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ABSTRACT 

 

 

 

The scaling of technology to lower process nodes is a major convenience as it allows for 

power saving by allowing the circuit to operate at a lower voltage. As per the prediction by 

International Technology Roadmap for Semiconductors (ITRS), the supply voltage will 

reduce down to 0.4V by 2024. Although the reduction of supply voltage is favourable in 

terms of power-saving, especially in powering Internet of Things (IoT) devices, the penalty 

incurred by this is the degradation of power supply rejection ratio (PSRR) due to reduced 

output impedance of bandgap reference circuits at lower voltage supply. The proposed work 

aims to mitigate this problem by employing metal oxide semiconductors (MOS) based 

proportional to absolute temperature (PTAT) and complementary to absolute temperature 

(CTAT) generator and regulated cascode techniques to improve the PSRR even at lower 

voltage supply, eliminating the need for voltage doubler circuits which injects noise in the 

substrate and degrades circuit performance. This improved PSRR bandgap reference circuit 

will then be used to power-up circuits that require high PSRR and clean power supply to 

ensure optimal functionality of IoT circuits, particularly sensitive circuits that degrade in 

functionality when subjected to noise travelling through power supply such as low power 

sensors and voltage controlled oscillators (VCOs) in frequency synthesizers.  The objectives 

of this work are to investigate the characteristics and performances of the power management 

unit for radio frequency energy harvesting (RFEH) applications, design and develop 

bandgap reference with improved PSRR at low voltage supply, design and develop a low 

dropout (LDO) regulator to provide a constant voltage reference in RFEH system and 

validate and analyze the performance of the proposed circuit. This work managed to achieve 

a reference voltage of 0.405V over a wide temperature of -40 to 125˚C, a PSRR of -41dB, 

line and load regulation of 1.188mV/V and 2.506mV/mA respectively and load current range 

from 0 to 800µA. The current consumption of the bandgap is 20.33µA and the whole power 

management unit (PMU) is 37µA and the temperature coefficient (TC) is 64.41ppm/˚C. The 

bandgap area is 0.0627mm2 while the whole PMU is 0.142mm2. Overall, the design passes 

all the post layout validations such as design rule check (DRC) and layout vs schematic 

(LVS) and functions as expected. The post-layout simulations were analyzed and the results 

closely agree with the pre-layout simulations. On top of that, this work demonstrates the 

robustness of the bandgap reference circuit when integrated at the top level with the LDO, 

start-up and biasing circuits as it is able to operate, with 50% improvement in PSRR over 

conventional design at a supply voltage of 0.6V, making it suitable to power up sensitive 

IoT circuits.  
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PENAMBAHBAIKAN 0.6V RUJUKAN SELA JALUR PSRR UNTUK SISTEM 

PENGURUSAN KUASA DALAM APLIKASI PENUAIAN TENAGA RF 

 

 

ABSTRAK 

 

 

Penskalaan teknologi ke nod proses yang lebih rendah adalah satu kelebihan kerana 

memungkinkan penjimatan kuasa dengan membenarkan litar beroperasi pada voltan yang 

lebih rendah. Seperti yang dijangkakan oleh halatuju teknologi separuh pengalir 

antarabangsa (ITRS), voltan bekalan akan berkurang sehingga 0.4V menjelang 2024. 

Walaupun pengurangan voltan bekalan adalah bagus dari segi penjimatan kuasa, terutama 

dalam menghidupkan peranti internet benda (IoT), penalti yang ditanggung adalah 

penurunan nisbah penolakan bekalan kuasa (PSRR) disebabkan oleh pengurangan 

rintangan litar rujukan sela jalur pada bekalan voltan yang lebih rendah. Teknik yang 

dicadangkan bertujuan untuk mengurangkan masalah ini dengan menggunakan penjana 

suhu kadaran mutlak (PTAT) dan suhu pelengkap mutlak (CTAT) berdasarkan separuh 

pengalir oksida logam (MOS) dan teknik kaskod terkawal untuk meningkatkan PSRR 

walaupun pada bekalan voltan yang lebih rendah sekaligus menghilangkan keperluan untuk 

litar pengganda voltan yang menyuntik hingar ke dalam substrat dan menurunkan prestasi 

litar. Litar rujukan sela jalur PSRR yang diperbaiki ini kemudiannya akan digunakan untuk 

menghidupkan litar yang memerlukan PSRR tinggi dan bekalan kuasa bersih untuk 

memastikan fungsi optimum litar IoT, terutamanya litar sensitif yang merosot kefungsian 

apabila disuntik hingar dari bekalan kuasa seperti litar penderia berkuasa rendah dan litar 

pengayun dikawal voltan (VCO) dalam pensintesis frekuensi. Objektif kajian ini adalah 

untuk menyiasat ciri-ciri dan prestasi unit pengurusan kuasa untuk aplikasi penuai tenaga 

frekuensi radio (RFEH), mereka bentuk dan mengembangkan litar rujukan sela jalur dengan 

peningkatan PSRR pada bekalan voltan rendah, mereka bentuk dan mengembangkan litar 

ciciran rendah (LDO) untuk memberikan rujukan voltan pemalar dalam sistem penuaian 

tenaga frekuensi radio (RF) dan mengesahkan dan menganalisis prestasi litar yang 

dicadangkan. Kajian ini berjaya mencapai voltan rujukan 0.405V pada julat suhu -40 

hingga 125°C, PSRR -41dB, peraturan garis dan beban 1.188mV/V dan 2.506mV/mA dan 

bebanan arus antara 0 hingga 800µA. Litar rujukan sela jalur ini menggunakan arus 

sebanyak 20.33µA manakala keseluruhan unit pengurusan kuasa (PMU) menggunakan arus 

sebanyak 37µA. Jumlah pekali suhu (TC) pula adalah 64.41ppm/˚C. Kawasan bentangan 

litar sel jalur adalah 0.0627mm2 sementara keseluruhan PMU adalah 0.142mm2. Secara 

keseluruhan, reka bentuk litar sela jalur ini melepasi semua pengesahan pasca-bentangan 

seperti semakan aturan rekabentuk (DRC) dan semakan antara bentangan dan skematik 

(LVS) dan berfungsi seperti yang dijangkakan. Simulasi pasca-bentangan dianalisis dan 

hasilnya bertepatan dengan simulasi pra-bentangan. Selain itu, kajian ini menunjukkan 

kesepaduan rangkaian litar rujukan sela jalur ketika digabungkan dengan LDO, litar 

pemula dan litar pincang kerana dapat beroperasi dengan peningkatan 50% PSRR 

berbanding reka bentuk konvensional pada bekalan voltan 0.6V, menjadikannya sesuai 

untuk menghidupkan litar IoT yang sensitif. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Radio frequency energy harvesting (RFEH) is a promising way to scavenge energy 

from the environment to power up Internet of Things (IoT) sensors and low-power 

applications. The scaling down of technology nodes also contribute to more low-power 

devices, making RFEH even more desirable. This is because RFEH offers interesting 

attributes such as reduced cost and lower periodic maintenance which is especially useful 

when involving IoT devices in harsh environments that complicate the maintenance 

process. Apart from that, the lifetime of the storage can be extended (Soyata et al., 2016). 

 

 

 

 

 

 

Figure 1.1: Typical power management unit (PMU) for RFEH systems 

 

Circuitry reported in literature that can potentially benefit from RFEH include low 

power sensors which operate at sub-threshold or near threshold are the perfect candidate 

for RFEH systems. In order to power low power devices through RFEH, a power 

management system such as the one shown in Figure 1.1 can be employed.   
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The power management system for RFEH contains blocks such as an antenna, a 

matching network, a rectifier, a bandgap reference and an low dropout (LDO) regulator. 

The power management system works such that RF signal is first collected through the 

antenna (Masius, Wong & Lau, 2018) and is fed into a matching network which functions 

to maximize power transfer and to provide passive amplification. The signal then passes 

through a rectifier which converts the radio frequency (RF) signal into direct current (DC) 

signal (Mohd Kamel & Wong, 2019). The DC signal is then fed into the LDO to be 

regulated. The bandgap serves as a reference voltage to the regulator that provides a stable 

voltage across variations in temperature. 

There is a lot of work being done on RFEH targeting different blocks in the RFEH 

PMU system. For example, works by Mrnka et al. (2016) and Ramesh and Rajan (2014) 

focuses on optimizing the antenna performance to obtain a higher power conversion 

efficiency (PCE). Apart from that, works by Al-Lawati et al. (2012); Liu, Z et al. (2018) 

and  Noghabaei et al. (2018) aim to improve the performance of the rectifier by employing 

different architectures. The overwhelming amount of research on RFEH has resulted in 

interesting circuit implementations at the top level. RFEH powered transceivers for sensor 

and IoT applications such as the designs by Masuch et al. (2012); Taghivand et al. (2015); 

Rajavi et al. (2016); Kim, Y. et al. (2015) and Gao et al. (2013). 

A bandgap reference circuit targeted at improving PSRR on 130nm complementary 

metal oxide semiconductor (CMOS) technology targeting IoT RFEH devices that operate 

at sub-threshold and near-threshold region that exhibits improvement over the conventional 

design. The circuit will be designed at the schematic level and verified pre-silicon.  A layout 

of the proposed circuit will then be designed and post-layout verification will be carried 

out as a proof of concept of the RFEH system. 
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1.2 Power Supply Rejection Ratio (PSRR) 

In order to understand the concept of a clean power supply, consider Figure 1.2, in 

which the power supply has been modeled by an inductor connected to the power supply 

due to the inductance of the wire bond to the input and output pins. As can be seen, since 

the analog and digital blocks share same power rails, both voltage supply and ground, the 

fast transient currents due to switching of digital currents will induce a voltage drop across 

the inductor, hence creating an unclean power supply or noise and causing problems to 

analog circuits such as headroom issues among other things. Coming back to the concept 

of PSRR, an analog circuit is characterized by its ability to reject this noise from the power 

rails, hence the name PSRR to ensure optimum performance of circuits of both domains. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Switching current of digital blocks causing a voltage drop across the  

  inductor and manifest itself in the form of noise 

 

 

Digital Blocks Analog Blocks 

Vdrop = L(di/dt) 

Vdrop = L(di/dt) 

VDD 

GND 
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1.3 Problem statement 

In low power sensors, the accuracy of the functionality may be affected especially 

since the sensors are required to detect minute levels of changes in stimuli and are therefore 

very sensitive to noise. The same applies to the voltage controlled oscillator (VCO) where 

it is particularly sensitive to noise in the power supply. Digital switching injects noise to 

the substrate due to the charge and discharge of current from the power supply (Nagata et 

al., 2001). The effects of this is can be devastating, especially in the era where digital and 

analog circuits are integrated on the same die. From a digital perspective, an unstable power 

supply will cause of noise and gate delay in digital design and this conclusion is supported 

by Andrade et al. (2007) and Charbon et al. (1999).  

In a mixed signal environment, power supply noise due to digital switching injected 

to voltage reference can cause non-linearity in blocks such as mixers and low noise 

amplifiers (LNAs) and bit errors in analog to digital converters (ADCs) (Ozbas et al., 

2003). In a clock generation circuitry, any noise injected through the power supply will 

affect the control voltage of the VCO to operate optimally, resulting in jitter in the phase 

locked loop (PLL) affecting the reliability of clock generation (Magierowski et al., 2004). 

One way to mitigate this is to employ high PSRR in power management circuits such as 

bandgap reference (Chahardori, Atarodi and Sharifkhani, 2011). As such, this work focuses 

on the design of bandgap reference circuit in power management system with improved 

PSRR and discusses the block in detail.  

In terms of applications, recently there has been an upsurge of circuitry operating 

at around 0.4V or near threshold voltage. Low power sensors in works by Ashouei et al. 

(2011) and Konijnenburg et al. (2013), low voltage supply ADCs and PLLs by Anvesha 

and Raychowdhury (2017); Hsieh et al. (2018);  Lee, P. et al. (2016), Jo et al. (2018) and 

Moon et al. (2014), memory circuitry by Dubey et al. (2017), image sensor by Chiou et al. 




