design of engineered scaffolds allowing to direct cell
migration by multiple directional cues. In fact, understanding the controlling factors
of cell migration and the interplay between them is necessary for designing implants
with optimal cellular infiltration and implant integration with native tissue. Moreover,
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Fig. 8 Test 3 Case (iv) (fast S and slow q variation) with non-local q and S, independent sensing with
γq = γS = H(R−λ). S is given in Fig. 3a that corresponds to lS = 0.002, while for the fiber distribution
mk = 10, so that lq ≈ 0.031. The sensing radius of the cells is R = 0.02 (color figure online)

it is important for performing experiments related to phenomena that occur in vivo
in physiological and pathological processes. In this section, we aim at showing how
our theoretical framework for the description of a double cue environment guiding
cell orientation is actually able to replicate the experimental results presented by
Sundararaghavan et al. (2013). In this work, the authors consider a model system
of electrospun hyaluronic acid fibers, which is an engineered scaffold that is able to
mimic native tissue and have the control over fiber orientation. On this scaffold, they
evaluate themotility of human umbilical vein endothelial cells (HUVECs) considering
the cases of aligned and non-aligned fibers of hyaluronic acid in the presence of
a gradient of vascular endothelial growth factors (VEGFs). This setting reproduces
a quite common biological situation. Endothelial cell migration towards increasing
gradients of VEGFs, in fact, is a well-known characteristics of the process of tumor
angiogenesis. Especially in hypoxic situation (i.e., when there is a lack of oxygen in
the tumor microenvironment), tumor cells are known to produce and release growth
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Table 3 Summary of the
simulations presented in Test 3

lS lq R Case η Figs.

0.002 0.0031 0.7 (i) < 1 4

0.25 0.0031 0.7 (i) � 1 5

0.055 0.031 0.02 (i i) > 1 6

0.25 0.0031 0.2 (i i i) � 1 7

0.002 0.031 0.02 (iv) < 1 8

factors in the environment in order to attract endothelial cells and start the process
of blood vessel formation or remodeling (Onishi et al. 2011). When the underlying
tissue on which endothelial cells are migrating is characterized by aligned fibers, the
chemotactic cue given by the VEGF gradient has to be integrated with the guidance
response to the fiber network. This is, for instance, the case of brain tumors, where
the endothelial cell response to tumor-produced VEGF gradients is influenced by
the strong alignment of the fiber structure characterizing the brain tissue (e.g., see
Lamalice et al. (2007) and reference therein).

In this section, wewant to show howourmodel is able to recover different behaviors
of the cells in response to two main experimental settings: fibers parallelly aligned
to the direction of the chemotactic gradient or fibers perpendicularly aligned to the
chemotactic gradient. Precisely, we would like to capture the cell dynamics shown
in Fig. 3C and D of Sundararaghavan et al. (2013). As initial distribution of cells,
we consider (73) with (x0, y0) = (2.5, 0.5), r0 = 0.1, and σ 2

0 = 0.05, while the
chemoattractant is given by the linear function

S(x, y) = mS y

with mS = 10. The fibers are described with (70) and they are strongly aligned along
the direction identified by θq = π in the case represented in Fig. 9a, while they are
strongly aligned along the direction given by θq = π/2 in the case in Fig. 9b. In
particular, in both cases, k(x, y) = 100, so that Dq = 0.0025. Moreover, in both
scenarios we quantify the cell mean speed along the direction v̂ = π/2 as

v̄(t) :=
∣∣∣∣
∣∣∣∣
∫ U

0
vp(t, x, v, v̂)dv

∣∣∣∣
∣∣∣∣
L1

ϑ (�)

. (75)

Here, � := [0, 5] × [0, 5] represents the physical space computational domain and

L1
ϑ(�) is the weighted L1-space with weight function ϑ := 1

|�| .
Figure 9 shows the resulting cell behavior in the two scenarios. In particular, in

Fig. 9a, we consider the case of perpendicular cues, meaning that the angle between
the mean fiber orientation and the chemotactic gradient direction is π/2. In this case,
the competition between the two cues is evident. In fact, due to the strength of the fiber
alignment, cells starting from their initial gaussian distribution align along the fiber
direction without being able to move toward the chemoattractant gradient. This is in
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Fig. 9 Application: migration of cells on a system of electrospun fibers under a VEGF gradient. Cell
macroscopic density at time t = 3 in response to a chemotactic gradient oriented toward the north (as
indicated by the arrow) is illustrated in two scenarios: fibers horizontally oriented in the entire domain (a)
and fibers vertically oriented in the entire domain (b). The cell sensing radius in both cases is R = 0.7.
The time evolution of the cell mean speed defined in (75) is shown in (c) for the case of perpendicular
cues (continuous line that corresponds to scenario (a)) and parallel cues (dashed line that corresponds to
scenario (b))(color figure online)

line with the results shown in Fig. 3C of Sundararaghavan et al. (2013), where cells
are seen to move along the direction of fiber alignment with apparently no influence of
the VEGF gradient. Looking at the mean speed evolution in Fig. 9c (continuous line),
we observe that the cell mean speed along direction π/2 rapidly decreases toward
zero, meaning that the migration of cells in the direction of the increasing chemotactic
gradient is hampered. In Fig. 9b, instead, we analyze the case of parallel cues, i.e., the
angle between the mean fiber orientation and the chemotactic gradient direction is 0.
The cooperation between the two cues here is evident. In fact cells rapidly migrate fol-
lowing the aligned fibers toward the regions of greater chemoattractant concentration.
The numerical results are in a good agreement with the experimental ones, shown in
Fig. 3D of Sundararaghavan et al. (2013), where a bias of cells moving up the gradient
and along the fiber orientation is observed. Concerning the time evolution of the cell
mean speed along direction π/2 (dashed line in Fig. 9c), there is a fast increase of v̄ as
long as cells are moving toward the upper part of the domain where there is the high-
est computation of the chemoattractant. Once cells have reached the upper border, the
mean speed does not increase anymore. In fact, as an effect of the boundary conditions
implemented in the simulations and the non-locality (through the cell sensing radius),
cells will stop and accumulate in the region of greater chemoattractant.

6 Conclusion

In this work, we have proposed a kineticmodel for describing cell migration in amulti-
cue environment.Moreover, we have considered that cells perform a non-local sensing
of the environment up to a distance R (named the sensing radius) from its nucleus.
Concerning the environmental stimuli, in the present model there are two guidance
cues affecting cell polarization, and, thus, cell direction of motion: contact guidance,
that is, a bi-directional cue, and a chemical gradient, that is, a mono-directional cue.
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We remark that, to the best of our knowledge, this is the first time that a non-local
sensing in the physical space of the mesoscopic distribution of fibers is considered.

We introduced two novel classes of models: in the first one, cells perform an inde-
pendent sensing of the fibers and of the chemical in their neighborhood, while, in the
second one, cells average the chemical and the fibers with the same sensing kernel.
In the two cases, a particular attention was devoted to the identification of the proper
macroscopic limit according to the properties of the turning operator. In presence
of a heterogeneous network of fibers and chemical, we detected two parameters, ηq
and ηS , that measure the relation between the cell sensing radius (R) and the char-
acteristic lengths of variation (lS and lq ) of the two cues. These parameters allow to
discriminate between a diffusion-driven regime with an advective correction and a
drift-driven regime. Precisely, when the sensing radius does not exceed the charac-
teristic length of the cues, the bi-directional nature of the fiber network prescribes a
diffusive regime, otherwise the hyperbolic scaling leads to a macroscopic drift driven
regime. We also defined a new parameter η = lS/lq that is independent on cell size
or sensing capabilities and quantifies the relative contribution of contact guidance
to chemotaxis. It provides a first separation between the cases of fiber-dominating
and chemotaxis-dominating dynamics (η � 1 or η � 1, respectively). A common
feature we noticed in different cases is the resulting dependency of the macroscopic
velocity on both the fiber network and the chemoattractant. This aspect enhances the
non-trivial influence of contact guidance on the cell drift and this interdependence is
in accordance with the model proposed by Wagle and Tranquillo (2000). Moreover,
in absence of the chemoattractant, the fiber impact on the drift term could persist for
spatial heterogeneous fiber distributions, in accordance to what is observed by Hillen
(2006). This feature represents a step forward with respect to Wagle and Tranquillo
(2000), in which the drift is a function of contact guidance only through to the pres-
ence of a chemical gradient (meaning that, without chemoattractant, there would be
no drift).

The numerical simulations of the transport equations pointed out the main features
characterizing the two classes of models and the possible scenarios that they are able
to capture. We observed that the presence of two cues influencing cell polarization,
even when the fibers are sensed locally (Test 1), ensures a preferential sense of motion
for cells laying on regions of highly aligned non-oriented fibers, and the non-locality
enhances this behavior (Test 2).Moreover, these non-local aspects brings a further level
of detail to our model, allowing to obtain different macroscopic behaviors depending
on the characteristics of the two sensing (Test 3). We did not observe remarkable
differences between the independent and the dependent sensing models, when we
assume in the former the same sensing kernel for fibers and chemoattractant (i.e., when
γq = γS). However, if there are biological observations sustaining the possibility that a
cellmight implement different strategies for sensing the fibers and the chemoattractant,
it would be possible to use our framework (in its independent sensing version) to
investigate this scenario. This could also allow to compare the possible outcomes of
different sensing approaches with the case of a unique and common sensing strategy.
Moreover, Test 3 showed the importance of deriving macroscopic equations from the
underlying microscopic dynamics and in the appropriate regime: in fact, a directly
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postulated drift-diffusion equation would not capture the exact dynamics in all the
possible regimes.

Overall, the numerical results highlight how the competitive or collaborative effects
of the cues depend, in a first instance, on the angle between their relative orientations,
i.e., between the direction of fiber alignment θq and the chemotactic gradient. We
observed how there is not a simple additivity effect of the two cues and, especially for
the case of competitive cues, the determinationof thedominant cue stronglydependson
their relative strengths, expressed in terms of both concentration and intensity (degree
of alignment of the fiber k(x) and steepness of the chemotactic gradient). Potentially,
the case of competitive cues, combined with the non-local aspects of the model, could
lead to interesting further analysis, especially concerning the possible effects of a
multi-cue environment on cell adhesion or on collective migration processes.

Eventually, we presented an application of our framework, showing its ability to
qualitatively reproduce the experimental results obtained by Sundararaghavan et al.
(2013) on competition/collaboration between fibers and chemicals. The presented
results suggest the potential applicability of our model to explore further settings,
especially thanks to its flexibility in being adapted to the different scenarios.Moreover,
its applicability relates to the fact that the presented framework can be used to calculate
parameters which quantify directed cell migration (e.g., mean square displacement,
persistence time, directional persistence, or mean speed Othmer et al. 1988).

We remark that, even if simulations were performed in a two dimensional setting,
the transport models (and their macroscopic limits, as a consequence) are formulated
in a general d-dimensional setting. Hence, a possible future development is to perform
simulations in the three dimensional case that would be much more realistic for mim-
icking in-vivo migration of cells in the extracellular matrix. Moreover, our framework
is flexible and can be adapted to describe other directional cues thatmight relate, among
others, to haptotactic, durotactic or electrotactic mechanisms. In the same spirit as in
Loy and Preziosi (2020), we plan to enrich this framework considering a non-constant
sensing radius, as it may vary according to the spatial and directional variability of
the external guidance cues. Lastly, this study was restricted to the case in which the
cues affect only cell polarization, considering a uniform distribution of the speeds.
However, in line with Loy and Preziosi (2020); Loy and Preziosi (2020), this setting
may be modified to model a multi-cue environment in which the signals also affect
the speed of the cells.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-021-00978-1.
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A Estimation of lq

Let us consider the fiber density distribution q(x, v̂) defined by a bimodal Von Mises
Fisher

q(x, v̂) = 1

4π I0(k(x))

(
ek(x)u·v̂ + e−k(x)u·v̂) ,

where k(x) ∈ C1(�) and Iν(k(x)) denotes the modified Bessel function of first kind
of order ν.

We now want to give an estimation for the range of variability of the characteristic
length lq , defined as:

lq := 1

max
x∈�

max
v̂∈Sd−1

|∇q·v̂|
q

.

Since
∂ I0
∂k

= I1(k)

I0(k)
, we have that

∇q =
(
ek(x)u·v̂ − e−k(x)u·v̂

)

4π I0(k(x))
∇k (u · v̂) −

(
ek(x)u·v̂ + e−k(x)u·v̂

)

4π I 20 (k(x))

∂ I0
∂k

∇k

=
(
ek(x)u·v̂ − e−k(x)u·v̂

)

4π I0(k(x))
∇k (u · v̂) −

(
ek(x)u·v̂ + e−k(x)u·v̂

)

4π I0(k(x))
I1(k(x))
I0(k(x))

∇k

Since q(x, v̂) > 0, we have:

∇q · v̂
q

=
∣∣∣∣∣∣

(
ek(x)u·v̂ − e−k(x)u·v̂

)
(
ek(x)u·v̂ + e−k(x)u·v̂) (u · v̂) − I1(k(x))

I0(k(x))

∣∣∣∣∣∣ ||∇k|| cos(∇k · v̂)
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where || · || denotes the L2-norm and we use the fact that ||v̂|| = 1. Therefore,

∣∣∣∣∇q · v̂
q

∣∣∣∣ =
∣∣∣∣∣∣

(
ek(x)u·v̂ − e−k(x)u·v̂

)
(
ek(x)u·v̂ + e−k(x)u·v̂) (u · v̂) − I1(k(x))

I0(k(x))

∣∣∣∣∣∣ ||∇k|| ∣∣cos(∇k · v̂)∣∣

Recalling that |a−b| ≤ |a|+|b|,−1 ≤
(
ek(x)u·v̂ − e−k(x)u·v̂

)
(
ek(x)u·v̂ + e−k(x)u·v̂) ≤ 1 and | cos (·)| ≤ 1,

we get

∣∣∣∣∇q · v̂
q

∣∣∣∣ ≤
(
1 +

∣∣∣∣ I1(k(x))I0(k(x))

∣∣∣∣
)

||∇k|| .

Considering Eq. (1.12) in Laforgia and Natalini (2010) for ν = 1, we obtain that∣∣∣∣ I1I0
∣∣∣∣ < 1, and, therefore,

∣∣∣∣∇q · v̂
q

∣∣∣∣ < 2||∇k||

that implies

max
x∈�

max
v̂∈Sd−1

∣∣∣∣∇q · v̂
q

∣∣∣∣ < 2max
x∈�

||∇k||.

This translates into

lq ≥ 1

2max
x∈�

||∇k|| . (76)

In particular, if there exists x such that∇k(x)·v̂ = 1 and, at the same time, also satisfies
∇k(x) ‖ u, then (76) is true with the equal sign. In particular, for the symmetry of
(74) and (72) we shall consider

lq ≈ 1

2max
x∈�

||∇k|| .
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