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Abstract 

The reported effects of nitric oxide (NO), a signaling molecule, on the photo-

chemical components of leaves are ambiguous. We examined the changes by 

a natural NO donor, S-nitrosoglutathione (GSNO). The effect of GSNO on Pi-

sum sativum leaves was studied after a 3-hour exposure in dark, moderate 

(ML), or high light (HL). The NO levels in GSNO-treated samples were at their 

maximum under HL, compared to those under ML or dark. Most of the elevat-

ed NO was decreased by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-

1-oxyl-3-oxide (cPTIO), a NO scavenger, confirming the NO increase. Treat-

ment with GSNO caused inhibition of photosynthesis/respiration and re-

stricted electron transport mediated by both photosystem (PS)II and PSI. 

However, the inhibition by NO-donor of PSII components was stronger than 

those of PSI. A marked increase in the PSI acceptor side limitation [Y(NA)] 

and a decrease in PSI donor side limitation [Y(ND)] indicated an upregulation 

of cyclic electron transport, possibly to balance the damage to PSII by GSNO. 

We suggest that NO aggravated the HL-induced inhibition of photosynthesis 

and dark respiration.  

 

Keywords  

Chl fluorescence; nitric oxide; photosynthesis; photosystems; respiration; 

high light.   

 

Introduction 

Abiotic stress affects photosynthesis in higher plants by targeting the photo-

synthetic apparatus, particularly photosystem (PS) II (1, 2). A common conse-

quence of abiotic/biotic stress is the increase in both reactive oxygen species 

(ROS) and nitric oxide (NO) levels in plant cells (3, 4). ROS and NO could exert 

multiple effects on photosynthetic and mitochondrial metabolisms (5, 6). 

The impact of ROS on photosynthesis was studied by several groups (7, 8), 

while the studies with NO are just catching up (9). Nitric oxide (NO), can mod-

ulate various physiological processes in plants (9, 10). There are contrasting 

claims that NO can be harmful or beneficial for plant cells against stress (4, 

11, 12).  

 In addition to its role as a primary signal, NO may affect respiration 

and photosynthesis. However, the reports on the modulation by NO of pho-

tosynthesis, particularly photosystems (PSI and PSII) are ambiguous. Studies 

on chlorophyll (Chl) fluorescence indicated that the PSII-related reactions 

were either decreased (13) or increased on exposure to NO (14). Some stud-

ies have suggested that NO may protect PSII components from osmotic or 

salinity stress (15, 16). Most of these studies were with sodium nitroprusside 
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(SNP). The variation in the reports appeared to be due to 

different NO-donors (17) or different instruments used for 

monitoring Chl fluorescence. Most of the experiments were 

done with leaves, e.g., pea (17) and potato (18), while some 

were with protoplasts of pea (6, 19).   

 We chose pea (Pisum sativum), which was easy to 

grow in a typical greenhouse. Within 12-14 days, pea leaves 

were ready. Due to their thin nature, treating pea leaves 

with test chemicals is quite effective. In our laboratory, 

several experimental protocols were standardized with 

pea leaves. For most of the experiments, we used leaf 

discs, but for the PSII and PSI measurements, we used 

whole detached leaves. 

 We reexamined the modulation of photosynthesis 

and PSII/PSI components in pea leaves by a natural NO 

donor, S-nitrosoglutathione (GSNO). The leaf discs were 

treated with NO donor under varied conditions: dark, mod-

erate light (ML), or highlight (HL). Chlorophyll fluorescence 

induction patterns were used for assessing the status of 

PSII and PSI.  

 

Materials and Methods  

Plant material and growth conditions 

We described earlier (20), the germination of pea (Pisum 

sativum L., cv. Arkel) plants from seeds and their growth. 

The leaf discs (28 equivalent to 100 mg) were kept for 3 h in 

dark or moderate (ML, 300 µE m-2 s-1) or high-light (HL, 1200 

µE m-2 s-1). When required, other test compounds were in-

cluded at the final concentrations mentioned. 

Quantification of NO content 

The NO levels in leaf discs were determined by Griess 

Reagent (21). Briefly, after the treatment, the leaf discs 

(400 mg) were ground in 3 ml of 50 mM chilled acetic 

acid buffer (pH 3.6). The extracts were centrifuged 

(10,000 g for 15 min at 4 ºC) and the supernatant was 

collected. The pellet was rinsed twice with 1 ml of ex-

traction buffer and centrifuged again. The supernatants 

were combined, and 100 mg of charcoal was added. The 

filtrate was vortexed, cleared by a syringe filter, and 

collected into a new tube. One ml of Griess Reagent was 

added to 1 ml of filtrate, and the absorbance was deter-

mined at 540 nm, after 30 min. Griess Reagent indicates 

NO levels but may not be perfect for estimating NO. We 

used cPTIO, a scavenger of NO, to validate the NO lev-

els. The decrease in the values in the presence of NO 

scavenger can be taken as valid values of NO content. 

Measurement of Photosynthesis and Respiration 

Photosynthesis and respiration rates at 25°C were meas-

ured by a leaf disc oxygen electrode system (Hansatech 

Instruments, UK). Light-emitting diodes provided the light. 

200 µl of 1 M bicarbonate buffer (pH 9.0) moistened the 

uppermost capillary matting, creating 5% (v/v) CO2 in the 

chamber. Three rings of one, six, and twelve-leaf discs 

were symmetrically arranged on this matting. The oxygen 

level in the chamber was calibrated each time for the sam-

ple (22). 

Determination of PSII and PSI efficiency 

Dual-PAM 100 (Walz, Germany) was used to assess the effi-

ciency of PSII and PSI components. Pre-dark-adapted 

leaves were treated as required and were kept in darkness 

for 30 minutes. The PSII and PSI-based Chl fluorescence 

parameters were measured at 800 and 1000 PAR (µE m-2 s-

1), respectively (23, 24). The PSII parameters were calculat-

ed as follows: Maximum photosynthetic efficiency: Fv/Fm = 

(Fm - Fo)/Fm; Quantum yield of PSII: Y(II) = (Fm′-Ft)/Fm′; 

Non-regulated energy dissipation: Y(NO) = Ft/FM; Yield of 

regulatory photo-protective energy dissipation: Y(NPQ) = 

(Fm′ - Ft/Fm)/Ft; non-photochemical quenching: NPQ, qP, 

and qL. 

 The following PSI parameters were calculated as 

described (23, 24). Maximum photosynthetic efficiency of 

PSI (Pm); Yield of PSI: Y(I) = (Pm' - P)/Pm; PSI acceptor side 

limitation: Y(NA) = Pm - Pm')/Pm; and PSI donor side limita-

tion: Y(ND) = P/Pm. Further details are in the legends of 

Figure 3 and Figure 4. The manufacturer manual has addi-

tional information. 

Replications and statistical analysis 

The presented results are averages ± SE of at least three 

independent experiments conducted on different days. 

ANOVA checked the significance. *P < 0.05;**P < 0.001. 

 

Results  

The present work focused on the modulation by GSNO of  

the PSI/PSII components in pea leaves based on Chl fluo-

rescence. Initially, we ascertained the leaf NO content and 

checked photosynthesis/respiration rates.  

Increase in NO content on treatment with NO donor 

The effects of GSNO were checked at different concentra-

tions. Maximum release of NO occurred in the presence of 

1 mM GSNO. The extent of increase in NO by GSNO in dark 

or ML or HL ranged from 7 to 11-fold. The NO contents 

were markedly dampened in the presence of cPTIO, a NO 

scavenger (Figure 1), indicating that the detected NO val-

ues were reliable. 

Figure 1. The levels of NO in leaves of pea exposed to GSNO (1 mM) for 3 h 
under dark, moderate (ML, 300 µE m-2 s-1), or high light (HL, 1200 µE m-2 s-1). 
The values validated the levels in the presence of cPTIO (1 mM), a scavenger 
of NO. Averages ± SE of 3 experiments on different days and their significance 
* P< 0.05; ** P< 0.001 (compared to control, no GSNO).  
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NO inhibited both photosynthesis and respiration 

Incubation with GSNO severely inhibited photosynthesis 

and respiration in ML and HL, compared to that in the 

dark (Figure 2). Further, the inhibitory effect of GSNO on 

respiration was stronger than that of photosynthesis.  

 

Effect of NO on photochemical components, as indicated 

by Chl fluorescence  

Most of the PSII related parameters (monitored at 800 µE 

m−2 s−1) [Fv/Fm, ETR(II), Y(II), NPQ, and Y(NPQ)] were all 

decreased in dark, ML and HL, on treatment with GSNO 

compared to untreated control (Supplementary Table S1). 

The decrease in GSNO-treated samples under HL was up to 

33 % (Figure 3A‒E). Similarly, the Y(NO) values increased 

by 156 % with GSNO, again under HL (Figure 3F). 

 Among the PSI-related parameters (monitored at 

1000 µE m−2 s−1 ) (Supplementary Table S2), the decrease 

by GSNO of Pm, ETR(I), and Y(ND) was marginal (Figure 4A-

D). However, the Y (NA) decreased due to GSNO under light 

(ML or HL) (Figure 4E).  

 

Discussion 

Our results revealed that NO modulated both PSII and PSI. 
The damage caused to PSII appeared to extend to PSI. The 

effects of NO were quite pronounced under HL compared 

to that in darkness or ML. 

 NO elevation in GSNO-treated leaves (Figure 1) was 
not surprising. The NO levels were increased by light, par-

ticularly HL, even without GSNO, but this increase was am-

plified further in the presence of GSNO. Thus,  illumination 

intensified the effects of NO-donor. Our observations are 

similar to the reports on the marked increase in NO levels 

Figure 2. Photosynthetic O2 evolution (A) and respiratory O2 uptake (B) after 
exposure to GSNO (1 mM) under ML or HL for 3 h. Further experimental and 
statistical details were as in Figure 1.  

Figure 3. Chl fluorescence-based  PSII parameters in leaves after a 3 h exposure to 
GSNO (1 mM) under dark or ML or HL. The values of PSII-based chl fluorescence 
parameters were measured at an intensity of 800 µE m-2 s-1. Abbreviations used: Fv/
Fm-Maximal PSII quantum yield; ETR(II)-Electron transport rate of PSII; Y(II)-
Quantum yield of PSII; NPQ- Non-photochemical quenching coefficient; Y(NPQ)- 
Quantum yield of NPQ-regulated energy dissipation of PSII; Y(NO)- Quantum yield 
of nonregulated energy dissipation of PSII. Further experimental and statistical 

details were as in Figure 1.  

Figure 4. Chl fluorescence-based PSI parameters in leaves after a 3 h expo-
sure to GSNO (1 mM) under dark or ML or HL. The PSI-based chl fluorescence 
parameters were measured at an intensity of 1000 µE m-2 s-1. Abbreviations 
used: Pm-Maximal P700 change; ETR(I)-Electron transport rate of PSI; Y(I)-
Quantum yield of PSI; Y(ND)-Donor side limitation of PSI; Y(NA)-Acceptor side 
limitation of PSI. Further experimental and statistical details were as in Fig-
ure 1.  



 4    SAINI ET AL 

https://plantsciencetoday.online 

on treatment with external NO donors in Lupines termis, 

Medicago truncatula and Nicotiana tabacum (25-27). 

 The suppression of photosynthesis and respiration 

was moderate in the presence of GSNO (Figure 2). The inhi-

bition by NO of photosynthesis was known (6, 19). But 

there were only a few studies on the NO effect on respira-

tion (28, 29). We emphasize that both photosynthesis and 

respiration are sensitive to GSNO. The inhibition of photo-

synthesis by SNP, another NO-donor, was reported in mes-

ophyll protoplasts and leaves of pea (6, 19, 30). However, 

the exact mechanism of NO action was still unknown. The 

sensitivity of photosynthesis was obviously due to the in-

terference by NO of PSII components followed by PSI, as 

observed by us (6, 19). The sensitivity of respiration could 

be due to the interference with the cytochrome pathway, 

as NO and its derivatives caused irreversible inhibition of 

cytochrome c oxidase (31). 

 Both the photosystems (PSII and PSI) appeared to 

be targets of NO. However, PSII was more sensitive than 

PSI to NO, as indicated by Chl fluorescence parameters 

(Figure 3A‒F). The marked sensitivity of PSII components 

to NO was previously noted (19, 32). When present, NO 

either down-regulated PSII-related parameters (13, 17, 33) 

or up-regulated the PSI-related reactions (14). In our stud-

ies, GSNO exerted stronger inhibition on PSII components 

than on PSI (Figure 3A‒F). A high concentration of exoge-

nous NO strongly inhibited the PSII electron transport be-

tween QA and QB (13, 17, 34).  

 The status of Fv/Fm can be treated as a stress indi-

cator for Chl a fluorescence. In intact potato leaves, SNP 

reduced the Fv/Fm but did not cause any change in NPQ 

(18). On the other hand, another NO donor (GSNO) down-

regulated Fv/Fm and NPQ in intact pea leaves (17). Based 

on our observations on PSII parameters (Figure 3A‒F), we 

propose that most reaction centres switched from photo-

chemistry to heat dissipation after treatment with NO, pos-

sibly due to structural reorganization in PSII. 

 The exposure to GSNO under ML or HL caused more 

damage to PSII/PSI than when kept in darkness. It is possi-

ble that the presence of NO aggravated the stress caused 

by HL and vice versa (Figure 3 and 4). A requirement for 

illumination to ensure NO-mediated damage to PSII in V. 

faba was reported by Ördög et al. (35). PSII damage de-

pended on light intensity and the speed of recovery de-

pended on the chloroplast's energetic state (36, 37). Our 

results endorsed the view that the damage caused by NO 

was aggravated by light, particularly HL. There were sug-

gestions that NO can be an antioxidant component allevi-

ating oxidative stress caused by HL and providing a photo-

protection mechanism (38, 39). 

 Solymosi et al. (40) recently showed that NO re-

leased by SNP and GSNO affected the photochemical effi-

ciency of both PSII and PSI. Wodala and Horvath (14) also 

observed that GSNO-induced NO increased PSI quantum 

efficiency in intact pea leaves. In our experiments, the 

marked change in the PSI components with NO reflected a 

significant difference in PSI photochemistry (Figure 4A‒E). 

The increase in Y(NA) in contrast to decreased Y(ND) under 

HL indicated the accumulation of electrons on the PSI do-

nor side (Figure 4D, E), as observed by Munekage et al. (41) 

in a mutant of A. thaliana. We propose that the observed 

effects of GSNO: restriction of Y(ND) and stimulation of 

Y(NA) reflect PSI-based cyclic electron transport stimula-

tion. Our observations endorsed the opinion that PSI was 

more robust than PSII, and the extent of damage to PSII 

was severe at HL (1, 37).  

 

Conclusion  

In our experiments, GSNO was a good NO-donor, as it 

could release NO, and affect PSII/PSI with a marginal effect 

on overall photosynthesis, respiration, and pigments. We 

endorse the view that NO affects PSII components and 

restricts electron transport. The reactions of PSI were 

affected marginally. The effects of NO on PSII or PSI were 

always quite pronounced in HL. The staining of pea leaves 

with diaminobenzidine or nitrobluetetrazolium confirmed 

the elevated levels of ROS in light, particularly HL 

(Supplementary Table S3). We, therefore, propose that the 

effects of NO were aggravated in HL, possibly due to en-

dogenous reactive molecules: ROS or NO or both.  
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