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Abstract 

Food security is of utmost priority to humankind. This is the implication of 

various interconnected factors that lead to climate change. Elevated temper-

ature and carbon dioxide levels are just two of these. The nutrient is an in-

separable aspect of food. The change in climate is posing threat not only to 

the amount of available food but also to the nutrients laden in the food 

items. Seeds are the miniature form of plants and are a reflection of their 

future health and nutritional status. The changes in environmental factors 

predominantly challenge the growth and development of a seed. This review 

is an attempt to understand the impact of elevated CO2 and temperature on 

seed germination, the nutritional status of the seed and the yield in form of 

total seed production. It gives a direction for analysis and future studies that 

may use the latest available tools like gene editing to tackle and counteract 

the retarding effect of climate change on these parameters of seed, thereby 

offering a climate resilient agriculture.   
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Introduction 

Seeds represent a significant stage in the life cycle of a plant and are vital 

component in maintaining the continuous exixtence of a species. They store 

the genetic information required for the next generation to disperse, estab-

lish, develop and reproduce. The seed is a fascinating organ as it has the ca-

pability to maintain life in a hidden form if present in a dry state (dormancy) 

and to recommence its metabolic activities during favorable environmental 

conditions. The climatic factors are important determinants and play a key 

role in affecting the various stages in the life cycle of a plant starting from the 

germination of seed till its development (1). 

 The global temperature of the earth’s surface may increase by 2.5-

4.50C, due to anthropogenic activities, resulting in the release of carbon diox-

ide gas and the emission of other greenhouse gases (2). As a consequence, 

plant species distribution and vegetation structure in near future can be 

drastically altered and it could also adversely affect the existence of the indi-

vidual species. The effects of temperature on plant growth and development 

are the source for predicting germination timing. The factors which affect 

seed germination are temperature, soil moisture, light intensity, seed size 

and seasonal variation. All these factors whether single or in combination 

can influence the germination % and rate (3). Among all factors that affect 

germination, the temperature is the major limiting factor (4, 5). Exposure to 
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high temperatures during seed development for a long 

duration delays germination and reduces the seed vigor 

and dry mass (6) directly impacting the plant growth and 

development. Elevated temperature can enhance the rates 

of photorespiration and transpiration and therefore reduc-

es the rate of photosynthesis, affecting the growth of seed-

ling establishment and development (7). 

 Each individual species has an optimum tempera-

ture, below and above these temperatures, germination 

cannot occur. The three important parameters regarding 

the temperature which strongly influence seed germina-

tion are moisture, hormonal and enzymatic activity. For 

germination, seeds need to imbibe water and thus suffi-

cient moisture should be present. Hot and dry climate con-

ditions enhance evaporation and reduce moisture, which 

could negatively impact seed germination. Besides physi-

cal factors, plant hormones like gibberellins and abscisic 

acid (ABA) also regulate seed germination. Seed germina-

tion is enhanced by the gibberellins and on the other hand, 

Abscisic acid inhibits seed germination and promotes dor-

mancy. Genes that control the production of these hor-

mones, enzymes that facilitates the elongation of embryo 

and radicle protrusion and other chemical signaling path-

ways are also dependent on temperature (8). An extreme 

change in temperature could negatively impact and may 

have some serious implications also on seed germination. 

Similarly, elevated carbon dioxide (eCO2) results in carbon 

fertilization effects but it also hampers the overall growth 

and development of most species. 

 There are not many studies on seed germination 

under the influence of elevated temperature and eCO2. 

Information on seed dormancy, yield, viability and % ger-

mination is vital for the growth and survival of any plant 

species. Therefore, this paper aims to bring a basic but 

deeper understanding of the effect of these factors on vari-

ous aspects of seed development, seed germination, nutri-

ent content and yield. This understanding may be helpful 

in devising an appropriate scientific solution to mitigate 

climate change-induced damage to crops and plants in 

general.  

Impact on Seed germination  

The agricultural productivity of most crops is heavily de-

pendent on the post-zygotic reproductive product, most 

often which is the seed. Though the post-zygotic output is 

directly related to the pre-zygotic stages for an agriculture-

based economy of the world, the focus is generally the 

quantity and quality of the seed, which will not only feed 

its populations but also set rolling the next cycle for the 

species. Seeds of cereals form the major source of food 

globally. Therefore, the impact of high temperatures on 

their seed size, weight, and nutrient content is another 

very important parameter that needs the attention of sci-

entists. Heat stress (390C) modified the initiation of cellu-

larization of endosperm in rice during the post-zygotic 

phase (1 d after fertilization), which led to altered biosyn-

thesis pathway gene expression in gibberellic acid and ab-

scisic acid (ABA) and reduction in the seed size and starch 

content (9). 

 A study conducted on seed germination in rice 

showed a reduction from 100 % to 60% when the tempera-

ture was increased from 37 to 500C for 96 hr period. The 

same temperature for the same time period was given to 

maize and sorghum also, where the germination was re-

duced by up to 40%. When exposed to the high tempera-

ture, the seedlings of all three crops, showed signs of stag-

nation (10). In peanuts (Arachis hypogea L.), temperatures 

greater than 40±10C, the occurrence of deformed seedlings 

was noticed and the temperature beyond 500C had a harm-

ful effect on seeds in the form of embryonic death (11).  An 

endemic tree species of China, Pinus bungeana Zucc. ex 

Endl., showed the maximum seed germination (90%) at 15 

or 200C with or without light, whereas at 25-300C, there was 

a reduction in the seed germination as well as the emer-

gence of the radicle was also delayed (12). Similar studies 

conducted on Pinus densiflora, P. thunbergii and Maackia 

amurensis showed that high temperature not only reduced 

percent germination but also delay it, representing that 

seed germination of Pinus species is highly sensitive to 

high temperature (13, 14).  

 In carrots, the optimal germination occurs between 

200C to 300C (15) and like other crops, abiotic stress also 

reduced the yield in carrots (16, 17), as well as the high 

temperature, inhibited the seed germination in carrots 

(18).  In Arabidopsis, complete seed germination was re-

ported at 220C, whereas the seed exposed at 340C sup-

pressed germination by 90%, resulting that heat stress 

having an adverse impact on seed germination (19, 20).  

  Reduction in the seedling and their survival percent-

age was observed in Crassocephalum crepidioides, where it 

decreased linearly as the duration of the heat treatment 

was increased and approximately all the seeds were killed 

after 6-days of heating at 400C (21).  

 On the contrary, in some plant species, the high 

temperature increased the germination percentage as high 

temperature can activate the chemical pathways leading 

to seed germination. The lower mean germination time of 

Corylopsis gotoana var. coreana and Prunus padus seeds 

with impervious hard seed coats were more prominent at 

the elevated temperature (8, 22). Similarly, in black gram, 

the highest seed germination (93%) was observed when 

the seeds were treated at 500C for 20 min, followed by the 

seeds exposed for 10 min (88%), indicating that high-

temperature treatment increased the seed germination. 

Heat exposure for a longer duration (30 min.) inhibited 

seed germination to 80%, but this germination percentage 

was higher than the control seeds which were not given 

any kind of heat stress (23). 

 Carbon dioxide has also been shown to enhance the 

germination percentage of seeds of various plants at rela-

tively high concentrations (24). In Amaranthus hybridus, 

Chenopodium album and Medicago sativa, doubling the 

concentration of CO2 increased the germination % (25). On 

the contrary, another study conducted on Malus baccata, 

Picea jezoensis and Zelkova serrata demonstrated that 

seed germination was significantly lower under elevated 

CO2 concentration indicating that increase in CO2 concen-
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tration always do not have a beneficial effect on seed ger-

mination (20, 26).  

Impact on Seed yield 

Industrialization, deforestation and large-scale agricul-
ture, the emission of greenhouse gases into the atmos-

phere have risen to a record level, resulting in increased 

temperature. Various investigations undoubtedly confirm 

that high temperatures will have strong negative implica-

tions on the agriculture sector soon, particularly in some 

emerging economies.  

 Research has also shown that seed yields of canola 

have been reduced by 15% by subjecting the crop to high-

temperature stress before flowering (27). The effects of 

elevated CO2 and temperature on the productivity of three 

main cropping systems in Punjab were investigated. Re-

sults indicated that on doubling the level of CO2 (350 ppm) 

at the existing temperature, yields of paddy in rice, seed-

cotton in cotton and grain in maize, were increased by 4.9, 

5.5 and 6.5% respectively (28). Several other studies have 

observed the effect of elevated CO2 levels on the nodule 

size, nodule number and biomass/seed yield in legumes 

like Pisum sativum, Trifolium repens, Lupinus albus, soy-

bean and common bean and noted an increase in these 

parameters (29-32).  They reasoned that the improvement 

was due to greater N2 fixation under elevated CO2 (33). 

 Contrary to the eCO2 effects, higher-than-required 

temperatures bring down crop yields. The yield was sub-

stantially lowered with an increase in the maximum and 

minimum optimal temperatures of maize, rice and cotton. 

The percent decrease in wheat equivalent yield in various 

cropping systems was 2, 23 and 39 with maximum and 12, 

11 and 17 with minimum temperature respectively (28). 

 Temperature affects the different growth parame-

ters, yield and quality in soybean too. This crop is suscepti-

ble to variations in temperature. The ambient temperature 

range for this crop is 15-220C at emergence, 20-250C at 

flowering and 15-220C at maturity (34). The yield of soy-

bean seed improved between 18/120C (day/night) and 

26/200C, but the yield was reduced at temperatures higher 

than 26/200C (35, 36). Temperature rise from 29/20 to 

34/200C at the seed fill stage lowered the seed yield (37) 

and temperature above than 400C severely limited the pod 

formation (38). In soybean, a higher incidence of abnormal 

seedlings was also revealed, when the seed was exposed 

to a temperature greater than 280C (39). In Phaseolus, Vul-

garis highest seed yield occurred at 28/180C, but as the 

temperature increased, yield started declining, at 37/270C, 

the yield was zero (40).  In wheat, the reduced yield was 

observed in terms of decreased chlorophyll content, pho-

tosynthesis and transpiration rate (41).  

 Higher temperature also adversely impacts the 

translocation of photosynthates (42) to the developing 

seeds thereby reducing the seed weight and number 

(yield) and altered metabolism may reduce the seed ger-

mination (43). Faster seed filling was held responsible for 

small-wrinkled seeds in lentils (44) and chickpeas (45). The 

higher CO2 affects whole-plant development rate mostly 

indicated by the time to reach the reproductive phase. 

Different plants respond differently to the changing envi-

ronment by either slowing (46), or fastening (47, 48) the 

development processes. Species may exhibit slower, or 

similar rates of development in response to elevated CO2 

(48). The ones showing faster development acquired a 

minimum size necessary for the reproduction or changed 

the size at which plants begin reproduction (49). By 

preponing the time of reproduction, the plant-pollinator 

interaction is affected (48) and reduces the final seed pro-

duction or yield.  

Impact on Seed Quality 

High temperature affects some physiological and bio-

chemical processes like oxygen requirement during seed 

imbibitions (50). In Arabidopsis, it was reported that the 

accumulation of ABA and reactive oxygen species are in-

creased due to the high temperature, resulting in the dor-

mancy of seeds and thus limiting seed germination (51). 

Heat shock proteins (HSPs) are produced because of heat 

stress and are linked to dormancy (52). These HSPs retain 

the proteins in the seed in a folding-competent mode 

which restricts germination until the occurrence of favora-

ble conditions (53).  

 HSPs can weaken some of the physiological pro-

cesses linked with seed size and quality. These heat shock 

proteins reduced the levels of sugars such as fructose, sug-

ar nucleotides and hexose phosphate as well as signifi-

cantly decreased the starch accumulation during grain 

filling in wheat (54), rice (55) and maize (56). The decrease 

in the level of sugars may be linked to assimilate utilization 

for purposes other than edible component production 

(57).  

 In soybean and in cereals, increased temperature 

and CO2 enrichment reduced protein and micronutrient 

content (58, 59). Under heat stress, the nutritional value of 

total free amino acids and total protein concentration was 

reduced in soybean, whereas the oil concentration was 

considerably increased (60). A decrease in nutritional 

(mainly N, Zn, Fe and S) quality was reported in non-

legume C3 crops (61), Lactuca sativa, Spinacia oleracea 

(62), faba bean and lentil (63) under increased CO2 concen-

trations. A decreased amount of nitrogen, phosphorus and 

potassium was also observed in the edible parts of both L. 

sativa and S. oleracea (62). Elevated CO2 concentration 

hampers the quality of crops by reducing the nutrients like 

minerals, proteins and vitamins (64). It is speculated that 

the low nutrients will result in the loss of quality of cereals, 

pulses and other food plants and are a threat to ecosystem 

sustainability and food security.  

Effects on parameters other than seed 

Heat shock proteins (HSPs) not only affect the quality and 

content of the seed but also have undesirable impacts on 

the plant growth, yield as well as it also affects the physio-

logical processes of the plants such as reduction in the 

photosynthetic rate and increased respiration rate (65). 

These HSPs have negative effects on root development, 

(66) and reproductive stages including the developmental 

stages of the flowering and pollination process (67).  

 Cotton (Gossypium hirsutum) flowers when exposed 
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to high temperature, showed lowered ATP production as 

well as reduced carbohydrate reserves (particularly su-

crose) in their pistils, associated with a heat stress-induced 

reduction in the rate of photosynthesis (68). It was sug-

gested that a stress-induced reduction in sugar delivery to 

reproductive tissue led to the failure of gametophyte de-

velopment (69). A significant decline in the number of solu-

ble carbohydrates and ATP content in the pistil of cotton 

was observed when the plant was exposed (380C/200C) for 

a week before flowering, resulting in a reduction in the 

number of ovules and fertilization efficiency (68).    

 Similarly, it was observed that sugar starvation is 

the major cause of the failure of fertilization in rice when 

the plants were exposed to elevated temperatures (70). It 

can be linked with the presence of acid invertase enzymes 

as invertase hydrolyze sucrose into hexose and thus pro-

vides carbohydrates from transmitting tissue to support 

pollen tube growth (71, 72). Under heat stress, the activity 

of the invertase enzyme was significantly decreased and 

thus restricting the supply of hexose sugars. The interac-

tion between sugars and hormones is indicated in sugar 

transport (73, 74) whereas other scientists have reviewed 

the carbon dynamics and suggested not to draw a general 

conclusion about the role of sugars in crop reproduction 

(75).  Providing the exogenous acid invertase increased the 

amount of carbohydrates content as well as increased the 

spikelet fertility in rice (76). In maize, the grain size and 

yield were reduced at 300C due to problems in endosperm 

cell division and replication of amyloplast (77). Counter-

acting climate change needs a holistic approach so that 

the effects on the reproductive phase of plants can be min-

imized (78) and the abiotic threats to biodiversity can be 

addressed (79).  

Conclusion and future perspective 

Due to global climate change, these environmental cues 

are getting altered and it may enhance, delay or inhibit 

germination percentage, as has been observed in some 

cases.  Predicted changes in temperature, precipitation 

and soil moisture, are going to affect several aspects of 

seeds such as seed longevity, dormancy, germination and 

soil pathogen activity. An increase in temperature may 

change the overall species distribution by affecting seed 

germination, growth and fitness, thereby having incredible 

ecological as well as economic consequences (80). There-

fore, it has become necessary to thoroughly evaluate the 

outcomes of temperature and carbon-di-oxide on individ-

ual species and ecosystems as a whole to tackle the drastic 

situation of climate change. Developing thermotolerant 

species using genetic and molecular tools. This calls for a 

thorough grasp of the responses of plants to changing 

temperatures and the mechanism(s) of heat tolerance to 

devise possible strategies for improving crop thermotoler-

ance. 

 Further studies should be directed to understand 

the combined effect of various environmental factors such 

as elevated CO2 concentration and higher temperatures. 

eCO2 results in enhanced growth and biomass of plants on 

one side it is too early to predict the impact on carbohy-

drate and hormone signaling may have. The complex in-

teraction of biotic and abiotic factors needs to be investi-

gated at the molecular level to come up with a better un-

derstanding of thermotolerance and carbon sequestra-

tion. Genetic engineering is a very promising approach to 

genetically engineering biotic and abiotic stress-tolerant 

and resistant species, but it has not been able to deliver its 

potential due to strict regulations and public perception 

and concerns about GM products. Various approaches 

such as mathematical modeling based on various crop 

growth attributes can be used to predict the yield and 

manage appropriate resources in time (81, 82). Transcrip-

tional reprogramming using recent techniques like gene 

editing may be another tool that may be utilized to under-

stand the plant responses to the changing environment 

and equip humanity to counteract or at least minimize its 

impact and pave way for much acceptable solution to cli-

mate-resilient agriculture.  
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