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Abstract   

Since mangroves are found near extremely transitional ecosystems, they 

face a lot of physico-chemical perturbations. As mangroves possess a 

unique ecotone, they experience many abiotic stressors viz. salinity, metal, 

oil, humidity temperature, nutrient and a wide range of biotic interactions. 

Amongst all, salinity is the most important factor affecting mangrove physi-

ology and biochemistry, and thereby regulating the organic matter contri-

bution to the consumers underneath. Exploitation by human, being a domi-

nant biotic interference, is above the rate at which natural replacement of 

mangrove vegetation occur. Mal-nutrition is a limiting factor in growth and 

reproduction of many mangroves whereas nutrient replenishment reduces 

the phytotoxicity of heavy metals. Different environmental pollutants in-

cluding heavy metals, recalcitrant, cosmetics, petroleum oil and endocrine 

disrupters have reported impact on various mangroves and associated bio-

ta. Stress tolerance in mangroves involves various mechanism including 

morphological and anatomical features, osmoregulation, water use efficien-

cy, salt secretion, salt exclusion and salt accumulation and molecular regu-

lations. Various aspects of salt tolerance strategies of mangroves related to 

their growth, biochemical anatomy and physiology were reported by many 

researchers.   
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Introduction   

Forests are regarded as greatest sink for carbon in the form of stored organ-

ic matter and also adding carbon dioxide (CO2) to the atmosphere by bio-

degradation and wildfires (1). Coastal ecosystems are driving force in main-

taining environmental balance with unique biogeographic features, ecosys-

tem services and anthropogenic activities (2). Numerous human pathogens, 

including Candida albicans, Mycobacterium vaccae, M. aurum, M. smegmatis, 

M. fortuitum and Staphylococcus aureus, were susceptible to various man-

grove extracts, including those from Avicennia sp., Bruguiera gymnorrhiza, 

Excoecaria agallocha, and Acanthus ilicifolius. These extracts also exhibited 

antimicrobial, anti-inflammatory (3-5). These ecosystems also provide food 

and shelter to a number of organisms maintaining the biodiversity (6). To 
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reiterate, these ecosystems are ultimate sink of several 

man-made pollutants from industrialization, modern life 

styles, agricultural run-offs and municipal sewage systems 

(7, 8). The coastal vegetation is composed of mangroves 

and associates, which are unique halophytes of tropical 

and subtropical intertidal forests across the globe (9). 

Storm and cyclone control mechanisms of mangrove saves 

lives and property with onset of any geo-hydrological dis-

asters (10). Mangroves are most dominant ecosystems in 

coastal and estuary bio-geographical zones across the 

globe (11). Mangroves are worse affected by synergistic 

effect of climate changes and human activities. The alarm-

ing rate of interference by human beings in intertidal 

zones has caused a variety of environmental problems and 

worsened the conditions of ecosystem processes (12). 

 The intertidal regions of tropical and subtropical 

coastlines are home to a unique type of vegetation known 

as mangroves. They are mostly facultative halophytes and 

are thought to be more tolerant to salt than any other spe-

cies since they can withstand high and changing salinities 

(13). A sophisticated antioxidant system made up of both 

enzymatic and non-enzymatic antioxidants effectively de-

fends their cells from the damaging effects of ROS. Reac-

tive oxygen species (ROS) which include the superoxide 

radical (O2·−), hydrogen peroxide (H2O2), hydroxyl radical 

(OH·) and singlet oxygen (1O2) are produced at a higher 

rate in plants as a result of several environmental stress-

ors, including salt (14). When ROS are not under control, 

these can significantly impair the normal metabolism of 

plant cells by oxidatively damaging lipids, proteins and 

nucleic acids (15, 16). Mangroves degradation has been 

noticed more frequently since a few decades by human 

encroachment, cutting off trees, land use policy and fresh-

water management. The mangrove dwelling animals in-

clude a wide range of taxa of vulnerable or threatened cat-

egories due to unsustainable human activities. Calculating 

the economic value of mangroves and other estuarine 

habitats for these animals depends on their life history 

strategies, physiology and ecology throughout the dynam-

ic habitats (17). These findings of many researchers show 

the presence of mangroves influences their life cycle, but 

paucity of convenient scientific evidence is a key problem 

to prove it (18). Due to blockage in tidal flows and ex-

changes by anthropogenic hydrological planning, man-

groves has been residing under high risk of habitat loss 

and fragmentation. The present study reviews the various 

aspects of abiotic and biotic stress tolerance in man-

groves. 

 International policies have started emphasizing 

mangrove conservation and rehabilitation as part of a 

comprehensive protection strategy for vulnerable coastal 

communities as the importance of mangrove forests in 

shoreline protection and climate change mitigation has 

grown (14, 17-19). Mangrove forest restoration projects 

frequently fall short of expectations or fail entirely, despite 

the fact that some design criteria have been devised for 

them (20). These failures are frequently associated with 

habitat parameters and the limiting factors include both 

biogeochemical such as light, nutrients, salinity and pre-

dation) and hydrodynamic issues such as wave, current 

and tidal inundation (21). The three main abiotic factors 

that affect mangrove growth and spread are inundation, 

elevation gradient and salinity changes (22). To adapt to 

the frequently changing intertidal ecology they inhabit, 

mangroves have special adaptations include vivipary, salt 

secretion, aerating roots, ultrafiltration, ion sequestration, 

osmolyte build up and thick waxy leaves (19, 23). Intertidal 

zones in river deltas, estuaries, coastal lagoons and open 

coastlines are blessed with dynamic characteristics includ-

ing variable tidal flow, anoxic habitats and high salinity 

that make them distinctive niches for mangroves where 

other types of vegetation struggle to flourish (19). 

 Mangroves are currently endangered by various 

anthropogenic activities such as irrigation projects, aqua-

culture, global warming, sea level rise and climate change. 

However, irrigation projects bypass freshwater from sea 

resulting in enhanced salinity whereas aquaculture sys-

tems without proper land use plan degrade mangroves 

primarily through exogenous material inputs and habitat 

fragmentation. The tidal flux and intensity indicating ele-

vated sea level significantly affect geomorphology of man-

groves which has been predicted as climate change indica-

tor (24). Firewood, timber, apiculture, aquaculture and 

fisheries are some important livelihoods of the mangrove 

forest tribes, who are affected by loss of the mangrove 

resource. The productivity, species diversity and socio-

economic values of mangroves attract many biologists to 

explore their significance. 

 As mangroves are unique ecotone areas, they ex-

perience many abiotic stressors viz. salinity, metal, oil, 

humidity, temperature, nutrient and a range of biotic 

interactions (25). Alterations in plant-community struc-

ture and salt marsh-to-woody shrub ecotone, impacted 

many mangroves and their associates in chilling seasons 

as experienced by A. germinans in its early life-history 

stages whereas this canopy provides a fundamental 

niche overcoming cold stress in Mexican coast (26). Man-

groves survive in adverse environmental perturbations 

maintaining a fair amount of net production. Even during 

seasons with non-availability of photosynthetic light in-

duction, they overcome this photoinhibition by active 

leaves resulting sustainable productivity. Previously re-

ported a significant decline in photosynthetic yield when 

Rhizophora stylosa, were directly illuminated (27) where-

as other workers observed no photoinhibition in Brugui-

era parviflora under normal light conditions or in R. Man-

gle under control and water-loging situation (28). It was 

reported that the salinity, inundation and elevation sig-

nificantly induced oxidative stress in the leaves of R. sty-

losa, resulting in triggering of the antioxidant defense 

system (29). The hypocotyls of Rhizophoraceae man-

groves especially B. gymnorrhiza,     B. parviflora, Kandelia 

candel and Rhizophora apiculata had profound multiple 

shoots inducing ability under ex vitro condition. The hy-

pocotyls of Rhizophoraceae are helpful to maximize the 

potentiality of shoot regeneration and conservation of 

the mangrove forest (30).  
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Salinity stress in mangroves        

All mangrove species have the mechanism to reject excess 

amount of salt but the mechanism varies from one species 

to another. Aviciennia sp. and Sonneratia sp. have salt ex-

cretion glands whereas some accumulate salt in their 

stems by increasing succulence. Above or below certain 

salinity levels their growth is inhibited and even death oc-

curs (31). Though many mangroves develop well at salt      

5-20‰ levels they are able to tolerate more than these 

reported ranges, which, however, appreciably vary with 

the species (32). According to the data revealed with the 

distribution of mangroves with respect to soil salinities, 

one who grows in salinities as high as threefold of sea wa-

ter and another hardly up to 40% salt (33). Salinity can 

affect stomatal conductance and transpiration thereby 

causing wilting due to water accumulation on excessive 

dehydration in mangroves (34). Stomatal and non-

stomatal gas exchange were severely affected by higher 

salt concentrations (35) which may lead to photorespirato-

ry carbon loss and photosystem-II damage (36). Salinity 

put a considerable adverse effect on propagule establish-

ment of A. germinas and seedling development whereas 

10% propagules could able to root at 75 ppt (13). Elevated 

levels of salt reduced nitrogen accumulation in K. candel 

and E. agallocha (37) and hindered the transport of K+ by  

A. marina, thereby disintegrating photosynthetic appa-

ratus (38). By measuring the intensity and nature of fluo-

rescence of phosynthetic pigments, plant ecophysiology 

can be investigated under salt stress.  

 Salt tolerance in terms of photosynthesis, transpira-

tion and stomatal conductance has been studied in 

skimpy as far as physiological response is concerned. The 

correlation between photosynthesis and transpiration 

rates had been tested in many mangroves indicating their 

differential salt tolerances (39). Salinity stress induces low 

stomatal conductance which ranges between -2.5 and -6.0 

MPa resulting in declining rate of transpiration and CO2 

availability to inter-mesophyll milieu (36). There is hardly 

any evidence of increased respiration and reduced photo-

synthesis due to high salt levels in Rhizophoraceae man-

groves. Stomatal closure led to reduced transpiration and 

also reduced carbon gain in elevated levels of salinities in 

certain mangroves (32).  

 Varied mangrove species exhibit different salinity 

preferences and grow best at different salinity levels. For 

example, Sonneratia caseolaris grows best at low salinity 

(<5 ‰), but Ceriops tagal grows best at 50% seawater (40). 

Seedlings thrive when exposed to 25% seawater, but 

growth is negatively impacted by high salinity or a com-

plete lack of salt. True mangroves can be found on the 

beaches of south and southeast Asia, from western India 

to Borneo, with K. candel and R. stylosa being the domi-

nant species and considered to be a representative of all 

mangrove species (23). The increased levels of enzyme 

activity and lower levels of lipid peroxidation may help to 

partially explain how mangrove plants have adapted to 

their salty environment, while there are many other mech-

anisms involved in reducing oxidative stress (16). The 

unique genes in A. ilicifolius are mostly connected to rhyth-

mic processes, reproductive processes and reaction to 

stimuli, according to Gene Ontology (GO) enrichment. 

Acanthus travelled from terrestrial to intertidal settings, 

where 311 pairs may be subject to positive selection, ac-

cording to the fast evolution and positive selection stud-

ies. Functional enrichment analysis showed that the adap-

tation of A. ilicifolius to intertidal habitats, which are char-

acterised by high salinity and hypoxia, is related to these 

genes associated with essential metabolism and biosyn-

thetic pathways, such as oxidative phosphorylation, plant 

hormone signal transduction, photosynthetic carbon fixa-

tion and arginine and proline metabolism (41). 

 Mangroves are facultative in nature, which means 
they can grow equally well in freshwater and saltwater. 

This highlights how tightly controlled gene expression pat-

terns literally drive adaptive features by sensing the sur-

rounding salinity (13, 15). Mangroves, the dominant plant 

species in intertidal areas, provide vast ecological and eco-

nomic functions, including the storage of carbon, aquacul-

ture, shrimp farming, fisheries, lumber production and 

coastal protection. By raising anoxia levels over safe levels, 

pollutants, particularly plastics and their more hazardous 

microplastic cousins, choke mangrove plants (42). 

Effect of nutrient in mangroves subject to salt stress        

Nutrient deficiency is another problem limiting mangrove 

development (43). Water-logging reduces nitrification, 

which leads to minimal nitrogen availability in mangrove 

habitats (44). Exogenous supply of nutrients significantly 

enhances shoot elongation in Rhizophora mangle, im-

proves leaf and branch growths of A. germinans, increases 

LAI of C. tagal, induces higher rates of stomatal conduct-

ance and photosynthetic rate in K. obovata (45, 46). It was 

also reported that addition of nutrient reduces phytotoxi-

city of heavy metals (44), contribute to osmoregulation 

(46) and stimulate antioxidant systems (47), resulting in 

higher tolerance capacity of mangroves to varying salinity 

regimes. Nutrient supplements also enhanced PN, E, gs and 

water use efficiency of E. agallocha (48), K. candel (46) and 

dwarfed R. mangle trees (49). Conversely, nutrient defi-

ciency significantly hampered biomass accumulation and 

root growth rate in E. agallocha (48), A. marina and B. par-

viflora (38) and K. candel (46). Global studies on distribu-

tion of R. mangle in mangrove habitats suggested that 

these are P limited (49). 

 Both an increase in water availability, which would 

assist plant development, and a decrease in oxygen sup-

ply, which will hinder it, are potential impacts of persistent 

waterlogging on plants. Less root biomass will be required 

to absorb water from the root environment in a species 

that is more resilient to waterlogging because the increase 

in accessible water will out-compete the suppression of 

oxygen deficiency after being waterlogged for some time. 

For K. candel, a biomass shifts from root to shoot (an in-

crease in S/R) during protracted waterlogging may help it 

maintain its RGR by increasing nutrient intake per unit of 

root biomass (50). The viviparous mangroves showed vary-

ing levels of resistance to waterlogging, and one defense 

involved morphological and structural changes that      
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allowed roots to maintain aerobic metabolism for pro-

longed durations of submersion (51). It was reported that 

chlorophyll contents and photosynthesis decreased in 

many species with waterlogging whereas K. candel en-

hanced the synthesis of chlorophyll and showed better 

photosynthetic response under prolonged waterlogging 

(50, 52, 53). Shorter vessel components were seen to 

emerge in B. gymnorrhiza in the mangrove Laguncularia 

racemosa under higher and longer flooding levels. In sev-

eral mangroves, including S. alba, B. gymnorrhiza and L. 

racemosa, gelatinous fibres appear to have a functional 

role in sustaining stems and the normal ontogeny or archi-

tectural development of woody axes, as well as in leaves 

under low waterlogging situations (54). The capacity of A. 

marina seedlings to oxidise the rhizosphere and save oxy-

gen allows them to maintain aerobic metabolism for ex-

tended periods of time while submerged in glasshouse 

water (51). A. marina seedlings' anatomical variances 

would respond favourably to modest flooding, but would 

be adversely affected by extreme flooding (55). 

Effect of metals, oil and other toxicants in salinity toler-

ance of mangroves         

Wetlands are well-known sink for metals because of differ-
ent physico-chemical and biological phenomena involving 

mass wasting and sediment development (56). Coastal 

zones receive enormous amounts of industrial effluents 

and become rich in heavy metals (57). Antioxidative en-

zymes induce defence against oxidative damage by Cd and 

Pb in B. gymnorrhiza and K. candel (44). An impermeable 

barrier formation in rhizospheric region to radial oxygen 

loss (ROL) under Cu stress in B. gymnorrhiza and R. stylosa 

is has been noted as a unique stress tolerance mechanism 

by immobilising the metals (44). The common ion effect of 

Cd was observed in both R. apiculata and A. alba against 

salt, which established an antagonistic relationship of Cd 

over elevated salinity (58). This result was in agreement 

with other heavy metals such as Pb, Ni, Cr etc. in three 

mangroves in their order of tolerance under increasing 

salinities are S. caseolaris followed by S. Apetala and K. 

candel (59). High rhizospheric accumulation of Cu, Cd, Pb, 

Zn and Cr in roots with low translocation index was found 

in the order as C. tagal followed by B. sexangula and K. 

candel (60). The metals like Cu, Zn, Co exhibited higher 

rates of accumulation whereas Pb and Cr showed a strong 

coupling with each other (61). But these metals demon-

strated a reverse trend i.e., accumulation is maximum in 

stems and leaves than in roots of A. alba, C. decandra,        

X. granatum and R. mucronata species (62). 

 Mangrove plants can’t alleviate salt stress under oil 

contamination as the salt resistance process competes 

over oil induced degradation (63). It is anticipated that oil-

induced damage to mangrove plants would be more seri-

ous under salt stress with marked synergism (64). Numer-

ous laboratory and field studies have shown that oil bio-

degradation could be enhanced by nutrient addition (65). 

Different degrees of sublethal damages on the growth of 

four mangrove species seedlings: B. gymnorrhiza, K. obo-

vata, A. corniculatum and A. ilicifolius were observed in re-

sponse to lubricating oil-contaminated sediments (66). It 

was reported that some mangrove plants are resistant to 

an optimal concentration of Persistent Organic Pollutants 

(POPs) by their unique adaptive mechanisms (66). Exten-

sive fishing by boats, prosperous shipping, vehicular ex-

hausts and sewage discharges etc. may also add PAH (Poly

-Aromatic Hydrocarbons) into the mangrove sediments 

(67). 

Mechanisms of salt tolerance in mangroves        

Morphological and anatomical features       

Mangroves possess many mechanisms associated with 

morphological features against salt stress (68). It was ob-

served that the root to shoot ratio was linearly related to 

salt-injury in Avicennia and Aegiceras (69). Furthermore, 

viviparous mode of germination is one of the salt tolerance 

strategies in many mangroves (70). Salt secreting glands in 

the leaves of L. racemosa (71) and salt excretory system 

“extra floral nectarines” (EFN) in conocarpus (72) were typ-

ically observed as salt reduction strategies in mangroves. 

Leaf succulence with thick leaves of mangroves facilitates 

increased leaf water content, photosynthesis and CO2 up-

take (28). The waxed leaf epidermis is a salt tolerance 

mechanism in mangroves by resisting transpiration and 

maintaining the tissue water balance (21). Development of 

Kranz anatomy, reduction in stomatal density and wider 

stomata are typical features of succulence (21), while ex-

panded hyalinous hypodermal cells in R. mangle is a salt-

induced increase in succulence (28).  

Physiological mechanism         

Halophytes possess an optimal growth or physiological 
response under salinity conditions (Fig. 1). Alterations in 

morphological to physiological characteristics in man-

groves were reported under salt stress (22). Mangroves 

grown in green-house conditions without salt exhibited 

nutrient limitation (73). Certain iso-enzymes of antioxidant 

enzymes were salt-induced and removable in fresh water 

conditions in B. gymnorrhiza leaves. Similarly, in many 

mangroves under salt-induced oxidative stress, the stress 

was alleviated through expression or overexpression of 

antioxidative enzymes (74). Distribution of salts in rhizo-

spheric-zone led to decrease in stomatal conductance dis-

proportionately, which was influenced by phytohormone 

signalling from roots (75). ABA plays an important role in 

Fig. 1. Hypothetical growth/physiological response curves in relation to 
salinity in mangroves. (A) non-halophytes, (B) facultative halophytes              
(C) obligate halophytes and (D) extreme halophyte (Halobacterium sp.).  
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shoot signalling by root in salt stressed as well as water-

scarce plants (76). It was also reported that enhanced ABA 

concentrations in xylem and leaves of salt-treated plants 

and low transpiration rate (77). However, in A. officinalis 

ABA-independent pathways triggered by 1404 and 5213 

genes were significantly up- and down-regulated respec-

tivelyin reducing salinity stress (78). Transcriptome analy-

sis of K. obovata resulted in 26 genes out of which six were 

involved in chilling stress, seed germination and oxidation-

reduction processes, revealing their adaptive role to these 

stressors (79).    

Salt secretion, rejection and accumulation strategy       

Mangroves are divided into 3 types based on their salt ad-

aptation strategies viz. (1) salt excluders (e.g. Rhizophora 

sp. and Exocaria sp.), (2) salt secretors (e.g. R. mangle and 

B. gymnorrhiza) and (3) salt accumulators (e.g. B. cylindri-

ca, Avicennia rumphiana and A. marina) (Table 1). Transpi-

ration-induced negative hydrostatic pressure can over-

come negative osmotic pressure in roots of salt-excluding 

mangrove (80). The ultra-filtration and K+/Na+ exchange 

helps to maintain the salt level in shoots of mangroves 

(33). Another strategy to protect against salt injury is ex-

propriating of ions to the vacuoles and translocation and 

cuticular water loss in leaves of some mangrove species 

such as Lumnitzera and Excoecaria (40). There are many 

competing processes being executed in mangroves against 

salt stress (Table 1). Hyper-accumulation of Na+ fused with 

decline in Ca2+ and Mg2+ uptake or carbon sequestration in 

the leaves of B. cylindrica, A. rumphiana and A. marina have 

emerged as a novel strategy (81).  

Osmotic adjustment          

Osmo-regulation in certain mangroves such as B. gymnor-

rhiza, K. candel and R. stylosa is maintained by many com-

patible solutes e.g. pinitol and mannitol (82) (Table 2). Gly-

cinebetaine and O-methylmucoinositol also act as osmo-

protectant by catabolising chlorophyll and reducing Na+-

toxicity in A. marina and B. gymnorrhiza, respectively (50). 
Under salt stress, Chl a, b and carotenoid degradation have 
been observed in mangroves (83). Allometric responses of 

the mangrove A. germinans to increasing salinity indicated 

morphological plasticity that was an adaptive mechanism 
to adverse situations (84).  

 Proteins that accumulate in plants under saline con-
ditions may be stored as N-source and hep in osmo-
protection. The concentration of different molecular weight 
proteins especially 23 kDa in B. parviflora decreased and 33 
kDa over-expressed in B. gymnorrhiza (85) under salt stress 
whereas a particularly 23 kDa protein band reappeared 
when the plant was desalinized indicating its possible in-
volvement in osmotic adjustment (84). Previous workers 
bserved that a unique protein (mangrin) induced salt toler-
ance in B. sexangula (86). There was a decrease in amino 
acid concentration with increasing salinity in A. cornicula-
tum (87).  

 Proline is a compatible osmolyte to function as an 
osmoregulator of the cytoplasmic compartment of cells and 
an osmoprotectant for cellular component (88). The in-
creasing NaCl salinity has increased the proline content in A. 
ilicifolius (89). Soluble sugar level was found to be high in 
monsoon and low in summer in many mangroves (90). It 
was also reported that low salt level enhanced sugar con-
tent in Salicornia brachiate resulting in improved metabolic 
and photosynthetic performance. It was a reported fact that 

ascorbic acid level increased in the leaves of R. stylosa and 
B. parviflora against oxidative stress due to salt stress. The 
decrease in ascorbic acid and glutathione level in B. parvi-
flora due to consumption of antioxidants via ascorbate–
glutathione oxidative pathway (87). 

 

Molecular mechanism of salinity tolerance in mangroves       

Stress-induced genes that cover the adaptive features in 
mangroves were preferentially retained in stressful inter-

tidal environments due to stress factors like temperature 

shift, heavy metal stress, nutrient stress, fluctuating water 

level, hypoxia and (91-94). Ionic and osmotic stress caused 

by salt stress, which predominantly results in ion accumu-

lation, activates genes involved in reactive oxygen scav-

enging, osmolyte production, molecular chaperones, 

transporters and transduction components (15). Toxic ac-

cumulation of reactive oxygen species (ROS) such perox-

Genus Exclude Secrete Accumulate References 

Acanthus   +   Hogarth (1999); Ye et al. (2005); Nguyen et al. (2007) 

Aegialitis + +   Naidoo and Willert (1995); Hogarth (1999) 

Aegiceras + +   Naidoo and Willert (1995); Mishra and Das (2003); Ye et al. (2005) 

Avicennia + + + Sobrado (2002); Ye et al. (2005); Suarez and Medina (2006); Griffiths et al. (2008) 

Bruguiera +   + Takemura et al. (2000); Kura-Hotta et al. (2001); Li et al. (2008); Miyama and Tada (2008) 

Ceriops +     Hogarth (1999); Zheng et al. (1999); Aziz and Khan (2001) 

Excocaria +     Tomilson (1986a); Hogarth (1999) 

Laguncularia   +   Hogarth (1999); Sobrado (2004) 

Osbornia +   + Tomilson (1986a); Hogarth (1999) 

Rhizophora +   + Clough (1984); Werner and Stelzer (1990); Hogarth (1999) 

Sonneratia + + + Tomilson (1986a); Hogarth (1999); Yasumoto et al. (1999) 

Xylocarpus     + Hogarth (1999); Paliyavuth et al. (2004) 

Table 1. Reported mechanisms of salt adaptation and their known distribution in some mangrove species. Exclude, Secrete and Accumulate are the terms for 
salt management by plant tissues.  
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ides, superoxide, hydroxyl radical, singlet oxygen and al-

pha-oxygen is one of the first cellular alterations that oc-

curs under any form of stress (95). Superoxide dismutases 

(SOD) are enzymes that reduce cellular damage by con-

verting superoxide radicals (O2
.-) to H2O2. When A. marina is 

exposed to saline stress, it has been shown that the cellu-

lar concentration of cytosolic Cu/Zn SOD (CSD) increases 

(96). Under cadmium stress, K. obovata's root epidermis 

accumulated FeSOD and CSD with a hampered metal ion 

transport. In contrast, Sonneratia alba SaFeSOD and 

SaCSD1 are highly expressed in leaf and fruit tissues to 

combat accumulated ROS (97, 98). 

 Under stressful conditions, it has been seen that the 
genes for glutathione S transferase (GST), a different ROS-

scavenging protein that is necessary for GSH-dependent 

peroxidase activity, are elevated in B. gymnorrhiza and     R. 

mucronata (42, 99). Stress-induced DNA damage is re-

versed by repair mechanisms in which genes like Replica-

tion factor C 1 (RFC1), Proliferating cell nuclear antigen 

(PCNA), UV hypersensitive protein 3 (UVH3) and Replica-

tion factor A1 (RFA1) are involved with an enhanced ex-

pression status in K. candel. SODs, GSTs and catalases 

keep cytosolic redox levels in check (97). Mangrove surviv-

al depends on maintaining intracellular ion concentration 

in relation to the fluctuating ionic strength of the sur-

rounding estuary water. The energy-using activity of 

H+ATPases creates an electrochemical gradient that is 

used by Na+/H+ antiporters to transport surplus sodium 

ions (100). Under salt stress, tonoplast H+ATPase and vacu-

olar acid phosphatase production in B. sexangula in-

creased together with vacuolar volume, indicating their 

significance in vacuolar ion transport (101). Glycine beta-

ine, an osmolyte from the betaine family under high salt 

conditions, is encoded by the A. marina BADH gene (102). 

 In the leaf tissues of A. corniculatum suggests that 

the upregulated gene encoding the enzyme delta-1-

pyrroline-5-carboxylate synthase (AcP5CS) plays a key role 

in osmoprotection (103). Additionally, the transcriptome 

study of the C. tagal root indicated differential expression 

of proline biosynthesis genes, with the active gene expres-

sion lasting between 3 and 12 hrs after salt treatment 

(104). In K. candel, genes involved in the biosynthesis and 

signalling of amino acids and secondary metabolites 

(flavonoids and anthocyanins) are upregulated when the 

environment is salty. These genes include phenylalanine 

ammonia-lyase (PAL), trans-cinnamate 4-monooxygenase 

(C4H), 4-coumarate-CoA ligase 2 (4CL), anthocyanidin re-

ductase (97). GIGANTEA (GI) genes expressed in B. cylindri-

ca roots, establishes its role as a transporter regulator 

(105). By altering the composition of plasma membrane 

lipids, lipid metabolism-related genes such acyl-CoA syn-

thetase and UDP-3-O-acyl-N-acetylglucosamine deacety-

lase help membrane-bound ion transporters effectively 

exclude or compartmentalise excess Na+ ions in the        

vacuoles during salt stress (105). A. officinalis Cytochrome 

P450 (CYP94B1), a peroxidase gene, functions in the apo-

plastic cell barrier to support suberin production. The pro-

duction of suberin is also associated with the expression of 

Compatible solutes Mangrove species References 

Pinitol 
K. candel, R. stylosa, B. gymnorrhiza, A. marina Hibino et al. (2001) 

C. tagal Popp et  al. (1985) 

Mannitol 

K. candel, R. stylosa, B. gymnorrhiza Hibino et al. (2001) 

S. alba Yasumoto et al. (1999); Ashihara et al. (2003) 

L. racemosa Ashihara et al. (2003) 

Proline 

K. candel, R. stylosa, B. gymnorrhiza Hibino et al. (2001) 

B. parviflora Parida et al. (2002) 

A. corniculatum Fu et al. (2005) 

B. sexangulata, A. alba, X. granatum Datta and Ghosh (2003) 

A. ilicifolius, H. tiliaceus Datta and Ghosh (2003) 

A. marina Datta and Ghosh (2003); Hibino et al. (2001) 

C. roxburghiana Rajesh et al. (1999) 

C. tagal Aziz and Khan (2001) 

Glycinebetaine 

A. marina Hibino et al. (2001); Ashihara et al. (2003); 
Popp et  al. (1985) 

C. roxburghiana Rajesh et al. (1999) 

H. tiliaceus Popp et  al. (1985) 

O-methyl- muconiositol R. stylosa,B. gymnorrhiza Ashihara et al. (2003) 

Starch/Polysaccaride A. corniculatum Parida et al. (2004d) 

Aspartic acid A. corniculatum, A. ilicifolius Datta and Ghosh (2003) 

Sterol C. roxburghiana Suarez and Medina (2006) 

Table 2. Compatible solutes synthesized and accumulated as a salinity stress management strategy in mangroves and associates.  
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AoCYP94B1, a CYP94B1 homologue that is elevated in root 

tissues of the particular mangrove species in response to 

salt stress (106). 

 Abiotic stress causes aerenchymae, which are larger 

gas gaps between cells, to grow in the cortical area (107). 

In order to promote the development of aerenchyma in 

the mangrove root system, type 2C protein phosphatases 

(PP2C), which are significantly expressed under hypoxia, 

downregulate genes involved in the ABA pathway. In order 

to guarantee that the majority of ABA-related cellular ac-

tivities are shifted to a lower level, genes encoding SNF1-

related protein kinase 2 (SnRK2), an active booster of ABA 

substrate proteins, are likewise maintained downregulat-

ed (108-110). To maintain the integrity of the mangrove 

root system that is submerged, more pneumatophores 

must grow in response to challenges like hypoxia. When 

pneumatophore production occurs, granule-bound starch 

synthase (WAXY) and glucose 1-phosphate adenylyl trans-

ferase (GLGC) act in pathways that convert UDP glucose to 

starch (108). The gene (AoNHX1) that codes for the vacuo-

lar Na+/H+ exchanger is selectively expressed in the tono-

plast of A. officinalis leaves (106). With the help of nitric 

oxide (NO) signalling, the increased expression of the 

genes for the plasma-membrane-specific H+ATPase (HA1) 

and Na+/H+ antiporter (SOS1) further enhanced the tran-

scription of the genes for the vacuolar H+-ATPase (VHA-c1) 

and the vacuolar Na+/H+ antiporter (NHX1), which in turn 

facilitated the accumulation of Na+ in vacuoles (111). A 

greater level of OEE expression suggests that mangroves 

are better able to tolerate the detrimental effects of salt on 

photosynthesis by providing PSII with more stability and 

capacity as well as improved oxygen-evolving activity.       

A. ilicifolius has been shown to possess the positively se-

lected gene BRAP2 RING ZnF UBP domain-containing pro-

tein 2 (BRIZ2), which is required for seed germination and 

growth. In A. officinalis, differential gene expression analy-

sis revealed activation of ethylene and auxin signalling 

genes and downregulation of ABA signalling genes and 

transcription factors such MYBs, ABA-responsive element 

binding factors (ABFs) and basic Leucine Zipper genes 

(bZIPs) (112).  

 

Conclusion   

Mangroves face many environmental constraints as well as 

human interference in their growth and distribution. Apart 

from many abiotic factors affecting mangrove growth and 

development, salinity has its own significance. It may be 

considered that some mangroves are facultative or some 

are obligate halophytes. In both cases ‘salinity’ is a known 

stressor above or below an optimal level. Nutrients, hu-

man-mangrove conflict, different environmental pollu-

tants such as heavy metals, recalcitrant, persistent pollu-

tants, cosmetics, petroleum oil and Endocrine Disrupters 

have reported impact on various mangroves and             

associated biota. Stress tolerance in mangroves involves 

various mechanism including morphological and anatomi-

cal features, osmo-regulation, water use efficiency, salt 

secretion, salt exclusion and salt accumulation and molec-

ular regulations. This report reveals various aspects of salt 

tolerance strategies of mangroves related their growth, 

biochemical anatomy and physiology.   
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