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that controllability can be achieved as a consequence 
of their hydrodynamic interaction. A detailed analysis 
of the control system of equations is carried out ana-
lytically by means of geometric control theory. We 
obtain an analytic expression for the controlled dis-
placement after a prescribed sequence of controls as 
a function of the phase difference of the two scallops. 
Numerical validation of the theoretical results is pre-
sented with model predictions in further agreement 
with the literature.

Keywords  Micro-swimmers · Controllability · 
Hydrodynamic interaction · Optimization

1  Introduction

Inertialess hydrodynamics is notorious for its time-
reversibility constraint [1, 2]. Linearity of Stokes 
equation imprisons any swimmer moving in a time-
reversible manner in perpetuity, a consequence of the 
“scallop theorem”. Purcell [2] introduced this notion 
by considering the simplest mathematical abstraction 
of a time-reversible swimmer that goes nowhere in a 
viscous fluid, the “scallop”, composed by two rigid 
arms that open and close relative to a hinge point, in 
an analogy to the opening movement of scallops in 
the sea. Most interestingly, perhaps it is not accidental 
that the number of naturally occurring non-reciprocal 
swimmers in the microscopic world [3–6] is very 
large. From eukaryotic to prokaryotic microscopic 

Abstract  A swimmer embedded on an inertia-
less fluid must perform a non-reciprocal motion to 
swim forward. The archetypal demonstration of this 
unique motion-constraint was introduced by Pur-
cell with the so-called “scallop theorem”. Scallop 
here is a minimal mathematical model of a swimmer 
composed by two arms connected via a hinge whose 
periodic motion (of opening and closing its arms) 
is not sufficient to achieve net displacement. Any 
source of asymmetry in the motion or in the forces/
torques experienced by such a scallop will break 
the time-reversibility imposed by the Stokes linear-
ity and lead to subsequent propulsion of the scallop. 
However, little is known about the controllability of 
time-reversible scalloping systems. Here, we consider 
two individually non-controllable scallops swim-
ming together. Under a suitable geometric assump-
tion on the configuration of the system, it is proved 
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organisms, the non-reciprocity in their motion in time 
is at the heart of their biological function, with elas-
ticity most commonly explored by eukaryotic cilia 
and flagella, such as for spermatozoa swimming [5] 
or ciliary beating [7].

With recent advances in manufacturing, prototyp-
ing and 3D printing, robotic swimming is an emerg-
ing field able to realise mathematical models that 
only lived in the abstract sense [8–13]. As such, 
recent research has been increasingly interested in the 
connection between swimming and control theory in 
viscous fluid environments

[14–17]. Using Purcell’s archetypical swimmer, 
several studies focused their efforts in finding ways 
to break with the scallop theorem and enable Pur-
cell’s scallop to move forward [16, 18, 19]. Breaking 
the time-reversibility constraint of a two-rigid arms 
scallop requires other sources of asymmetries in the 
system, such as higher degrees of freedom, as seen 
for Purcell’s three-link swimmer [2, 16, 20, 21], non-
linearities arising from complex fluid rheology [12, 
22–24], inertial effects [18, 25, 26], non-symmetric 
hydrodynamic interactions [14, 18, 27, 28], stochas-
ticity [29], among other interactions [30]. Indeed, 
even though one scallop cannot swim forward over 
one period, two scallops swimming together can. This 
is due to asymmetries in the forces/torques experi-
enced by the swimmers via non-local hydrodynamic 
interactions [31, 32], despite their individual recipro-
cal motion (one way to achieve this is by introducing 
a phase difference between these individual recipro-
cal motions). This in turns allows the forward motion 
of multiple scallops swimming collectively [14]. 
Against this background, and despite of the large 
body of mathematical investigations focusing on how 
to break time-reversibility constraint of Purcell’s scal-
lop, little is known about the controllability of this 
system under the influence of non-local hydrody-
namic interactions. In the realms of Geometric Con-
trol Theory, controllability is defined as the existence 
of control functions that are able to steer the system 
from a given initial configuration to a given final one 
[33, 34].

In this work, we explore the controllability of two 
inherently non-controllable units by exploiting the 
non-local nature of their mutual hydrodynamic inter-
action. To allow analytical progress, we study the 
synchronized motion of two Purcell scallops within 
a minimal hydrodynamic interacting model between 

nearby discretized elements using control theory. We 
mathematically prove that the scallops’ shape shift 
determines the change in position and orientation of 
the system: thanks to the Invertibility Theorem 1, we 
write the equations of motion as a control system; by 
tools from Geometric Control Theory, we obtain an 
analytic expression of the controlled displacement 
after a prescribed sequence of controls, see formula 
(21). Finally, we optimize the controlled displace-
ment as a function of the phase difference of the con-
trols acting on each individual scallop and recover 
well-known results in the literature, see Theorem 2 on 
the optimal phase difference on the swimmers. The 
numerical experiments undertaken further validate 
the analytical results and the theoretical predictions. 
Our result sets the basis for a deeper understanding 
of systems of mutually interacting micro-swimmers, 
whose choral motion is determined by the non-local 
hydrodynamic interactions generated by individ-
ual rate of shape changes of each unit. A different 
approach using applied forces and torques as controls 
is proposed in [35]; see also [36], where the motion of 
two interacting dumb-bell swimmers is studied. We 
also bring to the reader’s attention the contributions 
[37–39], where a phase lag is responsible propulsion; 
in these cases, the phase lag is an emerging feature of 
the dynamics. We remark that, in the present work, 
we impose the phase difference with the aim of using 
it as a control.

2 � The model

We consider a system composed by two scallops of 
length 2L swimming with a distance h from each 
other, as illustrated in Fig.  1. We build our model 
on previous investigation by Man et  al. [31] for two 
filaments coupled hydrodynamically at low Reynolds 
number, with setup adapted to our case. In particular, 
denoting by a > 0 the thickness of the scallops and by 
�i ( i = 1, 2 ) is the opening angle of the ith scallop, we 
assume that,

These assumptions are needed in order to use the 
approximation proposed in [31] to compute the inter-
action forces and will allow us to compare, in Sec-
tion  5, our numerical results with those presented 

(1)a << h << L and 𝜎i ≈ 𝜋.
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in [31]. We notice that the second assumption in (1) 
means that the scallops are almost completely open, 
so that they can be considered approximately aligned.

The system we consider is shown in Fig.  1 and 
is described using the following coordinates: For 
i = 1, 2 , let t ↦ �i(t) ∶= (xi(t), yi(t))

⊤ denote the 
time-dependent position (with respect to the labo-
ratory fixed frame of reference) of the hinge of ith 
scallop, let t ↦ �i(t) denote the time-dependent 
angle that the upper link of the ith scallop forms 
with the positive x-axis, and let

denote the directions of the jth link of the ith scallop 
(for j = 1, 2 ), where t ↦ �i(t) is the opening angle of 
the ith scallop. With this choice of coordinates, the 
triple (xi, yi, �i) is the set of coordinates describing 
the position of the ith scallop in the plane and �i is 
its shape. Finally, we recall that L > 0 is the length of 
each link, so that the time-dependent position of the 
generic point �(j)

i
(s, t) ∈ ℝ

2 on the jth link of the ith 
scallop at distance s ∈ [0, L] from the hinge is given 
by

and its velocity is given by

t ↦ �
(j)

i
(t) ∶=

(
cos

(
�i(t) + (j − 1)�i(t)

)
sin

(
�i(t) + (j − 1)�i(t)

)
)

(2)�
(j)

i
(s, t) = �i(t) + s�

(j)

i
(t)

Denoting by (s, t) ↦ �
(j)

i
(s, t) the density of hydro-

dynamic force acting on �(j)
i
(s, t) , Resistive Force 

Theory [40] states that it is proportional to the 
local velocities �(j)

i
(s, t) of the swimmer relative the 

background fluid; taking also the hydrodynamics 
interaction between the two scallops into account, 
as studied in [31], we have, for i, j = 1, 2,

where ¬i ∶= 3 − i is a concise form to write the value 

not taken by index i, �(s, t) ∶=
ln
(
h(s, t)∕L

)
ln(a∕L)

∈ (0, 1) 

(see Sect.  6 below for more comments), and 
Λ(s, t) ∶= 1 − �2(s, t) . In formula (3), t ↦ �

(j)

i
(t) is the 

Resistive Force Theory operator relative to the jth 
link of the ith swimmer and it is defined by

with �(j)

i
(t) ∶= �

(j)

i
(t)⊗ �

(j)

i
(t) . Notice that, by the 

first assumption in (1), it is reasonable to assume that 
the jth link of each scallop interacts only with the 
jth link of the other scallop, neglecting the interac-
tion with the ¬j th link. This is due to the fact that, 
since h << L , the scallops can only vary their shape 
minimally to avoid overlapping. In 4, the constants 
C
⟂
 and C∥ are the drag coefficients in the perpendicu-

lar and parallel directions, respectively, to the links 
and are measured in Ns∕�m2 . In general, for micro-
swimmers, a physically meaningful assumption is to 
take C

⟂
≈ 2C∥ . By the second assumption in (1), it is 

not restrictive to suppose that h(s, t) does not depend 
on spatial variable s and that it undergoes very little 
variations in time, so that it can be considered con-
stant, that is h(s, t) = h ; thus, we can also consider 
�(s, t) = � and Λ(s, t) = Λ = 1 − �2.

The time-dependent force acting on the jth link 
of the ith scallop is obtained by integration of 3 
over s ∈ [0, L] , namely

�
(j)

i
(s, t) ∶= �̇

(j)

i
(s, t) = �̇i(t) + s�̇

(j)

i
(t)

=

(
ẋi(t)

ẏi(t)

)
+ s

(
�
(j)

i
(t)
)⊥
(𝜃̇i(t) + (j − 1)𝜎̇i(t)).

(3)

�
(j)

i
(s, t) =

−1

Λ(s, t)
�
(j)

i
(t)�

(j)

i
(s, t) +

�(s, t)

Λ(s, t)
�
(j)

¬i
(t)�

(j)

¬i
(s, t)

(4)�
(j)

i
(t) = C

⟂
� + (C∥ − C

⟂
)�

(j)

i
(t),

x

y

x1(t)

θ1(t)

σ1(t)

x2(t)

x(1)
1 (s, t) θ2(t)

σ2(t)

x(2)
2 (s, t)

xm(t)

Fig. 1   Schematic representation of two scallops swimming 
together relative to the laboratory fixed frame of reference
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so that the overall time-dependent force t ↦ �i(t) on 
the i-th scallop is given by �i(t) = �

(1)

i
(t) + �

(2)

i
(t) , 

that is,

From 3 and 4 we have (dropping the dependences 
on s and t)

Therefore formula 6 reads

where we have defined

To complete the set of equation of motion, we also 
need to compute the torque acting on each swimmer. 
To this end, we start from the torque density with 
respect to the ith hinge, which reads, using 2, 3, and 
4,

(5)�
(j)

i
(t) = ∫

L

0

�
(j)

i
(s, t) ds,

(6)�i(t) = ∫
L

0

(
�
(1)

i
(s, t) + �

(2)

i
(s, t)

)
ds.

� (1)i + � (2)i = − 1
Λ
[

2C⟂� + (C∥ − C⟂)
(

�(1)
i + �(2)

i

)]

�̇i

− 1
Λ
sC⟂

(

�(1)i + �(2)i

)⟂�̇i −
1
Λ
sC⟂

(

�(2)i

)⟂�̇i

+ �
Λ
[

2C⟂� + (C∥ − C⟂)
(

�(1)
¬i + �(2)

¬i

)]

�̇¬i

+ �
Λ
sC⟂

(

�(1)¬i + �(2)¬i

)⟂�̇¬i +
�
Λ
sC⟂

(

�(2)¬i

)⟂�̇¬i .

(7)

�i(t) = −
1

Λ

(
�i(t)�̇i(t) + �i(t)𝜃̇i(t) + �i(t)𝜎̇i(t)

)

+
𝜆

Λ

(
�¬i(t)�̇¬i(t) + �¬i(t)𝜃̇¬i(t) + �¬i(t)𝜎̇¬i(t)

)
,

(8)

�i(t) ∶= L
[
2C

⟂
� + (C∥ − C

⟂
)
(
�
(1)

i
(t) + �

(2)

i
(t)
)]
,

�i(t) ∶=
L2

2
C
⟂

(
�
(1)

i
(t) + �

(2)

i
(t)
)⟂

,

�i(t) ∶=
L2

2
C
⟂

(
�
(2)

i
(t)
)⟂

.

Analogously to what we did in 6, the overall time-
dependent torque t ↦ Ti(t) acting on the ith scallop is 
given by Ti(t) = T

(1)

i
(t) + T

(2)

i
(t) , that is,

which has the expression

where �i(t) is as in 8 and

where we notice that both �(t) and �(t) do not depend 
on i since they are symmetric in the exchange i ↦ ¬i . 
Formulae 7, 8, 10, and 11 can be gathered together in 
the following expression

�(j)i (s, t) =
(

�(j)i (s, t) − �i(t)
)

× � (j)i (s, t)

= − 1
Λ
C⟂s

(

�(j)i
)⟂
⋅ �̇i −

1
Λ
C⟂s2�̇i +

�
Λ
C⟂s

(

�(j)i
)⟂
⋅ �̇¬i

+ �
Λ
(C∥ − C⟂)s

(

(

�(j)i
)⟂

⋅ �(j)¬i
)

(

�(j)¬i ⋅ �̇¬i
)

+ �
Λ
C⟂s2

(

�(j)i ⋅ �(j)¬i
)

�̇¬i

−
j − 1
Λ

C⟂s2�̇i + (j − 1) �
Λ
C⟂s2

(

�(j)i ⋅ �(j)¬i
)

�̇¬i .

(9)Ti(t) = ∫
L

0

(
�
(1)

i
(s, t) + �

(2)

i
(s, t)

)
ds,

(10)

Ti(t) = −
1

Λ
�i(t) ⋅ �̇i(t) −

1

Λ
𝜔𝜃̇i(t) +

𝜆

Λ
�i(t) ⋅ �̇¬i(t)

+
𝜆

Λ
𝜛(t)𝜃̇¬i(t) −

1

Λ

𝜔

2
𝜎̇i(t) +

𝜆

Λ
𝛽(t)𝜎̇¬i(t),

(11)

�i(t) ∶=
L2(C∥ − C

⟂
)

2

[((
�
(1)

i
(t)
)⟂

⋅ �
(1)

¬i
(t)
)
�
(1)

¬i
(t)

+
((

�
(2)

i
(t)
)⟂

⋅ �
(2)

¬i
(t)
)
�
(2)

¬i
(t)
]
+ �i(t),

� ∶=
2L3C

⟂

3
,

�(t) ∶=
L3C

⟂

3

[
�
(1)

i
(t) ⋅ �

(1)

¬i
(t) + �

(2)

i
(t) ⋅ �

(2)

¬i
(t)
]
,

�(t) ∶=
L3C

⟂

3
�
(2)

i
(t) ⋅ �

(2)

¬i
(t),
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3 � The equations of motion

The equations of motion, which are obtained by 
imposing the total force and torque balance, that is, 
that the left-hand side in (12) is equal to zero, read

The first step to solve 13 is to investigate the invert-
ibility of the matrix

where we observe that the blocks R11 and R22 (not 
depending on � ) are the grand resistance matrices 
[41] of the individual scallops and so they are both 
(positive) definite and symmetric, and therefore 
invertible. Therefore, we have the following theorem.

Theorem 1  (Invertibility) There exists �0 ∈ (0, 1) 
such that the matrix R(t;�) defined in 14 is invertible 
for every � ∈ [0, �0) and for every t ∈ [0,+∞).

(12)

−Λ

⎛⎜⎜⎜⎝

�1(t)

T1(t)

�2(t)

T2(t)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

�1(t) �1(t) − 𝜆�2(t) − 𝜆�2(t)

�⊤
1
(t) 𝜔 − 𝜆�⊤

1
(t) − 𝜆𝜛(t)

−𝜆�1(t) − 𝜆�1(t) �2(t) �2(t)

−𝜆�⊤
2
(t) − 𝜆𝜛(t) �⊤

2
(t) 𝜔

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝

�1(t)

𝜔∕2

−𝜆�1(t)

−𝜆𝛽(t)

⎞⎟⎟⎟⎠
𝜎̇1(t) +

⎛⎜⎜⎜⎝

−𝜆�2(t)

−𝜆𝛽(t)

�2(t)

𝜔∕2

⎞⎟⎟⎟⎠
𝜎̇2(t)

=∶R(t, 𝜆)

⎛⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

⎞⎟⎟⎟⎠
+ 𝜙1(t, 𝜆)𝜎̇1(t) + 𝜙2(t, 𝜆)𝜎̇2(t)

=R(t, 𝜆)

⎛⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

⎞⎟⎟⎟⎠
+
�
𝜙1(t, 𝜆)�𝜙2(t, 𝜆)

��𝜎̇1(t)

𝜎̇2(t)

�

=R(t, 𝜆)

⎛⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

⎞⎟⎟⎟⎠
+�(t, 𝜆)

�
𝜎̇1(t)

𝜎̇2(t)

�
.

(13)R(t, 𝜆)

⎛⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

⎞⎟⎟⎟⎠
+�(t, 𝜆)

�
𝜎̇1(t)

𝜎̇2(t)

�
= 0.

(14)R(t, �) =

(
R11(t) − �R12(t)

−�R21(t) R22(t)

)
,

Proof  Since R11(t) and R22(t) are invertible, we 
have

for every t ∈ [0,+∞) . Recalling that 
det

(

(t, �)
)

= det
(

11(t)
)

det
(

22(t) − �212(t)−1
11 (t)21(t)

) 
(see [42, Chapter 7.7]) and noticing that the expres-
sion is continuous in � , (15) implies that there 
exists a value �0 ∈ (0, 1) such that det

(
R(t, �)

) ≠ 0 
for � ∈ [0, �0) , so that R(t, �) is invertible for 
(t, �) ∈ [0,+∞) × [0, �0) . 	�  ◻

We propose two approaches to study the equations 
of motion (13). The first is by using standard results 
from ODE theory; from this point of view, isolating 
the contribution of the shape parameters �(𝜎̇1, 𝜎̇2)

⊤ 
embodies the ability of swimming by shape defor-
mation, as it will be clear from (16) below. The latter 
is by relying on control theory, where the velocities 
(𝜎̇1, 𝜎̇2)

⊤ can be considered as the controls of the sys-
tem. Ideally, those are actuators that can be prescribed 
to steer the system. In particular, it will be possible to 
quantify the motion in terms of given controls.

3.1 � Approach by ODE theory

By solving (13) for the translational and rotational 
velocities, by Theorem 1 we obtain

expressing the fact that the position and orientation 
of the scallops are determined by their shape change. 
Invoking standard results on ordinary differential 
equations [43] (see, e.g., [15, 16] for the three-sphere 
swimmer and the N-link swimmer; see also [44, 
Theorem 6.4] for the abstract setting and [45, Theo-
rem  3.3] for the case of a planar one-dimensional 
swimmer), once the deformation t ↦ (�1(t), �2(t)) 
is prescribed and satisfies certain regularity condi-
tions, for a given initial datum (�◦

1
, �◦

1
, �◦

2
, �◦

2
) , the 

initial-value problem for system (16) admits a unique 

(15)
det

(

(t, 0)
)

= det

(

11(t) 03×3
03×3 22(t)

)

= det
(

11(t)
)

det
(

22(t)
)

≠ 0

(16)

⎛⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

⎞⎟⎟⎟⎠
= −R(t, 𝜆)−1�(t, 𝜆)

�
𝜎̇1(t)

𝜎̇2(t)

�
,
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solution, which also continuously depends on the ini-
tial data.

3.2 � Approach by control theory

Equation 13 can also be interpreted as a control sys-
tem by setting (𝜎̇1, 𝜎̇2)⊤ = (u1, u2)

⊤ , for suitable con-
trol maps t ↦ (u1(t), u2(t)) . With this notation, (13) 
becomes

Invoking the Invertibility Theorem 1 again, we have

which is a drift-less affine control system. System 
18 can be studied from the point of view of Geomet-
ric Control Theory [33, 34]. We pursue this analysis 
in Section 4, where we show, by computing the Lie 
brackets [�1, �2] , that the system undergoes a non-zero 
net displacement. In studying some special deforma-
tions t ↦ (u1(t), u2(t))

⊤ , we also show numerically in 
Sect. 5 that there exists a choice of u1 and u2 such that 
the displacement is maximized.

4 � Breaking of symmetry

Purcell’s celebrated Scallop Theorem [2] states 
that if the two 2-links were considered individu-
ally, they would not be able to achieve a non-zero 

(17)

�
R(t, 𝜆) 06×2
02×6 �2×2

�
⎛
⎜⎜⎜⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

𝜎̇1(t)

𝜎̇2(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

�
−�(t, 𝜆)

�2×2

��
u1(t)

u2(t)

�
.

(18)

⎛⎜⎜⎜⎜⎜⎜⎝

�̇1(t)

𝜃̇1(t)

�̇2(t)

𝜃̇2(t)

𝜎̇1(t)

𝜎̇2(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

�
−R(t, 𝜆)−1�(t, 𝜆)

�2×2

��
u1(t)

u2(t)

�

=∶ �1(𝜃1(t), 𝜃2(t), 𝜎1(t), 𝜎2(t), 𝜆)u1(t)

+ �2(𝜃1(t), 𝜃2(t), 𝜎1(t), 𝜎2(t), 𝜆)u2(t),

net displacement as a consequence of a recipro-
cal motion: just by opening and closing the angle 
�i in a periodic way neither 2-link can advance. 
From the geometrical control theory viewpoint, 
this is due to the fact that one vector field alone 
cannot generate enough degrees of freedom for 
the 2-links to advance. For this reason, a system 
of two 2-links which beat synchronously, i.e., with 
t ↦ �1(t) = �2(t) , still cannot advance since there is 
only one shape variable.

We now propose a way to overcome the Scallop 
Theorem by considering two time-dependent maps 
t ↦ �1(t) and t ↦ �2(t) different from each another. 
To start with, recalling (1), we consider an initial 
configuration which is a perturbation of the aligned 
one (given by �i = � ∈ [0, 2�) and �i = � , for 
i = 1, 2 , see Fig. 1), namely

for i = 1, 2 , 𝜀 > 0 a small parameter, and � a phase. 
Next, we prescribe the following stroke in the time 
interval [0, 4�] , for a small 𝜏 > 0 and for 𝛾1, 𝛾2 > 0,

which corresponds to running clockwise along the 
boundary of the rectangle with horizontal side �1 and 
vertical side �2 which is located in the third quadrant 
in the u1u2-plane (see Fig. 2).

We now use (20) to compute the Lie brackets; 
classical tools in geometric control theory [34] 

(19)�◦
i
= �◦, �◦

i
= � + � cos((i − 1)�),

(20)t ↦

�
u1(t)

u2(t)

�
∶=

⎧⎪⎨⎪⎩

(0,−𝛾2)
⊤ fort ∈ [0, 𝜏),

(−𝛾1, 0)
⊤ fort ∈ [𝜏, 2𝜏),

(0, 𝛾2)
⊤ fort ∈ [2𝜏, 3𝜏),

(𝛾1, 0)
⊤ fort ∈ [3𝜏, 4𝜏),

u2

u10

−γ2

−γ1

Fig. 2   The graph of the control stroke in (20)



2193Meccanica (2022) 57:2187–2197	

1 3
Vol.: (0123456789)

yield that the solution to system (18) with initial 
conditions (19) is given by

where we have expanded the Lie bracket

in powers of � (up to second order) with

We notice that the bracket �◦
3
(�, �◦) in (21) is different 

from the zero vector, so there is a non-zero net dis-
placement. Moreover, we notice that the initial shape 
has been restored, as expected from the periodic-
ity of the motion (compare the last two components 
in (21) with (19)). We stress the fact that the vector 

(21)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1(4�)
�1(4�)
�2(4�)
�2(4�)
�1(4�)
�2(4�)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�◦1
�◦

�◦2
�◦

�◦
1

�◦
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− �1�2�
2�◦3(�, �

◦) + o(�2)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�◦1
�◦

�◦2
�◦

�◦
1

�◦
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

− �1�2�
2

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�1(�, �◦)�2 + o(�2)
�1(�, �◦)�2 + o(�2)
�1(�)� + o(�2)

�2(�, �◦)�2 + o(�2)
�2(�, �◦)�2 + o(�2)
�2(�)� + o(�2)

0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ o(�2)

�
◦

3
(�, �◦) ∶= [�1(⋅, �), �2(⋅, �)] ∣(�◦,�◦,�+�,�+� cos�)

(22)

�1(�;�
◦)=

L� cos �◦ sin2
�

2

64C∥C⟂
(1 − �2)

(
(C2

⟂
(2 + �) − C∥C⟂

)

+ cos�(3C2

∥
− 2C

⟂
C∥ − C2

⟂
)
)

�1(�;�
◦)=

L� sin �◦ sin2
�

2

64C∥C⟂
(1 − �2)

(
(C2

⟂
(2 + �) − C∥C⟂

)

+ cos�(3C2

∥
− 2C

⟂
C∥ − C2

⟂
)
)

�1(�)= �2(�) = −
�

16(1 − �)
sin

2 �

2

�2(�;�
◦)=

L� cos �◦ sin2
�

2

64C∥C⟂
(1 − �2)

(
(3C2

∥
− 2C∥C⟂

− C2

⟂
)

+ cos�(C2

⟂
(2 + �) − C

⟂
C∥)

)

�2(�;�
◦)=

L� sin �◦ sin2
�

2

64C∥C⟂
(1 − �2)

(
(3C2

∥
− 2C∥C⟂

− C2

⟂
)

+ cos�(C2

⟂
(2 + �) − C

⟂
C∥)

)
.

field �◦
3
(�, �◦) measures the non-commutativity of 

the vector fields �1 and �2 (18) of the dynamics. In 
geometrical terms, it measures the asymmetry in the 
order of motion of the two individual scallops: having 
�◦
3
(�, �◦) ≠ 0 means that asymmetry is created and 

Purcell’s Scallop Theorem is beaten.
The two scallops rotate counter-clockwise by the 

same amount, which is of order � ; for a clockwise 
rotation, it suffices to change the sign of either �1 or 
�2 . There is a net motion of order �2 along both axes, 
which vanishes (up to order o(�2) ) according to the 
value of �0 : for instance, if �◦ = �∕2 the motion along 
the x-axis is negligible. From (21) to (22) we can esti-
mate the global net displacement of the system by 
tracking the midpoint t ↦ �m(t) = (xm(t), ym(t)) of the 
line connecting the two hinges (see Fig. 1). We have, 
up to o(�2),

where C = C(L, �,C∥,C⟂
) is given by

Since � ∈ (0, 1) and commonly for slender micro-
swimmers one can take C

⟂
≈ 2C∥ , which yields

it is easy to see that the constant C in (24) remains 
positive for values of C

⟂
 sufficiently close to 2C∥ . 

Therefore, the net displacement of the midpoint �m is 
given, from (23), by

which, in turn, can be maximized with respect to the 
phase � ; it is easy to see that �m(�) is maximum for 
� = �∕2 + k� , for k ∈ � . Thus we have proved the 
following theorem, which recovers the classical result 
obtained by [46] (see also [31]).

(23)

Δ�m = �m(4�) − �
◦

m
=

�1(4�) + �2(4�) − �◦
1
− �◦

2

2

=
−�1�2�

2

2

(
(�1(�, �

◦) + �2(�, �
◦))�2 + o(�2)

(�1(�, �
◦) + �2(�, �

◦))�2 + o(�2)

)

=
−�1�2�

2

2

(
C�2 cos �◦ sin2 � + o(�2)

C�2 sin �◦ sin2 � + o(�2)

)
,

(24)C =
L�

(
C2

⟂
(1 + �) − 3C∥C⟂

+ 3C2

∥

)

128C∥C⟂
(1 − �2)

.

(25)�C ∶= C(L, 𝜆,C∥, 2C∥) =
L𝜆(1 + 4𝜆)

256(1 − 𝜆2)
> 0,

(26)�m(�) ∶= |Δ�m| =
C�1�2�

2�2 sin2 �

2
(1 + o(�2)),
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Theorem 2  Let 𝜀, 𝜏 > 0 be given small parameters, 
let � ∈ ℝ , and let 𝛾1, 𝛾2 > 0 . Consider the initial con-
figuration in (19) and the control stroke prescribed in 
(20). Then the maximal displacement for the pair of 
scallops is obtained for strokes that have a phase dif-
ference of � = �∕2 . 	�  ◻

5 � Numerical validation

The second equality in (19) is the evaluation at t = 0 
of the map

which we can use to integrate numerically the 
equations of motion. The choice of the frequency 
� = �∕2� is made so that in the time interval [0, 4�] 
the angles �i have returned to their initial value 
after spanning only one period. We have performed 
the numerical integration with the following set of 
parameters: � = 0.1 , � = 20,

for the following values of the phase � reported in the 
horizontal axis in Fig. 3. Denoting by Δ�(N)

m
 the dis-

placement of the midpoint defined in (23) evaluated 
numerically, we can plot the piecewise linear interpo-
lation of the magnitude �(N)

m
∶= ||Δ�(N)m

|| as a function 

(27)
t ↦ �i(t) = � + � cos

(

�t + (i − 1)�
)

= � + � cos
(

�t
2�

+ (i − 1)�
)

,

(28)
L = 10�m, h = 1�m, a = 0.25�m,
C⟂ = 2C∥ = 2Ns∕�m2,

of � , obtaining the graph in Fig. 3, from which it is 
evident that �(N)

m
 is maximum for � = �∕2 , namely 

when the two filaments beat out of phase.
It is possible to compare �m = |Δ�m| and 

�(N)
m

= ||Δ�(N)m
|| , when � = �∕2 , upon choosing the 

appropriate values of �1 and �2 in (20). Considering 
that the controls t ↦ (u1(t), u2(t))

⊤ are the derivatives 
of the angles t ↦ (𝜎1(t), 𝜎2(t))

⊤ , we can use (27) (with 
� = �∕2 ) to get

and we can approximate the waves by piecewise 
constant functions. These piecewise constant turn 
out to be of the form (20) with �1 = �2 = �� . Then, 
plugging the parameters (28) in (26) yields, up 
to o(�4) , the value �m = 1.7233 ⋅ 10−6 , whereas 
�(N)
m

= 2.0318 ⋅ 10−6 . This amounts to a relative error 
of the order of 0.15. Notice that, in the control space, 
�m corresponds to a square cycle of side �� (see (20) 
with �1 = �2 = �� ), whereas �(N)

m
 corresponds to a 

circular cycle of radius �� (see (29)). The contribu-
tion �1�2�2 = (���)2 = (��)2∕4 in (26) is nothing 
but the area obtained by integrating the control loop 
over [0, 4�] . The same contribution in the numerical 
integration amount to the area of the circle of radius 
� (see 27), which is ��2 : the relative error between 
these two areas is 0.21, which is comparable with the 
relative error 0.15 between �m and �(N)

m
.

6 � Dependence on the interaction parameter �

In this section we study briefly the dependence of 
the equations on the parameter � = ln(h∕L)∕ ln(a∕L) 
measuring the strength of the interaction between 
the two scallops. We start, in Sects.  6.1 and  6.2 by 
studying the limit cases � = 0 and � = 1 , respectively, 
to deal with, in Sect. 6.3, with the more realistic case 
where � is bounded away both from 0 and from 1.

6.1 � The limit � = 0

Assumption (1) implies that � ∈ (0, 1) , as already 
observed, and in the limit as � → 0+ the interac-
tion vanishes, as can be seen both in the expres-
sion (3) of the force density and in the expression 
(14) of the resistance matrix of the system. Indeed 

(29)t ↦

(
𝜎̇1(t)

𝜎̇2(t)

)
=

(
−𝜀𝜔 sin(𝜔t)

−𝜀𝜔 cos(𝜔t)

)

Fig. 3   Plot of �(N)
m

= ||Δ�(N)m

|| as a function of � (solid blue line) 
versus the theoretical �

m
(�) from (26) (dashed red line)
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(at least formally; the reasoning can be made rigor-
ous by a simple limit process), when � = 0 , and 
therefore Λ = 1 , both � (j)

i
(s, t) (for i, j ∈ {1, 2} ) are 

the force densities of a scallop swimming alone in 
an unbounded fluid, and R(t, 0) is a diagonal block 
matrix, thus the equations of motion (13) are decou-
pled and correspond to those of two non-interacting 
scallops.

Notice that the limit � → 0+ can be achieved in 
two ways. If h → L− , then ln(h∕L) → 0− and � → 0 . 
This is the case in which the two scallops are suffi-
ciently far away from one another to be considered 
as non-interacting. This situation violates the sec-
ond inequality in Assumption (1). The other case is 
if a → 0+ , which makes the higher order terms in the 
Resistive Force Theory approximation vanish. Since 
these are responsible for the interaction [31], in this 
case we would have a system consisting of two non-
interacting scallops.

6.2 � The limit � = 1

From the definition of � , it is immediate to see that 
� = 1 if a = h (once more violating Assumption (1)). 
In this case, the distance between the scallops is com-
parable to their thickness, so that the two swimmers 
are attached to one another. Because of this and to 
enforce the non interpenetration of the swimmers, the 
system is equivalent to one scallop alone: Purcell’s 
Scallop Theorem [2] implies that no net displacement 
can be achieved in this case.

6.3 � Estimates depending on �

A non-trivial regime is when the parameter � is far 
both from  0 and from  1. To illustrate this case, we 
provide lower and upper bounds for � in the following 
relaxed version of Assumption (1):

for a certain 𝜅 > 0 to be chosen presently  1. Using 
these inequalities, we obtain that � ∈ (�∗(�), �

∗(�)) , 
where

(30)𝜅a < h <
L

𝜅
,

The value of � must be chosen in such a way that, 
e.g., 1∕2 < 𝜆∗(𝜅) < 1 (using the values in 28 for L, a, 
C∥ , and C

⟂
 , the parameter � can be chosen between 

2
√
10 and 40). These bounds on � imply bounds on 

the constant C in (24), which, in the common approx-
imation C

⟂
= 2C∥ (see 28 again) are better read in the 

constant C̃ in (25). Upon noticing that � ↦ C̃(�) is an 
increasing function (see Fig. 4 for a qualitative plot), 
we obtain that

the choices of L, a, C∥ , and C
⟂
 in 28 and � = 10 , 

for instance, yield the values C̃(�∗) = 0.0043 and 
C̃(�∗) = 0.0140 . Estimates of the type (32) allow us 
to give an estimate on the displacement (26) of the 
midpoint �m : the lower estimate in (32) provides an 
estimate on the minimal displacement, whereas the 
maximal displacement yielded by the upper estimate 
can be overcome by invoking the rate independence 
of the system, i.e completing the stroke twice as fast 
makes the swimmer achieve twice the displacement, 
as expected from the linearity of Stokes flows.

7 � Conclusions

In this paper, we have studied the control prob-
lem of two scallops hydrodynamically coupled in 
an unbounded viscous fluid. The time-reversibility 
constraint is broken by means of non-local hydro-
dynamic interactions. We have built our control 
systems on convenient correction of Resistive 
Force Theory approximation considered in Man 
et  al. [31]. To allow analytical progress, we have 
also assumed the two scallops are approximately 

(31)

�∗(�) ∶=
− ln �

ln(a∕L)
; �∗(�) ∶= 1 +

ln �

ln(a∕L)
= 1 − �∗(�).

(32)�C(𝜆∗) <
�C(𝜆) < �C(𝜆∗);

1

C̃(λ)

λ0

Fig. 4   The graph of the function � ↦ C̃(�)

1  Instead of using � in both sides, one could write 30 as 
𝜅1a < h < L∕𝜅2 , but the relevant estimates would involve the 
ratio between �1 and �2.
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parallel to one another in the limit of small angular 
displacements. This approach has the advantage of 
working with a finite number of degrees of freedom 
and sets the basis for future work on discretized 
interacting micro-swimmers: the position of the 
hinges between the links and the angle they form 
are the only parameters used to describe the system.

The minimal linear system displays the emer-
gence of significant behaviors and regimes that are 
distinctive of low Reynolds number hydrodynam-
ics. We mathematically proved using Geometric 
Control Theory that a particular choice of periodic 
controls, and therefore of the shape change, provide 
a non-zero net displacement of the system, over-
coming Purcell’s scallop theorem. We have further 
analyzed how the net displacement varies as a func-
tion of the phase difference of two scallops, recov-
ering the maximal displacement predicted previ-
ously using other methods (see Theorem 2). Finally, 
we have performed an analysis of the displace-
ment as a function of the parameter � associated 
with the strength of the hydrodynamic interaction 
between the scallops. Differently from the analy-
sis undertaken in [35] where the controls used are 
forces and torques, we choose the velocities of the 
shape deformations as control functions, with the 
advantage that only internal actuators of the micro-
swimmers are responsible for the motion. We hope 
that our analytical solutions will assist and inspire 
new designs and controls of robotic swimmers that 
exploits their mutual hydrodynamic interaction in 
order to propel forwards.

Acknowledgements  Marco Morandotti is a member of the 
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le 
loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta 
Matematica “F. Severi” (INdAM). Marta Zoppello is a mem-
ber of the Gruppo Nazionale per la Fisica Matematica (GNFM) 
of the Istituto Nazionale di Alta Matematica “F. Severi” 
(INdAM). We are grateful to J.  M.  Yeomans for showing us 
ref. [36].

Funding  Open access funding provided by Politecnico di 
Torino within the CRUI-CARE Agreement. Marco Moran-
dotti and Marta Zoppello acknowledge that the present 
research has been partially supported by MIUR (Italian min-
istry of research) grant Dipartimenti di Eccellenza 2018-2022 
(E11G18000350001) and by PRIN grant Mathematics for 
industry 4.0 (Math4I4) (2020F3NCPX).

Declarations 

Conflict of interest  The authors declare that they have no 
conflict of interest.

Open Access  This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any 
medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Crea-
tive Commons licence, and indicate if changes were made. The 
images or other third party material in this article are included 
in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit 
http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Lighthill, J (1975) Mathematical Biofluiddynamics. In: 
Regional conference series in applied mathematics, No. 
17. SIAM, Philadelphia, PA

	 2.	 Purcell EM (1977) Life at low reynolds number. Am J 
Phys 45:3–11

	 3.	 Velho Rodrigues MF, Lisicki M, Lauga E (2021) The 
bank of swimming organisms at the micron scale (boso-
micro). PLoS ONE 16(6):0252291

	 4.	 Lisicki M, Rodrigues MFV, Goldstein RE, Lauga E 
(2019) Swimming eukaryotic microorganisms exhibit a 
universal speed distribution. Elife 8:44907

	 5.	 Gaffney EA, Gadêlha H, Smith DJ, Blake JR, Kirkman-
Brown JC (2011) Mammalian sperm motility: observa-
tion and theory. Annu Rev Fluid Mech 43:501–528

	 6.	 Rossi M, Cicconofri G, Beran A, Noselli G, DeSimone 
A (2017) Kinematics of flagellar swimming in euglena 
gracilis: Helical trajectories and flagellar shapes. Proc 
Natl Acad Sci 114(50):13085–13090

	 7.	 Marumo A, Yamagishi M, Yajima J (2021) Three-
dimensional tracking of the ciliate tetrahymena reveals 
the mechanism of ciliary stroke-driven helical swim-
ming. Commun Biol 4(1):1–6

	 8.	 Milana E, Zhang R, Vetrano MR, Peerlinck S, De 
Volder M, Onck PR, Reynaerts D, Gorissen B (2020) 
Metachronal patterns in artificial cilia for low reynolds 
number fluid propulsion. Sci Adv 6(49):2508

	 9.	 Sareh S, Rossiter J, Conn A, Drescher K, Goldstein RE 
(2013) Swimming like algae: biomimetic soft artificial 
cilia. J R Soc Interface 10(78):20120666

	10.	 Gu H, Boehler Q, Cui H, Secchi E, Savorana G, De 
Marco C, Gervasoni S, Peyron Q, Huang T-Y, Pane S 
et  al (2020) Magnetic cilia carpets with programmable 
metachronal waves. Nat Commun 11(1):1–10

http://creativecommons.org/licenses/by/4.0/


2197Meccanica (2022) 57:2187–2197	

1 3
Vol.: (0123456789)

	11.	 Qiu F, Mhanna R, Zhang L, Ding Y, Fujita S, Nelson BJ 
(2014) Artificial bacterial flagella functionalized with 
temperature-sensitive liposomes for controlled release. 
Sens Actuators, B Chem 196:676–681

	12.	 Qiu T, Lee T-C, Mark AG, Morozov KI, Münster R, 
Mierka O, Turek S, Leshansky AM, Fischer P (2014) 
Swimming by reciprocal motion at low reynolds num-
ber. Nat Commun 5(1):1–8

	13.	 Dillinger C, Nama N, Ahmed D (2021) Starfish-inspired 
ultrasound ciliary bands for microrobotic systems. Nat 
Commun 12(1):6455

	14.	 Lauga E, Bartolo D (2008) No many-scallop theorem: 
Collective locomotion of reciprocal swimmers. Phys 
Rev E 78(3):030901

	15.	 Alouges F, DeSimone A, Lefebvre A (2008) Optimal 
strokes for low Reynolds number swimmers: an exam-
ple. J Nonlinear Sci 18(3):277–302

	16.	 Alouges F, DeSimone A, Giraldi L, Zoppello M (2013) 
Self-propulsion of slender micro-swimmers by curva-
ture control: N-link swimmers. Int J Nonlinear Mech 
56:132–141

	17.	 Maggistro R, Zoppello M (2019) Optimal motion of 
a scallop: Some case studies. IEEE Control Syst Lett 
3(4):841–846

	18.	 Lauga E (2011) Life around the scallop theorem. Soft 
Matter 7(7):3060–3065

	19.	 Giraldi L, Martinon P, Zoppello M (2015) Optimal 
design of Purcell’s three-link swimmer. Phys Rev E (3) 
91(2):023012–6

	20.	 Becker LE, Koehler SA, Stone HA (2003) On self-pro-
pulsion of micro-machines at low Reynolds number: Pur-
cell’s three-link swimmer. J Fluid Mech 490:15–35

	21.	 Bettiol P, Bonnard B, Giraldi L, Martinon P, Rouot J 
(2017) The Purcell three-link swimmer: some geometric 
and numerical aspects related to periodic optimal controls. 
In: Variational methods 18, pp 314–343. De Gruyter, Ber-
lin, Radon Ser. Comput. Appl. Math

	22.	 Lauga E (2009) Life at high deborah number. EPL (Euro-
physics Letters) 86(6):64001

	23.	 Pak OS, Normand T, Lauga E (2010) Pumping by flap-
ping in a viscoelastic fluid. Phys Rev E 81(3):036312

	24.	 Yu TS, Gicquel M, Lauga E, Hosoi A (2007) Experiments 
using a viscoelastic fluid to beat the scallop theorem. In: 
APS Division of Fluid Dynamics Meeting Abstracts, vol 
60, p. 001

	25.	 Bruot N, Cicuta P, Bloomfield-Gadêlha H, Goldstein RE, 
Kotar J, Lauga E, Nadal F (2021) Direct measurement of 
unsteady microscale stokes flow using optically driven 
microspheres. Phys Rev Fluids 6(5):053102

	26.	 Hubert M, Trosman O, Collard Y, Sukhov A, Hart-
ing J, Vandewalle N, Smith A-S (2021) Scallop theo-
rem and swimming at the mesoscale. Phys Rev Lett 
126(22):224501

	27.	 Takagi D (2015) Swimming with stiff legs at low Reyn-
olds number. Phys Rev E 92(2):023020

	28.	 Reinmüller A, Schöpe HJ, Palberg T (2013) Self-organ-
ized cooperative swimming at low reynolds numbers. 
Langmuir 29(6):1738–1742

	29.	 Lauga E (2011) Enhanced diffusion by reciprocal swim-
ming. Phys Rev Lett 106(17):178101

	30.	 Teboul V, Rajonson G (2019) Breakdown of the scallop 
theorem for an asymmetrical folding molecular motor in 
soft matter. J Chem Phys 150(14):144502

	31.	 Man Y, Koens L, Lauga E (2016) Hydrodynamic interac-
tions between nearby slender filaments. EPL 116:24002

	32.	 Tătulea-Codrean M, Lauga E (2021) Asymptotic theory 
of hydrodynamic interaction between slender filaments. 
Phys Rev Fluids 6:074103

	33.	 Agrachev AA, Sachkov YL (2004) Control theory from 
the geometric viewpoint. Encyclopaedia of Mathematical 
Sciences. Springer, Berlin Heidelberg

	34.	 Coron J-M (2007) Control and nonlinearity. Mathematical 
Surveys and Monographs. AMS, Providence, RI

	35.	 Walker BJ, Ishimoto K, Gaffney EA, Moreau C (2021) 
The control of particles in the Stokes limit

	36.	 Alexander GP, Yeomans JM (2008) Dumb-bell swim-
mers. EPL 83:34006

	37.	 Pasov E, Or Y (2012) Dynamics of Purcell’s three-link 
microswimmer with a passive elastic tail. Eur Phys J E 
35:78

	38.	 Montino A, DeSimone A (2015) Three-sphere low Reyn-
olds number swimmer with a passive elastic arm. Eur 
Phys J E 38:42

	39.	 Cicconofri G, DeSimone A (2016) Motion planning and 
motility maps for flagellar microswimmers. Eur Phys J E 
39:72

	40.	 Gray J, Hancock GJ (1955) The propulsion of sea-urchin 
spermatozoa. J Exp Biol 32:802–814

	41.	 Happel J, Brenner H (1965) Low reynolds number hydro-
dynamics with special applications to particulate media. 
Prentice-Hall Inc, Englewood Cliffs, NJ

	42.	 Horn RA, Johnson CR (2013) Matrix analysis. Cambridge 
University Press, Cambridge, UK

	43.	 Hale JK (1980) Ordinary differential equations. Robert E. 
Krieger Publishing Co., Huntington, NY

	44.	 Dal Maso G, DeSimone A, Morandotti M (2011) An 
existence and uniqueness result for the motion of self-pro-
pelled microswimmers. SIAM J Math Anal 43:1345–1368

	45.	 Dal Maso G, DeSimone A, Morandotti M (2015) One-
dimensional swimmers in viscous fluids: Dynamics, con-
trollability, and existence of optimal controls. ESAIM, 
COCV 21:190–216

	46.	 Taylor GI (1951) Analysis of the swimming of micro-
scopic organisms. Proc. Roy. Soc. London Ser. A 
209:447–461

Publisher’s Note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.


