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Abstract—Safety and Mission-critical systems are evolving
daily, requiring increasing levels of complexity in their design.
While bare-metal single CPU systems were dedicated to such
systems in the past, nowadays, multicore CPUs, GPUs, and
other accelerators require more complex software management,
with the need for an operating system controlling everything.
The presence of the operating system opens more challenges to
securing the final system’s full dependability. This paper analyses
the hardening scenarios based on the evidence gathered by
selective fault injection analysis of Real-Time Operating systems.
While solutions might be delivered in different fashions, the
emphasis on the paper is on the right approach to spot the
sensitive part of the Operating system, saving the design from
massive overheads.

Index Terms—Embedded Systems, Real-Time Operating Sys-
tem, Fault Injection, Reliability, Safety-Critical Systems, Mission-
Critical Systems

I. INTRODUCTION

Safety- and Mission-critical systems, such as aerospace
and avionics, deal with either human lives or (and) high-cost
equipment; therefore, they require high reliability, where the
term “high” is usually quantified according to standards, such
as the ISO 26262 for automotive [1]. Said systems are often
exposed to space radiation. Moreover, even systems operating
at ground level, like automotive, can be subject to space
radiation [2]. The study of radiation effects in semiconductor
devices is a well-known field of research, as reflected by its
vast literature. To resume what happens when a high-energy
particle impacts a MOS transistor, we can assume that it may
result in a status change: from “on” to “off” or viceversa [2].
When the impacted MOS is part of a memory element (e.g.,
SRAM, register, etc.), this turns into a single-event upset
(SEU), also known as a single-event error (SEE): the logical
value stored in the memory element flips. The occurred SEE
may be propagated through the different system layers as
depicted in Figure 1. When the error reaches the application
and impacts system outputs, it becomes a “failure”.

The failure can be categorized into two major classes: SDCs
(silent data corruption) and FIs (functional interruption) [4],
[5]. An SDC occurs when the application properly finishes
(i.e., without any crash or delay), but its outputs differ from the
expected ones. FIs are considered when the application hangs
or terminates unexpectedly. In the context of Safety/Mission-
critical applications, SDC is the most critical class of failure
since the end-user has no means to understand that something
went wrong.
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Fig. 1. Fault - Error - Failure [3]

Usually, to guarantee high dependability, hardening tech-
niques have been applied to electronic devices [3]. Such
methods were mainly used at the hardware level to add
structural redundancy, meaning that specific designs must
be manufactured. Despite the efficiency of hardening tech-
niques, the design and manufacturing cost is usually very
high. The industry has turned to commercial off-the-shelf
(COTS) devices because of their relatively low cost and high
performance. On the other hand, COTS does not provide
hardening; therefore, they require a further implementation
of fault tolerance techniques at the SW level (i.e., without
modifying the hardware).

Indeed, performance has become a more critical design
metric to meet the escalation of application constraints, like
object detection on autonomous driving [6]. For this reason,
COTS are growing in complexity, including multi-core sys-
tems that integrate more than one Central Processing Unit
(CPU) and Graphical Processing Unit (GPU) on the same chip.
As a direct consequence, parallel programming paradigms can
be deployed, enabling a significant increase in computational
throughput. Moreover, the whole system stack usually requires
to include, between the hardware layer and the software/appli-
cation layer, a middle layer composed of the Operating System
(OS) and middleware (e.g., peripheral drivers) to deploy the



final application properly.
In the literature [3], the application layer is commonly the

target of the reliability analysis. The assumption behind bare-
metal system scenarios is that the probability of a fault affect-
ing the middle layer is much lower than the application level
due to its short execution time (i.e., system calls execution
time is generally faster than the mission-related application).
However, it is clear that all the times a hardware fault prop-
agates to the middle-layer as an error, and especially falling
within the OS, its impact can be expected to be potentially
catastrophic, causing a various range of misbehavior, such as
system crashes, missed deadlines, application freeze as well
as tasks synchronization errors.

The aim of this work is thus to review the literature
investigating the reliability of Real-Time Operating systems
(RTOS) affected by external perturbations. The paper will then
draw perspectives on improving reliability using selective fault
tolerance techniques applied at the software level.

II. BACKGROUND

This section presents the basics of reliability assessment
through fault injection (FI) campaign and its use to assess
operating system reliability. FI is a methodology where the
system is forced to behave affected by faults. The outcome of
FI is the Failure in Time (FIT) rate. The following character-
istics can define FI:

• System definition: it can be a simulable model or a
hardware prototype. Based on the system definition, the
FI technique can be simulation-based or hardware-based;

• Type of fault model: it could be a bit-flip in a memory
location, a resistive short, or a specific source of pertur-
bation like radiation;

• Type of injection mechanism: it can be a modification
of the system model allowing to modify the behavior
accordingly to the fault model or the facility used to
create the perturbation (i.e., neutron beams);

• Controllability/Observability: it defines how precisely the
fault model can be injected into the system and what can
be observed (i.e., only the final output or internal system
state).

Further details about FI are out of the scope of this paper.
The reader can refer to [3] for more information.

Not all the fault injectors in the literature address the
operating system layer similarly. Some of them, like [7], mimic
an error in the OS by intercepting and disrupting the API level,
i.e., the interaction between the application and the OS (e.g.,
a system call). The result leads to the investigation of a small
set of faults that affect only the data provided by the OS to
the application.

One of the first effective but dated contributions that can be
found is [8]. While the main contribution is a set of fault
tolerance recovery schemes, the authors developed a fault
injection methodology within the operating system. Since the
work does not intend to provide fault coverage, it is unclear
whether the kind of error can be injected or the affected part
of the operating system itself.

Recent works, like [9], [10], [11], [12] target specific OS
data structure to evaluate the impact of a fault to the full
system. Authors in [9] and [12] seem to cover most of OS
data structure but both papers do not provide any experimental
results. [10] addresses the synchronization capabilities via
mutex OS structures, while in [11] a completely different
scenario is presented: to evaluate the capability of tampering
with the OS, using a Differential Fault Attack (DFA), a specific
fault injector is proposed. Due to the scope of the work,
the only user data memory is interested in the fault injector,
missing all the system data.

In [13] authors built a fault injector based on the remote
features of kernel debugger (KGBD). They addressed an
ARM-based system running a Linux OS. The main limitation
is that the injection can be done only when the operating
system reaches a specific part of the code, thus limiting the
time selection capability of the whole fault injector.

On the side of reliability analysis of OS, to the best of
our knowledge, only one paper addressed the matter. In [14],
authors resort to a Bayesian network model of the internal
states of a real-time operating system (CRTOS II) to predict
its reliability. They support their claim by providing an experi-
mental setup where several failures are applied. Unfortunately,
the paper does not explain the fault model behind the inves-
tigation and how authors produce such failures, limiting the
analysis capability.

To provide a more comprehensive analysis of the reliability
of the whole system in safety-critical scenarios, we merge
the contribution of two works to expand the depth of the OS
analysis. In [15] a reliability comparison between executing a
given application as bare metal or on the top of an operating
system has been made. This paper proved the OS’s importance
in the target system’s reliability. The goal of the evaluation was
to determine the impact of the OS on application reliability
by measuring the amount of time a failure was observed at
the application outputs. Fault Injection was carried out using
OVPSim-FIM (OVP Fault Injection Module) [16]. Faults were
bitflips injected on the processor registers. Two main sets of
benchmarks provide support to the analysis: (i) Successive
Approximation (SA) algorithms and (ii) General Purpose (GP)
algorithms. The two sets have different intrinsic resilience to
SEE. SAs are more resilient than GPs because of their inherent
redundancy [17]. More in detail, we have three other SAs:
Newton-Raphson and Trapezoid, both useful to compute the
integral of a function, and the QSolver for root computation of
quadratic equations. The GPs set comprises four benchmarks:
Matrix Multiplication, Vector Sum, and Tower of Hanoi puzzle
solver benchmarks. Each benchmark was implemented as bare
metal, a task executed through FreeRTOS, and a process
executed on top of Linux.

Figure 2 reports the average results for all the above-
described benchmarks. For each implementation type (i.e.,
bare metal, FreeRTOS, and Linux), we computed the average
number of observed failures and masked (i.e., when the
observed outputs were correct w.r.t. the golden). The chart
indicates two main things. The first one is that the OS matter
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when reliability is considered. The number of failures almost
doubled from bare metal to OS implementations. The second
consideration is that FreeRTOS is less reliable.

Starting from these results, we performed a deep analysis
of the reliability of FreeRTOS alone [18]. The obtained results
will be discussed in the next section, and they will be used
to propose research directions to increase the reliability of
FreeRTOS.

III. FREERTOS RELIABILITY ANALYSIS

In [18] we presented the results obtained by injecting SEE
in memory locations storing FreeRTOS data structure. For
the sake of readability, we summarise the injection targets as
follows:

• FreeRTOS global kernel variables: Global variables are
used by the kernel to share data among the various kernel
functions and to save the system’s state.

• Task control block (TCB) structure: The OS’s classical
TCB structure is required to support the multitasking
activity. Experiments have been performed in the TCB
of running tasks and the TCB of ready tasks.

• Tasks list: In the FreeRTOS, the state of a task is
determined based on which state list the task belongs to.
Injections have been made in the ready task list and the
delayed task list.

• Mutex and Queue structure: Queue is a structure that
can be used as a semaphore or mutex by the kernel.

Once the fault location has been selected (randomly), the
injection time is randomly generated. The bit in the area
affected by the fault is randomly generated too.

Every injection could lead to different types of
(mis)behaviors in the system; nevertheless, only some
of them can be identified and classified because of some
limitations in the tracing capabilities of the injection
environment. Results have been divided into four categories:
crash, freeze, degradation and silent misbehavior.

• Crash: When a critical error occurs on the device under
test, the internal reset handler is called to avoid further
problems. In this case, the misbehavior is classified as
crash.

• Freeze: A misbehavior is classified as freeze when the
whole system stops working and does not respond to any
regular input or event. In this event, only interrupts are
executed; when the ISR returns, the system returns to the
frozen state.

• Degradation: A misbehavior is classified as degradation
when only a part of the system shows a behavior sub-
stantially different from the expected one: this means that
only a part of the system is blocked or acts incorrectly
during the execution. At the same time, the rest is still
able to run properly.

• Silent misbehavior: This type of misbehavior happens
when, after the injection, the system continues working
expectedly, without showing any appreciable difference
concerning the golden run.

For the Freeze and Degradation classes, the decision is made
by resorting to a threshold (called tolerance), representing the
allowed percentage of the difference between the timing of
the golden and the fault injected run. This percentage is a
parameter of the fault injection campaign.

In this paper, we extended the analysis of the fault injection
results we obtained by using the approach presented in [18];
final injection classes are evaluated using the following met-
rics:

1) Consistency:

C =
Number of misbehavior

Number of injections
(1)

It allows understanding of how much the target location is
sensitive to an injection, i.e., how many times it produces
misbehavior when the fault is activated. If this value is
0, the system is not susceptible to the injection in that
location.
All the other metrics must always be compared to the
Consistency, as it allows us to understand the overall
impact on the system.

2) For each class, excluding the Silent Misbehavior, we
compute a specific rate as follows:

CR =
Number of crashes

Number of misbehavior
(2)

FR =
Number of freezes

Number of misbehavior
(3)

DR =
Number of degradation

Number of misbehavior
(4)

Each rate covers a different analysis aspect of the OS
behavior in the presence of a fault. The Crash ratio (CR)
weights the number of crashes over the total number
of misbehavior. Thus the higher this value is, the more
the fault location is critical for the RTOS execution.
Similarly, the Freeze ratio (FR) and the Degradation ratio
(DR) show a decreasing sensitivity of the fault location
since they a linked to less critical OS behaviors.

A. Benchmarks
To perform experiments using standard programs and en-

sure the injections’ repeatability, we resort to the EEMBC®



Automotive suite [19] performance suite that reproduces some
very common calculations in the automotive field. They have
been used in a single core micro-controller because the perfor-
mance analysis was irrelevant for this work. The benchmarks
comprise 16 applications: 13 have been ported successfully
to the embedded environment. The remaining three have been
discarded because they require a large memory space that the
existing system does not support.

Three elements define each benchmark:
• Workload It is the algorithm executed, which can be

single-thread or multi-thread.
• Dataset The input data is provided in the form of files.

Each one comes with a different number of input values.
Almost all benchmarks can run with a large dataset
(about 4MB of data) and a small dataset (about 4kB of
input data). In some cases, we were forced to reduce the
number of input values.

• CRC To check if the computation is correct, we compute
pre-calculated CRCs, one for each different dataset. These
CRCs are embedded in the code and are used by a
checking function, which performs the CRC calculation
on the fly on the output values and compares it with the
given one. Such function has to be called when the main
algorithm ends.

IV. EXPERIMENTAL RESULTS

The actual Fault Injection Environment has been deployed
on a STM32F3DISCOVERY (STMicroelectronics®) board
running FreeRTOS. Three benchmarks (see Section III-A)
have been extensively tested and reported here:

1) a2time (Angle to time conversion): this benchmark sim-
ulates an engine with different cylinders (4, 6, or 8, to be
chosen before compilation) with a crankshaft, a toothed
reluctor wheel, and a sensor able to generate a pulse
every time it detects the passage a tooth: this type of
mechanism is used to control the injection of fuel in the
various cylinders and the subsequent spark.

2) idctrn (Inverse Discrete Cosine Transform): the imple-
mentation of the Inverse Discrete Cosine Transform
widely used in digital graphics; it is applied to an input
dataset representing a matrix of 64 bits values.

3) tblook (Table lookup and interpolation): a table lookup
algorithm to store a limited amount of data pairs coming
from one or more resources (sensors, connections, cal-
culations) and interpolates missing pairs. It is commonly
used in embedded systems when memory resources are
small and only portions of data can be stored.

All injections have been done at random times. Table I
contains the total number of injected faults per location list.
In the table header, each list identifies a different set of target
locations: GKVARS includes the global kernel variables, while
MTXQVARS is the list of the synchronization structures. The
other lists are related to task management: CURTCB identifies
the current task TCB, while RDYTCB represents the ready
task TCB, DLDLST the delayed task list, and RDYLST the

ready tasks list. All injections have been computed using the
approach presented in [20] to obtain statistically significant
results with an error margin of 1% and a confidence level of
95%.

TABLE I
NUMBER OF INJECTED FAULTS PER TARGET LOCATION LIST

List #Injections

GKVARS 5000
CURTCB 9500
RDYTCB 9500
DLDLST 2500
RDYLST 2500

MTXQVARS 11000

Based on the complete set of fault injections, among all
benchmarks, Table II reports a summary of the most sensi-
tive locations to the fault injection campaign, i.e., the ones
showing the highest consistency 1. All entries marked with a
∗ correspond to pointers variables.

To fully understand the results reported in Table II, we need
to detail the effects of the injected faults:

• uxTopReadyPriority represents the task with the highest
priority, so selecting the ready task with the highest
priority in the vector pxReadyTasksLists is done trying
to access an utterly wrong memory address. This always
leads to a crash;

• uxPendedTicks represents all missing ticks for the current
task. Due to the injection, the stored value can become
enormous, leading to the freeze of the system;

• uxSchedulerSuspended: this variable is always checked
by an internal assertion before using it: in all cases, if its
value is different from the expected one, the system is
blocked by an infinite loop;

• xStateListItem.pvOwner: this variable contains the pointer
to the TCB of the following item to be switched in.
Once the injection corrupts the pointer value, it will likely
generate a crash.

• Interestingly, faults locations like xStateListItem.pxNext,
xStateListItem.pxPrevious, xStateListItem.pvOwner,
xStateListItem.pvContainer and xEventLis-
tItem.pvContainer) have almost a fixed consistency
and, in the most of cases they produce a crash. The
reason lays that they belongs to the task in the ready
queue, which is more prone to scheduler selection, thus
some fault injection might lead to silent misbehavior;

• xListEnd.pxNext is used in delayed-to-ready state transi-
tion when a task has reached its timeout delay and is
required to move back to the ready state list. Each time
the value is corrupted, the change cannot be completed
correctly, leading to a crash.

• uxNumberOfItems is an integer variable containing the
number of elements in the list: injecting there leads
mainly to crashes. Indeed, this variable is often accessed
by the kernel, particularly during the contest switching
task, which checks the length of the ready list only to
exclude that it reached a 0 value. With a wrong number



TABLE II
SUMMARY OF MOST SENSITIVE LOCATIONS

Fault Location list Fault Name Consistency

GKVARS uxTopReadyPriority C = 100%
uxPendedTicks C = 100%
uxSchedulerSuspended C = 100%

CURTCB *xStateListItem.pxNext C = 100%
*xStateListItem.pvOwner C = 100%

RDYTCB *xStateListItem.pxNext 32% < C < 100%
*xStateListItem.pxPrevious 32% < C < 100%
*xStateListItem.pvOwner 32% < C < 100%
*xStateListItem.pvContainer 32% < C < 100%
*xEventListItem.pvContainer 32% < C < 100%

DLDLST *xListEnd.pxNext C = 100%
RDYLST uxNumberOfItems C = 100%

*pxIndex C = 100%
MTXQVARS xTasksWaitingToSend.uxNumberOfItems 36% < C < 100%

xTasksWaitingToReceive.uxNumberOfItems 36% < C < 100%
uxItemSize 36% < C < 100%

that differs from 0, the switch is done using the incorrect
data.

• pxIndex produces crashes too: this happens because this
variable is a pointer to the last item inserted in the list.
When modified, the kernel tries to access the wrong
memory region. Moreover, its value is used to update
other pointers, making the disruption of the value even
more severe;

• xTasksWaitingToSend.uxNumberOfItems always causes
freezes because it contains the number of tasks waiting
to release the mutex.

• xTasksWaitingToReceive.uxNumberOfItems is the oppo-
site of xTasksWaitingToSend.uxNumberOfItems as it is a
value which represents the number of tasks waiting to
hold the mutex;

• uxItemSize causes always freezes. Since it holds the size,
in bytes, required to hold each item in the queue, when
it is altered in a way that contradicts the real size of
the items, the synchronization process is not able to
run properly, preventing the system from running tasks
waiting for a mutex to be released.

V. DISCUSSION

Experimental results demonstrate that FreeRTOS is affected
by some vulnerabilities. Most critical vulnerabilities are point-
ers and numerical values stored in integer variables (both
signed and unsigned) used to address elements of lists or
vectors. Thanks to the observed results, it is possible to
identify directions for making FreeRTOS more robust through
hardening techniques.

A. Consistency dependence on evaluation tolerance

The injection classification methodology exposes all results
to a potential dependence on the tolerance used to detect
misbehavior classes like freezes and degradation. Such relation
can impact the final evidence depending on the tolerance used
to analyze the results. Different tolerance values make the

analysis more or less sensitive to differences between the
golden and injection runs.

We analyzed such dependency, which is visible in a re-
stricted subset of faults injected in the FreeRTOS global vari-
ables. In contrast, other fault locations give more homogeneous
results for different tolerance values. Figure 3 shows how
consistency increases for lower values of tolerance applied to
freezes for the idctrn benchmark. Even small deviations are
classified as misbehavior in those cases, although they are not
necessarily due to the injection.

It is interesting to notice that only fault locations related to
the real-time scheduling of tasks depend on tolerance: vari-
ables like xTickCount and xNextTaskUnblockTime are used
to choose when a task must be moved back from delayed to
ready state. On the contrary, uxTopReadyPriority is a variable
exploited to identify, at every system tick, which is the highest
priority available in the OS. It does not change its impact on
consistency when the tolerance is altered.

B. FreeRTOS hardening

FreeRTOS can be hardened in different ways. One of the
best methods is introducing a certain level of redundancy, es-
pecially in those places where most critical problems occurred
during experiments. All the most sensitive data must be dupli-
cated or triplicated, and a voting system must be implemented,
adding some computational overhead to all kernel procedures,
which might contrast the real-time requirements of the OS.

Error correction mechanism would be preferable when a
high level of reliability has to be reached. If the application
has to show a high availability, a simple error detection system
would be sufficient, forcing a software reset or isolating the
affected component of the system if a critical error is detected.
It is essential to notice that FreeRTOS already includes some
macros that must be implemented by the programmer to
perform checks on the integrity of data in the system or
in parameters passed to kernel functions before using them.
Moreover, the RTOS already provides an asserting macro to
program the detection of critical values in system data.



Fig. 3. Tolerance - Consistency dependency analysis for idctrn benchmark

VI. CONCLUSIONS

This paper presented a detailed analysis of the Operating
System’s impact on the safety-critical systems’ reliability.
The study resorted to two previous works that detailed the
sensitivity to soft errors at the operating system level. Then, we
introduced a further level of analysis by defining a consistency
definition and consequent rates to tackle the sensitivity to
errors of each part of the OS. This consistency can also support
a deeper evaluation of classes of error’s effects that might
rely on a time-dependent definition by showing some tolerance
when relaxed.

Eventually, the analysis opens to a more selective design of
the hardening techniques. It inspires a new set of tools for a
more comprehensive analysis of the faults in the system.
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