ANÁLISES DE MEMBRANA PLASMÁTICA, ACROSSOMA E MITOCÔNDRIA DE ESPERMATOZOIDE OVINO APÓS CRIOPRESERVAÇÃO COM ADIÇÃO DO ÁCIDO FÓLICO NO MEIO TRIS-GEMA

(Plasma membrane, acrosome and mitochondria analysis of sheep sperm after cryopreservation with addition of folic acid in the tris-yolk medium)

Misael das Virgens SANTANA¹; Filipe Nunes BARROS^{1*}; Marlon de Araújo Castelo BRANCO²; Sergio Henrique COSTA JÚNIOR³; Maria Luísa Lima CORDEIRO¹; Jefferson Hallisson Lustosa da SILVA¹; José Adalmir Torres de SOUZA¹

¹Universidade Federal do Piauí (UFPI). Rua Dirce Oliveira, 3397. Ininga, Teresina/PI. CEP: 64.048-550; ²Médico Veterinário Autônomo; ³Reprodução Animal (HVU/UFPI). *E-mail: filipenbarros@hotmail.com

ABSTRACT

Folic acid is closely linked to cobalamin, which is a carrier of hydroxymethyl and ant groups. The objective of this work was to evaluate the effect of adding folic acid to the TRIS-yolk diluter and possible effect on the membrane, mitochondria and acrosome of sheep sperm after thawing the semen. There were six sheep and seven collections of each animal in sessions between 48 and 72 hours. After collection and analysis, the semen samples were mixed and submitted to the formation of a pool. Diluted in TRIS-yolk medium, and divided into 3 groups; Group control; Group 2: 10,000 μM of folic acid and in Group 3: 5000 μM of folic acid. Subsequently, the semen samples were packaged in 0.25 mL straws and processed in a semen freezing machine. After a few days, the semen was thawed and evaluated: plasma membrane integrity, acrosome function and integrity. They were analyzed using an analysis of variance (ANOVA) followed by the Newman-Keuls test, using SAS. The addition of a micronutrient with potential antioxidant action in the semen indicates that it can reduce the action of free radicals that alter the plasma membrane and sperm DNA. The evaluation of the plasma membrane integrity, mitochondrial activity and the acrosome integrity of post-thawed sperm were not significantly different between the groups evaluated. Thus, it is concluded that the addition of folic acid in concentrations of 5000 μM and 10000 μM to the TRIS-yolk seminal diluter does not significantly influence the variables evaluated in this experiment.

Key words: Folic acid; sheep; semen.

INTRODUÇÃO

A ovinocultura é uma atividade econômica em expansão no Brasil, em nosso território, o consumo de produtos de origem animal tem se destacado, sobretudo o consumo de carne ovina, demonstrando que a ovinocultura é um ramo promissor. O nordeste do Brasil é classificado como uma região propicia para desenvolver atividades econômicas envolvendo a espécie ovina (FIGUEIREDO *et al.*, 2019).

Em outra perspectiva, buscando minimizar os danos causados pela criopreservação, estudos destacam a utilização de antioxidantes e a modificação dos meios diluidores. Os antioxidantes são compostos biológicos e químicos que podem reduzir o excesso de radicais livres (VIDAL *et al.*, 2013).

O ácido fólico está intimamente ligado a cobalamina, sendo este um transportador de grupos hidroximetilo e formilo. Uma de suas funções mais importantes é a síntese de purinas e timinas. Por isso, tanto o ácido fólico como a cobalamina são necessários para a replicação dos genes celulares. Possivelmente, isso explique uma das principais funções do ácido fólico

204

que é a multiplicação celular e a estimulação do crescimento (AL-MASKARI *et al.*, 2012). Nessa perspectiva, objetivou-se avaliar o efeito da adição do ácido fólico ao diluidor TRISgema e possível efeito na membrana, mitocôndria e acrossoma dos espermatozoides ovinos após descongelação do sêmen.

MATERIAL E MÉTODOS

Local, reprodutores e coletas de sêmen

O experimento foi realizado no Laboratório de Biotecnologia da Reprodução Animal da Universidade Federal do Piauí (LBRA/UFPI), no município de Teresina/Piauí. Como doadores de sêmen, foram seis ovinos da raça Santa Inês, em idade reprodutiva (3-4 anos), com escore corporal 3-4 (escala de 1-5). A pesquisa foi aprovada no Comitê de Ética em Experimentação Animal da Universidade Federal do Piauí (CEEA/UFPI; protocolo nº 03/15).

Para a obtenção dos ejaculados, foram realizadas sete coletas de cada animal pelo método de vagina artificial, com auxílio de uma fêmea em estro, em sessões de coletas intercaladas entre 48 e 72 horas. Os ejaculados foram analisados conforme normas do Colégio Brasileiro de Reprodução Animal (CBRA, 2013).

Processamento do sêmen

Após colheita e análise macro e microscópica, as amostras de sêmen dos ovinos foram misturadas e submetidas à formação de um *pool*. Em seguida, diluído em meio TRISgema, e dividido em 3 grupos; Grupo 1: controle; Grupo 2: adicionado ao diluidor 10000μM de ácido fólico; e no Grupo 3: adicionado 5000μM de ácido fólico, de maneira que cada dose inseminante tivesse 50 x10⁶ sptz. Posteriormente, as amostras de sêmen foram envasadas em palhetas de 0,25mL e processadas em máquina de congelação de sêmen (modelo TK 3000[®], TK tecnologia em Congelação Ltda, Brasil). Para o processo de descongelação, uma amostra de cada colheita foi retirada do nitrogênio líquido e colocada em banho-maria a 37 °C/30seg.

Análises do sêmen

Para avaliação da integridade da membrana plasmática, foi utilizado o método de coloração dupla com Diacetato de Carboxifluoresceína (DCF) e Iodeto de Propídio (IP), conforme descrito por COLETO *et al.* (2002). A função mitocondrial foi determinada pela utilização de um fluorocromo catiônico lipofílico JC-1 (GUTHRIE e WELCH, 2006).

A integridade do acrossoma foi avaliada diluindo-se 10μL de sêmen em 990μL de solução TRIS (ROTH *et al.*, 1989). Após o preparo das lâminas fez se a leitura em microscópio de fluorescência (OLYMPUS, Germany). Foram contados 200 sptz/lâmina.

Análise Estatística

Todos os dados foram apresentados como médias±desvio da média. Os efeitos do ácido fólico foram analisados utilizando uma análise de variância (ANOVA) seguida pelo teste de Newman-Keuls, utilizando o Statistical Analysis System (SAS). Os valores foram determinados a ser significativos quando p≤0,05.

RESULTADOS E DISCUSSÃO

A utilização de um micronutriente com potencial ação antioxidante no sêmen indica que ele pode reduzir a ação dos radicais livres que alteram a membrana plasmática e o DNA espermático. Isso causaria a diminuição do número de espermatozoides com formas anormais, MAIA (2009) demonstra que a redução do número de espermatozoides anormais poderia diminuir também a quantidade de ROS no sêmen. Desta maneira, se houvesse um equilíbrio entre a produção de ROS e a quantidade de antioxidantes, reduziria bastante os danos provocados pelos radicais livres nas biomoléculas.

Na Tab. 01, estão representados os resultados do teste de integridade da membrana plasmática dos espermatozoides, avaliados por meio de sondas epifluorescentes. Nesse parâmetro, não houve diferença significativa entre os tratamentos estudados.

Tabela 01: Médias e desvios-padrão da avaliação da integridade da membrana plasmática dos espermatozoides ovinos pós-descongelação.

	Membrana plasmática				
Grupos	Integra	Lesionada			
Grupo 1 (controle)	50,9±12,5a	49,0±12,3a			
Grupo 2 (10000μM de ácido fólico)	$51,7\pm0,7^{a}$	48,3±10,7 ^a			
Grupo 3 (50000μM de ácido fólico)	51,2±9,0°	48,8±9,0°			

^{*}Médias seguidas de letras minúsculas diferentes na mesma coluna diferem entre si pelo teste de χ^2 (p<0,05).

Durante o processo de resfriamento e congelamento, ocorrem mudanças na estrutura lipídica da membrana plasmática, que alteram a fluidez da bicamada fosfolipídica, e consequentemente sua permeabilidade seletiva (WATSON, 2000). Apesar de seu caráter solúvel em água, o ácido fólico inibe a peroxidação lipídica, protege a membrana celular e/ou o DNA dos danos dos radicais livres (JOSHI, 2001).

Na avaliação da atividade mitocondrial e da integridade do acrossoma dos espermatozoides pós-descongelados. Não foram observadas diferenças significativas entre os grupos avaliados, conforme mostra Tab. 02 e Tab. 03.

Tabela 02: Médias e desvios-padrão da avaliação da atividade mitocondrial dos espermatozoides ovinos pós-descongelação.

	Mitocô	Mitocôndria				
Grupos	Integra	Lesionada				
Grupo 1 – controle	53,6±11,6 ^a	46,3±11,6 ^a				
Grupo 2 – 10000 μM de ácido fólico	51,6±12,5 ^a	48,3±12,5 ^a				
Grupo 3 – 5000 μM de ácido fólico	51,1±11,2°	48,9±11,2°				

^{*}Médias seguidas de letras minúsculas diferentes na mesma coluna diferem entre si pelo teste de χ^2 (p<0,05).

Assim, a célula desidrata antes de congelar, tornando o ambiente propício para lesões de membranas e organelas causadas pelos cristais (WATSON, 2000).

Tabela	03:	Médias	e	desvios-padrão	da	avaliação	da	integridade	do	acrossoma	dos
esperma	tozo	ides ovin	os	pós-descongelaç	ão.						

	Acros	soma
Grupos	Integro	Lesionado
Grupo 1 (controle)	67,1±6,0 ^a	32,8±6,0ª
Grupo 2 (10000μM de ácido fólico)	64,6±10,3°	35,3±10,3ª
Grupo 3 (5000μM de ácido fólico)	65,3±6,2ª	34,6±6,2 ^a

^{*}Médias seguidas de letras minúsculas diferentes na mesma coluna diferem entre si pelo teste de χ² (p<0,05).

CONCLUSÕES

A adição do ácido fólico nas diferentes concentrações ao diluente seminal TRISgema não influenciou significativamente na integridade das membranas plasmáticas e acrossoma, nem na atividade mitocondrial dos espermatozoides ovinos criopreservados.

REFERÊNCIAS

AL-MASKARI, M.Y.; WALY, M.I.; ALI, A.; AL-SHUAIBI, Y.S.; OUHTIT, A. Folate and vitamin B12 deficiency and hyperhomocysteinemia promote oxidative stress in adult type 2 diabetes. Nutrition, v.28, p.23-26, 2012.

CBRA. Colégio Brasileiro de Reprodução Animal, Belo Horizonte, Minas Gerais. Manual para exame andrológico e avaliação de sêmen animal, 2013. 104p.

COLETO, Z.F.; GUERRA, M.M.P.; BATISTA, A.M. Avaliação do sêmen congelado de caprinos com drogas fluorescentes. Revista Brasileira de Medicina Veterinária, São Paulo, v.24, p.101-104, 2002.

FIGUEIREDO, G.C.; REZENDE, M.P.G.; FIGUEIREDO, M.P.; BOZZI, R.; SOUZA JUNIOR, A.A.O.; CARNEIRO, P.L.S.; MALHADO, C.H.M. Morphofunctional characteristics of Dorper sheep crossed with Brazilian native breeds. Small Ruminant Research. v.170, p.143-148, 2019.

GUTHRIE, H.D.; WELCH, G.R. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry. Journal of Animal Science, v. 84, p. 2089-2100, 2006.

JOSHI, R. Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. Free Radical Biology Medicine, v.30, p.1390-1399, 2001.

MAIA, F.A. Avaliação dos parâmetros seminais de indivíduos inférteis em uso de polivitamínico e polimineral. 2009. 91p. (Dissertação de Mestrado). Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, 2009.

ROTH, T.L.; ANDERSON, G.B.; BONDURANT, R.H.; PASHEN, R.L. Production of sheep X goat hybrid sheep chimeras by inner cell mass transplantation. Biology Reproduction, v.41, p.675-682, 1989.

VIDAL, A.H.; BATISTA, A.M.; SILVA, E.C.B.; GOMES, W.A.; PELINCA, M.A. SILVA, S.V.; GUERRA, M.M. P. Soybean lecithin-based extender as na alternative for goat sperm cryopreservation. Small Ruminant Research, v.109, p.47-51, 2013.

WATSON, P.F. The causes of reduced fertility with cryopreserved. Animal Reproduction Science, v.60–61, p.481–492, 2000.